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 18 

Abstract 19 

African and South American (ASA) wildfires account for more than 70% of global 20 

burned areas and have strong connection to local climate for sub-seasonal to seasonal 21 

wildfire dynamics. However, representation of the wildfire-climate relationship 22 
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remains challenging, due to spatiotemporally heterogenous responses of wildfires to 23 

climate variability and human influences. Here, we developed an interpretable Machine 24 

Learning (ML) fire model (AttentionFire_v1.0) to resolve the complex spatial-25 

heterogenous and time-lagged controls from climate on burned area and to better 26 

predict burned areas over ASA regions. Our ML fire model substantially improved 27 

predictability of burned area for both spatial and temporal dynamics compared with 28 

five commonly used machine learning models. More importantly, the model revealed 29 

strong time-lagged control from climate wetness on the burned areas. The model also 30 

predicted that under a high emission future climate scenario, the recently observed 31 

declines in burned area will reverse in South America in the near future due to climate 32 

changes. Our study provides reliable and interpretable fire model and highlights the 33 

importance of lagged wildfire-climate relationships in historical and future predictions. 34 

 35 

1. Introduction 36 

Wildfires modify land surface characteristics, such as vegetation composition, soil 37 

carbon, surface runoff, and albedo, with significant consequences for regional carbon, 38 

water, and energy cycles [Benavides‐Solorio and MacDonald, 2001; Randerson et al., 39 

2006; Shvetsov et al., 2019]. Over African and South American (ASA) regions, where 40 

more than 70% of global burned area occurs, wildfires emit ~1.4 PgC yr-1 and dust and 41 

aerosols that can alter regional climate through radiative processes [Etminan et al., 2016; 42 

Ramanathan et al., 2001; Werf et al., 2017]. While greenhouse gas emissions contribute 43 

to climate change, other toxic species and airborne particulate matter from wildfires 44 
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lead to substantial health hazards, including elevated premature mortality [Knorr et al., 45 

2017; Lelieveld et al., 2015]. In particular, wildfire particulate matter emissions across 46 

tropical regions have exceeded current anthropogenic sources and are predicted to 47 

dominate future regional emissions [Knorr et al., 2017].  48 

Although total tropical wildfire burned area has declined over the past few decades 49 

due to climate change and human activities [Andela et al., 2017; Andela and Van Der 50 

Werf, 2014] (e.g., from increases in population density, cropland fraction, and livestock 51 

density), wildfire still plays a significant role in mediating surface climate [Xu et al., 52 

2020], biogeochemical cycles, and human health [Andela et al., 2017]. Further, 21st 53 

century projections of increases in temperature, regional drought [Dai, 2013; Taufik et 54 

al., 2017], and precipitation variations may outweigh these direct human impacts and 55 

result in unprecedentedly fire-prone environments over a large fraction of Africa 56 

[Andela and Van Der Werf, 2014; Archibald et al., 2009; Van Der Werf et al., 2008] and 57 

South America [Malhi et al., 2008; Pechony and Shindell, 2010]. These factors 58 

highlight the need for better understand, predict, and management of these critical fire 59 

regions to minimize economic losses, human health hazards, and natural ecosystem 60 

degradation. Therefore, improved understanding and accurate prediction of wildfire 61 

activity is increasingly important for effective fire management and sustainable 62 

decision-making. 63 

Climate is acknowledged one of the most dominant controllers on ASA wildfires 64 

[Andela et al., 2017; Chen et al., 2011]. For example, precipitation variations contribute 65 

substantially to burned area patterns in southern and northern Africa [Andela and Van 66 
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Der Werf, 2014; Archibald et al., 2009], and are also closely linked to wildfire 67 

spatiotemporal dynamics in south America [Chen et al., 2011; Malhi et al., 2008; Van 68 

Der Werf et al., 2008]. More importantly, the strong controls from climate on wildfires 69 

often show time-lags and the time-delay can be up to multiple months [Andela and Van 70 

Der Werf, 2014; Van Der Werf et al., 2008], which enables wildfire predictions ahead 71 

of fire season [Chen et al., 2016; Chen et al., 2020; Chen et al., 2011; Turco et al., 72 

2018]. The spatiotemporal responses of wildfires to climate changes are complicated 73 

by non-linear interactions among climate, vegetation, and human activities [Andela et 74 

al., 2017; Van Der Werf et al., 2008]. In more xeric subtropical regions, increasing 75 

precipitation during the wet season can be the dominant controller on increasing 76 

wildfire during the following dry season (through regulation of fuel availability and 77 

fuel spatial structures) [Archibald et al., 2009; Littell et al., 2009; Van Der Werf et al., 78 

2008]. In contrast, increasing precipitation in more mesic regions results in excessive 79 

fuel moisture, thereby becoming the main limitation of dry-season wildfires (i.e., 80 

opposing fire trends are observed with increasing precipitation in northern and southern 81 

Africa) [Andela and Van Der Werf, 2014; Van Der Werf et al., 2008]. In addition to 82 

natural processes, human activities are primary ignition sources and have shaped fire 83 

patterns in the ASA regions [Andela et al., 2017; Aragao et al., 2008; Archibald et al., 84 

2009]. Fire-use types driven by local socio-economic conditions and fire management 85 

policies may also affect the fire-climate relationships [Andela et al., 2017]. Therefore, 86 

strong climate controls from wet season to dry season need to be considered along with 87 
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fuel distributions and human activities for continental fire predictions under climate 88 

change. 89 

Accurate predictive modeling of wildfire with skillful representation of how 90 

environmental and anthropogenic factors modulate the burned area is still challenging. 91 

State-of-the-art process-based fire models (e.g., the Fire Model Intercomparison Project 92 

[Rabin et al., 2017]) have reasonably simulated the spatial distribution of burned areas. 93 

However, they generally do not accurately capture burned area seasonal variation and 94 

inter-annual trends and variability [Andela et al., 2017]. Improving predictability and 95 

reducing uncertainties of process-based models require more sophisticated 96 

representation of fire processes and parameterization, which remain a long-term 97 

challenge [Bowman et al., 2009; Hantson et al., 2016; Teckentrup et al., 2019]. In 98 

response to this challenge, data-driven statistical or Machine Learning (ML) 99 

approaches have been developed and demonstrated to effectively capture wildfire 100 

severity and burned area dynamics [Archibald et al., 2009; Chen et al., 2020; Chen et 101 

al., 2011; Zhou et al., 2020]. However, the spatially heterogenous, non-linear, and time-102 

lagged controls have been oversimplified (e.g., using linear models or only considering 103 

climate variables at specific time lags or seasons [Archibald et al., 2009; Chen et al., 104 

2016; Chen et al., 2020; Chen et al., 2011; Gray et al., 2018a]) or have been black 105 

boxed, impeding an interpretable and reliable way to understand the critical 106 

spatiotemporal processes from wet season to dry season [Jain et al., 2020; Reichstein 107 

et al., 2019].  108 
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In this work, we developed a wildfire model (AttentionFire) leveraging on an 109 

interpretable Long-Short-Term-Memory framework to predict wildfire burned areas 110 

over Northern Hemisphere Africa (NHAF), Southern Hemisphere Africa (SHAF), and 111 

Southern Hemisphere South America (SHSA) [Giglio et al., 2013]. We also focused on 112 

using the AttentionFire model to explore the dependency of simulated burned area on 113 

different drivers from wet season to dry season across different gridcells. We assessed 114 

model predictability with observed burned area from Global Fire Emission Database 115 

(GFED) and compared with five other machine learning based fire models. 116 

 117 

2. Methods 118 

2.1 AttentionFire model 119 

The AttentionFire model is based on an interpretable attention-augmented LSTM 120 

[Guo et al., 2019; Li et al., 2020; Liang et al., 2018; Qin et al., 2017; Vaswani et al., 121 

2017] framework. An naïve LSTM has shown advantages in capturing short- and long-122 

term dependencies in input time series [Hochreiter and Schmidhuber, 1997]. However, 123 

LSTM cannot explicitly and dynamically select important drivers from multiple driving 124 

time series to make predictions [Guo et al., 2019; Li et al., 2020; Liang et al., 2018; 125 

Qin et al., 2017; Vaswani et al., 2017]. Further, LSTM works as a black-box, lacking 126 

interpretability to identify the relative importance of each driver across different time 127 

steps [Guo et al., 2019; Li et al., 2020; Liang et al., 2018]. Attention mechanisms 128 

overcome these challenges by adaptively assigning larger weights to more important 129 

drivers and time steps [Liang et al., 2018; Vaswani et al., 2017]. Here we use attention 130 
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mechanism to explicitly capture controlling factors of fire predictions with various 131 

time-lags (Fig. 1). Below are detailed descriptions of the fire model. 132 

 133 

Fig. 1: An illustrative workflow for AttentionFire_v1.0 model prediction. Four kinds of 134 

drivers are considered: ignition related, suppression related, fuel, and climate. The 135 

temporal attention is used to identify important time steps for each kind of driver, while 136 

the variable attention is used to identify important drivers for final burned area 137 

prediction. 138 

 139 

Given four categories of time series, 𝑋 = (𝑋!, 𝑋", 𝑋#, 𝑋$)%, where 𝑇 is the length 140 

of time series, we use 𝑋& = (𝑥'& , 𝑥(& , … , 𝑥%& )% ∈ 𝑅%, where 1 ≤ 𝑖 ≤ 𝑛, to denote the 𝑖-141 

th time series, and use 𝑋) = (𝑥)', 𝑥)(, … , 𝑥)*)% 	 ∈ 𝑅*, where 1≤ 𝑡 ≤ T, to represent the 142 

vector at time step t. 𝑥+, , 𝑥+- ,	𝑥+
. , and 𝑥+/  represent the variables of ignition (e.g., 143 
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population density), suppression (e.g., road network density), fuel availability (e.g., 144 

living biomass), and climate (e.g., precipitation) at time step 𝑡 . The AttentionFire 145 

model aims to learn a nonlinear function 𝐹 to map the 𝑛 time series to the observed 146 

burned area 𝑌%0' at time step T + 1: 147 

𝑌5%0' = 𝐹(𝑋!, 𝑋", 𝑋#, 𝑋$)% (1) 

Where 𝑌5%0'is the predicted burned area at time step T + 1.  148 

First, the model iteratively transforms the 𝑖-th driving variable at time step t to a 149 

hidden state vector ℎ)& , where 1 ≤ 𝑡 ≤ T  and 1 ≤ 𝑖 ≤ 𝑛  through LSTM gate 150 

mechanisms [Guo et al., 2019; Li et al., 2020; Liang et al., 2018; Qin et al., 2017]. 151 

Second, as the importance of each time step varies, temporal attention is applied to ℎ)&  152 

to calculate its corresponding weight or importance 𝑤)&. Third, the weighted summation 153 

ℎ-12&  of ℎ)&  is obtained to represent the summarized information for the 𝑖-th driving 154 

variable: 155 

𝑤)& = 𝑓3))*(ℎ)&)  

 (2) 

ℎ-12& =9𝑤)&ℎ)&
%

)4'

 
 

Where ℎ)& ∈ 𝑅2 is the hidden state vector of the 𝑖-th driving series at time step t, that 156 

stores the summary of the past input sequence [Hochreiter and Schmidhuber, 1997]. 157 

𝑤)& is the calculated weight for the 𝑖-th driver at time step 𝑡 through attention function 158 

𝑓3))*: 159 

𝑤)&
5 = tanh	(𝑊6ℎ)&) (3) 
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𝑤)& =
𝑒7!"

#

∑ 𝑒7!
$#%

84'

 

where 𝑊6 	 ∈ 𝑅'×2, is a parameter matrix that needs to be learned. To furtherly capture 160 

the relative importance of the 𝑖-th driving variable compared to other driving variables, 161 

variable attention is used for the summarized information ℎ-12&  and ℎ%& . Note that ℎ%&  162 

is also a kind of summarized information derived by the LSTM [Guo et al., 2019; 163 

Hochreiter and Schmidhuber, 1997]. The weight or importance of the 𝑖-th driving 164 

variable 𝑤& is calculated as: 165 

𝑤&5 = tanh	(𝑊3[ℎ-12& , ℎ%& ]) 

𝑤& =
𝑒7"#

∑ 𝑒7$#*
84'

 
(4) 

Finally, using the weighted sum of all driving variables, the model generates the 166 

prediction 𝑌5%0': 167 

 168 

𝑜& = 𝑊:[ℎ-12& , ℎ%& ]+	𝑏: 

𝑌5%0' =9𝑜&𝑤&

*

&4'

 
(5) 

where 𝑊3 ∈ 𝑅'×(2, is a learnable parameter matrix and the linear function with weight 169 

𝑊: ∈ 𝑅2  and bias 𝑏: ∈ 𝑅, along with attention calculated weight 𝑤& , produce the 170 

final prediction result. The parameters of attention-based LSTM are learned via a back-171 

propagation algorithm by minimizing the mean-squared error between predictions and 172 

observations [Guo et al., 2019; Leung and Haykin, 1991]. 173 

The AttentionFire model is implemented with python under Python 3 environment. 174 

The model is open-access at https://zenodo.org/record/6903284#.YvH8F-zMJmP under 175 
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Creative Commons Attribution 4.0 International license. Detailed code and descriptions 176 

are included in the repository including loading datasets, model initialization, training, 177 

predicting, saving parameters, and loading the trained model (see more details in code 178 

availability section). 179 

2.2 Baseline models and model settings 180 

Five other widely used Machine learning (ML) models are used as baseline models 181 

to compare with AttentionFire model: random forest (RF) [Coffield et al., 2019; Gray 182 

et al., 2018b], decision tree (DT) [Amatulli et al., 2006], gradient boosting decision tree 183 

(GBDT) [Coffield et al., 2019], artificial neuro network (ANN) [Joshi and Sukumar, 184 

2021; Zhu et al., 2021], and naive LSTM. The inputs of climate and fuel-related 185 

variables for the first four models (non-sequence models) are variables of the latest 186 

three month available for prediction [Yu et al., 2020] while the corresponding inputs of 187 

naive LSTM and AttentionFire models are whole-year historical time sequences which 188 

cover dynamics from wet to dry seasons to capture short- and long-term dependencies 189 

underlying the input sequence[Guo et al., 2019; Li et al., 2020; Qin et al., 2017; 190 

Vaswani et al., 2017]. The socioeconomic predictors (i.e., population, road density, 191 

livestock) consider only the more recent and available statistics typically reported at a 192 

year scale. For each model, we iteratively leave one-year dataset out for testing and use 193 

the remaining dataset for model training and validation. Details of the settings for used 194 

models in experiments are listed in Table S1. 195 

2.3 Datasets 196 

Satellite-based global burned area dataset (Global Fire Emissions Database [Giglio et 197 
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al., 2013]) is used as prediction target, and datasets of various socio-environmental 198 

drivers are used as model inputs. Population density, livestock density, road-network 199 

density, and land use are considered as anthropogenic factors on fire ignition and spread. 200 

Fuel variables include fuel moisture, live and dead vegetation biomass. Seven 201 

meteorology variables from NCEP-DOE Reanalysis are considered, including air 202 

temperature, precipitation, surface pressure, wind speed, specific humidity, downward 203 

shortwave radiation, and vapor pressure deficit. Details of each dataset and 204 

corresponding references are listed in Table S2. The raw datasets were unified to the 205 

same spatial resolution (T62 resolution: 94×192) with a covering period from 1997 to 206 

2015. 207 

For future projection (2016-2055) of burned area with AttentionFire model, land 208 

use changes [Hurtt et al., 2020], population growth, projected climate and fuel from 209 

fully coupled CESM simulation under high emission scenario (ssp585) were used as 210 

the ML model input. The reason to select 2016-2055 as the projected period was that 211 

during 2016-2055 99th percentiles of precipitation, temperature, and vapor pressure 212 

deficit were within the range of corresponding historical observations, which means 213 

that the trained model has covered the range of most projected drivers in the near-future 214 

and can alleviate extrapolation uncertainty caused by climate change. 215 

 216 

3 Results and Discussions 217 

3.1 Model predictability on burned area spatial-temporal dynamics 218 

The AttentionFire model accurately captured the spatial distribution and temporal 219 
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variations (Fig. 2 and Fig. S1) of wildfire burned areas over NHAF, SHAF, and SHSA 220 

regions. The AttentionFire model had the lowest mean absolute errors (MAE) between 221 

model predicted and observed grided monthly burned areas among the six ML 222 

approaches. The gridded mean absolute errors of burned area for AttentionFire were 223 

110, 142, and 39 Kha yr-1 in NHAF, SHAF, and SHSA regions, which were respectively 224 

6%~66%, 13%~65%, and 11%~42% lower than the other 5 ML approaches in the three 225 

regions. These results highlight the capability of the AttentionFire model to capture 226 

critical driving factors of burned area across time and space. 227 

The fact that the AttentionFire model outperformed the other five models (Fig. 2g-228 

i) indicates the benefit of skillfully integrating time-lagged and spatially heterogenous 229 

controls from critical drivers on wildfires. Compared to non-sequence models (i.e., RF, 230 

MLP, DT, and GBDT), the AttentionFire model adaptively captured historical 231 

dependencies of wildfires on climate conditions from wet to dry seasons [Andela and 232 

Van Der Werf, 2014; Archibald et al., 2009; Chen et al., 2011; Van Der Werf et al., 2008] 233 

(more detailed analysis is provided in next section). Compared to the naive LSTM 234 

models, the variable and temporal attention mechanisms integrated in AttentionFire has 235 

proven to be beneficial to model performance.  236 

The spatial heterogeneity and temporal variation of wildfire responses to complex 237 

environmental and human factors have made wildfire predictions challenging, 238 

especially at large spatial scales [Andela and Van Der Werf, 2014; Chen et al., 2016; 239 

Chen et al., 2011; Littell et al., 2016; Zhou et al., 2020]. The capability of the 240 

AttentionFire model to reasonably predict spatial and temporal distributions of burned 241 
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area ahead of fire season allows more time to explore and implement management 242 

options, such as allocation of firefighting resources, fuel clearing or targeted burning 243 

restrictions [Chen et al., 2011]. 244 

 245 

Fig. 2. The AttentionFire model accurately captured burned area spatial dynamics. (a-246 

f) Spatial distribution of observed and AttentionFire predicted fire season mean burned 247 

areas with one-month lead time in Northern Hemisphere Africa (NHAF), Southern 248 

Hemisphere Africa (SHAF), and Southern Hemisphere South America (SHSA) regions. 249 

(g-i) Performance (in terms of mean absolute error) of AttentionFire and other five 250 

baseline models. 251 

3.2 Dominant drivers of tropical burned area dynamics 252 
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The AttentionFire model dynamically weights variable importance and highlights 253 

critical temporal windows [Guo et al., 2019; Li et al., 2020; Liang et al., 2018; Qin et 254 

al., 2017; Vaswani et al., 2017] that maximize model predictability. Therefore, the 255 

variable weights could inform dominant physical processes, while the temporal weights 256 

reflect the temporal dependency structure, making it interpretable for spatial-temporal 257 

analysis. For the AttentionFire model predictions, the variable weights showed that 258 

climate wetness exerted strong and spatial heterogenous controls on burned areas. 259 

Specifically, precipitation (for SHAF and SHSA regions) and vapor pressure deficit 260 

(VPD; for NHAF region) played the most important roles (Fig. 3) in burned area 261 

prediction during fire seasons (defined as the four months with the largest burned areas, 262 

Fig. S2), and the control strengths from those climate wetness variables on fires were 263 

significantly (one-tailed t-test, p-value<0.05) stronger in regions with larger burned 264 

areas (gridcells with top 10% burned areas) than those with smaller burned areas 265 

(gridcells with last 90% burned areas) (Fig. 4 a-f). 266 

 267 

 268 

 269 

Fig. 3: Ranked top-five important variables for fire-season burned area. For each 270 

gridcell within each study region, there is a mean variable weight, representing the 271 

importance of the variable for fire prediction in the gridcell. For each region, the 272 

variable weights are summed weighted by its corresponding mean burned areas, and 273 
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normalized. 274 

 275 

In AttentionFire model predictions, the precipitation and VPD explained ~66% - 276 

~80% (Fig. S3) of the annual mean fire season wildfire burned areas. Variations of VPD 277 

and precipitation not only affect fire season ignition likelihood and fire spread [Holden 278 

et al., 2018; Sedano and Randerson, 2014] through fuel moisture, but also regulate 279 

vegetation growth, fuel structure [Gale et al., 2021] (e.g., fuel composition and spatial 280 

connectivity), and fuel availability [Littell et al., 2009; Littell et al., 2016; Mueller et 281 

al., 2020; Van Der Werf et al., 2008]. The importance of these climate wetness variables 282 

confirms the dominant roles of local water balances and air dryness for wildfire 283 

prediction from sub-seasonal to seasonal scales [Archibald et al., 2009; Chen et al., 284 

2011; Littell et al., 2016] , especially in regions with large burned areas.  285 

Furthermore, we found that the emergent functional relationships between climate 286 

wetness and wildfire burned area were parabolic (Fig. S3): i.e., enhancement of 287 

historical precipitation or decline of historical VPD (indicating wetter conditions) first 288 

increased burned area in more xeric conditions, then suppressed burned area under more 289 

mesic conditions, consistent with previous findings in subtropical regions [Andela and 290 

Van Der Werf, 2014; Van Der Werf et al., 2008]. The transition points of these emergent 291 

functional relationships (thresholds at which the relationships reverse) were region 292 

specific, and these relationships may be useful for developing, tuning, and 293 

benchmarking wildfire models [Zhu et al., 2021]. 294 
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For the time lags between those dominant climate wetness variables and fire-season 295 

burned areas, our results demonstrated that burned area over NHAF was more 296 

modulated by relatively short-term wetness (VPD during wet-to-dry and onset of dry 297 

season, from September to December), while SHAF and SHSA burned areas depended 298 

more on long-term wetness (precipitation during wet and wet-to-dry season, December 299 

to March in SHAF, and November to April in SHSA) (Fig. 4g-i). The short-term 300 

variations of climate wetness can directly affect near-surface temperature and moisture 301 

availability, which affect fuel flammability [Holden et al., 2018; Littell et al., 2016], 302 

while the long-term wetness (e.g., during rainy season) can affect fuel availability, 303 

composition, and spatial connectivity, which can result in even stronger long time-304 

lagged controls on dry-season burned areas [Abatzoglou and Kolden, 2013; Andela and 305 

Van Der Werf, 2014; Archibald et al., 2009; Chen et al., 2011; Littell et al., 2016; Van 306 

Der Werf et al., 2008].  307 

 308 
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 309 

Fig. 4. Spatial-temporal importance of climate wetness variables for burned area 310 

dynamics. (a-c) Spatial importance of climate wetness variables for fire-season burned 311 

areas. (d-f) statistical comparison of the climate wetness variable importance over 312 

regions with large and small burned areas. (g-i) fire season burned area dependency on 313 

the history of the climate wetness driver over Northern Hemisphere Africa (NHAF), 314 

Southern Hemisphere Africa (SHAF), and Southern Hemisphere South America 315 

(SHSA) regions. 316 

Previous work has shown that when and where fires occurred during dry season 317 

can be affected by precipitation induced fuel availability patterns during wet and during 318 

wet-to-dry transition seasons in savannah ecosystems [Andela and Van Der Werf, 2014; 319 

Archibald et al., 2009; Van Der Werf et al., 2008]. Also, precipitation variations during 320 

wet and wet-to-dry transition seasons in the tropical forest ecosystem can affect soil 321 

recharge during wet season and further affect plant transpiration, local surface humidity, 322 
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and precipitation during the following dry season [Chen et al., 2011; Malhi et al., 2008; 323 

Ramos da Silva et al., 2008]. The exact responses of fires to short-and-long term climate 324 

variations depend on both local wetness and fuel conditions (e.g., fires in wetter 325 

ecosystems with enough fuel availability can be mainly limited by the length of dry 326 

season, while fires in drier ecosystems can be limited by fuel availability during wet 327 

season [Andela and Van Der Werf, 2014; Van Der Werf et al., 2008]). Therefore, an 328 

effective way of integrating the climate wetness history (i.e., AttentionFire model) can 329 

lead to more accurate predictions of burned area spatial-temporal dynamics. 330 

3.3 Possible usage of oceanic index for long-leading time predictions 331 

In ASA regions, large-scale variations of oceanic dynamics can directly influence 332 

local climate (e.g., precipitation variations during wet seasons [Andela and Van Der 333 

Werf, 2014; Chen et al., 2011]) through time-lagged controls of teleconnections and 334 

indirectly influence fires during following dry seasons [Andela et al., 2017; Chen et al., 335 

2016; Chen et al., 2011]. Therefore, we hypothesized that ocean dynamics might benefit 336 

AttentionFire model predictions, especially for long leading time fire predictions 337 

through providing additional information that has not been reflected in local climate 338 

and land surface conditions [Andela et al., 2017; Chen et al., 2016; Chen et al., 2020; 339 

Chen et al., 2011].  340 

We compared model performance for short term (1-4 month ahead), and long term 341 

(5-8 month ahead) fire predictions with and without considering the four oceanic 342 

indexes. Relative to the MAE of short-term predictions, the mean MAE of long-term 343 

predictions without and with teleconnections increased by ~34% and ~14% in NHAF, 344 
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~34% and ~15% in SHAF, and ~17% and ~7% in SHSA, respectively, indicating the 345 

decline of system predictability with longer leading time (Figure 5). However, for long-346 

term predictions, including oceanic indexes and teleconnections could decrease the 347 

mean MAE by ~20%, ~19%, and ~11% in NHAF, SHAF, and SHSA regions, 348 

respectively, compared with the case without oceanic indexes. The results demonstrated 349 

the potential usage of teleconnections for longer than 5 months leading time burned 350 

area predictions. 351 

 352 

Fig. 5: Performance of AttentionFire burned area predictions with 1~4 month leading 353 

time (short-term) and with 5-8 month leading (long-term). MAE is mean absolute error. 354 

Long term prediction with OI means the AttentionFire model also considered four 355 

ocean indices that have been widely used for fire prediction over South American and 356 

African regions. Four OIs are: Oceanic Niño Index (ONI), Atlantic multidecadal 357 

Oscillation (AMO) index, Tropical Northern Atlantic (TNA) Index, and Tropical 358 

Southern Atlantic (TSA) Index. 359 

3.4 Future trends of burned area over Africa and South America 360 

Due to climate change and human activities [Andela et al., 2017], strong but 361 

opposing trends of burned areas have been observed in Northern (decreasing) and 362 

Southern (increasing) Hemisphere Africa [Andela and Van Der Werf, 2014], and within 363 

different regions of Southern Hemisphere America [Andela et al., 2017] during the 364 
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recent two decades, resulting in an overall declining burned area trend in Africa and 365 

South America. However, whether this decline will persist is under debate. On one hand, 366 

the projected increases in population, expansion of agriculture, mechanized (fire-free) 367 

management, and fire suppression policies will likely continue to decrease burned areas 368 

[Andela and Van Der Werf, 2014] (e.g., human activities were regarded as one of the 369 

main drivers for fire decline in NHAF region). On the other hand, future climate change 370 

[Dai, 2013; Taufik et al., 2017] could outweigh human impacts and result in 371 

unprecedented fire-prone environments in the tropics [Malhi et al., 2008; Pechony and 372 

Shindell, 2010] (e.g., fires showed strong dependency with climate wetness in NHAF, 373 

SHAF [Andela and Van Der Werf, 2014; Archibald et al., 2009] and SHSA [Chen et al., 374 

2011] regions). 375 

 376 
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 377 

Fig. 6: Future burned area trends under the SSP585 high emission scenario. (a-c) spatial 378 

distribution of fire season burned area trends using drivers with interannual variations; 379 

dots in (a-c) indicate gridcells with statistically significant changes in the trend. (d-f) 380 

regionally aggregated burned area changes with historical mean subtracted. Blue and 381 

red lines respectively represent burned area anomaly in history and future; the black 382 

line represents future burned area trend while removing the interannual variations of 383 

the dominant variable. Solid lines represented significant BA trends (p value <0.05) 384 

while dashed lines represented non-significant BA trends. 385 

Considering land use changes, population growth, and projected climate under the 386 

SSP585 high emission scenario, our model predicted that burned areas in the NHAF 387 

region will continue to decline; the currently increasing trend will be dampened in the 388 
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SHAF region, and the currently decreasing trend will be reversed in SHSA region (Fig. 389 

6). Over NHAF and SHSA, burned area trends at the gridcell level are mostly robust 390 

(Fig. 6a-c; p value<0.05) and of the same sign, thus resulting in a robust trend at 391 

regional scale. 392 

To investigate what drives future burned area changes, we iteratively surrogated 393 

each driver with its climatology while keeping the other factors the same. Gridded 394 

burned area changing trends in NHAF and SHSA were mostly affected by VPD changes 395 

(Table S3), and removing VPD inter-annual changes resulted in non-significant burned 396 

area trends at the whole NHAF and SHSA region (Fig. 6). VPD was projected to 397 

continuously increase due to warming but had different implications over NHAF and 398 

SHSA. Over the relatively fuel abundant SHSA region, increased VPD will likely 399 

increase burned area (Pearson r= 0.45, p value <0.05, Fig. S4) through increasing fuel 400 

dryness and combustibility [Chen et al., 2011; Kelley et al., 2019; Malhi et al., 2008; 401 

Van Der Werf et al., 2008]. In contrast, over the semi-arid savannah dominated NHAF 402 

region (less fuel, compared with SHSA), higher VPD could decrease burned area 403 

(Pearson r= -0.81, p value <0.05, Fig. S4) through limiting plant growth and fuel 404 

availability [Andela et al., 2017; Andela and Van Der Werf, 2014; Van Der Werf et al., 405 

2008]. For the SHAF, population growth followed by climate changes (Table S3) 406 

showed stronger influences on grided burned area changes while the heterogeneity of 407 

wildfire responses finally led to a non-significant trend at the regional scale (Fig. 6). 408 

Our findings highlight the importance of climate changes on understanding future 409 

burned area dynamics, and motivate better representation of climate wetness effects on 410 
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wildfire dynamics in process-based and machine learning-based wildfire prediction 411 

models. 412 

 413 

4. Conclusions 414 

This study developed an interpretable machine learning model (AttentionFire_v1.0) 415 

for burned areas predictions over African and south American regions. Compared with 416 

observations and other five widely used machine learning baseline models, we 417 

demonstrated the effectiveness of the AttentionFire model to capture the magnitude, 418 

spatial distribution, and temporal variation of burned areas. “Attention” mechanisms 419 

enabled the interpretation of complex but critical spatial-temporal patterns [Guo et al., 420 

2019; Li et al., 2020; Liang et al., 2018; Qin et al., 2017; Vaswani et al., 2017], thus 421 

uncovering the black-boxed relationships in machine learning models for burned area 422 

predictions. We demonstrated the spatiotemporally heterogenous and strong time-423 

lagged controls from local climate wetness on burned areas. Furthermore, under the 424 

SSP585 high emission scenario, our results suggested that the increasing trend in 425 

burned area over southern Africa will dampened, and the declining trend in burned area 426 

over fuel abundant southern America will reverse. This study highlights the importance 427 

of skillful representation of spatiotemporally heterogenous and strong time-lagged 428 

climate wetness effects on understanding wildfire dynamics and developing advanced 429 

early fire warning models. 430 
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Code availability 440 

The source code of AttentionFire_v1.0 is archive at Zenodo repository: 441 

https://zenodo.org/record/6903284#.YuA3oOzMIaF, under Creative Commons 442 

Attribution 4.0 International license, with four zip files: data, data_preparation, model, 443 

and example. The "data" file contains the links to all raw datasets used to drive the 444 

model (e.g., burned areas, climate forcing). The "data_preparation" file contains the 445 

code to preprocess the raw datasets and make them be ready for training and testing the 446 

AttentionFire model. The "model" file contains the python code of AttentionFire model. 447 

The "example" file gives a detailed example of how to use the AttentionFire model for 448 

burned area predictions. 449 

There is also a tutorial file “Data_Model_Tutorial” that contain descriptions on (1) 450 

how to load the raw datasets; (2) how to prepare the input and output datasets for ML 451 

model; (3) how to initialize the ML model and run the model (4) how to train the ML 452 

model and use the trained ML model for predictions; (5) how to save and load the model 453 

parameters and save the predicted results. 454 
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 455 

Data availability 456 

Burned area: Global Fire Emissions Database 457 

https://daac.ornl.gov/VEGETATION/guides/fire_emissions_v4.html 458 

NCEP-DOE Reanalysis Climate forcings: 459 

https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html 460 

Population: https://landscan.ornl.gov/ 461 

Road density: https://www.globio.info/download-grip-dataset 462 

Livestock density: https://www.fao.org/dad-is/en/ 463 

Land cover change: https://luh.umd.edu/data.shtml 464 

Oceanic index: https://psl.noaa.gov/data/climateindices/list/ 465 
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