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Abstract 19 

African and South American (ASA) wildfires account for more than 70% of global 20 

burned areas and have strong connection to local climate for sub-seasonal to seasonal 21 

wildfire dynamics. However, representation of the wildfire-climate relationship 22 



 2 

remains challenging, due to spatiotemporally heterogenous responses of wildfires to 23 

climate variability and human influences. Here, we developed an interpretable Machine 24 

Learning (ML) fire model (AttentionFire_v1.0) to resolve the complex controls of 25 

climate and human activities on burned area and to better predict burned areas over 26 

ASA regions. Our ML fire model substantially improved predictability of burned area 27 

for both spatial and temporal dynamics compared with five commonly used machine 28 

learning models. More importantly, the model revealed strong time-lagged control from 29 

climate wetness on the burned areas. The model also predicted that under a high 30 

emission future climate scenario, the recently observed declines in burned area will 31 

reverse in South America in the near future due to climate changes. Our study provides 32 

reliable and interpretable fire model and highlights the importance of lagged wildfire-33 

climate relationships in historical and future predictions. 34 

 35 

1. Introduction 36 

Wildfires modify land surface characteristics, such as vegetation composition, soil 37 

carbon, surface runoff, and albedo, with significant consequences for regional carbon, 38 

water, and energy cycles (Benavides-Solorio and Macdonald, 2001; Shvetsov et al., 39 

2019; Randerson et al., 2006). Over African and South American (ASA) regions, where 40 

more than 70% of global burned area occurs, wildfires emit ~1.4 PgC yr-1 (~65% of 41 

global wildfire emissions (Van Der Werf et al., 2017)) and dust and aerosols that can 42 

alter regional climate through radiative processes (Etminan et al., 2016; Ramanathan et 43 

al., 2001; Van Der Werf et al., 2017). While greenhouse gas emissions contribute to 44 
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climate change, other toxic species and airborne particulate matter from wildfires lead 45 

to substantial health hazards, including elevated premature mortality (Knorr et al., 2017; 46 

Lelieveld et al., 2015). In particular, wildfire particulate matter emissions across 47 

tropical regions have exceeded current anthropogenic sources and are predicted to 48 

dominate future regional emissions (Knorr et al., 2017).  49 

Although total tropical wildfire burned area has declined over the past few decades 50 

due to climate change and human activities (Andela and Van Der Werf, 2014; Andela 51 

et al., 2017) (e.g., from increases in population density, cropland fraction, and livestock 52 

density), wildfire still plays a significant role in mediating surface climate (Xu et al., 53 

2020), biogeochemical cycles, and human health (Andela et al., 2017). Further, 21st 54 

century projections of increases in temperature, regional drought (Dai, 2013; Taufik et 55 

al., 2017), and precipitation variations may outweigh these direct human impacts and 56 

result in unprecedentedly fire-prone environments over a large fraction of Africa (Van 57 

Der Werf et al., 2008; Andela and Van Der Werf, 2014; Archibald et al., 2009) and South 58 

America (Pechony and Shindell, 2010; Malhi et al., 2008). These factors highlight the 59 

need for better understanding, prediction, and management of these critical fire regions 60 

to minimize economic losses, human health hazards, and natural ecosystem degradation. 61 

Therefore, improved understanding and accurate prediction of wildfire activity is 62 

increasingly important for effective fire management and sustainable decision-making. 63 

Climate is acknowledged as one of the most dominant controllers on ASA wildfires 64 

(Chen et al., 2011; Andela et al., 2017). For example, precipitation variations contribute 65 

substantially to burned area patterns in southern and northern Africa (Andela and Van 66 
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Der Werf, 2014; Archibald et al., 2009), and are also closely linked to wildfire 67 

spatiotemporal dynamics in south America (Chen et al., 2011; Van Der Werf et al., 2008; 68 

Malhi et al., 2008). More importantly, the strong controls of climate on wildfires often 69 

show time-lags and the time-delay can be on the order of multiple months (Van Der 70 

Werf et al., 2008; Andela and Van Der Werf, 2014). Meanwhile, ocean dynamics (e.g., 71 

El Niño-Southern Oscillation, ENSO) may also exert considerable influences on ASA 72 

wildfires through influencing wet and wet-to-dry season climate and fuel conditions 73 

(Yu et al., 2020; Chen et al., 2016; Andela and Van Der Werf, 2014; Chen et al., 2011; 74 

Chen et al., 2017). The time-lags between ocean dynamics and wildfires can be even 75 

longer than that between climate and wildfires (Chen et al., 2020), which enable 76 

wildfire predictions ahead of fire season (Chen et al., 2011; Chen et al., 2016; Chen et 77 

al., 2020; Turco et al., 2018). The spatiotemporal responses of wildfires to climate 78 

changes are complicated by non-linear interactions among climate, vegetation, and 79 

human activities (Van Der Werf et al., 2008; Andela et al., 2017). In more xeric 80 

subtropical regions, increasing precipitation during the wet season can be the dominant 81 

controller on increasing wildfire during the following dry season (through regulation of 82 

fuel availability and fuel spatial structures) (Van Der Werf et al., 2008; Littell et al., 83 

2009; Archibald et al., 2009). In contrast, increasing precipitation in more mesic regions 84 

results in excessive fuel moisture, thereby becoming the main limitation of dry-season 85 

wildfires (i.e., opposite fire trends are observed with increasing precipitation in northern 86 

and southern Africa) (Van Der Werf et al., 2008; Andela and Van Der Werf, 2014). In 87 

addition to natural processes, human activities are primary ignition sources and have 88 
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shaped fire patterns in the ASA regions (Aragao et al., 2008; Archibald et al., 2009; 89 

Andela et al., 2017). Fire-use types driven by local socio-economic conditions and fire 90 

management policies may also affect the fire-climate relationships (Andela et al., 2017). 91 

Therefore, strong climate controls from wet season to dry season need to be considered 92 

along with fuel distributions and human activities for continental fire predictions under 93 

climate change. 94 

Accurate predictive modeling of wildfire with skillful representation of how 95 

environmental and anthropogenic factors modulate the burned area is still challenging. 96 

State-of-the-art process-based fire models (e.g., the Fire Model Intercomparison Project 97 

(Rabin et al., 2017)) have reasonably simulated the spatial distribution of burned areas. 98 

However, they generally do not accurately capture burned area seasonal variation and 99 

inter-annual trends and variability (Andela et al., 2017). Improving predictability and 100 

reducing uncertainties of process-based models require more sophisticated 101 

representation of fire processes and parameterization, which remain a long-term 102 

challenge (Bowman et al., 2009; Hantson et al., 2016; Teckentrup et al., 2019). In 103 

response to this challenge, data-driven statistical or Machine Learning (ML) 104 

approaches have been developed and demonstrated to effectively capture wildfire 105 

severity and burned area dynamics (Archibald et al., 2009; Chen et al., 2020; Chen et 106 

al., 2011; Zhou et al., 2020). However, the spatially heterogenous, non-linear, and time-107 

lagged controls have been oversimplified (e.g., using linear models or only considering 108 

climate variables at specific time lags or seasons (Chen et al., 2011; Chen et al., 2016; 109 

Chen et al., 2020; Archibald et al., 2009; Gray et al., 2018)) or have been black boxed. 110 
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For example, the commonly used neural network or deep learning models (Zhu et al., 111 

2022; Joshi and Sukumar, 2021) themselves are complex and built upon hidden neural 112 

layers with non-linear activation functions and thus cannot directly identify the relative 113 

importance of different drivers for wildfires (Murdoch et al., 2019; Jain et al., 2020). A 114 

few ML models (e.g., decision tree and random forest) provide variable importance, 115 

however, such importance scores are constant across the entire dataset rather than 116 

spatiotemporally varied (Wang et al., 2021a; Yuan et al., 2022b). While post-hoc 117 

analyses could interpret ML models (Altmann et al., 2010; Lundberg and Lee, 2017), 118 

inconsistent and unstable explanations can be derived with different post-hoc methods 119 

or settings (Slack et al., 2021; Molnar et al., 2020). Such limitations impede an 120 

interpretable and reliable way to understand the critical spatiotemporal processes from 121 

wet season to dry season (Reichstein et al., 2019; Jain et al., 2020). 122 

In this work, we developed a wildfire model (AttentionFire) leveraging on an 123 

interpretable Long-Short-Term-Memory (LSTM) framework to predict wildfire burned 124 

areas over Northern Hemisphere Africa (NHAF), Southern Hemisphere Africa (SHAF), 125 

and Southern Hemisphere South America (SHSA) (Giglio et al., 2013). We also focused 126 

on using the AttentionFire model to explore the dependency of simulated burned area 127 

on different drivers from wet season to dry season across different gridcells. We 128 

assessed model predictability with observed burned area from Global Fire Emission 129 

Database (GFED) and compared with five other machine learning based fire models. 130 

 131 

2. Methods 132 
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2.1 AttentionFire model 133 

The AttentionFire model is based on an interpretable attention-augmented LSTM 134 

(Liang et al., 2018; Qin et al., 2017; Guo et al., 2019; Li et al., 2020; Vaswani et al., 135 

2017) framework. Like the traditional artificial neural network (ANN) models, the 136 

LSTM is also built upon neurons and the non-linear activation functions; specifically, 137 

the LSTM uses the gating mechanism (i.e., forget, input, and output gates) (Hochreiter 138 

and Schmidhuber, 1997; Wang and Yuan, 2019) to filter out useless information while 139 

keeping useful information underlying in the time series as hidden states (Fig. 1). 140 

Relative to traditional ANN, the LSTM has shown advantages in capturing short- and 141 

long-term dependencies in input time series (Hochreiter and Schmidhuber, 1997), such 142 

as the time-lagged controls from wet-to-dry season climate conditions on wildfires. 143 

However, LSTM cannot explicitly and dynamically select important drivers from 144 

multiple driving time series to make predictions (Qin et al., 2017; Liang et al., 2018; 145 

Guo et al., 2019; Li et al., 2020; Vaswani et al., 2017). Further, LSTM works as a black-146 

box, lacking interpretability to identify the relative importance of each driver across 147 

different time steps (Guo et al., 2019; Li et al., 2020; Liang et al., 2018). Attention 148 

mechanisms overcome these challenges by adaptively assigning larger weights to more 149 

important drivers and time steps (Liang et al., 2018; Vaswani et al., 2017). Here we use 150 

attention mechanism to explicitly capture controlling factors of fire predictions with 151 

various time-lags (Fig. 1). Below are detailed descriptions of the fire model. 152 
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 153 

Fig. 1: An illustrative workflow for AttentionFire_v1.0 model prediction. Four kinds of 154 

drivers are considered: ignition related, suppression related, fuel, and climate. The 155 

temporal attention is used to identify important time steps for each kind of driver, while 156 

the variable attention is used to identify important drivers for final burned area 157 

prediction. 158 

 159 

Given four categories of time series, 𝑋 = (𝑋!, 𝑋", 𝑋#, 𝑋$)%, where 𝑇 is the length 160 

of time series, we use 𝑋& = (𝑥'& , 𝑥(& , … , 𝑥%& )% ∈ 𝑅%, where 1 ≤ 𝑖 ≤ 𝑛, to denote the 𝑖-161 

th time series, and use 𝑋) = (𝑥)', 𝑥)(, … , 𝑥)*)% 	 ∈ 𝑅*, where 1≤ 𝑡 ≤ T, to represent the 162 

vector at time step t. 𝑥+, , 𝑥+- ,	𝑥+
. , and 𝑥+/  represent the variables of ignition (e.g., 163 

population density), suppression (e.g., road network density), fuel availability (e.g., 164 

living biomass), and climate (e.g., precipitation) at time step 𝑡 . The AttentionFire 165 
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model aims to learn a nonlinear function 𝐹 to map the 𝑛 time series to the observed 166 

burned area 𝑌%0' at time step T + 1: 167 

𝑌5%0' = 𝐹(𝑋!, 𝑋", 𝑋#, 𝑋$)% (1) 

Where 𝑌5%0'is the predicted burned area at time step T + 1.  168 

First, the model iteratively transforms the 𝑖-th driving variable at time step t to a 169 

hidden state vector ℎ)& , where 1 ≤ 𝑡 ≤ T  and 1 ≤ 𝑖 ≤ 𝑛  through LSTM gate 170 

mechanisms (please refer to Li et al. (2020) for the details of the Gates in Fig. 1). Second, 171 

as the importance of each time step varies, temporal attention is applied to ℎ)&  to 172 

calculate its corresponding weight or importance 𝑤)&. Third, the weighted summation 173 

ℎ-12&  of ℎ)&  is obtained to represent the summarized information for the 𝑖-th driving 174 

variable: 175 

𝑤)& = 𝑓3))*(ℎ)&)  

 (2) 

ℎ-12& =9𝑤)&ℎ)&
%

)4'

 
 

Where ℎ)& ∈ 𝑅2 is the hidden state vector of the 𝑖-th driving series at time step t, that 176 

stores the summary of the past input sequence (Hochreiter and Schmidhuber, 1997). 177 

𝑤)& is the calculated weight for the 𝑖-th driver at time step 𝑡 through attention function 178 

𝑓3))*: 179 

𝑤)&
5 = tanh	(𝑊6ℎ)&) 

𝑤)& =
𝑒7!"

#

∑ 𝑒7!
$#%

84'

 
(3) 

where 𝑊6 	 ∈ 𝑅'×2, is a parameter matrix that needs to be learned.  180 
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To furtherly capture the relative importance of the 𝑖-th driving variable compared to 181 

other driving variables, variable attention is used for the summarized information ℎ-12&  182 

and ℎ%& . Note that ℎ%&  is also a kind of summarized information derived by the LSTM 183 

(Hochreiter and Schmidhuber, 1997; Guo et al., 2019). The weight or importance of the 184 

𝑖-th driving variable 𝑤& is calculated as: 185 

𝑤&5 = tanh	(𝑊3[ℎ-12& , ℎ%& ]) 

𝑤& =
𝑒7"#

∑ 𝑒7$#*
84'

 
(4) 

Finally, using the weighted sum of all driving variables, the model generates the 186 

prediction 𝑌5%0': 187 

 188 

𝑜& = 𝑊:[ℎ-12& , ℎ%& ]+	𝑏: 

𝑌5%0' =9𝑜&𝑤&

*

&4'

 
(5) 

where 𝑊3 ∈ 𝑅'×(2, is a learnable parameter matrix and the linear function with weight 189 

𝑊: ∈ 𝑅2  and bias 𝑏: ∈ 𝑅, along with attention calculated weight 𝑤& , produce the 190 

final prediction result. The parameters of attention-based LSTM are learned via a back-191 

propagation algorithm by minimizing the mean-squared error between predictions and 192 

observations (Guo et al., 2019; Leung and Haykin, 1991). 193 

The AttentionFire model is implemented with python under Python 3 environment. 194 

The model is open-access at https://zenodo.org/record/6903284#.YvH8F-zMJmP under 195 

Creative Commons Attribution 4.0 International license. Detailed code and descriptions 196 

are included in the repository including loading datasets, model initialization, training, 197 
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predicting, saving parameters, and loading the trained model (see more details in code 198 

availability section). 199 

2.2 Baseline models and model settings 200 

Five other widely used Machine learning (ML) models are used as baseline models to 201 

compare with AttentionFire model: ANN (Joshi and Sukumar, 2021; Zhu et al., 2022), 202 

decision tree (DT) (Amatulli et al., 2006; Coffield et al., 2019), random forest (RF) (Yu 203 

et al., 2020; Li et al., 2018; Gray et al., 2018), gradient boosting decision tree (GBDT) 204 

(Coffield et al., 2019; Jain et al., 2020), and naive LSTM (Liang et al., 2019; Natekar 205 

et al., 2021; Gui et al., 2021; Mei and Li, 2019). The details of baseline models selected, 206 

including strengths, potential limitations, and their applications in wildfire studies and 207 

references are listed in Table 1. The ANN and LSTM have shown good performance on 208 

multiple earth science problems (Yuan et al., 2022a; Reichstein et al., 2019) including 209 

wildfires (Joshi and Sukumar, 2021; Liang et al., 2019; Zhu et al., 2022), however, the 210 

black-box nature of such models makes them lack interpretability. The DT method 211 

provides variable importance and is easily interpretable with its single tree structure, 212 

but prone to overfitting compared to RF and GBDT. The RF alleviates the overfitting 213 

through feature selection and ensemble learning (Breiman, 2001) while the GBDT 214 

avoids overfitting by constructing multiple trees with shallow depth (Ke et al., 2017). 215 

DT, RF, and GBDT provide variable importance scores for dominant driver inference, 216 

however, such importance scores are constant across the entire dataset and thus impede 217 

detailed interpretation of the variable importance like over space and time. The 218 

aforementioned ML models have been commonly used in wildfire science (Jain et al., 219 
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2020). 220 

The inputs of climate and fuel-related variables for the first four models (non-221 

sequence models) are variables of the latest three month available for prediction (Yu et 222 

al., 2020) while the corresponding inputs of naive LSTM and AttentionFire models are 223 

whole-year historical time sequences which cover dynamics from wet to dry seasons to 224 

capture short- and long-term dependencies underlying the input sequence(Qin et al., 225 

2017; Vaswani et al., 2017; Guo et al., 2019; Li et al., 2020). The socioeconomic 226 

predictors (i.e., population, road density, livestock) consider only the more recent and 227 

available statistics typically reported at a year scale. For each model, we iteratively 228 

leave one-year dataset (one of all 19 year dataset during 1997-2015, ~5% of all dataset) 229 

out (i.e., a holdout dataset such as the dataset in 2015 that model has never seen) for 230 

testing, one year data (~5% of all dataset, such as the dataset in 2014) for validation 231 

(the model was stopped for training and its parameters were saved when it showed the 232 

highest performance on the validation dataset to avoid overfitting during training (Yuan 233 

et al., 2022b; Jabbar and Khan, 2015)), and use the remaining dataset (~90% of all 234 

dataset, such as the dataset during 1997-2013) for model training (i.e., tuning model 235 

parameters). Such evaluation scheme quantified model performance on deducing the 236 

temporal dynamics of fires at the annual-scale that is critical for future projections while 237 

leveraging as much data as possible for model training. Details of the settings for used 238 

models in experiments are listed in Table S1. 239 

Table 1. Strengths, potential limitations, and applications of selected baseline 240 

models in wildfire studies. 241 

Model (acronym) Strengths Potential limitations Applications 
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Random Forest (RF) 

(Breiman, 2001) 

Provide variable importance; 

Alleviate overfitting through 

feature selection and ensemble 

learning;  

 

Constant variable importance 

rather than varied; time-

consuming when building 

large trees; may not perform 

well on time series with lags 

(Gray et al., 

2018b; Yu et al., 

2020) 

Decision Tree (DT) 

(Safavian and 

Landgrebe, 1991) 

Provide variable importance; 

easily interpretable with its single 

tree structure 

Prone to overfitting; constant 

variable importance rather 

than varied; time-consuming 

when building a large tree; 

may not perform well on time 

series with lags 

(Amatulli et al., 

2006; Coffield et 

al., 2019) 

Gradient Boosting 

Decision Tree 

(GBDT) 

(Ke et al., 2017) 

Alleviate overfitting by building 

multiple shallow trees; generally 

fast because of the shallowness of 

each tree built 

Constant variable importance 

rather than varied; may not 

perform well on time series 

with lags 

(Coffield et al., 

2019; Jain et al., 

2020) 

Artificial Neural 

Network (ANN) 

(Ke et al., 2017) 

Show good performance on 

complex and non-linear problems; 

alleviate overfitting through 

techniques like dropout and 

regularization 

Lack of interpretability; hard 

to know the optimal neural 

network structures for 

different problems 

(Joshi and 

Sukumar, 2021; 

Zhu et al., 2022) 

Long-Short-Term-

Memory (LSTM) 

(Hochreiter and 

Schmidhuber, 1997) 

 

Show good performance on time 

series predictions; alleviate 

overfitting through techniques like 

dropout and regularization    

Lack of interpretability; may 

not be suitable for non-time 

series problems; vanishing 

gradient problem when 

deployed to long time series 

(Li et al., 2020; Liang et al., 

2018) 

 

(Liang et al., 

2019; Natekar et 

al., 2021)  

 242 

2.3 Datasets and experiments 243 

Satellite-based global burned area dataset (Global Fire Emissions Database (Giglio et 244 

al., 2013)) is used as prediction target, and datasets of various socio-environmental 245 

drivers are used as model inputs. Population density, livestock density, road-network 246 

density, and land use are considered as anthropogenic factors on fire ignition and spread. 247 

Fuel variables include fuel moisture, live and dead vegetation biomass. Seven 248 
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meteorology variables from NCEP-DOE Reanalysis are considered, including air 249 

temperature, precipitation, surface pressure, wind speed, specific humidity, downward 250 

shortwave radiation, and vapor pressure deficit. Details of each dataset and 251 

corresponding references are listed in Table 2. The raw datasets were unified to the 252 

same spatial resolution (T62 resolution: ~210 km at the equator) at the monthly scale 253 

with a covering period from 1997 to 2015. 254 

In addition to the local socio-environmental drivers, we also explored the impacts 255 

of ocean indices on burned area predictions. Chen et al. (2011) found that wildfires in 256 

South America were closely linked to the Oceanic Niño Index (ONI), and Atlantic 257 

multidecadal Oscillation (AMO) index. The ONI and AMO reflected the sea surface 258 

temperature (SST) anomalies in the tropical Pacific and north Atlantic. The SST 259 

anomalies directly affected ocean-atmosphere interactions and thus the wet, wet-to-dry, 260 

and onset of dry season climate in South America (Chen et al., 2011). The two indexes 261 

were significantly correlated with peak fire month wildfires 3 to 7 months later and 262 

could predict fire season wildfires in many regions of South America with lead times 263 

of 3 to 5 months (Chen et al., 2011). The controls of SST anomalies in tropical Pacific 264 

on climate and thus wildfires were also found in northern and southern Africa (Andela 265 

and Van Der Werf, 2014). In addition, SST anomalies in tropical northern and southern 266 

Atlantic could also affect wildfires in South America (Chen et al., 2016) and Africa (Yu 267 

et al., 2020; Chen et al., 2020). Therefore, we included ocean indices (Table 2) and 268 

investigated their impacts on wildfire predictions with the AttentionFire model (see 269 

section 3.4). 270 
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 271 
Table 2. Input and output variables and datasets of the AttentionFire model. 272 
 273 

Variable category Variables (abbreviation, units)  
Spatial (temporal) 

resolution 

Dataset and 

reference 

Wildfire Burned area (BA, hectares month-1) 0.25 degree (monthly) 

Global Fire Emissions 

Database 4 

(Giglio et al., 2013) 

Climate 

Precipitation (RAIN, mm s-1), 

temperature (TA, K), surface air 

pressure (PA, Pa), specific humidity 

(SH, kg kg-1), downward short-wave 

radiation (SW, W m-2), wind speed 

(WIND, m s-1), vapor pressure deficit 

(VPD, hPa) (VPD calculated 

according to (Bolton, 1980))  

 

~1.9 degree (monthly) 

NCEP-DOE 

Reanalysis 2 

(Kanamitsu et al., 

2002) 

Fuel conditions 

Fuel moisture (FUELM, %), coarse 

wood debris (CWDC, gC m-2 s-1), 

vegetation biomass (VegC, gC m-2 s-

1), litter biomass (LitterC, gC m-2 s-1) 

~1.9 degree (monthly) 

ELM prognostic 

simulations  

(Zhu et al., 2019) 

Human activities 

Population density (Popu, persons 

grid-1) 
~1km (yearly) (Dobson et al., 2000) 

Road density (Road, km km-2) 0.5 degree (yearly) (Meijer et al., 2018) 
Livestock density (LS, number of 

livestock grid-1)  
0.5 degree (yearly) 

(Rothman-Ostrow et 

al., 2020) 

Land cover 
Bare soil (Bare, %), Forest 

(Forest, %), and Grass (Grass, %)  
0.25 degree (yearly) 

LUH2 (Hurtt et al., 

2020) 

Oceanic indices 

Ocean Niño Index (ONI), Atlantic 

multidecadal Oscillation (AMO) 

index, Tropical Northern Atlantic 

(TNA) Index, and Tropical Southern 

Atlantic (TSA) Index  

monthly 

NOAA climate 
indices (NOAA 
2021) 

 274 

For future projection (2016-2055) of burned area with AttentionFire model, land 275 

use changes (Hurtt et al., 2020), population growth, projected climate and fuel from 276 

five fully coupled Earth System Model (ESM) simulations of CMIP6 (O'neill et al., 277 

2016) under low (SSP126) and high (SSP585) emission scenarios were used as the ML 278 
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model input, respectively. The reason to select 2016-2055 as the projected period was 279 

that during 2016-2055, the 99th percentiles of precipitation, temperature, and vapor 280 

pressure deficit were within the range of corresponding historical observations, which 281 

means that the trained model has covered the range of most projected drivers in the 282 

near-future and can alleviate extrapolation uncertainty caused by climate change. We 283 

also made longer projection till the end of 21st century and analyzed its longer-term 284 

trend (see section 3.4). All available ESMs with outputs of historical and future 285 

(SSP126 and SSP585) fuel availability (i.e., biomass of coarse wood debris, vegetation, 286 

and litter) and climate variables (Table 2) were selected, including ACCESS-ESM1-5 287 

(Ziehn et al., 2020), CESM2 (Danabasoglu et al., 2020), NorESM2-LM (Seland et al., 288 

2020), NorESM2-MM (Seland et al., 2020), and TaiESM1(Wang et al., 2021b). For 289 

each ESM, the variable bias was corrected with the mostly used linear scaling method 290 

(Maraun, 2016; Dangol et al., 2022; Shrestha et al., 2017) which adjusted the bias in 291 

model simulations based on the ratio of modeled and observed variable mean value. 292 

Then the bias corrected variables of each ESM were used to drive AttentionFire model 293 

for future burned area projection. Finally, given the uncertainty of each ESM, the multi-294 

model ensemble (MME) mean of projected burned area was calculated (Li et al., 2022) 295 

and analyzed. Details of the bias correction method can be found in Maraun (2016). For 296 

future projections, temporally constant road and livestock density were used due to the 297 

lack of future data in the two scenarios (i.e., SSP585 and SSP126), and the AttentionFire 298 

model was not coupled in the ESMs. Such limitation and uncertainty were discussed in 299 

section 3.5. 300 
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 301 

3 Results and Discussions 302 

3.1 Model predictability on burned area spatial-temporal dynamics 303 

The AttentionFire model accurately captured the spatial distribution and temporal 304 

variations (Fig. 2 and Fig. S1) of wildfire burned areas over NHAF, SHAF, and SHSA 305 

regions. The AttentionFire model had the lowest mean absolute errors (MAEs) between 306 

model predicted and observed (GFED) gridded monthly burned areas among the six 307 

ML approaches. The gridded MAEs of burned area for AttentionFire were 110, 142, 308 

and 39 Kha yr-1 in NHAF, SHAF, and SHSA regions, which were respectively 6%~66%, 309 

13%~65%, and 11%~42% lower than the other 5 ML approaches in the three regions. 310 

These results highlight the capability of the AttentionFire model to capture critical 311 

driving factors of burned area across time and space. 312 

The fact that the AttentionFire model outperformed the other five models (Fig. 2g-313 

i) indicates the benefit of skillfully integrating time-lagged and spatially heterogenous 314 

controls from critical drivers on wildfires. Compared to non-sequence models (i.e., RF, 315 

MLP, DT, and GBDT), the AttentionFire model adaptively captured historical 316 

dependencies of wildfires on climate conditions from wet to dry seasons (Van Der Werf 317 

et al., 2008; Archibald et al., 2009; Andela and Van Der Werf, 2014; Chen et al., 2011) 318 

(more detailed analysis is provided in next section). Compared to the naive LSTM 319 

models, the variable and temporal attention mechanisms integrated in AttentionFire has 320 

proven to be beneficial to model performance.  321 

The spatial heterogeneity and temporal variation of wildfire responses to complex 322 
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environmental and human factors have made wildfire predictions challenging, 323 

especially at large spatial scales (Chen et al., 2016; Littell et al., 2016; Andela and Van 324 

Der Werf, 2014; Chen et al., 2011; Zhou et al., 2020). The capability of the 325 

AttentionFire model to reasonably predict spatial and temporal distributions of burned 326 

area ahead of fire season allows more time to explore and implement management 327 

options, such as allocation of firefighting resources, fuel clearing or targeted burning 328 

restrictions (Chen et al., 2011). 329 

 330 

Fig. 2. The AttentionFire model accurately captured burned area spatial dynamics. 331 

Spatial distribution of observed and AttentionFire predicted fire season mean burned 332 

area (BA) with one-month lead time in Northern Hemisphere Africa (NHAF) (a-b), 333 

Southern Hemisphere Africa (SHAF) (c-d), and Southern Hemisphere South America 334 
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(SHSA) (e-f) regions. (g-i) Performance (in terms of mean absolute error between 335 

predicted and observed burned area) of AttentionFire and other five baseline models, 336 

including Long-Short-Term-Memory (LSTM), random forest (RF), artificial neural 337 

network (ANN), decision tree (DT), and gradient boosting decision tree (GBDT). 338 

3.2 Dominant drivers of tropical burned area dynamics 339 

The AttentionFire model dynamically weights variable importance and highlights 340 

critical temporal windows (Qin et al., 2017; Vaswani et al., 2017; Liang et al., 2018; 341 

Guo et al., 2019; Li et al., 2020) that maximize model predictability. Therefore, the 342 

variable weights could inform dominant physical processes, while the temporal weights 343 

reflect the temporal dependency structure, making it interpretable for spatial-temporal 344 

analysis. For the AttentionFire model predictions, the variable weights showed that 345 

climate wetness exerted strong and spatial heterogenous controls on burned areas. 346 

Specifically, precipitation (for SHAF and SHSA regions) and vapor pressure deficit 347 

(VPD; for NHAF region) played the most important roles (Fig. 3) in burned area 348 

prediction during fire seasons (defined as the four months with the largest burned areas, 349 

Fig. S2), and the control strengths from those climate wetness variables on fires were 350 

significantly (one-tailed t-test, p-value<0.05) stronger in regions with larger burned 351 

areas (gridcells with top 10% burned areas) than those with smaller burned areas 352 

(gridcells with last 90% burned areas) (Fig. 4 a-f). 353 

 354 
 355 
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 356 

Fig. 3: Ranked top-five important variables for fire-season burned area in Northern 357 

Hemisphere Africa (NHAF) (a), Southern Hemisphere Africa (SHAF) (b), and 358 

Southern Hemisphere South America (SHSA) (c). For each gridcell within each study 359 

region, there is a mean variable weight, representing the importance of the variable for 360 

fire prediction in the gridcell. For each region, the variable weights are summed 361 

weighted by its corresponding mean burned areas, and normalized. 362 

 363 

In AttentionFire model predictions, the precipitation and VPD explained ~66% - 364 

~80% (Fig. S3) of the annual mean fire season wildfire burned areas. Variations of VPD 365 

and precipitation not only affect fire season ignition likelihood and fire spread (Sedano 366 

and Randerson, 2014; Holden et al., 2018) through fuel moisture, but also regulate 367 

vegetation growth, fuel structure (Gale et al., 2021) (e.g., fuel composition and spatial 368 

connectivity), and fuel availability (Mueller et al., 2020; Littell et al., 2009; Littell et 369 

al., 2016; Van Der Werf et al., 2008). The importance of these climate wetness variables 370 

confirms the dominant roles of local water balances and air dryness for wildfire 371 

prediction from sub-seasonal to seasonal scales (Littell et al., 2016; Archibald et al., 372 

2009; Chen et al., 2011) , especially in regions with large burned areas.  373 

Furthermore, we found that the emergent functional relationships between climate 374 

wetness and wildfire burned area were parabolic (Fig. S3): i.e., enhancement of 375 
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historical precipitation or decline of historical VPD (indicating wetter conditions) first 376 

increased burned area in more xeric conditions, then suppressed burned area under more 377 

mesic conditions, consistent with previous findings in subtropical regions (Andela and 378 

Van Der Werf, 2014; Van Der Werf et al., 2008). The transition points of these emergent 379 

functional relationships (thresholds at which the relationships reverse) were region 380 

specific, and these relationships may be useful for developing, tuning, and 381 

benchmarking wildfire models (Zhu et al., 2022). 382 

For the time lags between those dominant climate wetness variables and fire-season 383 

burned areas, our results demonstrated that burned area over NHAF was more 384 

modulated by relatively short-term wetness (VPD during wet-to-dry and onset of dry 385 

season, from September to December), while SHAF and SHSA burned areas depended 386 

more on long-term wetness (precipitation during wet and wet-to-dry season, December 387 

to March in SHAF, and November to April in SHSA) (Fig. 4g-i). The short-term 388 

variations of climate wetness can directly affect near-surface temperature and moisture 389 

availability, which affect fuel flammability (Littell et al., 2016; Holden et al., 2018), 390 

while the long-term wetness (e.g., during rainy season) can affect fuel availability, 391 

composition, and spatial connectivity, which can result in even stronger long time-392 

lagged controls on dry-season burned areas (Abatzoglou and Kolden, 2013; Littell et 393 

al., 2016; Chen et al., 2011; Van Der Werf et al., 2008; Archibald et al., 2009; Andela 394 

and Van Der Werf, 2014).  395 

 396 
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 397 

Fig. 4. Spatial-temporal importance of climate wetness variables for burned area 398 

dynamics. (a-c) Spatial importance of climate wetness variables for fire-season burned 399 

areas. (d-f) statistical comparison of the climate wetness variable importance over 400 

regions with large and small burned areas. (g-i) fire season burned area dependency on 401 

the history of the climate wetness driver over Northern Hemisphere Africa (NHAF), 402 

Southern Hemisphere Africa (SHAF), and Southern Hemisphere South America 403 

(SHSA) regions. 404 

Previous work has shown that when and where fires occurred during dry season 405 

can be affected by precipitation induced fuel availability patterns during wet and during 406 

wet-to-dry transition seasons in savannah ecosystems (Van Der Werf et al., 2008; 407 

Archibald et al., 2009; Andela and Van Der Werf, 2014). Also, precipitation variations 408 

during wet and wet-to-dry transition seasons in the tropical forest ecosystem can affect 409 

soil recharge during wet season and further affect plant transpiration, local surface 410 
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humidity, and precipitation during the following dry season (Chen et al., 2011; Ramos 411 

Da Silva et al., 2008; Malhi et al., 2008). The exact responses of fires to short-and-long 412 

term climate variations depend on both local wetness and fuel conditions (e.g., fires in 413 

wetter ecosystems with enough fuel availability can be mainly limited by the length of 414 

dry season, while fires in drier ecosystems can be limited by fuel availability during 415 

wet season (Van Der Werf et al., 2008; Andela and Van Der Werf, 2014)). Therefore, an 416 

effective way of integrating the climate wetness history (i.e., AttentionFire model) can 417 

lead to more accurate predictions of burned area spatial-temporal dynamics. 418 

3.3 Possible usage of oceanic index for long-leading time predictions 419 

In ASA regions, large-scale variations of oceanic dynamics can directly influence 420 

local climate (e.g., precipitation variations during wet seasons (Chen et al., 2011; 421 

Andela and Van Der Werf, 2014)) through time-lagged controls of teleconnections and 422 

indirectly influence fires during following dry seasons (Chen et al., 2016; Chen et al., 423 

2011; Andela et al., 2017). Therefore, we hypothesized that ocean dynamics might 424 

benefit AttentionFire model predictions, especially for long leading time fire 425 

predictions through providing additional information that has not been reflected in local 426 

climate and land surface conditions (Chen et al., 2016; Chen et al., 2011; Andela et al., 427 

2017; Chen et al., 2020; Ma et al., 2022).  428 

We compared model performance for short term (1-4 month ahead), and long term 429 

(5-8 month ahead) fire predictions with and without considering the four oceanic 430 

indices (OIs). Relative to the MAE of short-term predictions, the mean MAE of long-431 

term predictions without and with teleconnections increased by ~34% and ~14% in 432 
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NHAF, ~34% and ~15% in SHAF, and ~17% and ~7% in SHSA, respectively, 433 

indicating the decline of system predictability with longer leading time (Figure 5). 434 

However, for long-term predictions, including OIs could decrease the mean MAE by 435 

~20%, ~19%, and ~11% in NHAF, SHAF, and SHSA regions, respectively, compared 436 

with the case without oceanic indexes. While the mean variable importance of OIs was 437 

consistently lower that of local climate (Fig. S4) across the three regions, the OIs did 438 

provide additional information for long-term predictions with lower biases (Fig. 5). The 439 

results demonstrated the potential usage of teleconnections for long leading time burned 440 

area predictions (Chen et al., 2020; Chen et al., 2016; Chen et al., 2011). 441 

 442 

Fig. 5: Performance of AttentionFire burned area predictions with 1~4 month leading 443 

time (short-term) and with 5-8 month leading (long-term). MAE is mean absolute error. 444 

Four ocean indices which have been widely used for fire prediction over South 445 

American and African regions were considered for long-term forecast, including 446 

Oceanic Niño Index, Atlantic multidecadal Oscillation index, Tropical Northern 447 

Atlantic Index, and Tropical Southern Atlantic Index. 448 

3.4 Future trends of burned area over Africa and South America 449 

Due to climate change and human activities (Andela et al., 2017), strong but 450 

opposing trends of burned areas have been observed in Northern (decreasing) and 451 

Southern (increasing) Hemisphere Africa (Andela and Van Der Werf, 2014), and within 452 
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different regions of Southern Hemisphere America (Andela et al., 2017) during the 453 

recent two decades, resulting in an overall declining burned area trend in Africa and 454 

South America. However, whether this decline will persist is under debate. On one hand, 455 

the projected increases in population, expansion of agriculture, mechanized (fire-free) 456 

management, and fire suppression policies will likely continue to decrease burned areas 457 

(Andela and Van Der Werf, 2014) (e.g., human activities were regarded as one of the 458 

main drivers for fire decline in NHAF region). On the other hand, future climate change 459 

(Dai, 2013; Taufik et al., 2017) could outweigh human impacts and result in 460 

unprecedented fire-prone environments in the tropics (Pechony and Shindell, 2010; 461 

Malhi et al., 2008) (e.g., fires showed strong dependency with climate wetness in NHAF, 462 

SHAF (Andela and Van Der Werf, 2014; Archibald et al., 2009) and SHSA (Chen et al., 463 

2011) regions). 464 
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 465 

Fig. 6: Future burned area trends under the SSP585 high emission scenario. (a-c) spatial 466 

distribution of fire season burned area trends using drivers with interannual variations; 467 

dots in (a-c) indicate gridcells with statistically significant changes in the trend. (d-f) 468 

regionally aggregated burned area changes with historical mean subtracted. Blue and 469 

red lines respectively represent burned area anomaly in history and future; the black 470 

line represents future burned area trend while removing the interannual variations of 471 

the dominant variable. Solid lines represented significant BA trends (p value <0.05) 472 

while dashed lines represented non-significant BA trends. 473 

Considering land use changes, population growth, and projected climate and fuel 474 

conditions under the SSP585 high emission scenario, our model predicted that burned 475 
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areas in the NHAF region will continue to decline; the currently increasing trend will 476 

be dampened in the SHAF region, and the currently decreasing trend will be reversed 477 

in SHSA region (Fig. 6). The increasing trend in SHSA, decreasing trend in NHAF, and 478 

dampened trend in SHAF under SSP585 were robust when projecting burned area till 479 

the end of 21st century (Fig. S5). Over NHAF and SHSA, burned area trends at the 480 

gridcell level were mostly robust (Fig. 6a, c; p <0.05) and of the same sign, thus 481 

resulting in a robust trend at regional scale. Under the low emission scenario (i.e., 482 

SSP126), the decreasing trend in NHAF disappeared (Fig. S5a) and the increasing trend 483 

in SHSA was reduced by ~69% (Fig. S5c), implying the big influences of climate 484 

changes and socioeconomic development pathways on future burn area changes in the 485 

two regions. 486 

To investigate what drives future burned area changes under SSP585, we iteratively 487 

surrogated each driver with its climatology while keeping the other factors the same. 488 

Burned area changing trends in NHAF and SHSA were mostly affected by VPD 489 

changes because removing VPD inter-annual changes resulted in non-significant 490 

burned area trends at the whole NHAF and SHSA region (Fig. 6a, c). VPD was 491 

projected to continuously increase due to warming but had different implications over 492 

NHAF and SHSA. Over the relatively fuel abundant SHSA region, increased VPD will 493 

likely increase burned area (Pearson r= 0.64, p value <0.05, Fig. S6) through increasing 494 

fuel dryness and combustibility (Kelley et al., 2019; Chen et al., 2011; Malhi et al., 495 

2008; Van Der Werf et al., 2008). In contrast, over the semi-arid savannah dominated 496 

NHAF region (less fuel, compared with SHSA), higher VPD could decrease burned 497 
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area (Pearson r= -0.71, p value <0.05, Fig. S6) through limiting plant growth and fuel 498 

availability (Van Der Werf et al., 2008; Andela and Van Der Werf, 2014; Andela et al., 499 

2017). For the SHAF, population growth and climate changes showed stronger 500 

influences on burned area changes (Andela and Van Der Werf, 2014) while the 501 

heterogeneity of wildfire responses finally led to a non-significant trend at the regional 502 

scale (Fig. 6). Our findings highlight the importance of climate changes on 503 

understanding future burned area dynamics, and motivate better representation of 504 

climate wetness effects on wildfire dynamics in process-based and machine learning-505 

based wildfire prediction models. 506 

3.5 Directions for future research 507 

The time lagged controls of climate on ASA wildfires are critical for sub-seasonal to 508 

seasonal wildfire prediction (Chen et al., 2020; Andela and Van Der Werf, 2014; Chen 509 

et al., 2011) but remain less well represented due to the complex interactions among 510 

fire, climate, fuel, and human activities. Here we deployed the interpretable 511 

AttentionFire model to understand and predict fire dynamics in ASA region. We 512 

revealed the dominant, spatially heterogenous, and time lagged controls of climate 513 

wetness on ASA wildfires. Such climate wetness importance on ASA wildfires was 514 

consistent with previous findings (Andela and Van Der Werf, 2014; Chen et al., 2011) 515 

and also confirmed by the other three tree-based ML models (i.e., DT, RF, and GBDT) 516 

with variable importance (e.g., precipitation and VPD were regarded as the top-five 517 

most important variables in Fig. S7). However, differences existed across model 518 

identified most important drivers (Fig. 3 versus Fig. S7). The variable importance of 519 
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AttentionFire model was spatiotemporally varied (Fig. 4) while tree-based model 520 

provided variable importance was constant over the entire dataset. We showed that the 521 

climate wetness was more (less) important in areas with large (small) burned areas and 522 

its importance also varied over time (Fig. 4), but the other MLs did not explicitly 523 

distinguish such differences. Albeit the higher accuracy and generally acceptable 524 

computation speed of AttentionFire (Table S2), its memory consumption and model 525 

training time could be up to 141% and 22 times higher than the other ML models. The 526 

implementation of LSTM in AttentionFire model is series instead of parallel, therefore, 527 

future work could improve the model efficiency by deploying some easy-for-parallel-528 

computing time series prediction frameworks (e.g., temporal convolutional attention 529 

(Lin et al., 2021) and self-attention (Mohammadi Farsani and Pazouki, 2020; Vaswani 530 

et al., 2017)). 531 

This study focused on wildfire prediction in ASA region and we showed the 532 

performance improvement of AttentionFire model by representing the time-lagged 533 

controls of climate on wildfires. Whether the AttentionFire model can also outperform 534 

other ML models in other regions may depend on the dependency strength and time 535 

lags between wildfires and climate variables. For example, in North American boreal 536 

forests, lightning was identified as the major driver of the interannual variability in 537 

burned area by influencing the number of ignitions in dry-season (Veraverbeke et al., 538 

2017). In such region, AttentionFire model might not outperform other ML models due 539 

to the less dominance of time-lagged controls. In regions like western US and India 540 

where wildfires showed time-lagged dependencies with local climate (Littell et al., 541 
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2009; Kale et al., 2022) and some extreme wildfires were caused by persistent drought 542 

from wet to dry seasons with multi-month lags (Taufik et al., 2017; Littell et al., 2016), 543 

the AttentionFire model could be potentially useful.  544 

With the fully coupled ESMs of CMIP6, we analyzed future burned area changes under 545 

high (SSP585) and low (SSP126) emission scenarios in the ASA region. While the 546 

MME mean was considered, substantial uncertainty has been found across different 547 

ESMs in history (Yuan et al., 2022a; Yuan et al., 2021; Wu et al., 2020) and future (Li 548 

et al., 2022; Lauer et al., 2020). Further work therefore is needed to narrow the 549 

projection uncertainty of ESMs (e.g., with constraints of causality (Nowack et al., 2020; 550 

Li et al., 2022) and observations (Tokarska et al., 2020; Lauer et al., 2020) ). Meanwhile, 551 

for future projections, although land use and land cover changes, population growth, 552 

and climate and fuel changes were considered, constant livestock and road density were 553 

adopted due to lack of data. The impacts of livestock and road density therefore need 554 

further exploration with available data under different future scenarios. In addition, the 555 

AttentionFire model currently is not coupled with the ESM, therefore, the feedbacks 556 

among fires, climate, and biomass were ignored. To analyze such feedbacks, the 557 

AttentionFire model needs to surrogate the original fire module and be coupled within 558 

the ESM (Zhu et al., 2022). 559 

 560 

4. Conclusions 561 

This study developed an interpretable machine learning model (AttentionFire_v1.0) 562 

for burned areas predictions over African and south American regions. Compared with 563 
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observations and other five widely used machine learning baseline models, we 564 

demonstrated the effectiveness of the AttentionFire model to capture the magnitude, 565 

spatial distribution, and temporal variation of burned areas. “Attention” mechanisms 566 

enabled the interpretation of complex but critical spatial-temporal patterns (Li et al., 567 

2020; Guo et al., 2019; Liang et al., 2018; Vaswani et al., 2017; Qin et al., 2017), thus 568 

uncovering the black-boxed relationships in machine learning models for burned area 569 

predictions. We demonstrated the spatiotemporally heterogenous and strong time-570 

lagged controls from local climate wetness on burned areas. Furthermore, under the 571 

SSP585 high emission scenario, our results suggested that the increasing trend in 572 

burned area over southern Africa will be dampened, and the declining trend in burned 573 

area over fuel abundant southern America will reverse. This study highlights the 574 

importance of skillful representation of spatiotemporally heterogenous and strong time-575 

lagged climate wetness effects on understanding wildfire dynamics and developing 576 

advanced early fire warning models. 577 
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 586 

Code availability 587 

The source code of AttentionFire_v1.0 and all baseline machine learning models is 588 

archived at Zenodo repository: https://zenodo.org/record/7416437#.Y5JnBXbMK5c, 589 

under Creative Commons Attribution 4.0 International license, with four zip files: data, 590 

data_preparation, model, and example. The "data" file contains the links to all raw 591 

datasets used to drive the model (e.g., burned areas, climate forcing). The 592 

"data_preparation" file contains the code to preprocess the raw datasets and make them 593 

be ready for training and testing the AttentionFire model. The "model" file contains the 594 

python code of AttentionFire model. The "example" file gives a detailed example of 595 

how to use the AttentionFire model for burned area predictions. 596 

There is also a tutorial file “Data_Model_Tutorial” that contain descriptions on (1) 597 

how to load the raw datasets; (2) how to prepare the input and output datasets for ML 598 

model; (3) how to initialize the ML model and run the model (4) how to train the ML 599 

model and use the trained ML model for predictions; (5) how to save and load the model 600 

parameters and save the predicted results. 601 

 602 

Data availability 603 

Burned area: Global Fire Emissions Database 604 

https://daac.ornl.gov/VEGETATION/guides/fire_emissions_v4.html 605 

NCEP-DOE Reanalysis Climate forcings: 606 

https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html 607 
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Population: https://landscan.ornl.gov/ 608 

Road density: https://www.globio.info/download-grip-dataset 609 

Livestock density: https://www.fao.org/dad-is/en/ 610 

Land cover change: https://luh.umd.edu/data.shtml 611 

Oceanic index: https://psl.noaa.gov/data/climateindices/list/ 612 

 613 

Author contributions 614 

QZ and FL designed the study. QZ, FL, and MC designed the model experiments. FL 615 

wrote the code and ran the experiments. LZ, WR, JR, LX, KY, HW, ZG, and JG all 616 

contributed to the interpretation of the results and writing of the paper. 617 

 618 

References 619 

Abatzoglou, J. T. and Kolden, C. A.: Relationships between climate and macroscale area burned in 620 
the western United States, International Journal of Wildland Fire, 22, 1003-1020, 2013. 621 

Altmann, A., Toloşi, L., Sander, O., and Lengauer, T.: Permutation importance: a corrected feature 622 
importance measure, Bioinformatics, 26, 1340-1347, 2010. 623 

Amatulli, G., Rodrigues, M. J., Trombetti, M., and Lovreglio, R.: Assessing long-term fire risk at 624 
local scale by means of decision tree technique, Journal of Geophysical Research: Biogeosciences, 625 
111, 2006. 626 
Andela, N. and Van Der Werf, G. R.: Recent trends in African fires driven by cropland expansion 627 
and El Niño to La Niña transition, Nature Climate Change, 4, 791-795, 2014. 628 
Andela, N., Morton, D. C., Giglio, L., Chen, Y., Van Der Werf, G., Kasibhatla, P. S., DeFries, R., 629 
Collatz, G., Hantson, S., and Kloster, S.: A human-driven decline in global burned area, Science, 630 
356, 1356-1362, 2017. 631 
Aragao, L. E. O., Malhi, Y., Barbier, N., Lima, A., Shimabukuro, Y., Anderson, L., and Saatchi, S.: 632 
Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia, 633 
Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 1779-1785, 2008. 634 
Archibald, S., Roy, D. P., van Wilgen, B. W., and Scholes, R. J.: What limits fire? An examination 635 
of drivers of burnt area in Southern Africa, Global Change Biology, 15, 613-630, 2009. 636 

Benavides-Solorio, J. and MacDonald, L. H. J. H. P.: Post-fire runoff and erosion from simulated 637 
rainfall on small plots, Colorado Front Range, 15, 2931-2952, 2001. 638 
Bolton, D.: The computation of equivalent potential temperature, Monthly weather review, 108, 639 



 34 

1046-1053, 1980. 640 
Bowman, D. M., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M., Cochrane, M. A., D’Antonio, 641 
C. M., DeFries, R. S., Doyle, J. C., and Harrison, S. P.: Fire in the Earth system, science, 324, 481-642 
484, 2009. 643 
Breiman, L.: Random forests, Machine learning, 45, 5-32, 2001. 644 
Chen, Y., Morton, D. C., Andela, N., Giglio, L., and Randerson, J. T.: How much global burned 645 
area can be forecast on seasonal time scales using sea surface temperatures?, Environmental Research 646 
Letters, 11, 045001, 2016. 647 
Chen, Y., Morton, D. C., Andela, N., Van Der Werf, G. R., Giglio, L., and Randerson, J. T.: A 648 
pan-tropical cascade of fire driven by El Niño/Southern Oscillation, Nature Climate Change, 7, 906-649 
911, 2017. 650 
Chen, Y., Randerson, J. T., Morton, D. C., DeFries, R. S., Collatz, G. J., Kasibhatla, P. S., Giglio, 651 
L., Jin, Y., and Marlier, M. E.: Forecasting fire season severity in South America using sea surface 652 
temperature anomalies, Science, 334, 787-791, 2011. 653 

Chen, Y., Randerson, J. T., Coffield, S. R., Foufoula-Georgiou, E., Smyth, P., Graff, C. A., Morton, 654 
D. C., Andela, N., van der Werf, G. R., and Giglio, L.: Forecasting global fire emissions on 655 
subseasonal to seasonal (S2S) time scales, Journal of advances in modeling earth systems, 12, 656 
e2019MS001955, 2020. 657 
Coffield, S. R., Graff, C. A., Chen, Y., Smyth, P., Foufoula-Georgiou, E., and Randerson, J. T.: 658 
Machine learning to predict final fire size at the time of ignition, International journal of wildland 659 
fire, 2019. 660 
Dai, A.: Increasing drought under global warming in observations and models, Nature climate change, 661 
3, 52-58, 2013. 662 
Danabasoglu, G., Lamarque, J. F., Bacmeister, J., Bailey, D., DuVivier, A., Edwards, J., Emmons, L., 663 
Fasullo, J., Garcia, R., and Gettelman, A.: The community earth system model version 2 (CESM2), 664 
Journal of Advances in Modeling Earth Systems, 12, 2020. 665 
Dangol, S., Talchabhadel, R., and Pandey, V. P.: Performance evaluation and bias correction of 666 
gridded precipitation products over Arun River Basin in Nepal for hydrological applications, 667 
Theoretical and Applied Climatology, 148, 1353-1372, 2022. 668 
Dobson, J. E., Bright, E. A., Coleman, P. R., Durfee, R. C., and Worley, B. A.: LandScan: a global 669 
population database for estimating populations at risk, Photogrammetric engineering and remote 670 
sensing, 66, 849-857, 2000. 671 
Etminan, M., Myhre, G., Highwood, E., and Shine, K. J. G. R. L.: Radiative forcing of carbon 672 
dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing, 43, 673 
12,614-612,623, 2016. 674 
Gale, M. G., Cary, G. J., Van Dijk, A. I., and Yebra, M.: Forest fire fuel through the lens of remote 675 
sensing: Review of approaches, challenges and future directions in the remote sensing of biotic 676 
determinants of fire behaviour, Remote Sensing of Environment, 255, 112282, 2021. 677 
Giglio, L., Randerson, J. T., and Van Der Werf, G. R.: Analysis of daily, monthly, and annual 678 

burned area using the fourth-generation global fire emissions database (GFED4), Journal of 679 
Geophysical Research: Biogeosciences, 118, 317-328, 2013. 680 
Gray, M. E., Zachmann, L. J., and Dickson, B. G.: A weekly, continually updated dataset of the 681 
probability of large wildfires across western US forests and woodlands, Earth System Science Data, 682 
10, 1715-1727, 2018. 683 



 35 

Gui, Z., Sun, Y., Yang, L., Peng, D., Li, F., Wu, H., Guo, C., Guo, W., and Gong, J.: LSI-LSTM: 684 
An attention-aware LSTM for real-time driving destination prediction by considering location 685 
semantics and location importance of trajectory points, Neurocomputing, 440, 72-88, 2021. 686 
Guo, T., Lin, T., and Antulov-Fantulin, N.: Exploring interpretable LSTM neural networks over 687 
multi-variable data, International Conference on Machine Learning, 2494-2504,  688 
Hantson, S., Arneth, A., Harrison, S. P., Kelley, D. I., Prentice, I. C., Rabin, S. S., Archibald, S., 689 
Mouillot, F., Arnold, S. R., and Artaxo, P.: The status and challenge of global fire modelling, 690 
Biogeosciences, 13, 3359-3375, 2016. 691 
Hochreiter, S. and Schmidhuber, J.: Long short-term memory, Neural computation, 9, 1735-1780, 692 
1997. 693 
Holden, Z. A., Swanson, A., Luce, C. H., Jolly, W. M., Maneta, M., Oyler, J. W., Warren, D. A., 694 
Parsons, R., and Affleck, D.: Decreasing fire season precipitation increased recent western US forest 695 
wildfire activity, Proceedings of the National Academy of Sciences, 115, E8349-E8357, 2018. 696 
Hurtt, G. C., Chini, L., Sahajpal, R., Frolking, S., Bodirsky, B. L., Calvin, K., Doelman, J. C., Fisk, 697 
J., Fujimori, S., and Klein Goldewijk, K.: Harmonization of global land use change and management 698 
for the period 850–2100 (LUH2) for CMIP6, Geoscientific Model Development, 13, 5425-5464, 699 
2020. 700 
Jabbar, H. and Khan, R. Z.: Methods to avoid over-fitting and under-fitting in supervised machine 701 
learning (comparative study), Computer Science, Communication and Instrumentation Devices, 70, 702 
2015. 703 
Jain, P., Coogan, S. C., Subramanian, S. G., Crowley, M., Taylor, S., and Flannigan, M. D.: A review 704 
of machine learning applications in wildfire science and management, Environmental Reviews, 28, 705 
478-505, 2020. 706 
Joshi, J. and Sukumar, R.: Improving prediction and assessment of global fires using multilayer 707 
neural networks, Scientific reports, 11, 1-14, 2021. 708 
Kale, M. P., Mishra, A., Pardeshi, S., Ghosh, S., Pai, D., and Roy, P. S.: Forecasting wildfires in 709 
major forest types of India, Frontiers in Forests and Global Change, 5, 2022. 710 
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J., Fiorino, M., and Potter, G.: Ncep–711 
doe amip-ii reanalysis (r-2), Bulletin of the American Meteorological Society, 83, 1631-1644, 2002. 712 
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T.-Y.: Lightgbm: A 713 
highly efficient gradient boosting decision tree, Advances in neural information processing systems, 714 
30, 2017. 715 
Kelley, D. I., Bistinas, I., Whitley, R., Burton, C., Marthews, T. R., and Dong, N.: How contemporary 716 
bioclimatic and human controls change global fire regimes, Nature Climate Change, 9, 690-696, 717 
2019. 718 
Knorr, W., Dentener, F., Lamarque, J.-F., Jiang, L., and Arneth, A.: Wildfire air pollution hazard 719 
during the 21st century, Atmospheric Chemistry and Physics, 17, 9223-9236, 2017. 720 
Lauer, A., Eyring, V., Bellprat, O., Bock, L., Gier, B. K., Hunter, A., Lorenz, R., Pérez-Zanón, N., 721 
Righi, M., and Schlund, M.: Earth System Model Evaluation Tool (ESMValTool) v2. 0–diagnostics 722 
for emergent constraints and future projections from Earth system models in CMIP, Geoscientific 723 
Model Development, 13, 4205-4228, 2020. 724 
Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The contribution of outdoor 725 
air pollution sources to premature mortality on a global scale, Nature, 525, 367-371, 2015. 726 
Leung, H. and Haykin, S.: The complex backpropagation algorithm, IEEE Transactions on signal 727 



 36 

processing, 39, 2101-2104, 1991. 728 
Li, F., Zhu, Q., Riley, W. J., Yuan, K., Wu, H., and Gui, Z.: Wetter California projected by CMIP6 729 
models with observational constraints under a high GHG emission scenario, Earth's Future, 10, 730 
e2022EF002694, 2022. 731 
Li, F., Gui, Z., Wu, H., Gong, J., Wang, Y., Tian, S., and Zhang, J.: Big enterprise registration data 732 
imputation: Supporting spatiotemporal analysis of industries in China, Computers, Environment and 733 
Urban Systems, 70, 9-23, 2018. 734 
Li, F., Gui, Z., Zhang, Z., Peng, D., Tian, S., Yuan, K., Sun, Y., Wu, H., Gong, J., and Lei, Y.: A 735 
hierarchical temporal attention-based LSTM encoder-decoder model for individual mobility 736 
prediction, Neurocomputing, 403, 153-166, 2020. 737 
Liang, H., Zhang, M., and Wang, H.: A neural network model for wildfire scale prediction using 738 
meteorological factors, IEEE Access, 7, 176746-176755, 2019. 739 
Liang, Y., Ke, S., Zhang, J., Yi, X., and Zheng, Y.: Geoman: Multi-level attention networks for geo-740 
sensory time series prediction, IJCAI, 3428-3434,  741 
Lin, Y., Koprinska, I., and Rana, M.: Temporal convolutional attention neural networks for time 742 
series forecasting, 2021 International Joint Conference on Neural Networks (IJCNN), 1-8,  743 
Littell, J. S., McKenzie, D., Peterson, D. L., and Westerling, A. L.: Climate and wildfire area burned 744 
in western US ecoprovinces, 1916–2003, Ecological Applications, 19, 1003-1021, 2009. 745 
Littell, J. S., Peterson, D. L., Riley, K. L., Liu, Y., and Luce, C. H.: A review of the relationships 746 
between drought and forest fire in the United States, Global change biology, 22, 2353-2369, 2016. 747 
Lundberg, S. M. and Lee, S.-I.: A unified approach to interpreting model predictions, Advances in 748 
neural information processing systems, 30, 2017. 749 
Ma, H., Yuan, K., Li, F., Leroy, C., and Bronevetsky, G.: Predicting climate conditions based on 750 
teleconnections,  2022. 751 
Malhi, Y., Roberts, J. T., Betts, R. A., Killeen, T. J., Li, W., and Nobre, C. A.: Climate change, 752 
deforestation, and the fate of the Amazon, science, 319, 169-172, 2008. 753 
Maraun, D.: Bias correcting climate change simulations-a critical review, Current Climate Change 754 
Reports, 2, 211-220, 2016. 755 
Mei, Y. and Li, F.: Predictability comparison of three kinds of robbery crime events using LSTM, 756 
Proceedings of the 2019 2nd international conference on data storage and data engineering, 22-26,  757 
Meijer, J. R., Huijbregts, M. A., Schotten, K. C., and Schipper, A. M.: Global patterns of current 758 
and future road infrastructure, Environmental Research Letters, 13, 064006, 2018. 759 
Mohammadi Farsani, R. and Pazouki, E.: A transformer self-attention model for time series 760 
forecasting, Journal of Electrical and Computer Engineering Innovations (JECEI), 9, 1-10, 2020. 761 
Molnar, C., Casalicchio, G., and Bischl, B.: Interpretable machine learning–a brief history, state-of-762 
the-art and challenges, Joint European Conference on Machine Learning and Knowledge Discovery 763 
in Databases, 417-431,  764 
Mueller, S. E., Thode, A. E., Margolis, E. Q., Yocom, L. L., Young, J. D., and Iniguez, J. M.: Climate 765 
relationships with increasing wildfire in the southwestern US from 1984 to 2015, Forest Ecology and 766 
Management, 460, 117861, 2020. 767 
Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R., and Yu, B.: Definitions, methods, and 768 
applications in interpretable machine learning, Proceedings of the National Academy of Sciences, 769 
116, 22071-22080, 2019. 770 
Natekar, S., Patil, S., Nair, A., and Roychowdhury, S.: Forest fire prediction using LSTM, 2021 2nd 771 



 37 

International Conference for Emerging Technology (INCET), 1-5,  772 
Nowack, P., Runge, J., Eyring, V., and Haigh, J. D.: Causal networks for climate model evaluation 773 
and constrained projections, Nature communications, 11, 1-11, 2020. 774 
O'Neill, B. C., Tebaldi, C., Van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., 775 
Kriegler, E., Lamarque, J.-F., and Lowe, J.: The scenario model intercomparison project 776 
(ScenarioMIP) for CMIP6, Geoscientific Model Development, 9, 3461-3482, 2016. 777 
Pechony, O. and Shindell, D. T.: Driving forces of global wildfires over the past millennium and the 778 
forthcoming century, Proceedings of the National Academy of Sciences, 107, 19167-19170, 2010. 779 
Qin, Y., Song, D., Chen, H., Cheng, W., Jiang, G., and Cottrell, G.: A dual-stage attention-based 780 
recurrent neural network for time series prediction, arXiv preprint arXiv:1704.02971, 2017. 781 
Rabin, S. S., Melton, J. R., Lasslop, G., Bachelet, D., Forrest, M., Hantson, S., Kaplan, J. O., Li, F., 782 
Mangeon, S., and Ward, D. S.: The Fire Modeling Intercomparison Project (FireMIP), phase 1: 783 
experimental and analytical protocols with detailed model descriptions, Geoscientific Model 784 
Development, 10, 1175-1197, 2017. 785 
Ramanathan, V., Crutzen, P., Kiehl, J., and Rosenfeld, D.: Aerosols, climate, and the hydrological 786 
cycle, science, 294, 2119-2124, 2001. 787 
Ramos da Silva, R., Werth, D., and Avissar, R.: Regional impacts of future land-cover changes on 788 
the Amazon basin wet-season climate, Journal of climate, 21, 1153-1170, 2008. 789 
Randerson, J. T., Liu, H., Flanner, M. G., Chambers, S. D., Jin, Y., Hess, P. G., Pfister, G., Mack, 790 
M., Treseder, K., and Welp, L. J. s.: The impact of boreal forest fire on climate warming, 314, 1130-791 
1132, 2006. 792 
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., and Carvalhais, N.: Deep learning 793 
and process understanding for data-driven Earth system science, Nature, 566, 195-204, 2019. 794 
Rothman-Ostrow, P., Gilbert, W., and Rushton, J.: Tropical Livestock Units: Re-evaluating a 795 
Methodology, Frontiers in Veterinary Science, 7, 973, 2020. 796 
Safavian, S. R. and Landgrebe, D.: A survey of decision tree classifier methodology, IEEE transactions 797 
on systems, man, and cybernetics, 21, 660-674, 1991. 798 
Sedano, F. and Randerson, J.: Multi-scale influence of vapor pressure deficit on fire ignition and 799 
spread in boreal forest ecosystems, Biogeosciences, 11, 3739-3755, 2014. 800 
Seland, Ø., Bentsen, M., Olivié, D., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., 801 
Gupta, A. K., He, Y.-C., and Kirkevåg, A.: Overview of the Norwegian Earth System Model 802 
(NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations, 803 
Geoscientific Model Development, 13, 6165-6200, 2020. 804 
Shrestha, M., Acharya, S. C., and Shrestha, P. K.: Bias correction of climate models for hydrological 805 
modelling–are simple methods still useful?, Meteorological Applications, 24, 531-539, 2017. 806 
Shvetsov, E. G., Kukavskaya, E. A., Buryak, L. V., and Barrett, K. J. E. R. L.: Assessment of post-807 
fire vegetation recovery in Southern Siberia using remote sensing observations, 14, 055001, 2019. 808 
Slack, D., Hilgard, A., Singh, S., and Lakkaraju, H.: Reliable post hoc explanations: Modeling 809 
uncertainty in explainability, Advances in Neural Information Processing Systems, 34, 9391-9404, 810 
2021. 811 
Taufik, M., Torfs, P. J., Uijlenhoet, R., Jones, P. D., Murdiyarso, D., and Van Lanen, H. A.: 812 
Amplification of wildfire area burnt by hydrological drought in the humid tropics, Nature Climate 813 
Change, 7, 428-431, 2017. 814 
Teckentrup, L., Harrison, S. P., Hantson, S., Heil, A., Melton, J. R., Forrest, M., Li, F., Yue, C., 815 



 38 

Arneth, A., and Hickler, T.: Response of simulated burned area to historical changes in 816 
environmental and anthropogenic factors: a comparison of seven fire models, Biogeosciences, 16, 817 
3883-3910, 2019. 818 
Tokarska, K. B., Stolpe, M. B., Sippel, S., Fischer, E. M., Smith, C. J., Lehner, F., and Knutti, R.: 819 
Past warming trend constrains future warming in CMIP6 models, Science advances, 6, eaaz9549, 820 
2020. 821 
Turco, M., Jerez, S., Doblas-Reyes, F. J., AghaKouchak, A., Llasat, M. C., and Provenzale, A.: Skilful 822 
forecasting of global fire activity using seasonal climate predictions, Nature communications, 9, 1-9, 823 
2018. 824 
Van Der Werf, G. R., Randerson, J. T., Giglio, L., Gobron, N., and Dolman, A.: Climate controls 825 
on the variability of fires in the tropics and subtropics, Global Biogeochemical Cycles, 22, 2008. 826 
Van Der Werf, G. R., Randerson, J. T., Giglio, L., Van Leeuwen, T. T., Chen, Y., Rogers, B. M., 827 
Mu, M., Van Marle, M. J., Morton, D. C., and Collatz, G. J.: Global fire emissions estimates during 828 
1997–2016, Earth System Science Data, 9, 697-720, 2017. 829 
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and 830 
Polosukhin, I.: Attention is all you need, arXiv preprint arXiv:1706.03762, 2017. 831 
Veraverbeke, S., Rogers, B. M., Goulden, M. L., Jandt, R. R., Miller, C. E., Wiggins, E. B., and 832 
Randerson, J. T.: Lightning as a major driver of recent large fire years in North American boreal 833 
forests, Nature Climate Change, 7, 529-534, 2017. 834 
Wang, S. and Yuan, K.: Spatiotemporal analysis and prediction of crime events in atlanta using deep 835 
learning, 2019 IEEE 4th International Conference on Image, Vision and Computing (ICIVC), 346-836 
350,  837 
Wang, S. S. C., Qian, Y., Leung, L. R., and Zhang, Y.: Identifying key drivers of wildfires in the 838 
contiguous US using machine learning and game theory interpretation, Earth's future, 9, 839 
e2020EF001910, 2021a. 840 
Wang, Y. C., Hsu, H. H., Chen, C. A., Tseng, W. L., Hsu, P. C., Lin, C. W., Chen, Y. L., Jiang, L. 841 
C., Lee, Y. C., and Liang, H. C.: Performance of the taiwan earth system model in simulating climate 842 
variability compared with observations and CMIP6 model simulations, Journal of Advances in 843 
Modeling Earth Systems, 13, e2020MS002353, 2021b. 844 
Wu, G., Cai, X., Keenan, T. F., Li, S., Luo, X., Fisher, J. B., Cao, R., Li, F., Purdy, A. J., and Zhao, 845 
W.: Evaluating three evapotranspiration estimates from model of different complexity over China 846 
using the ILAMB benchmarking system, Journal of Hydrology, 590, 125553, 2020. 847 
Xu, X., Jia, G., Zhang, X., Riley, W. J., and Xue, Y.: Climate regime shift and forest loss amplify 848 
fire in Amazonian forests, Global Change Biology, 26, 5874-5885, 2020. 849 
Yu, Y., Mao, J., Thornton, P. E., Notaro, M., Wullschleger, S. D., Shi, X., Hoffman, F. M., and 850 
Wang, Y.: Quantifying the drivers and predictability of seasonal changes in African fire, Nature 851 
communications, 11, 1-8, 2020. 852 
Yuan, K., Zhu, Q., Riley, W. J., Li, F., and Wu, H.: Understanding and reducing the uncertainties 853 
of land surface energy flux partitioning within CMIP6 land models, Agricultural and Forest 854 
Meteorology, 319, 108920, 2022a. 855 
Yuan, K., Zhu, Q., Li, F., Riley, W. J., Torn, M., Chu, H., McNicol, G., Chen, M., Knox, S., and 856 
Delwiche, K.: Causality guided machine learning model on wetland CH4 emissions across global 857 
wetlands, Agricultural and Forest Meteorology, 324, 109115, 2022b. 858 
Yuan, K., Zhu, Q., Zheng, S., Zhao, L., Chen, M., Riley, W. J., Cai, X., Ma, H., Li, F., and Wu, H.: 859 



 39 

Deforestation reshapes land-surface energy-flux partitioning, Environmental Research Letters, 16, 860 
024014, 2021. 861 
Zhou, W., Yang, D., Xie, S.-P., and Ma, J. J. N. C. C.: Amplified Madden–Julian oscillation impacts 862 
in the Pacific–North America region, Nature Climate Change, 10, 654-660, 2020. 863 
Zhu, Q., Riley, W. J., Tang, J., Collier, N., Hoffman, F. M., Yang, X., and Bisht, G.: Representing 864 
nitrogen, phosphorus, and carbon interactions in the E3SM Land Model: Development and global 865 
benchmarking, Journal of Advances in Modeling Earth Systems, doi: 10.1029/2018MS001571, 2019. 866 
Zhu, Q., Li, F., Riley, W. J., Xu, L., Zhao, L., Yuan, K., Wu, H., Gong, J., and Randerson, J.: 867 
Building a machine learning surrogate model for wildfire activities within a global Earth system 868 
model, Geoscientific Model Development, 15, 1899-1911, 2022. 869 
Ziehn, T., Chamberlain, M. A., Law, R. M., Lenton, A., Bodman, R. W., Dix, M., Stevens, L., Wang, 870 
Y.-P., and Srbinovsky, J.: The Australian Earth System Model: ACCESS-ESM1. 5, Journal of 871 
Southern Hemisphere Earth Systems Science, 70, 193-214, 2020. 872 

 873 
 874 


