AttentionFire_v1.0: interpretable machine learning fire model for burned area predictions over tropics

Fa Li¹,², Qing Zhu¹,⁷, William J. Riley¹, Lei Zhao³, Li Xu⁴, Kunxiaojia Yuan¹,², Min Chen⁵, Huayi Wu², Zhipeng Gui⁶, Jianya Gong⁶, James T. Randerson⁴

¹ Climate and Ecosystem Sciences Division, Climate Sciences Department, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
² State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China
³ Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Champaign, IL, USA
⁴ Department of Earth System Science, University of California Irvine, Irvine, CA, USA
⁵ Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, USA
⁶ School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China
⁷ *Correspondence to Qing Zhu (qzhu@lbl.gov)

Abstract

African and South American (ASA) wildfires account for more than 70% of global burned areas and have strong connection to local climate for sub-seasonal to seasonal wildfire dynamics. However, representation of the wildfire-climate relationship
remains challenging, due to spatiotemporally heterogenous responses of wildfires to climate variability and human influences. Here, we developed an interpretable Machine Learning (ML) fire model (AttentionFire_v1.0) to resolve the complex spatial-heterogenous and time-lagged controls from climate on burned area and to better predict burned areas over ASA regions. Our ML fire model substantially improved predictability of burned area for both spatial and temporal dynamics compared with five commonly used machine learning models. More importantly, the model revealed strong time-lagged control from climate wetness on the burned areas. The model also predicted that under a high emission future climate scenario, the recently observed declines in burned area will reverse in South America in the near future due to climate changes. Our study provides reliable and interpretable fire model and highlights the importance of lagged wildfire-climate relationships in historical and future predictions.

1. Introduction

Wildfires modify land surface characteristics, such as vegetation composition, soil carbon, surface runoff, and albedo, with significant consequences for regional carbon, water, and energy cycles [Benavides-Solorio and MacDonald, 2001; Randerson et al., 2006; Shvetsov et al., 2019]. Over African and South American (ASA) regions, where more than 70% of global burned area occurs, wildfires emit ~1.4 PgC yr\(^{-1}\) and dust and aerosols that can alter regional climate through radiative processes [Etminan et al., 2016; Ramanathan et al., 2001; Werf et al., 2017]. While greenhouse gas emissions contribute to climate change, other toxic species and airborne particulate matter from wildfires
lead to substantial health hazards, including elevated premature mortality [Knorr et al., 2017; Lelieveld et al., 2015]. In particular, wildfire particulate matter emissions across tropical regions have exceeded current anthropogenic sources and are predicted to dominate future regional emissions [Knorr et al., 2017].

Although total tropical wildfire burned area has declined over the past few decades due to climate change and human activities [Andela et al., 2017; Andela and Van Der Werf, 2014] (e.g., from increases in population density, cropland fraction, and livestock density), wildfire still plays a significant role in mediating surface climate [Yu et al., 2020], biogeochemical cycles, and human health [Andela et al., 2017]. Further, 21st century projections of increases in temperature, regional drought [Dai, 2013; Taufik et al., 2017], and precipitation variations may outweigh these direct human impacts and result in unprecedentedly fire-prone environments over a large fraction of Africa [Andela and Van Der Werf, 2014; Archibald et al., 2009; Van Der Werf et al., 2008] and South America [Malhi et al., 2008; Pechony and Shindell, 2010]. These factors highlight the need for better understand, predict, and management of these critical fire regions to minimize economic losses, human health hazards, and natural ecosystem degradation. Therefore, improved understanding and accurate prediction of wildfire activity is increasingly important for effective fire management and sustainable decision-making.

Climate is acknowledged one of the most dominant controllers on ASA wildfires [Andela et al., 2017; Chen et al., 2011]. For example, precipitation variations contribute substantially to burned area patterns in southern and northern Africa [Andela and Van
Der Werf, 2014; Archibald et al., 2009], and are also closely linked to wildfire spatiotemporal dynamics in south America [Chen et al., 2011; Malhi et al., 2008; Van Der Werf et al., 2008]. More importantly, the strong controls from climate on wildfires often show time-lags and the time-delay can be up to multiple months [Andela and Van Der Werf, 2014; Van Der Werf et al., 2008], which enables wildfire predictions ahead of fire season [Chen et al., 2016; Chen et al., 2020; Chen et al., 2011; Turco et al., 2018]. The spatiotemporal responses of wildfires to climate changes are complicated by non-linear interactions among climate, vegetation, and human activities [Andela et al., 2017; Van Der Werf et al., 2008]. In more xeric subtropical regions, increasing precipitation during the wet season can be the dominant controller on increasing wildfire during the following dry season (through regulation of fuel availability and fuel spatial structures) [Archibald et al., 2009; Littell et al., 2009; Van Der Werf et al., 2008]. In contrast, increasing precipitation in more mesic regions results in excessive fuel moisture, thereby becoming the main limitation of dry-season wildfires (i.e., opposing fire trends are observed with increasing precipitation in northern and southern Africa) [Andela and Van Der Werf, 2014; Van Der Werf et al., 2008]. In addition to natural processes, human activities are primary ignition sources and have shaped fire patterns in the ASA regions [Andela et al., 2017; Aragao et al., 2008; Archibald et al., 2009]. Fire-use types driven by local socio-economic conditions and fire management policies may also affect the fire-climate relationships [Andela et al., 2017]. Therefore, strong climate controls from wet season to dry season need to be considered along with
fuel distributions and human activities for continental fire predictions under climate change.

Accurate predictive modeling of wildfire with skillful representation of how environmental and anthropogenic factors modulate the burned area is still challenging. State-of-the-art process-based fire models (e.g., the Fire Model Intercomparison Project [Rabin et al., 2017]) have reasonably simulated the spatial distribution of burned areas. However, they generally do not accurately capture burned area seasonal variation and inter-annual trends and variability [Andela et al., 2017]. Improving predictability and reducing uncertainties of process-based models require more sophisticated representation of fire processes and parameterization, which remain a long-term challenge [Bowman et al., 2009; Hantson et al., 2016; Teckentrup et al., 2019]. In response to this challenge, data-driven statistical or Machine Learning (ML) approaches have been developed and demonstrated to effectively capture wildfire severity and burned area dynamics [Archibald et al., 2009; Chen et al., 2020; Chen et al., 2011; Zhou et al., 2020]. However, the spatially heterogenous, non-linear, and time-lagged controls have been oversimplified (e.g., using linear models or only considering climate variables at specific time lags or seasons [Archibald et al., 2009; Chen et al., 2016; Chen et al., 2020; Chen et al., 2011; Gray et al., 2018a]) or have been black boxed, impeding an interpretable and reliable way to understand the critical spatiotemporal processes from wet season to dry season [Jain et al., 2020; Reichstein et al., 2019].
In this work, we developed a wildfire model (AttentionFire) leveraging on an interpretable Long-Short-Term-Memory framework to predict wildfire burned areas over Northern Hemisphere Africa (NHAF), Southern Hemisphere Africa (SHAF), and Southern Hemisphere South America (SHSA) [Giglio et al., 2013]. We also focused on using the AttentionFire model to explore the dependency of simulated burned area on different drivers from wet season to dry season across different gridcells. We assessed model predictability with observed burned area from Global Fire Emission Database (GFED) and compared with five other machine learning based fire models.

2. Methods

2.1 AttentionFire model

The AttentionFire model is based on an interpretable attention-augmented LSTM [Guo et al., 2019; Li et al., 2020; Liang et al., 2018; Qin et al., 2017; Vaswani et al., 2017] framework. An naïve LSTM has shown advantages in capturing short- and long-term dependencies in input time series [Hochreiter and Schmidhuber, 1997]. However, LSTM cannot explicitly and dynamically select important drivers from multiple driving time series to make predictions [Guo et al., 2019; Li et al., 2020; Liang et al., 2018; Qin et al., 2017; Vaswani et al., 2017]. Further, LSTM works as a black-box, lacking interpretability to identify the relative importance of each driver across different time steps [Guo et al., 2019; Li et al., 2020; Liang et al., 2018]. Attention mechanisms overcome these challenges by adaptively assigning larger weights to more important drivers and time steps [Liang et al., 2018; Vaswani et al., 2017]. Here we use attention
mechanism to explicitly capture controlling factors of fire predictions with various time-lags (Fig. 1). Below are detailed descriptions of the fire model.

Fig. 1: An illustrative workflow for AttentionFire_v1.0 model prediction. Four kinds of drivers are considered: ignition related, suppression related, fuel, and climate. The temporal attention is used to identify important time steps for each kind of driver, while the variable attention is used to identify important drivers for final burned area prediction.

Given four categories of time series, $X = (X^1, X^3, X^4, X^5)^T$, where T is the length of time series, we use $X^i = (x^i_1, x^i_2, ..., x^i_T)^T \in R^T$, where $1 \leq i \leq n$, to denote the i-th time series, and use $X_t = (x^1_t, x^2_t, ... , x^n_t)^T \in R^n$, where $1 \leq t \leq T$, to represent the vector at time step t. x^i_1, x^i_2, x^i_T, and x^i_T represent the variables of ignition (e.g.,
population density), suppression (e.g., road network density), fuel availability (e.g., living biomass), and climate (e.g., precipitation) at time step t. The AttentionFire model aims to learn a nonlinear function F to map the n time series to the observed burned area Y_{T+1} at time step $T+1$:

$$\hat{Y}_{T+1} = F(X^{1}, X^{s}, X^{t}, X^{C})^T$$

(1)

Where \hat{Y}_{T+1} is the predicted burned area at time step $T + 1$.

First, the model iteratively transforms the i-th driving variable at time step t to a hidden state vector h^i_t, where $1 \leq t \leq T$ and $1 \leq i \leq n$ through LSTM gate mechanisms [Guo et al., 2019; Li et al., 2020; Liang et al., 2018; Qin et al., 2017].

Second, as the importance of each time step varies, temporal attention is applied to h^i_t to calculate its corresponding weight or importance w^i_t. Third, the weighted summation h^{sum}_{t} of h^i_t is obtained to represent the summarized information for the i-th driving variable:

$$w^i_t = f_{\text{attn}}(h^i_t)$$

(2)

$$h^{\text{sum}}_{t} = \sum_{t=1}^{T} w^i_t h^i_t$$

Where $h^i_t \in R^n$ is the hidden state vector of the i-th driving series at time step t, that stores the summary of the past input sequence [Hochreiter and Schmidhuber, 1997]. w^i_t is the calculated weight for the i-th driver at time step t through attention function f_{attn}:

$$w^i_t' = \text{tanh}(W_p h^i_t)$$

(3)
where $W_p \in R^{1 \times m}$, is a parameter matrix that needs to be learned. To furtherly capture the relative importance of the i-th driving variable compared to other driving variables, variable attention is used for the summarized information h_{sum}^i and h_T^i. Note that h_T^i is also a kind of summarized information derived by the LSTM [Guo et al., 2019; Hochreiter and Schmidhuber, 1997]. The weight or importance of the i-th driving variable w_i is calculated as:

$$w_i = \frac{e^{w_i'}}{\sum_{j=1}^n e^{w_j'}}$$

Finally, using the weighted sum of all driving variables, the model generates the prediction \hat{Y}_{T+1}:

$$\hat{Y}_{T+1} = \sum_{i=1}^n o_i w_i$$

where $W_o \in R^{1 \times 2m}$, is a learnable parameter matrix and the linear function with weight $W_o \in R^m$ and bias $b_o \in R$, along with attention calculated weight w_i, produce the final prediction result. The parameters of attention-based LSTM are learned via a back-propagation algorithm by minimizing the mean-squared error between predictions and observations [Guo et al., 2019; Leung and Haykin, 1991].

The AttentionFire model is implemented with python under Python 3 environment. The model is open-access at https://zenodo.org/record/6903284#.YvH8F-zMJmP under
Creative Commons Attribution 4.0 International license. Detailed code and descriptions are included in the repository including loading datasets, model initialization, training, predicting, saving parameters, and loading the trained model (see more details in code availability section).

2.2 Baseline models and model settings

Five other widely used Machine learning (ML) models are used as baseline models to compare with AttentionFire model: random forest (RF) ([Coffield et al., 2019; Gray et al., 2018b], decision tree (DT) [Amatulli et al., 2006], gradient boosting decision tree (GBDT) [Coffield et al., 2019], artificial neuro network (ANN) [Joshi and Sukumar, 2021; Zhu et al., 2021], and naive LSTM. The inputs of climate and fuel-related variables for the first four models (non-sequence models) are variables of the latest three month available for prediction [Yu et al., 2020] while the corresponding inputs of naive LSTM and AttentionFire models are whole-year historical time sequences which cover dynamics from wet to dry seasons to capture short- and long-term dependencies underlying the input sequence[Guo et al., 2019; Li et al., 2020; Qin et al., 2017; Vaswani et al., 2017]. The socioeconomic predictors (i.e., population, road density, livestock) consider only the more recent and available statistics typically reported at a year scale. For each model, we iteratively leave one-year dataset out for testing and use the remaining dataset for model training and validation. Details of the settings for used models in experiments are listed in Table S1.

2.3 Datasets

Satellite-based global burned area dataset (Global Fire Emissions Database [Giglio et
al., 2013)) is used as prediction target, and datasets of various socio-environmental drivers are used as model inputs. Population density, livestock density, road-network density, and land use are considered as anthropogenic factors on fire ignition and spread. Fuel variables include fuel moisture, live and dead vegetation biomass. Seven meteorology variables from NCEP-DOE Reanalysis are considered, including air temperature, precipitation, surface pressure, wind speed, specific humidity, downward shortwave radiation, and vapor pressure deficit. Details of each dataset and corresponding references are listed in Table S2. The raw datasets were unified to the same spatial resolution (T62 resolution: 94×192) with a covering period from 1997 to 2015.

For future projection (2016-2055) of burned area with AttentionFire model, land use changes [Hurtt et al., 2020], population growth, projected climate and fuel from fully coupled CESM simulation under high emission scenario (ssp585) were used as the ML model input. The reason to select 2016-2055 as the projected period was that during 2016-2055 99th percentiles of precipitation, temperature, and vapor pressure deficit were within the range of corresponding historical observations, which means that the trained model has covered the range of most projected drivers in the near-future and can alleviate extrapolation uncertainty caused by climate change.

3 Results and Discussions

3.1 Model predictability on burned area spatial-temporal dynamics

The AttentionFire model accurately captured the spatial distribution and temporal
variations (Fig. 2 and Fig. S1) of wildfire burned areas over NHAF, SHAF, and SHSA regions. The AttentionFire model had the lowest mean absolute errors (MAE) between model predicted and observed grided monthly burned areas among the six ML approaches. The gridded mean absolute errors of burned area for AttentionFire were 110, 142, and 39 Kha yr$^{-1}$ in NHAF, SHAF, and SHSA regions, which were respectively 6%–66%, 13%–65%, and 11%–42% lower than the other 5 ML approaches in the three regions. These results highlight the capability of the AttentionFire model to capture critical driving factors of burned area across time and space.

The fact that the AttentionFire model outperformed the other five models (Fig. 2g-i) indicates the benefit of skillfully integrating time-lagged and spatially heterogenous controls from critical drivers on wildfires. Compared to non-sequence models (i.e., RF, MLP, DT, and GBDT), the AttentionFire model adaptively captured historical dependencies of wildfires on climate conditions from wet to dry seasons [Andela and Van Der Werf, 2014; Archibald et al., 2009; Chen et al., 2011; Van Der Werf et al., 2008] (more detailed analysis is provided in next section). Compared to the naive LSTM models, the variable and temporal attention mechanisms integrated in AttentionFire has proven to be beneficial to model performance.

The spatial heterogeneity and temporal variation of wildfire responses to complex environmental and human factors have made wildfire predictions challenging, especially at large spatial scales [Andela and Van Der Werf, 2014; Chen et al., 2016; Chen et al., 2011; Littell et al., 2016; Zhou et al., 2020]. The capability of the AttentionFire model to reasonably predict spatial and temporal distributions of burned
area ahead of fire season allows more time to explore and implement management options, such as allocation of firefighting resources, fuel clearing or targeted burning restrictions [Chen et al., 2011].

Fig. 2. The AttentionFire model accurately captured burned area spatial dynamics. (a-f) Spatial distribution of observed and AttentionFire predicted fire season mean burned areas with one-month lead time in Northern Hemisphere Africa (NHAF), Southern Hemisphere Africa (SHAF), and Southern Hemisphere South America (SHSA) regions. (g-i) Performance (in terms of mean absolute error) of AttentionFire and other five baseline models.

3.2 Dominant drivers of tropical burned area dynamics
The AttentionFire model dynamically weights variable importance and highlights critical temporal windows [Guo et al., 2019; Li et al., 2020; Liang et al., 2018; Qin et al., 2017; Vaswani et al., 2017] that maximize model predictability. Therefore, the variable weights could inform dominant physical processes, while the temporal weights reflect the temporal dependency structure, making it interpretable for spatial-temporal analysis. For the AttentionFire model predictions, the variable weights showed that climate wetness exerted strong and spatial heterogenous controls on burned areas. Specifically, precipitation (for SHAF and SHSA regions) and vapor pressure deficit (VPD; for NHAF region) played the most important roles (Fig. 3) in burned area prediction during fire seasons (defined as the four months with the largest burned areas, Fig. S2), and the control strengths from those climate wetness variables on fires were significantly (one-tailed t-test, p-value<0.05) stronger in regions with larger burned areas (gridcells with top 10% burned areas) than those with smaller burned areas (gridcells with last 90% burned areas) (Fig. 4 a-f).

Fig. 3: Ranked top-five important variables for fire-season burned area. For each gridcell within each study region, there is a mean variable weight, representing the importance of the variable for fire prediction in the gridcell. For each region, the variable weights are summed weighted by its corresponding mean burned areas, and
In AttentionFire model predictions, the precipitation and VPD explained ~66% - ~80% (Fig. S3) of the annual mean fire season wildfire burned areas. Variations of VPD and precipitation not only affect fire season ignition likelihood and fire spread [Holden et al., 2018; Sedano and Randerson, 2014] through fuel moisture, but also regulate vegetation growth, fuel structure [Gale et al., 2021] (e.g., fuel composition and spatial connectivity), and fuel availability [Littell et al., 2009; Littell et al., 2016; Mueller et al., 2020; Van Der Werf et al., 2008]. The importance of these climate wetness variables confirms the dominant roles of local water balances and air dryness for wildfire prediction from sub-seasonal to seasonal scales [Archibald et al., 2009; Chen et al., 2011; Littell et al., 2016], especially in regions with large burned areas.

Furthermore, we found that the emergent functional relationships between climate wetness and wildfire burned area were parabolic (Fig. S3): i.e., enhancement of historical precipitation or decline of historical VPD (indicating wetter conditions) first increased burned area in more xeric conditions, then suppressed burned area under more mesic conditions, consistent with previous findings in subtropical regions [Andela and Van Der Werf, 2014; Van Der Werf et al., 2008]. The transition points of these emergent functional relationships (thresholds at which the relationships reverse) were region specific, and these relationships may be useful for developing, tuning, and benchmarking wildfire models [Zhu et al., 2021].
For the time lags between those dominant climate wetness variables and fire-season burned areas, our results demonstrated that burned area over NHAF was more modulated by relatively short-term wetness (VPD during wet-to-dry and onset of dry season, from September to December), while SHAF and SHSA burned areas depended more on long-term wetness (precipitation during wet and wet-to-dry season, December to March in SHAF, and November to April in SHSA) (Fig. 4g-i). The short-term variations of climate wetness can directly affect near-surface temperature and moisture availability, which affect fuel flammability [Holden et al., 2018; Littell et al., 2016], while the long-term wetness (e.g., during rainy season) can affect fuel availability, composition, and spatial connectivity, which can result in even stronger long time-lagged controls on dry-season burned areas [Abatzoglou and Kolden, 2013; Andela and Van Der Werf, 2014; Archibald et al., 2009; Chen et al., 2011; Littell et al., 2016; Van Der Werf et al., 2008].
Fig. 4. Spatial-temporal importance of climate wetness variables for burned area dynamics. (a-c) Spatial importance of climate wetness variables for fire-season burned areas. (d-f) Statistical comparison of the climate wetness variable importance over regions with large and small burned areas. (g-i) Fire season burned area dependency on the history of the climate wetness driver over Northern Hemisphere Africa (NHAf), Southern Hemisphere Africa (SHAF), and Southern Hemisphere South America (SHSA) regions.

Previous work has shown that when and where fires occurred during dry season can be affected by precipitation induced fuel availability patterns during wet and during wet-to-dry transition seasons in savannah ecosystems [Andela and Van Der Werf, 2014; Archibald et al., 2009; Van Der Werf et al., 2008]. Also, precipitation variations during wet and wet-to-dry transition seasons in the tropical forest ecosystem can affect soil recharge during wet season and further affect plant transpiration, local surface humidity,
and precipitation during the following dry season [Chen et al., 2011; Malhi et al., 2008; Ramos da Silva et al., 2008]. The exact responses of fires to short-and-long term climate variations depend on both local wetness and fuel conditions (e.g., fires in wetter ecosystems with enough fuel availability can be mainly limited by the length of dry season, while fires in drier ecosystems can be limited by fuel availability during wet season [Andela and Van Der Werf, 2014; Van Der Werf et al., 2008]). Therefore, an effective way of integrating the climate wetness history (i.e., AttentionFire model) can lead to more accurate predictions of burned area spatial-temporal dynamics.

3.3 Possible usage of oceanic index for long-leading time predictions

In ASA regions, large-scale variations of oceanic dynamics can directly influence local climate (e.g., precipitation variations during wet seasons [Andela and Van Der Werf, 2014; Chen et al., 2011]) through time-lagged controls of teleconnections and indirectly influence fires during following dry seasons [Andela et al., 2017; Chen et al., 2016; Chen et al., 2011]. Therefore, we hypothesized that ocean dynamics might benefit AttentionFire model predictions, especially for long leading time fire predictions through providing additional information that has not been reflected in local climate and land surface conditions [Andela et al., 2017; Chen et al., 2016; Chen et al., 2020; Chen et al., 2011].

We compared model performance for short term (1-4 month ahead), and long term (5-8 month ahead) fire predictions with and without considering the four oceanic indexes. Relative to the MAE of short-term predictions, the mean MAE of long-term predictions without and with teleconnections increased by ~34% and ~14% in NHAF,
~34% and ~15% in SHAF, and ~17% and ~7% in SHSA, respectively, indicating the decline of system predictability with longer leading time (Figure 5). However, for long-term predictions, including oceanic indexes and teleconnections could decrease the mean MAE by ~20%, ~19%, and ~11% in NHAF, SHAF, and SHSA regions, respectively, compared with the case without oceanic indexes. The results demonstrated the potential usage of teleconnections for longer than 5 months leading time burned area predictions.

Fig. 5: Performance of AttentionFire burned area predictions with 1~4 month leading time (short-term) and with 5-8 month leading (long-term). MAE is mean absolute error.

Long term prediction with OI means the AttentionFire model also considered four ocean indices that have been widely used for fire prediction over South American and African regions. Four OIs are: Oceanic Niño Index (ONI), Atlantic multidecadal Oscillation (AMO) index, Tropical Northern Atlantic (TNA) Index, and Tropical Southern Atlantic (TSA) Index.

3.4 Future trends of burned area over Africa and South America

Due to climate change and human activities [Andela et al., 2017], strong but opposing trends of burned areas have been observed in Northern (decreasing) and Southern (increasing) Hemisphere Africa [Andela and Van Der Werf, 2014], and within different regions of Southern Hemisphere America [Andela et al., 2017] during the
recent two decades, resulting in an overall declining burned area trend in Africa and South America. However, whether this decline will persist is under debate. On one hand, the projected increases in population, expansion of agriculture, mechanized (fire-free) management, and fire suppression policies will likely continue to decrease burned areas [Andela and Van Der Werf, 2014] (e.g., human activities were regarded as one of the main drivers for fire decline in NHAF region). On the other hand, future climate change [Dai, 2013; Taufik et al., 2017] could outweigh human impacts and result in unprecedented fire-prone environments in the tropics [Malhi et al., 2008; Pechony and Shindell, 2010] (e.g., fires showed strong dependency with climate wetness in NHAF, SHAF [Andela and Van Der Werf, 2014; Archibald et al., 2009] and SHSA [Chen et al., 2011] regions).
Fig. 6: Future burned area trends under the SSP585 high emission scenario. (a-c) spatial distribution of fire season burned area trends using drivers with interannual variations; dots in (a-c) indicate gridcells with statistically significant changes in the trend. (d-f) regionally aggregated burned area changes with historical mean subtracted. Blue and red lines respectively represent burned area anomaly in history and future; the black line represents future burned area trend while removing the interannual variations of the dominant variable. Solid lines represented significant BA trends (p value <0.05) while dashed lines represented non-significant BA trends.

Considering land use changes, population growth, and projected climate under the SSP585 high emission scenario, our model predicted that burned areas in the NHAF region will continue to decline; the currently increasing trend will be dampened in the
SHAF region, and the currently decreasing trend will be reversed in SHSA region (Fig. 6). Over NHAF and SHSA, burned area trends at the gridcell level are mostly robust (Fig. 6a-c; \(p \) value <0.05) and of the same sign, thus resulting in a robust trend at regional scale.

To investigate what drives future burned area changes, we iteratively surrogated each driver with its climatology while keeping the other factors the same. Gridded burned area changing trends in NHAF and SHSA were mostly affected by VPD changes (Table S3), and removing VPD inter-annual changes resulted in non-significant burned area trends at the whole NHAF and SHSA region (Fig. 6). VPD was projected to continuously increase due to warming but had different implications over NHAF and SHSA. Over the relatively fuel abundant SHSA region, increased VPD will likely increase burned area (Pearson \(r = 0.45 \), \(p \) value <0.05, Fig. S4) through increasing fuel dryness and combustibility [Chen et al., 2011; Kelley et al., 2019; Malhi et al., 2008; Van Der Werf et al., 2008]. In contrast, over the semi-arid savannah dominated NHAF region (less fuel, compared with SHSA), higher VPD could decrease burned area (Pearson \(r = -0.81 \), \(p \) value <0.05, Fig. S4) through limiting plant growth and fuel availability [Andela et al., 2017; Andela and Van Der Werf, 2014; Van Der Werf et al., 2008]. For the SHAF, population growth followed by climate changes (Table S3) showed stronger influences on grided burned area changes while the heterogeneity of wildfire responses finally led to a non-significant trend at the regional scale (Fig. 6).

Our findings highlight the importance of climate changes on understanding future burned area dynamics, and motivate better representation of climate wetness effects on...
wildfire dynamics in process-based and machine learning-based wildfire prediction models.

4. Conclusions

This study developed an interpretable machine learning model (AttentionFire_v1.0) for burned areas predictions over African and south American regions. Compared with observations and other five widely used machine learning baseline models, we demonstrated the effectiveness of the AttentionFire model to capture the magnitude, spatial distribution, and temporal variation of burned areas. “Attention” mechanisms enabled the interpretation of complex but critical spatial-temporal patterns [Guo et al., 2019; Li et al., 2020; Liang et al., 2018; Qin et al., 2017; Vaswani et al., 2017], thus uncovering the black-boxed relationships in machine learning models for burned area predictions. We demonstrated the spatiotemporally heterogenous and strong time-lagged controls from local climate wetness on burned areas. Furthermore, under the SSP585 high emission scenario, our results suggested that the increasing trend in burned area over southern Africa will dampened, and the declining trend in burned area over fuel abundant southern America will reverse. This study highlights the importance of skillful representation of spatiotemporally heterogenous and strong time-lagged climate wetness effects on understanding wildfire dynamics and developing advanced early fire warning models.

Acknowledgements:
This research was supported by the Director, Office of Science, Office of Biological and Environmental Research of the US Department of Energy under contract no. DEAC02-05CH11231 as part of their Regional and Global Climate Modeling program through the Reducing Uncertainties in Biogeochemical Interactions through Synthesis and Computation Scientific Focus Area (RUBISCO SFA) project and as part of the Energy Exascale Earth System Model (E3SM) project.

Code availability

The source code of AttentionFire_v1.0 is archived at Zenodo repository: https://zenodo.org/record/6903284#.YuA3oOzMIaF, under Creative Commons Attribution 4.0 International license, with four zip files: data, data_preparation, model, and example. The "data" file contains the links to all raw datasets used to drive the model (e.g., burned areas, climate forcing). The "data_preparation" file contains the code to preprocess the raw datasets and make them be ready for training and testing the AttentionFire model. The "model" file contains the python code of AttentionFire model. The "example" file gives a detailed example of how to use the AttentionFire model for burned area predictions.

There is also a tutorial file “Data_Model_Tutorial” that contain descriptions on (1) how to load the raw datasets; (2) how to prepare the input and output datasets for ML model; (3) how to initialize the ML model and run the model (4) how to train the ML model and use the trained ML model for predictions; (5) how to save and load the model parameters and save the predicted results.
Data availability

Burned area: Global Fire Emissions Database

NCEP-DOE Reanalysis Climate forcings:
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html

Population: https://landscan.ornl.gov/

Road density: https://www.globio.info/download-grip-dataset

Livestock density: https://www.fao.org/dad-is/en/

Land cover change: https://luh.umd.edu/data.shtml

Oceanic index: https://psl.noaa.gov/data/climateindices/list/

Author contributions

QZ and FL designed the study. QZ, FL, and MC designed the model experiments. FL wrote the code and ran the experiments. LZ, WR, JR, LX, HW, ZG, and JG all contributed to the interpretation of the results and writing of the paper.

References

Liang, Y., S. Ke, J. Zhang, X. Yi, and Y. Zheng (2018), Geoman: Multi-level attention networks for geosensory time series prediction, paper presented at IJCAI.

