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Abstract. Over the last century, our societies have experienced a sharp increase in urban population and fossil-fueled trans-
portation, turning air pollution into ore-of-the-mest-eritical-issues—ofour—timea critical issue. It is therefore fundamental
key to accurately characterize the spatiotemporal variability of surface air pollution, in order to understand its effects upon
human-health-and-the environment, knowledge that can then be used to design effective pollution reduction policies. Global
atmospheric composition reanalyses offer great capabilities towards this characterization through assimilation of satellite mea-
surements. However, they generally do not integrate surface measurements and thus remain affected by significant biases at
ground-level. In this study, we thoroughly evaluate two global atmospheric composition reanalyses, CAMSRA and MERRA-2,
between 2003 and 2020, against independent surface measurements of O3, NOsy, CO, SO2, PM;y and PM; 5 over the Euro-
pean continent. Overall, both reanalyses present significant and persistent biases for almost all examined pollutants. CAMSRA
clearly outperforms MERRA-2 in capturing the spatiotemporal variability of ©;-€O;PMrrand-most pollutants, as shown
WWMW&PM2 ssurface-conecentrations—Despite-its—higher—spatial-resolution—and

, lower errors (all pollutants) and higher
correlations (all pollutants except SO5). CAMSRA also outperforms MERRA-2 in capturing the annual trends found in all

pollutants —E

when-pollutant-concentrations—peak;-with-the-exeeption-of-Oz(except for SO,). Overall, CAMSRA tends to perform best for
O3 and CO, followed by NO, and PM o, while poorer results are typically found for SO5 and PM, 5. Higher correlations are

not-neeessarity-foundinJA-partieularhy-generally found in autumn/winter for reactive gases;-which-show-greatercorrelation
values-in-antuma(SON)-and-winter. Compared to MERRA-2, CAMSRA assimilates a wider range of satellite products which,

while enhancing the performance of the reanalysis in the troposphere (as shown by other studies), has a limited impact on the

surface. The biases found in both reanalyses are likely explained by a combination of factors, including errors in emission in-
ventories and/or sinks, a lack of surface data assimilation and their relatively coarse resolution. Our results highlight the current
limitations of reanalyses to represent surface pollution, which limits their applicability for health and environmental impact
studies. When applied to reanalysis data, bias-correction methodologies based on surface observations should help eenstraining

to constrain the spatiotemporal variability of surface pollution and its associated impacts.
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1 Introduction

In the last two decades, reanalyses have become a very powerful tool in modern Earth sciences as they combine both model- and
observation-based information to provide physically consistent data of land, ocean and atmospheric variables with continuous
spatial and temporal coverage. In the field of atmospheric compositionthereafter;-AC), different reanalysis products are avail-
able at global scale, including the Copernicus Atmospheric Monitoring Service reanalysis (CAMSRA; Inness et al. (2019)),
produced by the European Centre for Medium-Range Weather Forecasts (ECMWF), and the Modern-Era Retrospective Analy-
sis for Research and Applications v2 (MERRA-2; Gelaro et al. (2017), Randles et al. (2017), Buchard et al. (2017a)), produced
by National Aeronautics and Space Administration (NASA)’s Global Modelling and Assimilation Office (GMAO). Both prod-
ucts assimilate a variety of space-based remote sensing observations (mostly total and tropospheric columns) obtained from a
growing fleet of satellites measuring reactive gases such as ozone (Oj3), nitrogen dioxide (NOz) or carbon monoxide (CO), as
well as aerosol optical depth (AOD). Such an extensive data assimilation of satellite observations is crucial for reducing the
biases related to erroneous emission forcings and/or overly coarse representations of the physical and chemical processes that
occur in the atmosphere. Data assimilation helps te-better constrain the spatiotemporal variability and long-term trends of the
most important chemical compounds, providing a physically consistent view of the Earth’s atmospheric composition.
Considering the strong interest of atmospheric composition reanalyses for a variety of applications (e.g. climatological studies,
initial and/or boundary conditions for regional-scale modeling systems, air pollution impact assessment s-and health studies), it
is crucial to characterize the strengths and limitations of these global products, in particular at the surface, as no in situ chemical
observations are assimilated. The most recent studies evaluating the CAMSRA and/or MERRA-2 reanalysis at ground-level
are indicated in Table 1, highlighting the limited effort that has been made so far to evaluate and inter-compare these reanalysis
products against in situ surface measurements.

The main findings of this more recent literature are briefly outlined here. Ryu and Min (2021) found significant and persis-
tent biases in all the pollutants examined over South Korea, with CAMSRA outperforming MERRA-2 in all cases except
for SO,. By-performing-a-global-evaluationAt global scale, Wagner et al. (2021) showed that CAMSRA provides an over-

all accurate representation of reactive gases over time, and highlighted the key role played by satellite data assimilation and
emissions-in-improving-AC-in improving atmospheric composition reanalysis products. Both these two previous studies ana-
lyze a wide range of aerosols and reactive gases and cover the most extensive period possible at the time, 2003-2018, which is
limited by the start of CAMSRA in 2003. Ma et al. (2021) found persistent negative biases in PM;o concentration over main-
land China in MERRA-2 for the periods 2011-2013 and 2016-2017, with better performance during summer. Their results
also feund-that-addingnitrate-compoundsto MERRA ignificantly-improved-the reanalysisperforman
improvement when including nitrate compounds. Navinya et al. (2020) found a systematic underestimation of PM, 5 concentra-
tion in MERRA-2 over India for the period 2015-2018. Huijnen et al. (2020) found limited surface O3 biases when evaluating
East and found a large underestimation for MERRA-2, while CAMSRA showed both moderate negative and positive biases.
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evaluated PM over the period 2014-2020 in China and found significant over- and underestimations

Table 1. Review of recent studies evaluating the CAMSRA and/or MERRA-2 reanalysis at the surface using in situ observations.

Author Region Period Reanalysis Pollutants
Ryu and Min (2021) South Korea 2003-2018 CAMSRA; MERRA-2; TCR-2  CO, NOg, SO3, O3z, PM1g
Wagner et al. (2021) Global 2003-2018 CAMSRA NO., O3, CO, HCHO
Ma et al. (2021) China 2011-2013; 2016-2017 MERRA-2 PMio
Navinya et al. (2020) India 2015-2018 MERRA-2 PM; 5
Provencal et al. (2017a) Europe 2003-2014 MERRA-1 PM3 5, PMig
Provencal et al. (2017b)  Israel; Taiwan 2002-2015 MERRA-1 PMs 5
Buchard et al. (2016) USA 2003-2012 MERRA-1 PMs 5
height

Our study evaluates CAMSRA and MERRA-2 against independent surface in situ measurements over the period 2003-
2020, focusing on the European continent, a region still poorly covered by past evaluation studies (Table 1). It considers all
major pollutants with recognized harmful effects on human health and sufficient observational data available at the surface,
namely O3, NO2, CO, SOz, PM;g and PM; 5. The motivation behind this study arose in the context of the ERC-European
Research Council (ERC) project EARLY-ADAPT (https://early-adapt.eu/), in the frame of which a pioneer health dataset is
currently being collected over Europe to investigate the time-varying health effects of climate and air pollution, and thus shed
light into the early adaptation response to climate change in the field of human health. This impact will be quantified by
fitting epidemiological models on historical local health, climate and air pollution data, which thus requires a long-term (multi-
decadal) air quality database of the most harmful pollutants, at daily-scale and over the entire European domain. Despite
their relatively coarse spatial resolution, which is the counterpart to a sufficiently long-term coverage, global-scale atmospheric
composition reanalyses provide highly valuable information, though remain subject to biases and errors both in terms of spatial,
seasonal and intra-annual variability, but also regarding long-term trends. It is worth mentioning here that the CAMS regional
reanalysis (Marécal et al. (2015)), focused on Europe, assimilates surface in situ observations and provides air pollution fields
at a finer spatial resolution than CAMSRA, but only over a limited period of time (2014-2018), for which reason we focus here
on the global reanalysis.

In Sect. 2, we introduce the data (Subsect. 2.1) and provide details on the different methods employed for their analysis

(Subsect. 2.2). Results are presented and discussed in Sect. 3, and summarized in Sect. 4.



2 Data & Methodology

In this section we briefly describe our observational and reanalysis datasets, while providing details on the different statistical
methods employed for their analysis. Throughout this work, square brackets, [], are used to indicate concentration or mixing

80 ratio of a chemical compound (e.g. [O3] = O3 mixing ratio, [PM;q] = PM;y concentration) measured in parts per billion

(ppbv) for reactive gases and in ugm ™3 for aerosols. Nonetheless, the term concentration is used for the sake of simplicit
when reactive gases are mentioned together with aerosols.

2.1 Data

Our model data eemes-come from two global atmospheric composition reanalyses, CAMSRA and MERRA-2, whose main
85 characteristics are summarized in Table 2. The reanalyses are evaluated against surface in situ measurements obtained from two
European Environment Agency (EEA) databases, AIRBASE, for the period 2003-2012 (EEA, 2014), and AQ —eReportinge-Reporting

(EEA, 2018), for the period 2012-2020. No significant inconsistencies are expected between AIRBASE and AQ e-Reporting.

given that stations included in both databases are obtained from the same network. Though stations may be renamed, relocated,

or even removed with time, this is not expected to significantly affect our data given the large number of stations considered
90 and the continuous addition of new stations into the network throughout all the period 2003-2020.

2.1.1 CAMSRA

Produced by ECMWE, the CAMS global atmospheric composition reanalysis consists of 3-dimensional time-consistent A€

atmospheric composition fields that include chemical species, aerosols and greenhouse gases (GHGs), and currently covers a

temporal period extending from 2003 to mid-2021. The reanalysis starts in 2003, when space-based observational measure-

95 ments, retrieved from a myriad of instruments on-board Envisat, Terra, Aura, MetOp and POES satellites, became available.

The latest CAMSRA version was produced in cycle 42R1 of ECMWF’s Integrated Forecast System (IFS) using 4DVar data

assimilation of satellite measurements, including O3, NO5, CO and AOD. This IFS cycle includes the modified Carbon Bond

2005 Chemical Mechanism (CB0S5), which serves as the tropospheric chemistry scheme of the reanalysis (Flemming et al.,

2015). Anthropogenic emissions come from the MACCity inventory data (Granier et al., 2011) for the period 2003-2010, and

100 from 2010 onwards they are derived according to the 8-5-representative concentration pathway (REPof 8.5 Wm ™2 (RCP8.5).

Biomass burning emissions are obtained from the Global Fire Assimilation System (GFAS) v1.2 (Kaiser et al., 2012), whereas

monthly mean biogenic YOE-vyolatile organic compound (VOC) emissions are computed with the Model of Emissions of Gases

and Aerosols from Nature (MEGAN) using MERRA-2 reanalysed meteorology (Sindelarova et al., 2014). Meteorological ob-
servations and-fields-are-taken-from-are assimilated as in ERAS (Hersbach et al., 2020).

105 CAMSRA has a horizontal resolution of approximately 80 km (similar to a regular 0.75° x 0.75° latitude/longitude grid), with

e I R T SR 5y-or-on-areduced-Gausstan-grid-N428yatmospheric composition fields
being available only in grid-point space. Its vertical resolution consists of 60 hybrid sigma/pressure model levels, with the top

of the first level at 10 m above ground and the top level located at 0.1 hPa. CAMSRA products are available at a temporal
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resolution of 3 h, including 3-hourly analysis fields and 3-hourly forecast fields. The bias-biases present in the different AC
satellite-retrieved datasets employed to build CAMSRA is corrected through a variational bias correction scheme (Dee and
Uppala, 2008). For a more thorough and detailed description of CAMSRA we direct the reader to Inness et al. (2019) and
Wagner et al. (2021).

In CAMSRA, both PM ;4 and PMs 5 are directly available and do not require to be reconstructed from its separate chemieal
aerosol compounds, which include black carbon (BC), organic carbon (OC), organic matter (OM), sulphates-sulphate (SO4), sea

salt and dust. Both PM fields were downloaded directly without any reconstruction or modification, though they are originall
reconstructed from the following formulas:

paol=p (5 50+ D011 100214041003 {OM]+ M1+ [SUTBC1} 2] (1)
M5l p (505552 4 [DDII4DD2L40.4DD3]0.710MI10710M2+0.TISUL+ BCL4BCA ) (i

Where p is the air density, SS1/2 the sea salt, DD1/2/3 the dust. OM1/2 the organic matter, BC1/2 the black carbon, and
SUI the aerosol sulfate mass mixing ratios (with 1/2/3 referring to the aerosol bins, from smallest to largest). The factor 4.3
is applied to convert the model sea salts, expressed at 80 % relative humidity in the model (see Reddy et al. (2005)), into
dry mass mixing ratios. However, it is worth mentioning that to the best of our knowledge, this correction might need to be
revisited in the future to also account for the change of size of the sea salt particles (as mentioned on the CAMS scientific user

forum: https://confluence.ecmwf.int/display/CUSF/PM10+and+PM25+global+products, last access: 25th November, 2022).
Notably, aerosol nitrates are, at this time, not included in the reanalysis, which ean—could in principle lead to significant

underestimations in regions where nitrates represent an important part of total aerosol concentration. Seeondary-Although in
practice, the assimilation of AOD observations (that evidently integrate all the aerosol compounds) is expected to reduce these
biases. Within OM, secondary organic aerosols (SOA) of anthropogenic origin are parametrized according to Spracklen et al.
(2011), based on MACCity CO emissions. A detailed description of the aerosol scheme employed in CAMSRA can be found



Table 2. Summary of reanalysis products.

Reanalysis

CAMSRA

MERRA-2

Available pollutants
Coverage period
Spatial resolution

Assimilation system

Meteorology
Chemistry

Anthropogenic emissions

Biomass burning emissions

Biogenic emissions
Volcanic emissions

Assimilated O3 products

Assimilated NO2 products
Assimilated CO products
Assimilated SO2 products

Assimilated aerosol products

O3, NO2, CO, SO2, PM;0, PM2 5
2003—present
~80 km (roughly 0.75° x 0.75°)
IES-Cyele-42rt+-4D-Var

ERAS-IFS Cycle 42r1 (Hersbach et al., 2020)

IFS(CBO5) (Flemming et al., 2015)
MACC ity (Granier et al., 2011)

GFASv1.2 (Kaiser et al., 2012)

MEGAN (Sindelarova et al., 2014)
SCIAMACHY, MIPAS, MLS
OMI, GOME-2, SBUV/2
SCIAMACHY, OMI, GOME-2
MOPITT

AATSR, MODIS

O3, CO, SOz, PM1g, PM2 5
1980—present
0.5° x 0.625°
3D-Var Gridpoint Statistical Interpolation (GSI)
GEOS-5 (Rienecker et al. (2008), Molod et al. (2012))
GOCART (Chin et al. (2002), Colarco et al. (2010))
AeroCom Phase II (HCAO v1; Diehl et al. (2012)),
EDGARV4.2 (https://edgar.jrc.ec.europa.eu/)
RETROvV2 (Duncan et al., 2003),
GFEDv3.1 (Randerson et al., 2006),
QFED 2.4-r6 (Darmenov and da Silva, 2013)
NVOC (Guenther et al., 1995)
AeroCom Phase II (HCAO v2; Diehl et al. (2012))
MLS, OMI, SBUYV, SBUV/2

AVHRR, AERONET, MISR, MODIS

2.1.2 MERRA-2

135

140

Developed by NASA’s GMAO, the MERRA-2 atmospheric composition reanalysis is based on the Goddard Earth Observing
System v5 (GEOS-5) atmospheric model. It is important to note at this stage that, in contrast with CAMSRA, which aims
to simulate all major chemical compounds present in the atmosphere, the MERRA-2 reanalysis, despite being the first AC
atmospheric composition reanalysis that couples chemistry to global atmospheric circulation, focuses mainly on aerosols.
Therefore, aside from meteorological data, only AOD observations and O3 columns are assimilated in MERRA-2, based on
both measurements from Terra, Aura, MetOp and POES satellites, and - unlike in CAMSRA - surface-based observations from
the Aerosol Robotic Network (AERONET). Anthropogenic sulfate, black carbon (BC) and primary organic matter (POM)
emissions are obtained from AEROsol COMparisons between Observations and Models (AeroCom) Phase II (HCAO vl;
Diehl et al. (2012)). Anthropogenic SOy emissions are taken from the Emissions Database for Global Atmospheric Research
(EDGAR) v4.2, developed by the European Commission (https://edgar.jrc.ec.europa.eu/), whereas volcanic SO, is retrieved
from AeroCom Phase II (HCAO v2; Diehl et al. (2012)). CO is simulated by the GEOS-5 modeling system. Sea salt and dust

emissions, both composed of five non-interacting size bins, are wind-driven. Aerosol chemistry is reproduced with a version of
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the Goddard Chemistry Aerosol Radiation and Transport (GOCART; Chin et al. (2002), Colarco et al. (2010)) model, which
simulates the processes, interactions, sources and sinks of the different chemical compounds included in MERRA-2, with the
exception of O3 and CO.

MERRA-2 currently covers a temporal period extending from 1980 to mid-2021. The reanalysis was produced using 3DVar
data assimilation of AOD and several other meteorological fields. MERRA-2 uses cubed-sphere horizontal discretization,
which serves to mitigate grid spacing singularities that appear in regular Gaussian grids, at an approximate resolution of 0.5°
x 0.625° (~50 km), and has 72 hybrid-eta model levels from the surface, with the first level reaching 58 m above ground, to
the top at 0.01 hPa. MERRA-2 includes 1-hourly and 3-hourly analysis fields for its aerosol diagnostics and meteorological
data. For a more thorough and detailed description of MERRA-2 we direct the reader to Gelaro et al. (2017) and Randles et al.
(2017).

Designed primarily for research focused on aerosols, the MERRA-2 reanalysis dataset also provides data of the most important
trace gases, including O3z, CO and SO (with only NO5 being unavailable). In MERRA-2, both PM;(, and PMs 5 need to be
reconstructed from the available aerosol chemical compounds, which include organic carbon (OC), black carbon (BC), dust

(DS), sea salt (SS) and sulphates-sulphate (SO,). In this study, the PMy and PM> 5 concentrations are computed as follows:
[PMyg] = 1.375x[SO4] + 1.8 x[OC] + [BC] + [DS] + [SS] (2a)
[PMaz 5] = 1.375x[SO4] + 1.8 x[OC] + [BC] + [DSa.5] + [SS2.5] (2b)

The 1.375 factor applied to [SOy4] is used here to convert sulfate into ammonium sulfate (assuming full neutralization). The
1.8 factor applied to [OC] accounts for other organic compounds found in organic matter (OM). In recent literature, Eq. 2a and
2b are the most frequently used to reconstruct the PM fields. Equation 2a is used by Provencal et al. (2017b) and also in Ma
et al. (2021), though with an additional term to account for aerosol nitrates in the latter. Equation 2b is used by Provengal et al.
(2017a, b) and in Ryu and Min (2021), where it is also employed to reconstruct [PM;] by multiplying it with a measurement-
based [PM1o]/[PMs 5] ratio of 1.75 (computed over the period 2003-2018). Note also that there are large uncertainties in the
[OM]/[OC] ratio as it varies in time and space, and other studies have chosen a different value (e.g. 1.4 in Buchard et al. (2016)
and Buchard et al. (2017b)) for this factor. Notably, nitrates are currently not available in MERRA-2, even though they can
make up a considerable portion of total [PM] Aldabe et al. (2011). To overcome this limitation, some authors such as Ma et al.
(2021) have introduced an additional term partly based on observations.

In our study aerosol nitrates are not included in the PM; and PM; 5 concentration fields, neither in MERRA-2 nor in CAM-
SRA. The potential underestimation due to the absence of nitrates is at least partially compensated by the fact that both
reanalyses assimilate total AOD observations, which corrects all PM chemical compounds proportionally and thus minimizes

the biases due to the absence of aerosol nitrates.
2.1.3 Air quality observations and GHOST

The EEA observations are accessed from the Globally Harmonised Observational Surface Treatment (GHOST) initiative, a

BSEBarcelona Supercomputing Center (BSC) in-house project dedicated to the harmonisation of global air pollution surface



observations and its metadata, with the purpose of facilitating a greater quality of observational/model comparison in the at-
mospheric chemistry community. Besides the chemical concentration data originally available in the EEA databases, GHOST
provides an extended set of metadata, including a variety of quality-assurance (QA) flags, that is used here to eliminate doubtful,
180 non-physical or other faulty data (see Appendix B-D for a detailed description of the QA filters applied here). To ensure a good
temporal representativeness, only daily averages based on at least 18 hourly values (75% threshold) are retained in our study.
Given the relatively coarse spatial resolution of both reanalyses, only TWM@W background stations,
of greater-larger spatial representativeness, are considered in the evaluation: i
remote;urban-or-suburban—-thus-disearding-traffic- &Wm@b@g&wmmmm@g and indus-
185 trial point source stations —Fhe-tatter-are-have also been discarded, being generally located in areas with restrieted/limited air
flow and close to local emission sources, thus-being-heavily-affeeted-which causes their pollution concentration levels to be
overly driven by day-to-day variabilityinpettution-tevets. For information purpose, evaluation results obtained considering only
urban and suburban background stations will be also briefly discussed. More information on the station classification can be

found on the EEA website (https://www.eea.europa.eu/themes/air/air-

190 last access: 15th December 2022).

uality-concentrations/classification-of-monitoring-stations-and

2.2 Methodology

Our domain of study extends from 25°W to 45°E in longitude, and from 27°N to 72°N in latitude, thus covering all continental
Europe as well as the Canary Islands, Iceland, Western/European Russia, North Africa and the westernmost regions of the
Middle East and the Caucasus. For convenience, both CAMSRA and MERRA-2 are regridded over this domain on a common
195 regular longitude-latitude grid at a resolution of 0.2° x 0.2° (roughly 20 km) through bilinear interpolation. The (pointwise)
observations are also gridded to this same resolution by averaging (at daily-scale) all the stations available within a given grid
cell. Compared to a pointwise-to-gridded comparison, this is expected to partly overcome the issues of spatial representative-
ness and spatial heterogeneity, although we acknowledge here that more sophisticated methods such as those proposed by

Souri et al. (2022) (which employ geostatistical approaches by making use of semivariograms and kriging) might be worth

200 implementing in the future. However, when considering only rural, rural-regional and rural-remote background stations, the
roportion of gridded daily observations based on one single daily observation (two daily observations) is 96.1 % (3.5 %) for
NO3, 95.4 % (4.4 %) for O3, 96.7 % (3.2 %) for SO3, 97.9 % (1.9 %) for CO, 91.0 % (8.5 %) for PM;j4 and 92.5 % (7.4 %

for PM, 5, these high percentages being explained by the presence of numerous missing values throughout the period of study.
Table 3 and Fig. 1 provide some information on the observations available over our European domain during 2003-2020, in

205 terms of both pointwise and gridded observations (the total number of observations is typically reduced by a 2-3 factor after
the gridding operation). Unfortunately, in situ observations from GHOST are not available for several countries falling within
the domain considered in this study, located in Northern Africa (e.g. Morocco, Algeria, Tunis, Lybia, Egypt), Eastern Europe
(e.g. Russia, Belarus, Ukraine) and the Middle East (e.g. Israel, Lebanon, Jordan, Syria), thus somewhat limiting the scope of

the evaluation, particularly in terms of spatial variability and pollution hot-spots.



Table 3. Number of EEA background stations (S), number of gridded stations (G) and pereentage-number of domain-covered-by-gridded
eells-overall points (i.e. daily values) (N) over the period 2003-2020.

heightPollutant ~ EEA stations ~ Gridded-stations Sy~ Coveredarea% Gt Npoins (10°)  Swban Guban. Npoins (10%)

03 43255701 19221511 244728 304 4190 1278 513
NO; 46728381 19941460 2:53-609 210 6921 1461 552
co H074-2584. 636200 0:8+89 016 2384 553 L13
502 31545424 +526:1050 94443 077, 4374 147 234
PMi1o 5567-9500. 2029.1475 258542 183 8025 1566 584
PM 5 25203874 H79632 56291 075, 322 97 23
600
—i 03
— NO;
— Co
500 S0,
- PMlO
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200+

100+
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Figure 1. Monthly number of rural gridded cells with available observational data for O3, NO2, CO, SO2, PM1o and PM2 5 over the period
2003-2020.



210 The evaluation is performed on a set of metrics including the (normalized) Mean Bias ((n)MB), the (normalized) Root Mean

Square Error (n)RMSE) and the Pearson Correlation Coefficient (PCC), defined as follows:

N
1
MB = — .

B I Z-:Zl(ml 0;) (3a)
oMB = MB o 100% (3b)

o

N )2
RMISE = | =t = 0" (30)
N
MSE
215 nRMSE = "OF 009, (3d)
N
o 1 (ml 7%) (Oi 75)

POC = ; p— (3e)

Where m,; and o; are the predicted and observed concentrations, m and o their means, ¢,,, and o, their standard deviations,
and N is the number of points employed to compute the statistics (i.e. number of daily values across all stations). The index

1 accumulates over time (e.g. daily, monthly) at each station (i.e. gridded cell with available observations). The final value for

220 each statistic is obtained by medianizing across all stations. The overlines in Eq. 3a—3e indicate a time-averaged variable.

In this study, metrics have been calculated and presented following two different approaches: (1) with a so-called *“time-and-space”

approach where metrics are calculated in one step, based on all reanalysis-observation pairs available both across the entire
domain (or a given country) and over the entire period 2003-2020, or (2) with a so-called “‘time-then-space” approach where
metrics are first calculated at each station, before being combined by taking the median across all stations. In this workframe,
225 “time-and-space” PCC values do not correspond to spatial or temporal correlations but rather to overall spatio-temporal
correlations, while “time-then-space” PCC values do correspond to temporal correlations, though spatially averaged.

Annual trends, based on monthly averages over the entire domain (considering only cells and days with available observa-

tions to allow for fair comparisons) and reported in Sect. 3, have been computed using Seasonal Theil-Sen estimators, which
account for seasonal variability. Statistical significance has been analyzed through Cerrelated-Seasonal-correlated seasonal
230 Mann-Kendall trend tests, considering both seasonality and autocorrelation. For more detailed information on how the an-
nual trends are computed we refer the reader to Appendix AC. It is worth noting that trends are here computed essentially
to evaluate the consistency of the reanalyses against observational data, but should not be taken as a reliable estimate of real
pollutant trends due to the number of stations not being constant, but generally increasing throughout the period of study.
Moreover, even if a station has available data over the entire period, its location can also be subject to changes over time.

235 3 Results & Discussion

The evaluation results, alongside its analysis and discussion, are presented in this section. Overall statistics obtained over the
European continent during 2003-2020 are provided in Table 4 (‘“time-and-space” approach). Annual trends are reported in
Table 5 for the different pollutants.

10



Different aspects of the evaluation results are provided for each pollutant in FigFigs. 2-7, including (1) monthly time series
240 of concentrations and evaluation statistics, (2) bar plots of country-scale statistics, and (3) maps of mean concentrations (and
differences between both reanalyses) over the domain. Each point in the monthly time series corresponds to the median of the
monthly-mean values across all individual cells with available observations over the domain. In order to highlight potential
spatial differences in pollution patterns across the European continent, country-scale statistics computed over the entire time
period and country area are provided for 37 European countries which either are part of, or report data to the EEA, namely
245 Albania (AL), Austria (AT), Bosnia and Herzegovina (BA), Belgium (BE), Bulgaria (BG), Switzerland (CH), Cyprus (CY),
Czech Republic (CZ), Germany (DE), Denmark (DK), Estonia (EE), Greece (EL), Spain (ES), Finland (FI), France (FR),
Hungary (HR), Ireland (IE), Iceland (IS), Italy (IT), Lithuania (LT), Luxembourg (LU), Latvia (LV), Montenegro (ME), North
Macedonia (MK), Malta (MT), Netherlands (NL), Norway (NO), Poland (PL), Romania (RO), Serbia (RS), Sweden (SE),
Slovenia (SI), Slovakia (SK), Turkey (TR) and the United Kingdom (UK). Additional results are provided in the Appendix
250 A, including seasonal-scale statistics (Tables A1-A6) --and mean monthly profiles (Fig. Al)y-and—-A2) for rural and urban

backeround stations. Further additional results can be found in the Supplement, including overall statistics for all EEA member
countriestFig—2?2, figures such as Fig. 2-2237 but for urban background stations and a visualization of different methods
employed by other studies to reconstruct the PM; o concentration field in MERRA-2.

Table 4. Overall statistics obtained over the period 2003-2020 across Europe, for CAMSRA (subscript C) and MERRA-2 (subscript M).
Statistics are shown both on a daily scale (d:-over all cells and days in the period 2003-2020) and on a monthly scale (#:-weight-averaged by N
over all median monthly values). OBS and MOD stand for observational and model concentration, respectively. Reactive gases coneentrations

mixing ratios are expressed in ppbv, aerosol concentrations in ugm > and normalized statistics in %.

Scale  Pollutant OBS MOD¢ MOD s nMBc nMB s nRMSEc ~ nRMSEy  PCCe
dDaily 03 274310 273272  4k6417  -05-124  5+5342 349357 644484 066061
NO» 9555 676.9 — 304261 — 707-79.2 — 0:52-0.60
CO 33442163 49091902 12561242 429-120  624-426 982850 1054950 038028
SO, 2816 2417 2322 24095 474395 24961426 25361446 049033

PMyo 247183 282209 245237 143139 k0290 855813  H56129.0 037045
PMos 49118 137135  +H0108 86143  -256-91 884962 967975 041043

AR

O O O

mMonthly  Osy 26:430.3 26.6 416417 36-100 662419 305300 728495  0:590.53
NOzy 8947 6669 — 26:4-41.4 — 54:1-69.6 — 0:53-0.48

CO 28931820 18831882 42151189  -32518  -544-312 488339 641416 0.53

SOz5 713 1413 2422 43702 293745 676697 8581084 028

PMiy 242170 20.5 21320.6 23186 47326 534595 730868 051

PMos 434103 434129 107104 42251 13837 592677 584605 053051

cc O O
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Table 5. Annual trends (Seasonal Theil-Sen estimators, b) over the period 2003-2020 across Europe, for rural observations (subscript O),

CAMSRA (subscript C) and MERRA-2 (subscript M), together with corresponding 99 % confidence intervals (e—, €4 ). Statistically signifi-

3

cant annual trends are highlighted in bold. Trends and uncertainty ranges are expressed in ppbv y~! and uygm 3 y~! for reactive gases and

aerosols, respectively. Relative trends (normalized by the mean concentration over 2003-2020) are also indicated in parenthesis.

Pollutant bo €0— €0+ bc €Cc— €C+
O3 +0:08-0.03 (+6:3+-0.11 %/yr)  -0:20-0.26 +0:28-0.22 +6:240.23 (+0.9 %/yr) +0:62-0.01 +0.46
NO, =0:21-0.11 (-2:4--2.3 %/yr) -0:3+-0.17 -0-45-0.07 -0.17 (-2:6-2.5 %lyr) -0.23 -0.12
(€] =5:32-3.47 (-+8-1.9 %lyr) -#99-5.15 -2:58-2.43 ~4:27-4.56 (-2:2--2.4 %/yr) -6-10-6.26 -3+4-3.40 -0:
SOz =0.036-0.034 (-2.2-2.7 %lyr) -6:645-0.042  -6:628-0.029  -0:673-0.078 (-5:0-6.2 %/yr) -6:676-0.082  -6:666-0.071
PMio -0:39-0.36 (-+8-2.1 %/yr) -0:52-0.46 -0:27-0.28 -0:68-0.70 (-3-2-3.3 %/yr) -0-82-0.84 -0-59-0.60 -0

PMzs 048 (140,10 (-:0.91 %/yr)  -027-0.15  -0:69-0.02  -0:44-0.23 (3617 %lyr)  0:55-034  0639-017 -0

3.1 Ozone (0O3)

Over-the-entire-period-of studyQOverall, CAMSRA reproduces the observed [Oszeconcentration—reasenably-] fairly well, with
virtually-ne-biaslimited negative bias (-12 %), and reasonable error and correlation (35-%-and-6:6636 % and 0.61, respectively).
In comparison, MERRA-2 systematically overestimates [O3] (+52-34 %) and shows alarger-error-and-tower-corretation (64
poorer error and correlation (48 % and 0.53, respectively). While- CAMSRA-reproduces-On average, observed Oz mixing ratios
reach a minimum between late autumn and early winter, then peak in spring and are followed by persistently high but slowly.
decreasing Og levels until reaching a sharp drop in late summer (Fig. Al in the Appendix). CAMSRA captures reasonably well

the seasonality of Os, although with negative bias during winter and early spring. Conversely, MERRA-2 substantially under-
estimates the seasonal amplitude (around 15 ppbv, against more than 20 ppbv in CAMSRA-and-observations-observations and

CAMSRA).
Throughout al-seasons;—the entire period, the median monthly-scale nMB in CAMSRA remains in-the-range—+—+5-below
-20 %, with slight-negative-and-positive-biases-oceurring-typically-in-winter-and-autumn—respeetivelylarger underestimations

through the beginning of the period and better results during the last years. The bias displays a clear seasonal pattern, with

an important winter and spring deterioration (-21 and -16 %, respectivel

and -1 %, respectively). Such oscillating biases have also been reported by Huijnen et al. (2020) over Europe. Regarding the
other metrics, median menthty-monthly-scale nNRMSE in CAMSRA reaches its worst values in winter (36 %), when the PCC is

but very limited biases in summer and autumn (-4

conversely the best (0-750.71), whereas an opposite behaviour with low nRMSE and poor PCC can be observed in summer (25
Go-and-0-4326 % and 0.40, respectively). A strong seasonal variability is also found in MERRA-2 statistics, although limited
to nMB and nRMSE, which are worst in SON-autumn (+94-%-and-BIH(102-%)respeetivety6]l % and +67 %,respectively).
While the reasonable PCC obtained over the entire dataset (0.53) is likely driven by a good ability of MERRA-2 to cap-
ture the O3 seasonality, the much lower monthly PCC values (oscillating around 0.25) suggest that MERRA-2 represents the
intra-monthly variability of daily O3 cencentrations-mixing ratios very poorly over a large part of the domain. Nonetheless,

12



280

MERRA-2 is able to reproduce the drep-in-spring peak followed by a slow decrease in [Oseoncentration-] typically seen in
European observations during 3JA;-as-shown-inFig—Altsummer. In contrast, CAMSRA presents-an-completely misses this
mid-spring O3 eoncentration-peakin-summer-a-common-behaviour-of global-models-due-to-an-inadequaterepresentation—o

in-2—peak, as shown in Fig. Al.
Over 2003-2020, no statistically significant annual trend (estimated as a Seasonal Theil-Sen slope) of mean [Os] is observed

over Europe, neither in MERRA-2 nor in the observations. However, a significant though low positive increase of +0-24-0.23

ppbv y~! is found in CAMSRA (Table 5), at least partly due to the aforementioned stronger underestimation of O3 during the
first years of the period.
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Figure 2. Evaluation of O3 over Europe depicting: a) Monthly time series of [O3], nMB, nRMSE and PCC over the period 2003-2020; b)
Spatially-averaged [O3], nMB, nRMSE and PCC for countries with at least 5 cells with observations; ¢) Mean [O3] climatology in CAMSRA;
d) Mean [O3] climatology in MERRA-2; e) Differences in Mean [O3] climatology between CAMSRA and MERRA-2. Black, green and
blue colors in a) and b) indicate observations, CAMSRA and MERRA-2, respectively. Numbers between parentheses in b) indicate the cells
with available observations. Only PCC values in the range 01 are displayed in b). Statistically significant trends, at a 99 % confidence level,
are displayed in a). Dotted areas in e) indicate where the differences are not statistically significant at a 99 % confidence level, whereas the

black dashed contour stands for a zero difference in concentration between reanalyses.
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The country-level evaluation highlights how CAMSRA outperforms MERRA-2 in every single country across the European
continent for every computed statistic, with the greatest differences appearing in Remania-(ROBelgium (BE) and the Nether-
lands (NL), and the smallest ones in Greeee(EL;-only7-ecells-with-observations-are-avattableSpain (ES) and Portugal (PT).
In CAMSRA the nMB oseillatesroughly-between——+6-remains generally negative, at around -10 %, with several countries

showing virtually no bias (e.g. Netherlands (NL), Turkey (TR), Sweden (SE)), while MERRA-2 displays values in the range
+30-70 %. As for the nRMSE, in CAMSRA it remains constrained between 30 and 50 % for all evaluated countries, whereas

in MERRA-2 it generally sturpassesremains close to 50 %, even )surpassing
this value for several countries, such as the Netherlands (NL), Poland (PL), Belgium (BE) and Turkey (TR). In most coun-
tries the PCC does not differ considerably between reanalyses, remaining in the range 0.4-0.7 and slightly higher values for
CAMSRA. i

with MERRA-2-as-shewn-inFig—2b-Despite its greater original resolution, MERRA-2 fails to capture the spatial variability
of the [O3] field, with highly homogeneous eeneentration-mixing ratio values over land, ranging from 40-35 to 45 ppbv (Fig.

2d), likely a result of the lack of accurate ozone sources in the parameterized chemistry and limited sensitivity of OMI mea-
surements to lower tropospheric ozone (note that neither MLS nor OMI provide ozone profile information in the troposphere).
A wider range of assimilated products, as seen in Table 2, and more detailed gas-phase chemistry likely accounts for CAM-
SRA’s better overall performance and greater spatial variability. Nevertheless, we expect the MERRA-2 ozone profile product
to be useful for scientific studies that focus on the upper troposphere and the stratosphere, given the high correlations found by
Bosilovich et al. (2015) against independent ozonesonde data at these altitudes.

Inness et al. (2019) evaluated surface O3 against the World Meteorological Office (WMO)’s Global Atmosphere Watch (GAW)
background stations, and noticed slightly higher negative biases in winter (with modified nMB down to -40%), though based
on a different and smaller set of stations (45 GAW stations, against 4325-EEA-1511 EEA rural background stations gridded
into +922-728 cells here). Over 2003-2018, Wagner et al. (2021) evaluated CAMSRA surface O3 eencentrations-mixing ratios
against European Monitoring and Evaluation Programme (EMEP) observations, and-found-biases-finding typically negative
modified normalized mean biases (MNMB) within -30 % in winter (driven by underestimated O3 mostly at higherlatitudes)and
midlatitudes), but positive ones in summer and autumn, up to +36-% in-autumn-(at-at-atitudes);-15 %. Such an oscillating

bias is in good agreement with our results over the European continent. Although satellite O3 measurements are extensively
assimilated in CAMSRA (11 space-based O3 products included), Wagner et al. (2021) already demonstrated their minor im-
pact on surface O3. This may be at least partly due to the relatively low sensitivity of space-borne instruments to lowermost
tropospheric O3 (e.g.Cuesta et al. (2013)). All in all, likely due to a more detailed representation of the tropospheric chemistry,
CAMSRA clearly outperforms MERRA-2 in simulating surface O3 eeneentrationsmixing ratios.

When considering urban background stations (Table B1) the overall nMB in CAMSRA, though shifted in sign, remains ve
limited (+8 %), whereas MERRA-2 presents an overestimation (+64 %) which nearly doubles the one found in the rural subset.

15



320 Such an evolution of the statistics at least partly reflects the intrinsic difficulty of coarse reanalyses in representing Os titration
in urban areas. For CAMSRA, the nRMSE shows no significant variation (+34 %), though a slight improvement is found for
the PCC (0.72), which represents the best overall correlation across all station subsets and pollutants. Compared to the rural

subset, MERRA-2 presents a very similar PCC (0.54), though an important deterioration of the nRMSE is found (+75 %). The
overall averaged [Q3] is 5.7 ppbv smaller than in the rural stations subset.

325 3.2 Nitrogen dioxide (NO5)

CAMSRA systematically underestimates—the-concentration—overestimates the mixing ratio of NOo (Fig. 3a) throughout the
entire period of study, with an overall bias-ef—~30-moderate positive bias of +26 % (Table 4)—TFhe-seasonal-variability-is

330

335

EAMSRA-alse-Inness et al. (2019) reported mostly limited negative biases, but based on a very small set of regional background
stations (4 GAW stations) against 1460 EEA stations gridded into 609 cells in the present study. Overall, CAMSRA shows

340 a relatively large overall nRMSE

at-monthly-sealerwith PCC-valuesin-the range-0-47-0-60-(Fig3a)~(79 %) and reasonable PCC (0.60).

At median monthly-scale, biases increase from +12 % in winter to +42 % in summer (Table A2). Monthly-scale nRMSE and

PCC values show substantial seasonal variations, with better performance in winter (IRMSE and PCC of 70 % and 0.60,
345 respectively) and a notable deterioration in summer (92 % and 0.43).

In terms of long-term trends, the significant decrease of [NOgeoneentration-] observed over 2003-2020 (-0:24-0.11 ppbv y™!)

is slightly-underestimated-moderately overestimated by the reanalysis (-0.17 ppbv y~!, i.e. differing by a +:2-1.5 factor). In
relative terms, these decreasing eencentration-mixing ratio trends found for NO; in the observations and CAMSRA (-2:4-and

-2:6-2.3 and -2.5 % y~!, respectively) are close to the -2.0 % y—! NOx emission trend reported by the EEA over the period
350 1990-2019 in its emission inventory report (European Environment Agency, 2021). Although-the-observed-
MWWIWWMMWNOQ eeﬂeeﬁfmﬂeﬂﬁhewwwﬁg%aﬁeﬁ%eé

mwlimm 2020 eue
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355

360

365

study-include-not-only-urban-butalso-rural-stationsobserved [NOs] time series only shows a limited reduction, given only rural
background stations are retained for the evaluation and NO, is a predominantly urban pollutant. The change in CAMSRA alse
appears less pronounced, potentially due to the coarse resolution of the reanalysis, but most likely due to CAMSRA following

the RCP8.5 for emissions after 2010 Granier et al. (2011).
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Figure 3. Evaluation of NO2 over Europe depicting: a) Monthly time series of [NO2], nMB, nRMSE and PCC over the period 2003-2020;
b) Spatially-averaged [NO2], nMB, nRMSE and PCC for countries with at least 5 cells with observations; ¢) Mean [NO2] climatology
in CAMSRA. Black and green colors in a) and b) indicate observations and CAMSRA, respectively. Numbers between parentheses in b)

indicate the cells with available observations. Statistically significant trends, at a 99 % confidence level, are displayed in a).

At country-level (considering only countries with more than 5 cells containing observations), most nMBs fall roughly be-
tween -10-and—~60-+10 and +60 %, with the notable exception of Finland (FI) and Turkey (TR), where a strong-overestimation
{+40-%moderate underestimation (-15 and -25 %, respectively) is found. The nRMSE ranges from 56-to-H6-around 60 to over
150 %, depending on the country considered. The PCC remains generally around 0.5, though countries with fewer measuring
stations available tend to present lower PCC values (Fig. 3b). Interestingly, virtually no bias is found in the Netherlands (NL),
which also displays the lowest error and highest correlation amongst all the countries examined.

The spatial variability of the [NO-] field across the European continent is consistent with the location of dense urban areas

(e.g. Paris, Moscow, Barcelona, Oslo, Algiers), highly industrialized regions (e.g. Po River basin, Rhine-Riihr valley, Silesia)
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and busy shipping lanes (e.g. Mediterranean, English Channel, Portuguese coastline). In sparsely populated areas, low indus-

trialized regions and the open seas [NOs] levels remain below 3 or even 1.5 ppbv (Fig. 3c).

When considering urban background stations, CAMSRA systematically underestimates [NO>] across the European continent
(Table B1), with an overall strong negative bias (-:40 %, Table B1), which can be related in all likelihood to its overly
coarse spatial resolution, that intrinsically prevents a correct representation of urban NOy hotspots, as well as to the short
chemical lifetime of NOs. By evaluating NO, tropospheric columns against satellite-based observations, Inness et al. (2019)
and Wagner et al. (2021) also reported negative biases over Europe, especially during wintertime. Although this contrasts with
the numbers obtained for rural background stations, it is in good agreement with our results for the urban subset, though

biases are significantly larger here (evaluated against 6921 EEA urban background stations, gridded into 1461 cells). The

Table A2) and slightl

improves in summer (-33 %). Note that

underestimation becomes more critical in winter (-45 %,

Ryu and Min (2021) also found a large underestimation of NO, in winter over South Korea (around -10 ppbv, against -2 ppbv
in summer). CAMSRA also displays a large nRMSE and moderate PCC (68 % and 0.56, respectively). The seasonality and
intra-annual variability of the NO5 mixing ratio fields are both well captured by CAMSRA.

3.3 Carbon monoxide (CO)

As shown in Fig. 4a, both-CAMSRA-and-MERRA-2 systematlcally uﬂd&esﬁﬁm{emeeeﬂeamlmm
ratio of CO (overall nMB of -43 i i %), while CAMSRA

reproduces the observed mixing ratio well, with overall limited mean bias (-12 %). MERRA-2 dramatically fails at reproducin

the seasonal variability of CO, with strongest negative biases in winter (-51 %). Conversely, CAMSRA captures well the

seasonal cycle, although negative biases are also somewhat stronger in winter (-15 %). Note that Ryu and Min (2021), in its
evaluation over South Korea, also reported a severe winter underestimation in CAMSRA together with an absence of variabilit
in surface CO over the period 2003-2018 in MERRA-2. Interestingly, CAMSRA displays a lack of nMB seasonality, with an

almost constant value throughout summer, autumn and winter. A likely explanation for this is the good ability of CAMSRA to
capture the intra-annual variability of [CO] throughout the year. The overall nRMSE is high in both reanalyses (9+-and-105-85

and 95 %, respectively), with again a lower performanee-in-winterwinter performance in MERRA-2 and an overall absence of
seasonality in CAMSRA. Wagner et al. (2021) evaluated CO in Europe against data from GAW stations over the period 2003-
2018, reportlng a per51stent underestimation (modified nMB ranging from -10 to -20 %) of surface CO%yuﬂﬂdMﬂ%@GQ&—}

f, in agreement
with our results. In contrast, Inness et al. (2019) reported an overall overestimation of around 10 ppbv for the period 2003-

2017, which istikety-again could be due to the different set of stations taken into account (15 GAW stations, most of them
regional and several of them located at high altitude).
At monthly-scale, the median €O-concentration[ CO], nMB and nRMSE in CAMSRA partlally capture the seasonahty, showing

a better performance in

Yorrespeetivelyautumn (0 %) and summer (31 %), and a moderate springtime (+9 %) and wintertime (39 %) deterioration
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respectively. As seen for Oz, the PCC follows the opposite behaviour, with better performance in DJF (6-590.58) and a late
springtime deterioration (6:470.46). In contrast to CAMSRA, MERRA-2 is unable to reproduce the seasonal variability of
surface EO-coneentration[ CO], despite the nMB and nRMSE displaying significant variability throughout the different seasons.

Mereover;-the-A surprisingly large increase of [CO] is found in MERRA-2 throughout 2020. It is unclear what stands behind
such a significant increase, but this abrupt change affects mostly specific pollution hotspots in the European continent, includin
the Rhine-Riihr valley, the Paris and London metropolitan areas, as well as the Po River basin. This [CO] surge is also found

in the raw version (i.e. non-regridded) of the reanalysis. The strong statistically significant decrease in CO observed across
Europe over 2003-2020 (-5:32-3.47 ppbv y ') is moderately underestimated-overestimated in CAMSRA (-4-27--4.56 ppbv

y~1), although less dramatically than in MERRA-2, where CO remains roughly constant over all the period study, dlsplaymg
a small negative trend (-6:70-0.44 ppbv y—1). Simi i et
absenee-of -vartability-in-surface-CO-over-the-period-2003-2020-in-MERRA-2-In European Environment Agency (2021) the

1

EEA reports a CO emission trend of -2.3 % y~
in CAMSRA, -2.2-2.4 % y~*, and the observations, —+8-1.9 % y~!. In 2020, MERRA-2 shows a very large increase of €6
concentration-[ CO| across most of Europe, in contrast to both CAMSRA and the observations. The overall PCC in MERRA-2

over 1990-2019, relatively close to the eoneentration-mixing ratio trends found

and CAMSRA is poor (9&90.22 and 0.28, respectively), although better PCC values (~0.40) are found at monthly-scale —The

when-computed-on-a-menthly-basis-(0.53 y-and 0.55, respectively).
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Figure 4. Similar to Fig. 2 but for CO.

This CO underestimation typically spreads over all the European continent, with strong differences across countries. As CO

is not assimilated in MERRA-2, but simulated by the GEOS-5 modeling system, itistikely-thisunderestimation-originates-due
to-the-model-considering-too-low-this underestimation likely comes from a poor representation of CO emissions and/or exces-
sively large CO sinks. In both reanalyses, the best scores in terms of bias, PCC and nRMSE are found in BelgiumGermany

(DE), and to a lesser extent in the Netherlands (NL). Conversely, far poorer results are obtained in Bulgaria;-Serbia-and-Romanta
Poland (PL) and Romania (RO). Although different, the nMB and nRMSE in both reanalyses typically show comparable vari-
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ations from one country to another. Both CAMSRA and MERRA-2 show CO hot-spots over large urban areas and/or highly
industrialised regions (e.g. Moscow, Po River basin). However, compared to CAMSRA, MERRA-2 highlights some additional
hot-spots, for instance on the Vatnajokull ice cap, located in Iceland, a region well known for its sub-glacial volcanoes (e.g.
Grimsvotn) which experience frequent degassing. Another significant hot-spot is found in the Donets Basin (eastern Ukraine),
an important coal-mining region. Two other CO hot-spots can be seen south and north of Moscow, corresponding to the cities
of Voronezh and Yaroslavl, respectively, but it is unlikely that CO levels comparable to those of Moscow are found in these
intermediate sized cities (Fig. 4c,d).

The reanalyses also differ in the locations where €O-coneentration-[ CO] is higher across Europe (Po River basin in CAMSRA;
Rhine-Riihr valley in MERRA-2). CAMSRA highlights the highest CO eeneentrations-mixing ratios in Europe in the Po River
basin and displays moderate eoneentration-mixing ratio values in the Rhine-Riihr area, which suggests a longer CO lifetime in
the former given that European Environment Agency (2021) reports the highest CO emissions, over all the period 1990-2019,
in Germany. Therefore, in sharp contrast with CAMSRA, MERRA-2 obviously fails to capture the chemistry processes of
surface CO, with a likely underestimation of emission sources and/or too large CO sinks, thus being unable to reproduce the

spatiotemporal variability of surface CO observed over Europe.

From Table B1 it immediately becomes apparent that the main difference between the urban and rural subsets, aside from
the large variation in baseline mixing ratios, comes from CAMSRA largely underestimating the observed [CO] in urban cells,
with the nMB (-46 %) nearly quadrupling when compared to the rural evaluation. For MERRA-2 the nMB also suffers a
deterioration (-64 %), but more limited due to an already large bias in the rural subset. For both CAMSRA and MERRA-2, the
overall nRMSE (91 and 105 %, respectively) and PCC (0.39 and 0.19, respectively) remain close to the rural values, with no
significant variations. The seasonal behaviour of both reanalyses also remains unchanged, with MERRA-2 completely missing.
the amplitude of the seasonal cycle. This large amplitude is also the reason why CAMSRA loses its ability to reproduce the
observed CO mixing ratio.

3.4 Sulphur dioxide (SO2)

When computed over the entire dataset (Table 4), the statistics of CAMSRA and MERRA-2 show e*eremelrympoor nRMSE
and PCC (around 256-%-and-6-69143 % and 0.33-0-19.35, respectively), an tas-but

better performance in terms of bias for CAMSRA (+10 %) than for MERRA-2 (areund—26-+40 %). Sufpfrsmg}yﬂﬂﬂﬂeﬂﬂﬂy
basis-On average, the overestimation of MERRA-2 is much higher in winter, meaning the amplitude of the SO, seasonal cycle
is strongly overestimated (Fig, Al)._

&V@W(Hg Sa) the median nMB atmenthly-seale-in MERRA-2 appe&r%—me%}y—peﬁﬂve W(%‘)
75 %) and in
%mmmﬁwmmmmmm
%) and a slight springtime improvement (+57 %). The median monthly-scale nMB in CAMSRA tends to improve between
late spring and early attumn;-even-summer, reaching values close to 0 %, though it remains-negative-througheut-therest-of
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the-oscillates throughout the year, dropping to -3+-12 % in winter —-and peaking at +11 % in autumn. Note that Ryu and Min
(2021), though finding a large-larger [SOoconcentration—] overestimation over South Korea, as-epposed-to-greater than the
underestimation shown here for Europe, found a similar nMB seasonality, with nMB improving (~+2 ppbv) and worsening
(~+6 ppbv) in warm and cold months, respectively. In MERRA-2 the median nMB oscillates roughly around +36-69 %
(with a + 45-3 % range), though it suffers a-targe-an important increase (with significant intra-annual variability) from 2013
onwards due to an-impertant-a decrease in observed [SOoconeentration]. A similar increase is also observed for the nRMSE.
The monthly-scale nRMSE and PCC remain roughly constant (when averaged across all months) throughout all seasons, both
in CAMSRA (around 68-%-and-6:2770 % and 0.28, respectively) and in MERRA-2 (around 85-%-and-6-27108 % and 0.31,
respectively), though the latter displays much stronger seasonal variability. Note also the large difference between the monthly-
scale nRMSE (68—85-70-108 %) and the overall nRMSE (around 256-143 %). The statistically significant negative trend found
in s TOTS 036-observed SO, mixing ratios (-0.034 ppbv y~!) is largely overestimated by CAMSRA (-6:673
-0.078 ppbv y 1), and well reproduced by MERRA-2 (-6:632--0.033 ppbv y 1) (Fig. 5). In European Environment Agency
(2021) the EEA reports a SO, anthropogenic emission trend of -3.2 % y~! over 1990-2019, falling between the coneentration
mixing ratio trend found in CAMSRA, -5:6-6.2 % y_l, and the one found in the observations, -2:2-2.7 % y_l, and MERRA-2,
-1.5%y
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Figure 5. Similar to Fig. 2 but for SO5.

The country-level evaluation for SO, shows very heterogeneous results across countries, differing substantially from the
observed behaviour in previously examined reactive gases. The nMB presents a wide range of variation, with certain coun-
tries showing wvirtualty-no-bias-very reduced biases for at least one of the reanalysis (e.g. PolandPortugal, Czechia, United

475 KingdemAustria, Belgium) and others presenting biases well over &+ 50 % (e.g. Furkey;Serbia; Bosnia;trelandUnited Kingdom,
France, Romania, Switzerland). Both the nRMSE and PCC display a poor performance, ranging roughly within 75—156

100-150 % and 0.10-0.50, respectively (Fig. 5b). On a first examination of the SO, spatial distribution, it may appear as

23



480

485

490

495

500

505

510

if the mixing ratio values in the time series should be larger for CAMSRA, though this is actually misleading as the evaluation
is performed only in cells with available observations. Therefore, regions with a higher station density contribute more towards
the final mixing ratio value. From Fig. Se it can be immediately seen that MERRA-2 presents higher SO, mixing ratios in
several countries which have an overall larger number of stations (e.g. Germany, Netherlands, France, Italy).

In both reanalyses, the heterogeneous distribution of [SO2] is consistent with the location of highly industrialized areas (e.g.
Po River basin, Rhine-Riihr valley) and coal-mining regions (e.g. Silesia, Donets Basin, Balkans). To a minor extent, there
are also significant SO, eencentrations-mixing ratios in dense urban areas and along shipping lanes. Surprisingly, 76-567
the aforementioned CO hot-spot is-deteeted-found in MERRA-2 over the Icelandic Vatnajokull ice cap in-MERRA-2does
not come with an associated SO, hot-spot, which contrasts with the fact that SO, emissions represent a large fraction of
volcanic gases. The reanalyses show sharp differences in the regions where highest eoneentrations-mixing ratios of SO, are

present, with CAMSRA favouring coal-mining regions and dense urban areas, and MERRA-2 showing a more balanced dis-

tribution between them (Fig 5c,d,e). Overall, both reanalysis products present distinct although substantial deficiencies in their
representation of SO, mixing ratios, with the increasing overestimation of MERR A-2 elearly-outperforms-CAMSRA-inEurope

sbeing probabl
the most critical issue. Anthropogenic SO, emissions in MERRA-2 are obtained from AeroCom Phase II (Diehl et al. (2012))

and EDGAR v4.2 (European Commission, 2011 [https://edgar.jrc.ec.europa.eu/]) inventories, with emissions being-persisted
in-the-model-accordingto-the-ending-year-of-fixed to those of the last year available in each inventory (Randles et al., 2017).
Thus, the ebserved-deterioration—afterprogressive deterioration of the bias in MERRA-2, particularly notorious from 2013

onwards, likely arises due to an emission overestimation which propagates throughout the time period where no updated SO,

emissions are available.

When considering urban background stations, both CAMSRA and MERRA-2 shift towards a moderate negative nMB (-29.
and -26 %, respectively). far from the positive bias found in the rural subset. Overall, both the nRMSE (247 and 251 %,
respectively) and PCC (0.18 and 0.08, respectively) are extremely poor (see Table B1). The mixing ratio in CAMSRA presents.
significant intra-annual variability and thus fails to correctly reproduce the observed seasonal behaviour. MERRA-2 shows a
much better ability to capture the seasonality of [SO,], though it still suffers from the increasing overestimation previously
highlighted for rural background stations.

3.5 Coarse particulate matter (PM¢)

Overall, CAMSRA and MERRA-2 reanalyses represent moderately well surface PM;q concentrations over Europe (Table 4),
with a reasonable-negative nMB-(—t4-limited positive nMB (+14 %) for CAMSRA and virtaatty-ne-moderate bias for MERRA-
2 (-+429 %), but poor nRMSE (85-and-+5-81 and 129 %, respectively) and PCC (98%1%1—9%90 ).45 and 0.22, respectively).

At monthly-scale, the median nMB in CAMSRA eset itive-bias-presents a strong seasonality,
with an important deterioration during spring (+43-36 %) and a-streng-underestimation-better performance in DJF (-26+5 %),

while the nRMSE and PCC show a strong and complex intra-annual variability without a clear seasonal pattern (remaining in
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the range 73-96-%-and-0:3053-65 % and 0.48-0-44.54, respectively). In comparison, nRMSE and PCC in MERRA-2 follow
a clear seasonal behaviour, with strongly deteriorated results during winter (87-%-anrd-0-04105 % and 0.11, respectively) but
better summertime performance (59-%-and-6-4671 % and 0.41, respectively). Surprisingly, the median nMB in MERRA-2

515 also peaks in JJA (+26-38 %), with virtually-no-bias-a small bias reduction in SON, and a wintertime low (-8+24 %). Ryu
and Min (2021) found a slightly positive PM; bias for CAMSRA in South Korea over 2003-2018, while for MERRA-2 their
findings suggest a clear underestimation that worsens significantly in winter, the atterformer being in good agreement with our
results over Europe. The statistically significant negative trend present in the observations (-9:39-0.36 ugm ™2 y 1) is strongly
overestimated by CAMSRA (-6:68--0.70 ug m~3 y~1) and severely underestimated by MERRA-2 (-0:65-0.02 ug m~3 y b,

520 being-with the latter not being statistically significant (at a 99 % confidence level). In European Environment Agency (2021)
the EEA reports a PM;q emission trend of -1.7 % y~! over 2000-2019, far from the concentration trend of CAMSRA, -3:2
-3.3 % y~!, and-elose-but closer to the one found in the observations, —+8-2.1 % y~'.
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Figure 6. Similar to Fig. 2 but for PM ;.

At country-level, CAMSRA tends to outperform MERRA-2 in most countries, with lower nRMSE (50-100 % and 75-150
%, respectively) and higher PCC values (0.3-0.6 against 0.1-0.4, respectively). The nMB presents a wide range of variation
in both reanalyses, with certain countries showing virtually no bias for MERRA-2 (e.g. Austria;ttaly,-Germany;Franee)-and
Slovakia). Other countries present biases well over & 56-%-25 % (e.g. Turkey, Germany, Ireland, United Kingdom). Though
MERRA-2 presents lower nMB values than CAMSRA in several countries (e.g. Remania;Turkeylceland, Germany, Belgium;
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Bulgaria; BosniaCzechia, Belgium), both the nRMSE and PCC point towards a greater performance by CAMSRA in all cases
(Fig. 6b).

Again, despite its finer resolution, MERRA-2 displays a more homogeneous concentration over land in which the multiple
PM; hotspots found in CAMSRA - in industrialized regions (e.g. Po River basin, Silesia) and in certain urban areas (e.g.
Paris, Moscow, Madrid) - are missing. In addition, it also shows much higher PM;( concentrations over the open seas and
Northern Africa, where sea salt and dust sources are predominant. It thus seems that Eq. 2a severely overestimates the surface
concentrations of sea—satt-and-dustPM;q, as shown in Fig. 6d), with MERRA-2 displaying differences of more than a 100
pgm?, particularly over desert areas. This overestimation is likely related 10 sea salt and dust concentrations in the model
being overestimated, as it is shown in the Supplement. Overall, CAMSRA unambiguously outperforms MERRA-2 in capturing

the spatiotemporal variability of PM; surface concentrations over Europe.

As shown in Table BI, both CAMSRA and MERRA-2 present limited negative nMB (-20 and -8 %. respectively) for the
urban subset, which contrasts with the positive bias found for rural stations. For both reanalyses, the overall nRMSE (85
and 112 %, respectively) and PCC (0.36 and 0.19, respectively) remain close to their rural counterparts, with no significant
variations. The observed PMo concentration is characterized by strong intra-annual variability, though certain seasonality is
still present.

3.6 Fine particulate matter (PM5 5)

CAMSRA-MERRA-2 reproduces moderately well surface PM3 5 concentrations over Europe (Table 4), with a low negative
nMB (-89 %) but poor nRMSE and PCC (88-%)-and-moederate PEC(0-4198 % and 0.29, respectively), while MERRA-2
nRMSE (96 %) and PEC-9:25slightly better but still moderate PCC (0.43).

The median monthly-scale nMB in CAMSRA remains-in-the-range—+-30-%presents a clear seasonal pattern, with the greater
over—and-underestimations-oceurring—in-summer-bias heavily deteriorating in MAM and JJA (+28-%)-and-winter(-26-%);
wwwﬁwwwmmmw; MERRA-2 showstimited-biases{-=10-%) during

~yalso shows a clear seasonality, with the largest over- and
underestimations ocurring during summer (+21 %) and winter (-17 %), respectively. Interestingly, the MERRA-2 and CAM-

SRA nMB time series*, while initially displaying an absolute difference of ~50 %, converge from 2017 onwards. Similarly to
the behaviour observed for PM;, the median nRMSE and PCC in CAMSRA show a strong intra-annual variability without a
clear seasonal pattern (remaining in the range 54—65-%-and-0-5061-74 % and 0.48-0:55.53, respectively). As for MERRA-2,
both the nRMSE and the PCC present significant seasonal variability, with better performance in summer (44-%-and-6-5550
% and 0.58, respectively) and a heavy wintertime deterioration (76-%-and-0-3274 % and 0.36, respectively). Similar results
are reported by Provencal et al. (2017a) when evaluating MERRA-1 over Europe, with an overall limited negative bias and
a deterioration in winter. Note also that Navinya et al. (2020) evaluated PMs 5 in MERRA-2 against 20 background stations

in India, finding a moderate negative nMB (-34 % ; -27 uygm—3) and a larger wintertime underestimation, in agreement with
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our results over Europe. —
pgm~3 y~1) is-heavily-has been found to not be statistically significant, though it is strongly overestimated by CAMSRA
565 (-09:44-0.23 uygm 3 y~1), and completely missed by MERRA-2. As a consequence, though the nMB time series of CAMSRA

and MERRA-2 differ by more than 30 % in 2003, they end up converging progressively along the period 2003-2020. In Eu-
ropean Environment Agency (2021) the EEA reports a PM; 5 emission trend of -1.9 % y~! over 2000-2019 which, while

-The negative trend present in the observations (-6-+8-0.10

not striethy-directly comparable to a concentration trend as previously mentioned, falls-between-is close to the trend found in
CAMSRA, -3:6--1.7 % y~*, and-but far from the one found in the observations, —+4-0.9 % y~*.
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Figure 7. Similar to Fig. 2 but for PM3 5.

At country-level (Fig. 7b), the differences in PMs 5 between CAMSRA and MERRA-2 are less pronounced than for PM;,
especially for the PCC (with most values in the range 6-10.3-0-5.6), and to a lesser extent for the nRMSE (with most val-
ues in the range 76—166-60-100 %). The nMB presents a similar behaviour to the one observed for PM;y, with certain
countries showing virtually no bias for CAMSRA (e.g. Spain;treland;NetherlandsNetherlands) or MERRA-2 (e.g. United

Kingdom, France, Germany, Belgium) and other countries presenting large-negativeimportant negative/positive biases (e.g.
Turkey, Serbia;-PolandSweden).
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The spatial variability of PMs 5 concentration remains close to the one obtained for PM; in all regions and in both reanalyses,
except over the open seas, where MERRA-2 no longer shows exceedingly large sea salt levels (which thus prevail mostly in
the coarse mode). The surface pollution hot-spots present in Fig. 7 are essentially the same ones that appear in Fig. 6, though
a notable exception is observed in MERRA-2 over Iceland. A large PM5 5 concentration peak, also visible for PM;, can be
spotted in Iceland’s time series during 2010, surpassing 100 ugm~3, likely due to the Eyjafjallajokull volcanic eruption, which

emitted very large amounts of volcanic ash (Thorsteinsson et al., 2012).

As for urban background stations, CAMSRA presents an overall small negative nMB (-13 %) while MERRA-2 displays a
larger but limited negative bias (-30 %). In terms of nRMSE and PCC, both CAMSRA and MERRA-2 perform rather poorl

with large errors (86 and 96 %, respectively) and low correlations (0.41 and 0.24, respectively). Similarly to PM;, the observed

PM, s concentration shows strong intra-annual variability, though a seasonal pattern is also visible.

4 Summary and conclusions

In this work we have performed a long-term (2003-2020) multi-pollutant evaluation of CAMSRA and MERRA-2 global
atmospheric composition reanalyses against in situ surface measurements over the European continent. In contrast to past

evaluation studies, we have included a more extended set of s

pellutants;eriddedinte-9283-eellsrural background stations, from several hundred to a few thousand depending on the pollutant

considered (Table 3), quality-assured using GHOST metadata and gridded in order to limit, to some extent, representativeness
As a summary, CAMSRA unambiguously outperforms MERRA-2 in representing surface pollutant concentrations across Eu-
rope. Differences are particularly clear for O3 and CO, but also persist for PM;y and PMs 5. CAMSRA clearly achieves
the best results for O3, while statistics for the other pollutants show more mixed results: reasonable—error-and-substantial
overestimation, moderate error but reasonable correlation for NOobut-strong-underestimation, low biasesbutrelatively-—poor

errors—and-correlations—on-SO-—, poor error and moderate correlation for PM;¢ and PM, 5—, low biases but poor errors and
RA. With MERRA-2 being

designed mainly for research on aerosols, the reanalysis indeed provides statistics on PM;( and PMs 5 in line with CAMSRA,

correlations for CO and SO»it

but the latter still gives slightly better results over Europe, especially for PMy -+, with overall lower biases and a better char-
acterization of its spatial variability.

Compared to CAMSRA, MERRA-2 benefits from a slightly finer spatial resolution, but assimilates a much less diversified set
of satellite products. However, recent evaluations of CAMSRA have noticed that this assimilation only partially improves the
representation of pollutant concentrations at the surface, despite a clear improvement being found in the entire troposphere.
Although at least partly due to the still coarse spatial resolution of CAMSRA, a large if not dominant part of the model-versus-
observation differences found here at the surface are likely explained by errors en-in emissions and/or sinks. Therefore these

global reanalysis datasets need to be carefully bias-corrected with surface observations in order to be used in long-term air
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pollution and impact studies.

The surface pollution evaluation carried out in this work can serve as a milestone for future air quality and other pollution-
related studies. In that regard, further advancements in the field could be-foeused-in-focus on developing new statistical ap-
proaches to merge surface observations with reanalysis data. As global atmospheric composition reanalyses do not assimilate
data at the surface, ground level measurements can be employed, through different statistical methods, to bias correct and
improve raw model output statistics, thus leading to more robust reanalysis products. This improved characterization of the
spatiotemporal variability of surface air pollution would open the door to improved health impact and air quality assessments,

while also helping design and implement more effective air pollution reduction policies.

Eventually, if reanalyses are to be used in long-term health impact studies, consistent statistical approaches to combine ob-

servational data with reanalysis data need to be further developed.

Data availability. The observational data, obtained from EEA AIRBASE and AQ e-Reporting air quality datasets, and reanalysis data,
obtained from CAMSRA and MERRA-2, used in this study are publicly available. CAMSRA, MERRA-2 and EEA observational data
can be obtained respectively from the Atmosphere Data Store (ADS; https://atmosphere.copernicus.eu/data), the NASA Goddard Earth
Sciences Data and Information Services Center (GES DISC; https://disc.gsfc.nasa.gov/datasets?project=MERRA-2) and from the Euro-
pean Environment Agency websites for AQ e-Reporting (https://www.eea.europa.eu/data-and-maps/data/aqereporting-9) and AIRBASE

(https://www.eea.europa.eu/data-and-maps/data/airbase-the-european-air-quality-database-8).
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Appendix A: QAflags
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Appendix A: Seasonal cycle

Seasonal-scale statistics (Tables A1-A6) and mean monthly profiles (Fig. A1-A2

are shown here for rural and urban background
stations.
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Figure Al. Seasonal variation-variability of [O3], [NOz], [CO], [SOz], [PM10] and [PMz 5] over the period 2003-2020 across Europe
evaluated against rural background stations. For each pollutant the panels show, from top to bottom, concentration, nMB, nRMSE and PCC.
The black, green and blue lines represent observations, CAMSRA and MERRA-2, respectively. Shaded contours indicate the 25th (bottom)

and 75th (top) percentiles. All monthly values are weighted by the number of points, N, over the period 2003-2020.
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Figure A2. Same as Fig. 22-A1 but for PMro-a)-ard-PMz5-bjurban background stations.
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Table Al. O3 seasonal statistics over the period 2003-2020 across Europe, for CAMSRA (subscript C) and MERRA-2 (subscript M).
Statistics are shown both on a daily scale (d; over all cells and days in the period 2003-2020) and on a monthly scale (m; weight-averaged

over all median monthly values). Reactive gases concentrations are expressed in ppbv and normalized statistics in %.

heightType Scale Season OBS MOD¢ MOD nMB¢ nMB s nRMSE¢« nRMSE ,, PCCc
&¢RUR Daily MAM  33337.1 31.0 46:446.5 -7+-164 393252 306324 49:5-37.0 0:45-0.38
643 SON 232 239 378 A 499 380 045 037,

DIE 243 18.3 365 231 492 4.1 0.0 033,

heighRUR ~ Monthly MAM  36.7 308 46.6 133, 204 270, 332 043
)Y 363, 343, 88 RN 204 3. 356, 040,

SON  2+624.0 242228 37.7 +22-0.8 F4660.5  4+831.8 879-67.3 8:63-0.61

DIE 233, 1727, 306, 202, 330 361 026 071,

SON. 194 243 6. 252 99 453 1056 071

DIF  20-+17.5 18.6 36:4-36.3 7666 8071075 444421 9591210  0:6+0.70

mURB Monthly  MAM 326309 30:730.6 46.5 -6:2-1.0 423514 247239 47:7-56.5 0:52-0.55
JJA 334323 34.4 45.7 2:9-6.0 36:641.4 246244 43:4-47.7 043045

SON  26:-183 236229 37.6 84279 9381158 368415 9991217  0:660.67

DIJF  492-17.1 +79-18.0 36.4 3+74 9331184 36237.1 1061268 0750.77
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Table A2. Same as Table A1 but for NOs.

heightType Scale Season OBS MOD¢cs MOD nMB¢ nMBy,  nRMSEc  nRMSEu PCCc

¢RUR Daily ~ MAM 8950 67 = 350 - 836 - 0.56
JA 37 32 = 416 = 24 = 045
DJE 13 8.4 = 12.1 = 104 — 0.60_
RUR Monthly ~ MAM 42 6.6 = 49.2 - 143 3 046
SON_ 49 72 = 389 - 672 3 049
DJE 64 8.3 = 224 = 387 - 0.57_
URB Daily ~ MAM 104 6.5 — 27323800 — 698600 — 0:480.53 1
A 6778 52 — 227337 — 740665 — 38041 3
SON 98115 68 — 365409 — 636648 — 847051 3
DIF 426146 8.1 . 356448 — 688664 — 852057 3
mURB  Monthly MAM 8398 63 245362 — 543521 — 852054
A 6671 49 492320 — 533501 — 047049
SON 93108 6867  — 278391  — 535517 054055
DIF #9138 82 — 339432 — 552548 — 660061

37



Table A3. Same as Table A1 but for CO.

heightType Scale Season OBS MOD¢ MOD nMB¢ nMB s nRMSEc nRMSE
&RUR MAMDaily ~ 296:-MAM ~ 497:7208.5 42641995  -33:2-1203  -593-43 724423 894826 0:3291.5
JJA 225:9-169.1  +479-1453 H84-116.0 -346-141 -476-314 801+84.8 86:2-88.4
DIE 2734 232.8 134.4 -14.8 -50.8 82.8 96.4
RUR Monthly — MAM 1797, 1961 1144 92 342 320 414
JIA 1385 145.8 111.7 27 -19.7 30.7 33.6
SON 173.9 177.4 119.1 0.2 -29.0 34.0 40.3
DIJF 2294 227.7 129.2 -4.0 -40.5 38.5 50.1
URB Daily MAM 308.4 197.4 120.5 -36.0 -60.9 711 88.5
JIA 234.0 148.2 118.7 -36.7 493 79.5 85.7
SON 334:6351.8 18181822  126:6-1262 -45:6-482 -623-64.1 896884  16+2-100.7
DJF 4763498 4 232.8 136:9-137.3  -56:5-53.3  -70:9-725 947944  109:5-109.0
m-URB Monthly MAM 262:5277.1 49381932  H56-115.8  -23:9-279  -53:-55.9 429443 62:0-64.1
JJA 197:0206.8  146:5-146.7  H55-116.0  -259-293  -46-4--43.0 434447 5+7-53.6
SON 289:3-309.8  480:2-180.4  4243-121.6  -36:9-40.6  -557-58.7 548537 66-1-68.1
DJF 3976425.1 22822279 43251332 426458 -658-68.0 563582 752773
Table A4. Same as Table A1 but for SO.
heightType Scale Season MODcz MODy nMB¢ nMB s nRMSEc nRMSE y/ PCCc ]
&RUR Daily MAM 2515 2616 2619 22474 265280 22891241 23131187 648035 6
JJA +9-13 2616 +917 67236 07328  246:6-1532 243:3-140.2 649026 6
SON 251.5 1.9 23 24268 1569 -2:6-149.0  246:9-153.5  25680.33
067 674DIF 18 28 87 40.1 1403 1500, 036,
heightRUR ~ Monthly  MAM 12 19 35 572 66,5 T 032
DIJF 40-1.5 2213 2.8 -46:0-12.4 295858 2450709 25041234 622028
URB_ Daly ~ MAM 2 2 20 211 284 2280 2306 0.16.
JA 20 19 AN s 2182 2165 017,
SON_ 24 25 27 116 2454 2490, 018
m-URB Monthly MAM +6-1.8 1.4 1.9 -+48-18.6 18648 65:7-65.4 79:0-75.7 630029 6
JJIA +4-1.5 1.4 1.7 -+5-38 304170 6860684 8+2-78.6 623021 6
SON +6-1.7 516 22 -35-80 4362062 679670 92:6-86.1 0.26 0
DIJF 2:0- +51.6 2726  -367-35.7 26:59.1 68:5-68.0 89:7-84.3 63+032 6




Table A5. Same as Table Al but for PM;o. Aerosol concentrations are expressed in ugm >,

heightType Scale Season OBS MOD¢ MOD s nMB¢ nMB s nRMSE¢ nRMSE ¢ PCCc
¢RUR Daily ~ MAM 242188 249245 276258 28302 372 LN 1270, 031
A 166 198 233 196 404 84.0 103.7. 033
SON - 176 18.5 27 20, 281 173, 122.5 044
DIE 204 207, 28 13 115 735829 H6A1490 031
RUR Monthly  MaM  17.9 244 234 359 377 63.1 873 0.54.
A 157 200, 204 254 378 6.7 705 048
SON 164 179 199 AN 304 3.3, 853 053
DIF 18.3 D7 187 3.3 27 829 104.5 048
URB_ Daly MAM 259 251 273, 30 57, w8 1062 043
JJA 26:6021.1  26:6020.1  23:924.0 -04-4.6_ 192140  73971.0 874827 0.30
SON 243264 18819.0 235237 -225-280  -3-5-10.3 833828 1679-104.1 0.37
m-URB Monthly MAM  2+722.9 24.4 242245 3377 +488.1 549528 75+72.0 652051 ¢
JJA +8:6-18.8 19.9 20:7-20.8 10:6-6.8 203-15.1 498483 585554 046045 ¢
SON  26:622.1 48:6-18.1 267209 -434-187  68-73 49:949.2 TH2-68.5 0.54 €
€

DIF 248272 498199 498201 20.0-265 175277 596583 872850 054053
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Table A6. Same as Table A5 but for PMs 5.

heightType Scale Season OBS MOD¢ MOD nMB¢ nMB s nRMSE¢ nRMSE r PCCc¢
&RUR Daily MAM  #43-11.9 +66-158 424117  H8326  -158-1.7 8066888 83:6-83.8 0:46-0.51
RS 28 13.1 112 366 17.1 1062, 827, 034,
SON - 112, 12,1 104 I eSS 256, 27, 041
DIE 148 131 2L ALl 343 30, 1108 932,
RUR Monthly  MAaM  11.0 154 115 413 62 3.6 82 053
TA 46690 3130 109 409 202 08:6 0.1 0.50_
SON 9.6 11.3 24:7-10.0 6:5-16.0 78837 665609 6:39-60.4 6:39-0.53
DIE L7 1.9 24 99 172 JEN 138 048
BA 0 13 14 202 34, 697 6L4. 042
SON  +42-152 12.1 16:6-10.7  -454-204  -257-30.1  86:677.2 86:6-85.1 642044 ¢
DIF 2633222 433-134 1621103 -347-39.7  -499-533 925918 10871074 048047 ¢
m-URB Monthly  MAM  433-14.1 457158 +:8120 264148  -8:6-12.6 605573 55-+54.4 0.54 €
JJA +6:2-10.6 434132 HH11.2 0 284250 8955 573544 44:642.4 656049 ¢
SON  124-133 11.5 +0:2-10.3  -70-13.1 466214 544529 579574 055056 ¢
€

DIF 165182 123124 9899  -256-315 -396-454 647642 760767 052053
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675 Appendix B: Urban background stations

The statistics found in Table 4 and in Table 5 are presented here for the subset of urban background stations.

Table B1. Same as Table 4 but for urban background stations.

Scale,  Pollutant OBS MODg MODy nMBe nMBy nRMSEc nRMSEy PCCq PCCw. N

Daily Os. 3 23 43 80 64l 343 2 072 054 513107
€0 3508 1910 1258 456 641 L0, 1052 039 019 L1310°
NOJ 32 22 23 23 28 246.8 250.8 0.18 008 23410°
PMy. 267 214 247 2000 1S 8.1 1122 036 019 584107
PMas 158 137 11 133 296 862, 961 041 024 235100

Monthly Qg 28 206 46 100 813 3L6 876, 6L 022 26

NO; 104 63 = 36 = 22 = Q4. = 216

CO 3077 1881 1219 362 -56.8 505 66.1 053 038 216

302 L9 L3 2l 18 138 012 813, 028 02 26

PMy. 227 206 2Ly e 29 BYAN 702, st 024 216

PMps 140 132 109 1 183 ST.L STT. 053 044 216

Table B2. Same as Table 5 but for urban background stations.

Pollutant bo. Q. k. be. fo~. gk byt o.My
Qs 0126049 %) 017 #033 4024 (092%/yr)  +002 047 006(013%/yn 023 +0.11
NO; :025(23%Nyn) 036 017 :007(¢26%Nyn 023  0J3 = — =
<o S85C1 %Ny, 882 272 ALC22%yn 600 309 0720059 %hn 098 027
NS 0040 (2.1 %lyn 0051 0029 -0070(46%yn 0074 0064 -0031CL5 %y 0046 0015

PMy. 038CLT %D 052 023 0.68C32%yn. 082 059 005¢024%/yn 020 +0034
PMas  023CLO %D, 035 043  0S3C3S5 %D, 065 047 004¢033%yn. 04l 4001

Appendix C: Trends
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Given our monthly time series does not contain tied or missing values, the Seasonal Mann-Kendall statistic, S’, and its variance

Var[S’], can be obtained as follows:

m m n—1 n
680 S'= ZSQ = Z Z Z sgn(xjg — Tig) (Cla)
g=1 g=1i=1j=i+1
Var[$']= 307 + 3 oy = 1gln(n —1)(@2n -+ 5)]+ S [Kyn 43 Rjy Ry —n(n+1)’] (Clb)
g=1 g,h j=1
n—1 n
Ken=2_ > s9nl(@ig = ig) (@jn — Tin) (Cle)
i=1 j=1

Where 7 and 1 are the number of years and seasons (i.¢. here monthly values), respectively, S is the Mann-Kendall statistic
for each ¢y, season, R, and Rj are Spearman’s correlation coefficients for seasons g and h, respectively, and sgn(x) is
685 the sign function. Seasonal Theil-Sen slopes (i.¢. annual trends) are then derived from S (Hussain and Mahmud (2019);

unresolved.

690 Appendix D: QA flags

Using the metadata available in GHOST. a quality assurance screening is applied by removing all air quality observations

associated with a set of flags detailed in Table DI. In addition, we detected a few very low CO concentrations in specific

regions during specific time periods, which we suspect originate from errors of units when the Member State reported its

observations to the EEA. Therefore, as a precautionary measure, all CO hourly observations below 1 ppbv were discarded in
695  this study.
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Table D1. Description of the GHOST quality-assurance flags used on the EEA air quality observational dataset.

Flag
Description
0
Measurement is missin,
1
Value is infinite — occurs when data values are outside of the range that float32 data type can handle (-3.4E+38 to +3.4E+38).
2
3
Measurement is equal to zero,
6
Measurements are associated with data quality flags given by the data provider which have been decreed by the GHOST project
architects as being associated with substantial uncertainty/bias.
38
After screening by key QA flags, no valid data remains to average in the temporal window.
10,
The measurement methodology used has not yet been mapped to standardised dictionaries of measurement methodologies.
18
The specific name of the measurement method is unknown.
20
The primary sampling is not appropriate to prepare the specific parameter for subsequent measurement.
2L
The sample preparation is not appropriate to prepare the specific parameter for subsequent measurement.
2.
The measurement methodology used is not known to be able to measure the specific parameter.
23
The specific measurement methodology has been decreed not to conform to QA standards as the method is not sufficiently proven/
subject to substantial biases/uncertainty.
7.
Measurement is below or equal to the preferential lower limit of detection.
7.
Measurement is above or equal to the preferential upper limit of detection.
82
The preferential resolution for the measurement is coarser than a set limit (variable by measured parameter).
83,
The resolution of the measurement is analysed month by month. If the minimum difference between observations is coarser than a set
limit (variable by measured parameter), measurements are flagged.
%,
Check for persistently recurring values. Check is done by using a moving window of 9 measurements. If 5/6 (i.e. 83.33%) of values in
the window are the same then the entire window is flagged.
91
Check for persistently recurring values. Check is done by using a moving window of 12 measurements. If 9/12 (i.e. 75%) of values in
the window are the same, then the entire window is flagged.
92
Check for persistently recurring values. Check is done by using a moving window of 24 measurements. If 16/24 (i.e. 66.66%) of values
in the window are the same, then the entire window is flagged.
10
The measured value is below or greater than scientifically feasible lower/upper limits (400, 600, 30000 and 3000 ppbv for O3z, NO3,
CO and SO», and 50000 ugm 2 for PM;o and PMs 5).
L
The median of the measurements in a month is greater than agqientifically feasible limit (120, 200, 7500 and 750 ppbv for O3, NOa2,
CO and SO», and 5000 ugm 3 for PM;( and PM» &).
112

Data has been reported to be an outlier through data flags by the network data reporters (and not manually checked and verified as
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