
 

1 
 

Reconstruction of past exposure to natural hazards driven by 1 

historical statistics: HANZE v2.0 2 

Dominik Paprotny, Matthias Mengel 3 

Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, 4 

P.O. Box 60 12 03, 14412 Potsdam, Germany 5 

Correspondence to: Dominik Paprotny (dominik.paprotny@pik-potsdam.de) 6 

Abstract. Understanding and quantifying the influence of climate change on past extreme weather impacts is vital for climate 7 

litigation, the loss and damage debate, and for building more accurate models to assess future impacts. However, the effects 8 

of climate change are obscured in the observed impact data series due to the rapid evolution of the social and economic 9 

circumstances in which the extreme events occurred. The model and data presented in this study (HANZE v2.0) aims at 10 

quantifying the evolution of key socioeconomic drivers in Europe since 1870, namely land use, population, economic activity 11 

and assets. It consists of algorithms to reallocate baseline (2011) land use and population for any given year based on a large 12 

collection of historical subnational- and national-level statistics, and then disaggregate data on production and tangible assets 13 

by economic sector into a high-resolution grid. Maps generated by the model enable reconstructing exposure within the 14 

footprint of any extreme event both at the time of the event and in any other moment in the past 150 years. This allows the 15 

separation of the effects of climate change from the effects of exposure change. In addition, HANZE v2.0 can be used for 16 

assessing socio-economic influences on hazard (e.g. effects of land use-change on hydrological extremes) and vulnerability 17 

(e.g. the changing structure of assets at risk). 18 

1 Introduction 19 

Global mean temperature has surpassed 1°C warming compared to pre-industrial times. There is growing research that 20 

quantifies the effects of the changing climate on the world's natural, managed and human systems. While evidence for natural 21 

systems tightly linked to the climate is mounting (Gudmundsson et al. 2021, Grant et al. 2021), less quantification is available 22 

for systems with strong additional drivers of change (O’Neill et al. 2022). Case studies have indicated strong influence of 23 

additional drivers especially for floods, where the uncertainty of the present risk is already high. For example, flood risk in the 24 

Rhine basin was found to be least sensitive to change in atmospheric forcing, but more to changes in reservoir capacity, dike 25 

height, land use, asset value or private precautionary measures (Metin et al. 2018). Vousdoukas et al. (2018) has shown that 26 

flood protection was the biggest source of uncertainty in coastal flood risk assessments in test sites in the Iberian Peninsula. 27 
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Estimates on the value of assets in a given location (exposure) and flood vulnerability functions, which indicate the share of 28 

assets that are lost at a given intensity of flood, vary drastically between countries (Jongman et al. 2012, Huizinga et al. 2017, 29 

Carisi et al. 2018, Paprotny et al. 2021). Windstorm damage in Europe was shown not to increase after correcting for exposure 30 

increase (Barredo 2010) with attribution being complicated by contrasting trends in hazard (Dawkins et al. 2016) and very 31 

high uncertainty on vulnerability functions (Welker et al. 2021). Finally, only a small fraction of wildfires in Europe are caused 32 

by natural sources, making the human factors fundamental in understanding the frequency of those disasters (Ganteaume et al. 33 

2013). 34 

The IPCC AR6 (IPCC 2022) refines a framework introduced in IPCC AR5 to address the attribution of impacts in systems 35 

with strong additional drivers. In such systems a stable baseline not changing in time is not plausible in the absence of climate 36 

change. They suggest creating a time-evolving counterfactual impact baseline in which all historical forcings are equal to the 37 

factual observations except for the counterfactual climate change signal. One can then attribute the changes due to historical 38 

climate change through comparison of the simulated counterfactual impact baseline with the simulated factual impacts. A 39 

precondition for such attribution exercise is that the impact models used for the simulations reflect the causal structure from 40 

drivers to impacts, which is the task of model evaluation. A proposition of a counterfactual forcing to attribute impacts to 41 

trends in historical climate has recently been introduced to the Inter-Sectoral Impact Model Intercomparison Project ISIMIP 42 

(Mengel et al. 2021). High-quality simulations of factual past and counterfactual baseline necessitate high-quality data of the 43 

additional drivers of historical impacts. 44 

Many studies indicated no upwards trend in natural hazard direct economic loss in Europe, USA or Australia when corrected 45 

for growth in exposure (Barredo 2009, Simmons et al. 2013, Paprotny et al. 2018b, McAneney et al. 2019, Pielke 2021). 46 

However, in those cases increase in hazard caused by climate change could have been compensated by decline in vulnerability, 47 

as was indicated for several parts of the world for floods by Sauer et al. (2021). Adaptation could further reduce impacts 48 

(Kreibich et al. 2015, Steinhausen et al. 2022), both through prevention (e.g. higher flood defences) or reducing vulnerability 49 

through collective (emergency response) and individual preparedness (flood- and fireproofing houses). Vulnerability is not 50 

directly observable, therefore highly uncertain. To quantify it and reduce the uncertainty in climate impact attribution, high-51 

quality hazard, exposure and impact data are needed. The hazard component is being heavily researched (Dawkins et al. 2018, 52 

Harrigan et al. 2020, Almar et al. 2021, IPCC 2021) and impact data are increasingly available at least for recent events (Stucki 53 

et al. 2014, Antonescu et al. 2017, Papagiannaki et al. 2022). Quantifying changes in exposure, such as land use type, 54 

population, economic output, value of assets, and the uncertainty of it is vital not only due to its large direct influence on the 55 

observed impacts, but also indirect effects. In case of floods, high-exposure areas tend to be better protected (Scussolini et al. 56 

2016) and less vulnerable (Formetta and Feyen 2019), while land-use can locally modulate river discharge stronger than 57 

climate change (Sebastian et al. 2019). 58 

Available historic reconstructions of exposure have limited utility for climate change attribution in a long perspective, either 59 

due to low resolution, limited spatial coverage or covering only a particular component of exposure. For example, HILDA 60 
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(Fuchs et al. 2013, 2014, 2015) includes only highly aggregated land cover for the European Union countries, though with a 61 

high 1 km resolution covering years 1900 to 2010. The global dataset HYDE (Klein Goldewijk et al. 2017) spans from years 62 

10,000 BC to 2017 AD for both land-use and population, but has a resolution of only 5 arc-minutes (9 km on the equator). 63 

HYDE is applied extensively in both global climate and climate impact modelling, including ISIMIP (Frieler et al. 2017). 64 

Based on HYDE, a GDP disaggregation was also created for ISIMIP (Geiger 2018), which was used in the global flood 65 

attribution study by Sauer et al. (2021). Analysing flood and wildfire risk in particular require very high resolution of exposure 66 

data because they are highly local phenomena. Yet, high-resolution population data is available at best for a few timesteps per 67 

dataset, going back no further than 1975 (Leyk et al. 2019). Disaggregation of economic data is mostly limited to a single 68 

predictor of economic activity, such as population density (Kummu et al. 2018), or night-time lights (Eberenz et al. 2020). 69 

HANZE v1.0 (Paprotny et al. 2018a) was the first exposure dataset with resolution matching pan-European flood hazard maps, 70 

namely 100 m (Vousdoukas et al. 2016, Paprotny et al. 2017, 2019), covering the years 1870 to 2015 with a short-term 71 

projection to 2020. It was designed specifically to enable the analysis of exposure and land-use change within flood footprints 72 

of known historical floods (Paprotny et al. 2018b, Barendrecht et al. 2019, Zanardo et al. 2019). The model is concentrated on 73 

the most densely populated and economically valuable areas: cities, industry, infrastructure and agriculture. Conceptually, 74 

HANZE is similar to HYDE. They are in essence a downscaling of land-use and demographic trends from aggregated historical 75 

statistics to a high-resolution grid. However, HYDE uses a coarser grid and extends to a much longer (12,000 years) timescale, 76 

with an orientation on changes in land-use rather than economic value. In summary, HANZE aims at reliably modelling high-77 

exposure areas, while keeping the model’s methods explicit and the computation fast. 78 

We present the input data sources, processing steps and model for generating highly detailed exposure data for Europe from 79 

1870 to present for HANZE v2.0 to facilitate the attribution of historical impacts. It builds on the original HANZE v1.0 release, 80 

but many changes were made to the model (Table 1). Most crucially, its code was written anew in an open-source language 81 

and is now made public together with all input data. For HANZE v1.0, only the results and selected inputs were released. The 82 

general setting of the model (section 2.1) remains the same, though the spatial coverage and temporal resolution have been 83 

improved, and an additional output map on soil sealing degree was added (Table 1). Many improvements to input data were 84 

made, particularly administrative and demographic spatial layers (section 2.2) as well as historical statistical data (section 2.3). 85 

They are accompanied by revised methods, especially on population distribution (section 2.4) and economic disaggregation 86 

(section 2.5). More extensive validation was carried out than before (section 3.2) and a quantification of the uncertainty of 87 

reconstructing past exposure was added to the model (section 3.2.4). We do not include flood impact data as in HANZE v1.0, 88 

because we are working on an extensive revision to be described in an additional manuscript (see also section 4). 89 

  90 
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Table 1. Comparison between releases of HANZE model and dataset. 91 

Aspect HANZE v1.0 (Paprotny et al. 2018a) HANZE v2.0 (this study) 

Spatial coverage 37 countries and territories 42 countries and territories 

Temporal coverage 1870–2020 1870–2020 

Spatial resolution 100 m 100 m 

Temporal resolution 10-yearly (1870–1970) 

5-yearly (1970–2020) 

10-yearly (1870–1950) 

5-yearly (1950–2000) 

Annual (2000–2020) 

Output exposure maps Land cover/use, population, GDP, fixed assets Land cover/use, population, GDP, fixed assets, 

soil sealing degree 

Validation Population change only Population disaggregation, population & land use 

change 

Uncertainty quantification None Included in parts of the modelling chain 

Probabilistic outputs Not possible Can be computed (population, GDP, fixed assets 

per hazard zone) 

Implementation language MATLAB 2016a, Python 2.7 Python 3.9 

Code availability Not published Openly available 

Input data availability Partial All data published 

Flood impact data 1564 events (1870–2016) Not included (updated data will be added in the 

future) 

 92 

This paper presents the model’s methodology, validation and an overview of the results. The code of HANZE v2.0 are available 93 

in an online repository (https://dx.doi.org/10.5281/zenodo.6826536) together with a documentation, which only describes the 94 

methodology, though more extensively than this paper by adding many minor technical details and more detailed tables/figures 95 

on input data. The input and output data are stored in separate repositories due to size (see “Code and data availability” at the 96 

end of the paper).  97 

2 Methods 98 

2.1 Overview 99 

HANZE v2.0 is a model for generating historical exposure data through operations on raster data. A summary of the model’s 100 

workflow is presented in Fig. 1. The starting point is a set of high-resolution rasters with data on population and land cover/use 101 

for a specific benchmark year. Those “baseline” maps were created from 100-m resolution data (2.2.1), except population, 102 

which was disaggregated from a 1-km resolution (2.2.2). The model modifies the baseline maps by redistributing land 103 

cover/use and population until they match the total population and area of different land-use classes defined per subnational 104 

administrative unit for each timestep. For each such unit, we collected aggregate socioeconomic statistics (section 2.3). Various 105 

land-use types (urban, industrial, agriculture etc.) are modelled using different methods and several auxiliary static maps 106 

described in section 2.4. Based on land-use changes, the soil sealing map is modified (section 2.4.13). Finally, the model 107 
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disaggregates statistical data on gross domestic product (GDP) and fixed asset stock into a 100-m grid, based on the distribution 108 

of population and different land-use types (section 2.5). The model is applied using data covering 42 countries and territories 109 

over the period 1870–2020 (see Supplementary Fig. S1). 110 

 111 

112 

Figure 1. HANZE v2.0 workflow. 113 

 114 

2.2 Baseline maps 115 

Four baseline maps are a set of raster layers covering the study area, closely aligned in the temporal dimension, converted from 116 

their native resolutions to a 100 m grid and adjusted to a single land mask based on Corine Land Cover (Table 2). 117 

  118 
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Table 2. List of input historical socioeconomic data used by the model. 119 

Dataset type Dataset name Provider Native resolution Timestamp 

Land cover/use Corine Land Cover Copernicus LMS 100 m ~2012 

Soil sealing Imperviousness Density Copernicus LMS 20 m ~2012 

Population GEOSTAT Eurostat 1 km ~2011 

Administrative boundaries NUTS regions Own work Vector map ~2010 

 120 

2.2.1 Land cover/use, soil sealing degree 121 

The baseline land cover/use is taken from Corine Land Cover (CLC) 2012, version 20u1, with open sea and some transitional 122 

waters removed. The CLC 2012 map was created, in general, by manual classification of land cover patches from satellite 123 

imagery collected during 2011–2012 (Copernicus Land Monitoring Service 2022). The inventory consists of 44 classes and 124 

the minimum size of areal phenomena captured is 25 hectares. For quasi two-dimensional features (roads, railways, rivers 125 

etc.), a minimum width of 100 m is used. The CLC dataset doesn’t cover Andorra, hence a compilation of land use data from 126 

other sources was carried over from HANZE v1.0 for Andorra (see section 2.1 in Paprotny et al. 2018a). 127 

In many places natural land cover was replaced by artificial impervious surfaces. This impermeable cover has a significant 128 

impact on hydrological properties of a given area and, consequently, on flood frequency and intensity. It is also an important 129 

predictor of asset distribution. The baseline soil sealing map in our model is the Imperviousness Density 2012 dataset from 130 

Copernicus Land Monitoring Service (2022). It was created by algorithmic classification of high-resolution satellite images 131 

with a calibrated normalised difference vegetation index (NDVI). The native resolution of the dataset is 20 m, but we 132 

aggregated it to 100 m for consistency with the land cover map. 133 

2.2.2 Population 134 

The baseline population map is based on the GEOSTAT population grid for the year 2011, version 2.0.1 (Eurostat 2022). This 135 

dataset has a 1 km resolution and is based on the results of the 2011 round of European population censuses. 95% of the 136 

population in the dataset is the actual enumerated and georeferenced during the census, with the remaining population 137 

disaggregated from detailed subnational census returns by the European Commission Joint Research Centre. As in HANZE 138 

v1.0, we disaggregate this dataset further to a 100 m grid. The disaggregation is done by combining methods “M1” and “M3” 139 

described in Batista e Silva et al. (2013). “M1” denotes the ‘limiting variable method’ used in cartography for creating 140 

dasymetric maps of population density. Briefly, it ranks land use classes according to density, then redistributes population 141 

above a land use-specific threshold from less-dense to more-dense classes. The procedure is done the same way as in Paprotny 142 
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et al. (2018b), and only the population thresholds were updated due to the expansion of the study area and use of revised CLC 143 

data. Additionally, the population disaggregation is now limited only to those CLC patches in which man-made structures 144 

were present: either impervious surfaces from Imperviousness Density 2012 (see section 2.2.1) or buildings or streets from the 145 

European Settlement Map (ESM) 2012 (Release 2017). All land-use classes in a 1 km cell were used if none of those auxiliary 146 

datasets detected any artificial structures. 147 

Method “M3” was applied afterwards, which distributes population within a land-use patch from method “M1” proportionally 148 

to the degree of soil sealing. Buildings from ESM 2012 are used as a predictor, unless no buildings were indicated in a 1 km 149 

cell, in which case Imperviousness Density 2012 was used instead. If no soil sealing was detected, roads and streets from ESM 150 

2012 were used. This can happen mainly because ESM 2012 combined remote sensing data with multiple other sources, while 151 

Imperviousness Density 2012 is entirely a remote-sensing based product. Hence, the population 𝑋𝑔 in 100 m grid cell 𝑔 is 152 

equal to: 153 

𝑋𝑔 =
𝑍𝑔

∑ 𝑍𝑔

𝑌𝐿𝐺𝑆𝐿𝐺                                                                                         (1) 154 

where 𝑌𝐿𝐺 is the population density of land use patch 𝐿 and 1-km grid cell 𝐺, 𝑆𝐿𝐺  is the area, and 𝑍𝑔 is the population of 100-155 

m grid cell 𝑔 obtained from the power function divided by maximum population: 156 

𝑍𝑔 =
𝐵𝑉𝑔

𝐴

8000
                                                                                               (2) 157 

where 𝑉𝑔 is the imperviousness in grid cell 𝑔. The maximum population was defined as 8000 as all three datasets reached peak 158 

population density around this value. The parameters 𝐴 and 𝐵 were derived empirically by fitting the power function to each 159 

imperviousness variable (aggregated to 1 km) correlated with GEOSTAT population in the same grid cell.  160 

The resulting population per 100 m grid cell was rounded to integers. Consequently, the population was added or subtracted 161 

by iteratively reducing population numbers in 100 m cells starting with cells in which the smallest change in unrounded value 162 

would change the rounded value. In some cases, more than one cell had equal values and the 1-km population couldn’t be 163 

matched. Then, population was added or subtracted by iteratively reducing population numbers by 1 at a time starting with 164 

cells with the highest population. If again there were cases of multiple cells of equal values, cells with higher % of area covered 165 

by structures were used. In extremely rare cases where no data was available or the % values were the same, the population is 166 

added or subtracted randomly within the equal cells. The results of disaggregating the population for an example 1 km 167 

GEOSTAT grid cell is presented in Fig. 2 (OpenStreetMap basemap is added to the figure for illustration only). 168 
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 169 

Figure 2. Disaggregation result and source data (population in the grid = 5230), contrasted with OpenStreetMap basemap for 170 

illustration. Fragment of the city centre of Szczecin, Poland (NUTS region PL424). Basemap © OpenStreetMap contributors 2022. 171 

Distributed under the Open Data Commons Open Database License (ODbL) v1.0. Corine Land Cover and area covered by buildings 172 

from Copernicus Land Monitoring Service (2022). 173 

2.2.3 Administrative boundaries 174 

The HANZE v2.0 model redistributes population, land cover/use and economic variables separately for each subnational 175 

administrative unit (hereafter, “regions”). Administrative boundaries change frequently within countries over time. Rather than 176 

changing the definitions of regions at each timestep of the model, we adjust historical statistical data to a single benchmark 177 

map. European Union’s classification of subnational units, the Nomenclature of Territorial Units for Statistics (NUTS), version 178 

2010, is used in HANZE v2.0. The most detailed level of the classification, NUTS level 3 is applied. For this study we prepared 179 

a new, high-resolution map of NUTS regions due to the low precision and non-permissive licence of the semi-official NUTS 180 

map available through Eurostat (Eurostat 2022). We compiled the new map using openly-available data from national 181 

geospatial agencies and OpenStreetMap, manually corrected where necessary. A detailed list of source data is provided in 182 

Supplementary Table S1. The map was adjusted to only cover land areas, in alignment to the baseline CLC map (section 2.2.1) 183 

and converted into a 100 m grid. As Kosovo and Bosnia and Herzegovina are not currently covered by NUTS, we artificially 184 
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coded their administrative divisions in a manner consistent with the NUTS system. Our study’s domain contains 1422 regions 185 

in total. As noted, the input historical statistics that drive the model were recomputed where necessary to match our high-186 

resolution map of NUTS regions (see section 2.3). 187 

2.3 Input socioeconomic data 188 

The input database of historical socioeconomic statistical data was created by revising the data from HANZE v1.0. It contains 189 

data on the main socioeconomic drivers of exposure at regional level. The variables of the database are listed in Table 3. 190 

Further it contains fixed asset stock relative to GDP in six sectors, defined at country level. The database was compiled from 191 

375 different sources (compared with 271 in HANZE v1.0): websites and publications of national statistical institutes and 192 

international agencies, working papers of national banks and economic research institutes, and academic research papers, 193 

dating from 1872 to present. Detailed information on the source of every single data point in the database, and transformations 194 

made to adjust data to NUTS version 2010 are described within the datasets provided in the HANZE data repository 195 

(“Region_database_population_lu.xlsx” and “Region_database_economy.xlsx”). The data was compiled every decade from 196 

1870 to 1950, every 5 years until 2000 and annually until 2020. Detailed definitions of database variables are presented in the 197 

online documentation provided in the code repository (see “Code and data availability”). 198 

  199 
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Table 3. List of input historical socioeconomic data used by the model. 200 

Variable Unit Resolution 

Population Thousands of persons NUTS 3 

Urban fraction Urban population as % of total population 

Persons per household Mean number of persons 

Croplands % of total area 

Pastures 

Forests 

Infrastructure Area covered by road/railway sites in ha 

GDP Million euro in constant 2020 prices 

GDP from agriculture % of total GDP 

GDP from industry 

Fixed assets in housing Country 

Fixed assets in agriculture % of GDP from agriculture 

Fixed assets in industry % of GDP from industry 

Fixed assets in services % of GDP from services 

Fixed assets in infrastructure % of total GDP 

Fixed assets in consumer durables 

  201 

Compared to HANZE v1.0, the main changes are: improvement in the quality of data through inclusion of more data sources 202 

(see Supplementary Fig. S2); addition of new countries (Albania, Bosnia and Herzegovina, Kosovo, Montenegro, North 203 

Macedonia and Serbia); addition of consumer durables (goods used by households for several years) as a category of fixed 204 

assets through integration of data and methods from Paprotny et al. (2020, 2022); addition of forest land cover data for the 205 

whole study area. In HANZE v1.0 forest data were only partially collected and were not used by the model. In this version 206 

v2.0 we use the forest data for 1870–2020 and include them in the modelling chain (section 2.4.12). Finally, though this update 207 

doesn’t yet include flood impact data, the statistics needed for converting historical economic losses from nominal values 208 

(currency conversion factors and annual GDP deflators) were retained and updated with latest data sources. 209 
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2.4 Population and land-use model 210 

The general approach, as noted in the introduction, is to modify the baseline population and land cover/use map for every 211 

timestep. This is done sequentially for different CLC classes, so that a class that is modified in a given step doesn’t alter those 212 

that were modelled beforehand. The order of the modelling steps is as follows: 213 

1. Special cases (section 2.4.1) 214 

2. Sub-regional population redistribution (2.4.2); 215 

3. Urban fabric and urban population redistribution (2.4.3); 216 

4. Airports (2.4.4); 217 

5. Reservoirs (2.4.4); 218 

6. Rural population redistribution (2.4.5); 219 

7. Industrial or commercial units (2.4.6); 220 

8. Road/railway sites (2.4.7); 221 

9. Construction sites (2.4.8); 222 

10. Other artificial land (2.4.9); 223 

11. Croplands (2.4.10); 224 

12. Pastures (2.4.10); 225 

13. Burnt areas (2.4.11); 226 

14. Natural areas (2.4.12); 227 

15. Soil sealing degree map adjustment (2.4.13); 228 

A summary of the modelling approach, and the rationale is explained, per land cover/use class from the CLC dataset, in Table 229 

4. It also highlights how important is each CLC class to the exposure analysis, in terms of population and estimated fixed asset 230 

value. Detailed information is provided in the following subsections, as referenced in the numbered list above.  231 

  232 
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Table 4. Summary of observed historical changes, the modelling approach used in this study, and the relevance of each land cover/use 233 

class in context of exposure to natural hazards. “% share” refers to the study area. Share of population (pop.) computed using 234 

disaggregated population (section 2.2.2) and share of fixed assets (f. a.) estimated using disaggregated economic data (section 2.5). 235 

Each land cover/use class includes reference to the appropriate section of the text. 236 

Land cover/use CLC codes 
% share (2011) 

Observed changes Approach 
area pop. f. a. 

Urban fabric 
(section 2.4.2–3) 

111, 112 3.3 87.6 72.0 Population density decrease in 
urban core and rural areas, rapid 
growth in suburban zones 
observed in municipal-level 
population data. Growing share in 

urban population overall and rapid 
increase in housing demand due to 
decline in average population per 
household 

Sub-regional population 
redistributed based on baseline 
population density (with 
uncertainty estimation), urban 
population changed according to 

distance for city ‘cores’, urban 
fabric added/removed when large 
increases/decreases of urban 
population occur. Total & urban 
population defined at NUTS3 level 
in historical statistics 

Industrial or 

commercial units 
(2.4.6) 

121 0.6 0.7 19.2 This class expanded 16% between 

2000 and 2018, representing 
addition of physical capital that 
contributed to GDP growth 

Land use added/removed based on 

centroid distance according to 
NUTS3 industrial/services growth, 
with elasticity of spatial growth 
calibrated for 2000–2018 

Road/railway 
sites (2.4.7) 

122 0.1 0.0 0.3 Length of railways and motorways 
increased four-fold since 1870, 
spreading from large cities; 
construction sites most frequently 

transitioned to this class between 
CLC datasets. 

Grid cells located furthest from the 
urban centres are removed first 
when going back in time until the 
total area per region matches the 

value in the NUTS3 database; after 
2011, construction sites are 
prioritised for new road/railway 
sites 

Airports (2.4.4) 124 0.1 0.0 0.2 1589 airports in CLC 2012 were 
all built since 1908; 9 new airports 
present in CLC 2018 

Airports are added/removed from 
map based on year of construction 

Construction 
sites (2.4.8) 

133 0.0 0.0 0.1 Most construction sites transition 
to another land use during the 6-
year periods between CLC 
datasets. 

Construction sites replaced by 
natural/agricultural land for 1870–
2004 and allowed to transition to 
other artificial surfaces after 2011. 

Urban green 
spaces (2.4.9) 

141, 142 0.3 0.1 0.7 Two-thirds of green urban areas, 
sport and leisure facilities border 
either urban fabric, industrial sites, 

road/railway sites, or airports in 
the CLC 2012 inventory 

Urban green spaces which bordered 
CLC 111–122 and 124 patches in 
the baseline map are removed if in 

a given timestep they were not 
adjacent anymore 

Other artificial 
(2.4.9) 

123, 132, 
133 

0.2 0.0 0.5 Many ports, mines, and dumps 
were constructed in the study area 
since 1870 

Available data is too poor to collect 
the year of construction. Kept 
constant and are not allowed to 
interact with other land use 
classes* 

Croplands 
(2.4.10) 

211–223, 
241–244 

33.6 8.3 5.0 Transition probability from/to 
cropland in CLC inventory is 

A Bayesian Network-based model 
is used for land-use transitions. 
Cells with the highest probability 
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correlated with suitability to 
agriculture and population density. 

of transition are added/removed 
until the total cropland area 
matches the value in the NUTS3 

database 

Pasture (2.4.10) 231 8.2 2.2 1.4 As above, but for pastures As above, but for pastures 

Forests (2.4.12) 311–313 31.6 0.7 0.5 Expansion of agriculture and 
urban areas is partially to the 
expense of forest land (one-third 
of natural land lost in the CLC 
inventories) 

Grid cells left unoccupied by 
modelling other land-use types are 
allocated to forest rather than other 
natural land if historical forest 
statistics indicate enough additional 

forested area 

Other vegetated 
natural (2.4.12) 

321–324, 
411–422 

14.9 0.2 0.1 Those areas have negligible 
exposure and are not of interest for 
the model 

Kept constant, but can transition 
to/from agriculture 

Burnt areas 
(2.4.11) 

334 0.0 0.0 0.0 Almost none of burnt areas in 
CLC 2012 was present in CLC 
2006 or 2018 

As burnt areas are transitory, areas 
present in the baseline map are 
removed for 1870–2006 and 2018–

2020. 

Water bodies 
(2.4.1, 2.4.4) 

512 2.3 0.0 0.0 1118 large reservoirs in CLC 2012 
were all built since 1882; 3 new 
reservoirs present in CLC 2018; 
Zuiderzee was much reduced by 
land reclamation between 1924 
and 1975 

Reservoirs and Zuiderzee polders 
are added/removed from map based 
on year of construction, 
enabling/disabling those areas for 
habitation and asset construction 

Other natural 
(2.4.12) 

331–333, 
335, 423–
511, 521–
523 

4.9 0.0 0.0 Those areas have negligible 
exposure and are not of interest for 
the model 

Kept constant and are not allowed 
to interact with other land use 
classes, except cases described in 
2.4.1 and 2.4.4 

 237 

2.4.1 Special case 238 

The model includes one special case, due to its influence on exposure distribution in the Netherlands. The Zuiderzeewerken 239 

was a large-scale land-reclamation and flood-protection project, which resulted in the construction of large dikes and polders 240 

in the Zuiderzee between the 1920s and 1970s (Supplementary Fig. S3). Zuiderzee was closed in 1932 by a large dike, turned 241 

into a lake and further split in 1975 into IJsselmeer and Markermeer. Cities, infrastructure and farmland were created on the 242 

reclaimed land, mainly in the province of Flevoland. It has a population of more than 400,000 today, but before 1942 it 243 

consisted only of the small island town of Urk and the uninhabited island of Schokland (the province was formally established 244 

in 1986). Therefore, all artificially-created land is removed from the land cover/use map and turned into inland water (CLC 245 

512) for years before the year of completion of individual polders. The population is also removed and not considered in the 246 

population and land-use redistribution for those years, hence this modelling step is done before all others. 247 

2.4.2 Sub-regional population redistribution 248 

Substantial redistribution of population within European countries occurred in modern times. Here, we model sub-regional 249 

(i.e. below NUTS3 level) population change for 1870–2020 based on empirical observations from a dataset of population 250 
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change between 1961 and 2011 at the level of local administrative units (LAUs). We created the dataset for this study mostly 251 

through merging tabular and spatial data produced in various years that is available through Eurostat (2022). Details on how 252 

the data were created and their visualisation is provided in Supplementary Text S1. Population trends for around 109,000 253 

LAUs indicate: 254 

● Declining population in urban cores that are the most centrally located and densely populated parts of cities 255 

● Rapid growth of suburban zones around urban cores 256 

● Declining population of rural areas 257 

The first two changes are largely driven by the change in number of persons per household. Even when the population of a 258 

city is stagnant, smaller families in each dwelling result in an increased demand for housing. Those extra dwellings had to be 259 

constructed mostly outside the urban cores, where the supply of housing is largely fixed. Clark (1951) has shown that this 260 

trend has been present in major European cities since the early 19th century, flattening the population density curve in relation 261 

to the distance from the city centres. At the same time, migration from rural to urban areas has reduced population in rural 262 

areas and exacerbated the growth of suburbs.  263 

Here, we model the rate of change of population within each NUTS3 region, where total population is defined by historical 264 

statistics, using the empirical relationship between population density and historical rates of change. To capture the uncertainty 265 

of the correlation, two univariate copulas that correlate population density from LAU data with population growth are applied 266 

(Fig. 3): 267 

● the Gaussian copula using data from LAUs with population density below 1500 persons per km2 that correlates 268 

population density from LAU data with population growth (Spearman’s r = 0.69) and 269 

● the Frank copula using data from LAUs with a population density above 1500 persons per km2 that correlates 270 

“agglomeration density” with population growth (Spearman’s r = -0.36). 271 
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 272 

Figure 3. Empirical copulas of the dependency between population growth (1961–2011) relative to national growth, and population 273 

density (2011) in two different forms (a – local density, b – agglomeration density). Left copula (a) is applicable to population densities 274 

below and right (b) above 1500 persons per km2. 275 

The “agglomeration density” per LAU is the average of the kernel density computed with the 1 km GEOSTAT population grid 276 

and a 10-km radius. Therefore, it indicates the size of agglomeration that a high-density LAU is part of. This “agglomeration 277 

density” is a better predictor of population change than population density of individual LAUs. Only LAUs from NUTS3 278 

regions with at least 10 LAUs were included to quantify the copulas to avoid using large, heterogenous LAUs. The copulas 279 

were chosen based on a goodness-of-fit test (Genest et al. 2009). The threshold of 1500 persons per km2 for copula selection 280 

gave the best results in validation. Coincidentally, but unsurprisingly, it is also the threshold used to define high-density 281 

population clusters by Eurostat (2022), and in turn to classify LAUs as urban. 282 

The LAUs from the Eurostat dataset applied here do not have complete coverage, have lower geometric accuracy than our 283 

NUTS3 map, and the size of LAUs varies substantially between countries. Therefore, a set of “virtual” LAUs (hereafter, 284 

“VLAUs”) was constructed. Every VLAU consists of an urban patch from Corine Land Cover 2012 and its nearest 285 

neighbourhood (Supplementary Fig. S5). Disaggregated population in 100 m resolution was then assigned to each VLAU to 286 

compute population density. For each timestep in the model, the copulas are sampled 10,000 times to obtain an estimate of 287 

annual population growth (geometric average of 50-year growth rate). The population of a VLAU in year 𝑡 and 2011 is then: 288 
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𝑃𝑡,𝑉𝐿𝐴𝑈 = 𝑃2011,𝑉𝐿𝐴𝑈(1 + 𝐴)2011−𝑡                                                                        (3) 289 

where 𝐴 is the annual growth rate (in %) from the copula model. To avoid unrealistic changes, mainly for areas with very low 290 

population density, population growth is capped: −2.257% <  𝐴 <  1.6464%, which corresponds to a 10-fold decline or 25-291 

fold increase between 1870 and 2011. The analysis is done separately for each NUTS region, covering VLAUs or their parts 292 

located within a given region. After the population of all VLAUs was computed for a given NUTS region, the difference 293 

between the combined population of VLAUs and the population of the NUTS region in a given year as defined in the historical 294 

statistics is corrected by the same factor (relative to population) for every VLAU. The computation is done separately for urban 295 

and rural areas, i.e. those covered by urban fabric and all others, respectively. The share of urban population in each NUTS3 296 

region is determined by the historical statistics. 297 

2.4.3 Urban/rural population and urban fabric 298 

The population redistributed at sub-regional level is further adjusted spatially, separately for urban and rural areas. As noted 299 

in section 2.4.2, assuming fixed supply of housing in already built-up areas, the population change in urban areas and expansion 300 

of those areas (i.e. urban fabric, or CLC classes 111 and 112) is driven by change in the total number of urban households. As 301 

the population has grown but the average number of persons per household has declined throughout Europe since the 19th 302 

century, the demand for housing increased substantially. The movement of population to the edges of cities (suburbanization) 303 

is accompanied by the reduction of population density in the urban “cores” where a similar number of households contains a 304 

declining population stock. This process of flattening population distribution as a logarithmic function of distance from urban 305 

cores was quantified by Clark (1951) and many subsequent studies. By taking the total urban population 𝑈 and average number 306 

of persons per household 𝐻 (household size) from our historical statistics (section 2.3) we can compute the total number of 307 

urban households 𝑁𝑡 = 𝐻𝑡/𝑈𝑡 in year 𝑡 for every region. We simulate how the increase in 𝑁𝑡 has caused urban fabric to expand 308 

through construction of new housing and related infrastructure in previously undeveloped areas. In rare cases, within recent 309 

years, there has been a decline in urban households over time. This so far has led to dwellings becoming vacant rather than a 310 

contraction of the area of the urban fabric. 311 

The modelling operates by modifying, for a given timestep 𝑡, the population per urban fabric grid cell 𝑃2011  defined in the 312 

baseline population map. This is done separately and independently for each VLAU, where the total baseline urban population 313 

is 𝑈2011 = ∑ 𝑃2011. The aim of this modelling step is to generate a new population map, where ∑ 𝑃2011 matches 𝑈𝑡 , which in 314 

turn is the total urban population of a VLAU in timestep 𝑡. 𝑈𝑡  is defined beforehand for each VLAU, as it is a proportional 315 

adjustment to the total population of all VLAUs in a given NUTS3 region, calculated already in section 2.4.2, to the total urban 316 

population of a NUTS3 region defined in the historical statistics. We therefore know the expected urban population in a VLAU 317 

and have to modify the population map to reproduce the historical changes in the size of the urban population and change of 318 
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their distribution within the cities. Changes in household size are taken from historical statistics at NUTS3 level. The procedure 319 

is done stepwise: 320 

1. In every urban fabric grid cell in a VLAU, the grid-cell population 𝑃 in year 𝑡 is modified relative to the 2011 baseline 321 

to account for change in household size: 322 

𝑃𝑡 = 𝑃2011

𝐻𝑡

𝐻2011

                                                                                      (4) 323 

where 𝐻 is the average household size, determined for each NUTS3 region; 324 

2. All grid cells in a region are ranked by distance from urban centres (explained further in the text), where the highest-325 

ranked cells are the closest to any urban centre. 326 

3. Surplus population 𝑆𝑡  is calculated: 327 

𝑆𝑡 = 𝑈2011

𝐻𝑡

𝐻2011

− 𝑈𝑡                                                                              (5) 328 

where 𝑈𝑡 = ∑ 𝑃𝑡  is the total urban population in the VLAU. The modelling ends here if 𝑆𝑡 = 0, but that is almost never the 329 

case. 𝑆𝑡  is usually positive or negative, and indicates how many persons, after adjusting the population map to the household 330 

size of historical level 𝐻𝑡, have to be removed or added to the map in order to match the historical total population 𝑈𝑡 . 331 

Depending on whether a year before or after the baseline is modelled, four combinations of 𝑆𝑡  and 𝑡 could be discerned, as 332 

indicated in Table 5. 333 

  334 
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Table 5. Possible combinations of surplus population St and timestep t, contrasted with illustrative examples taken from the database 335 

of historical statistics (section 2.3). These examples use data at NUTS3 level, but the calculation itself is done on the more detailed 336 

level of VLAUs.  337 

Case 
Example (region, NUTS3 code and historical 

data) 
Approach 

A 

𝑆𝑡 > 0,  
𝑡 < 2011 

Potsdam, Germany (DE404) 
U_2011=152,656, H_2011=1.80, N_2011=84,668 
U_1960=114,202, H_1960=2.96, N_1960=38,569 

S_1960=136,500 

The city more than doubled the number of households since 
1960, which had to be accommodated through expanding 
the urban area with new housing districts. Hence, part of 

urban fabric in 2011 was created between 1960 and 2011 
and has to be removed from the modelled exposure map for 
1960. 

B 

𝑆𝑡 < 0,  
𝑡 > 2011 

Szczecin, Poland (PL424) 
U_2011=398,652, H_2011=2.40, N_2011=166,313 
U_2020=389,660, H_2020=2.08, N_2020=187,247 
S_2020=-43,563 

The city has increased the number of households since 
2011, despite population decline. Hence, areas available for 
build-up in 2011 are converted into urban fabric in the 
2020 map to the extent needed to accommodate the new 
households.  

C 

𝑆𝑡 > 0,  
𝑡 > 2011 

Vidzeme region, Latvia (LV008) 
U_2011=127,541, H_2011=2.53, N_2011=50,391 
U_2020=111,053, H_2020=2.45, N_2020=45,309 

S_2020=12456 

Number of urban households in the region declined since 
2011, which resulted in some dwellings being vacated. The 
urban fabric therefore doesn’t change in the 2020 map, but 

the population is reduced in urban areas throughout the 
region. 

D 

𝑆𝑡 < 0,  
𝑡 < 2011 

Liverpool, United Kingdom (UKD72) 
U_2011=466,415, H_2011=2.80, N_2011=203,701 
U_1970=606,979, H_1970=2.26, N_1970=216,856 
S_1970=-36,819 

Number of urban households in the city declined between 
1970 and 2011, which resulted in some dwellings being 
vacated. The urban fabric therefore doesn’t change in the 
1970 map, but the population is higher in urban areas of the 
city in 1970. 

 338 

In the two cases A and B, i.e.  𝑆𝑡 > 0, 𝑡 < 2011 and  𝑆𝑡 < 0, 𝑡 > 2011, the number of households, and therefore extent of 339 

urban areas, expanded over time. For timesteps before 2011 this means that some of the urban fabric has to be removed from 340 

the baseline map (case A), while for timesteps after 2011 more urban fabric has to be added (case B). The changes in grid-cell 341 

population 𝑃 will depend on the distance from urban centres 𝑑. The distance from urban centres used here is a weighted 342 

average of different measures of population centres ("combined distance") in order to capture the multiple levels of hierarchy 343 

existing in urban networks. Five different datasets were tested and, based on a calibration process explained in the 344 

Supplementary Text S2, four of those datasets were selected for the combined distance from urban centres. The datasets and 345 

their weights are as follows: 346 

● Arbitrary centres of large agglomerations (more than 300,000 persons in 2018) and capital cities (United Nations 347 

2018), with a weight of 1.0; 348 

● Centroids of high-density population clusters (Eurostat 2022), with a weight of 1.5; 349 

● Centroids of cities included in the Urban Atlas 2018 (Eurostat 2022), with a weight of 2.0; 350 
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● Centroids of Corine Land Cover 2012 urban patches, with a weight of 0.5. 351 

The fifth dataset, not included in the combined distance, were population clusters from Eurostat (2022). The combined distance 352 

is computed per each grid cell. Then, the modelling continues depending on the case: 353 

● Case A: urban grid cells are iteratively removed going backwards from the base year 2011 starting with the lowest-354 

ranked (𝑖 = 1), and their population is reduced by proportion 𝐷: 355 

𝑃𝑡,𝑖 =  𝑃𝑡,0𝐷                                                                                         (6) 356 

Proportion 𝐷 is based on the logarithm of distance from urban centres 𝑑 in hectometres: 357 

𝐷 = (1 −
ln(𝑑)

ln (arg max{𝑑})
)                                                                        (7) 358 

At each iteration the surplus is reduced by the amount of population redistributed: 359 

𝑆𝑡,𝑖 =  𝑆𝑡,𝑖−1 − 𝑃𝑡,0(1 − 𝐷)                                                                          (8) 360 

The calculation continues until 𝑆𝑡,𝑖 = 0. However, if at any iteration there is more population in grid cell(s) than 361 

remaining surplus, i.e.: 362 

∑ 𝑃𝑡,0(1 − 𝐷)  =  𝑆𝑡,𝑖−1                                                                          (9) 363 

the population is reduced by the available amount, split proportionally to grid cell population if there are more cells 364 

with the same rank: 365 

𝑃𝑡,𝑖 =  𝑃𝑡,0 (1 −
𝑆𝑡,𝑖−1

∑ 𝑃𝑡,0

)                                                                        (10) 366 

● Case B: cells where urban expansion most likely took place are identified using the land-use transition model 367 

described in section 2.4.8, starting with cells with the highest probability of transition. If more cells were given the 368 

same likelihood of transition to urban fabric than necessary to assign the additional population, the cells within that 369 

group were ranked according to distance from the urban centre. The population in the highest-ranked cells, i.e. 370 

iteration 𝑖 = 1, is set to the maximum population per grid cell in the VLAU, reduced by proportion 𝐷 from eq. 7: 371 

𝑃𝑡,𝑖 = arg max{𝑃𝑡,0}𝐷                                                                        (11) 372 

At each iteration the surplus is increased by the amount of population redistributed: 373 

𝑆𝑡,𝑖 =  𝑆𝑡,𝑖−1 + 𝑃𝑡,𝑖 − 𝑃𝑡,0                                                                       (12) 374 

The calculation continues until 𝑆𝑡,𝑖 = 0. However, if at any iteration there is more population to be redistributed than 375 

the available surplus, i.e.: 376 

∑ 𝑃𝑡,𝑖 − 𝑃𝑡,0 >  −𝑆𝑡,𝑖−1                                                                          (13) 377 

the surplus is distributed equally between all cells that were modified until this iteration (denoted 𝑛): 378 
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𝑃′𝑡,𝑖 =  𝑃𝑡,𝑖 (1 −
𝑆𝑡,𝑛−1

∑ 𝑃𝑡,𝑖

) , 𝑖 = {1, … , 𝑛}                                                            (14) 379 

If there are no available empty grid cells in the VLAU, the population of all urban grid cells is increased proportionally 380 

in the same way as in eq. 14. 381 

● Case C and D: in those cases, the number of households declined over time, as some dwellings became vacant. The 382 

urban area remained unchanged, as urban fabric is not removed bar from very extreme cases. Before 2011, the 383 

population in all urban grid cells was added to the map (case C), while after 2011, removed (case D). The population 384 

was increased/decreased proportionally to the population in a given grid cell in 2011 (as in eq. 14). 385 

Modelling the redistribution of population in urban areas is intertwined with change in urban fabric area. In cases A and B, the 386 

urban area changes as a result of the growth in urban household number, in contrast to cases C and D, where the urban fabric 387 

is kept unchanged. As urban fabric is closely related with high population density, urban fabric grid cells are only removed 388 

from (case A) or added to (case B) the baseline map if the changes to population density is large enough. Consequently, urban 389 

fabric is removed in timesteps before baseline year 2011 only if the population in a grid cell was reduced to less than 9 persons. 390 

For timesteps after 2011, only an increase of population to more than 81 per 100 m grid cell resulted in transition to an urban 391 

fabric class. Both thresholds were obtained by calibrating the model to match the magnitude of change observed in the CLC 392 

inventories (2000–2018). Between 2000 and 2012, urban fabric expanded by almost 1.88 million ha, while between 2012 and 393 

2018 only by 98,676 ha, according to the CLC data. By setting the population thresholds through calibration, the model 394 

correctly represents the effect of urban population change on land-use type. As shown in the results (section 3.2.3), the 395 

calibration was effectively applicable back to the year 1900. 396 

2.4.4 Airports and reservoirs 397 

Airports and reservoirs are large elements of infrastructure that first appeared within this study’s timeframe. As the period of 398 

construction of those is usually well known and their number relatively small, they are removed or added to the baseline map 399 

based on the year of construction. We identified 1598 airports and 1121 large reservoirs in the study area by combining CLC 400 

maps (CLC classes 124 and 512) with global databases of those objects (Global Dam Watch 2021, OurAirports 2021). Though 401 

HANZE v1.0 also included such data, due to the addition of new countries, the use of a revised CLC map and updates to the 402 

global airport and reservoir databases, we recompiled the data on airports and reservoirs from scratch. An airport or reservoirs 403 

removed from the baseline map enables other land-use types to fill the empty space. An addition of such an object (after 2011) 404 

removes any population that was present there in 2011. 405 

2.4.5 Rural population redistribution 406 

Rural population is recalculated separately for each VLAU, by adjusting the grid cell baseline population proportionally to its 407 

value, so that it equals the expected population in that area. For years before the baseline, areas from which urban fabric was 408 
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removed are still considered urban for the purpose of this calculation. For years after the baseline, rural population in areas 409 

that transitioned to urban fabric is no longer considered rural, hence the adjustment is made only to remaining rural cells in the 410 

VLAU. 411 

2.4.6 Industrial and commercial sites 412 

The area covered by large industrial/commercial facilities was assumed to change proportionately to GDP generated in a 413 

NUTS3 region by industry and services, in constant prices. Industrial grid cells (CLC class 121) located furthest from the 414 

centroids of industrial land use patches are removed first when going back in time. For timesteps after the baseline year, 415 

industrial grid cells closest to the centroids are added first. Industrial land use is only allowed to spread into uninhabited cells 416 

of some CLC classes: construction sites (133), agricultural (211–244) and certain natural areas (311–324 and 333). However, 417 

growth in GDP from industry and services is only partially driven by expansion of facilities, as the productivity of capital and 418 

labour tends to increase. Indeed, CLC 121 class has grown between 2000 and 2018 (based on CLC 2012 and CLC-Changes) 419 

by 16% in the study area, but GDP from industry and services increased by 32%. Therefore, the change in GDP from 420 

industry/services is scaled by an elasticity of 0.45, so that modelled changes between 2000–2018 in the study area have the 421 

same magnitude as observed in the CLC inventory. The industrial area 𝐴 in region 𝑟 and year 𝑡 is as follows: 422 

𝐴𝑟,𝑡 = 𝐴𝑟,2011 (
𝐺𝑟,𝑡

𝐺𝑟,2011

)

𝜀

                                                                             (15) 423 

where 𝜀 is the elasticity and 𝐺𝑟 is the regional GDP from industry/services according to the historical statistics at NUTS3 level. 424 

2.4.7 Road and railway sites 425 

The area covered by roads and railways before 2000 was assumed to change proportionately to the length of motorways and 426 

railways. Historical data on the length of this type of infrastructure was included in the input database (Table 2). As 427 

infrastructure was built firstly in large urban and industrial zones, infrastructure grid cells (CLC class 122) located furthest 428 

from the urban centres are removed first when going back in time until the total area per region matches the value in the 429 

database. Conversely, grid cells closest to the urban centres are filled with infrastructure for timesteps after the baseline year. 430 

Infrastructure is allowed to spread only to particular CLC classes: construction sites (133), agricultural (211–244) and certain 431 

natural (311–324 and 333). However, construction sites were prioritised over other CLC classes; all ‘construction’ grid cells 432 

have to be used up before other CLC classes can be considered. The reason is that, apart from urban fabric or industrial sites 433 

already considered in previous steps, road and railway sites are the most frequent outcomes of construction activity. We found 434 

this pattern in the transitions of land-use in subsequent CLC inventories (2000–2018). 435 
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2.4.8 Construction sites 436 

Construction sites (CLC class 131) are by definition a temporary land use, typically for only a few years. The CLC inventory 437 

shows that 76–81% of construction sites transition to another land use during the 6-year periods between CLC datasets (2000–438 

2006, 2006–2012, 2012–2018). Therefore, for years 2005–2011, their area was assumed constant, while for years 1870–2004 439 

all construction sites were removed from the dataset. After 2011, construction sites were allowed to transition into urban fabric, 440 

industrial sites, roads, railways, and airports (CLC 111–122 and 124), which was applied in the previous modelling steps, but 441 

otherwise kept unchanged. 442 

2.4.9 Other artificial land 443 

Green urban areas, sport and leisure facilities (CLC classes 141 and 142) are closely related to other artificial surfaces. Almost 444 

two-thirds of those CLC patches border either urban fabric, industrial sites, road/railway sites, or airports in the CLC 2012 445 

inventory. Therefore, those patches of CLC classes 141 and 142 which bordered CLC classes 111–122 and 124 in the baseline 446 

map are removed if in a given timestep, if they do not border CLC classes 111–122 and 124 anymore due to application of 447 

previous modelling steps. Ports, mineral extraction, and dump sites (CLC classes 123, 131 and 132) are large elements of 448 

infrastructure like airports and reservoirs, but they are too numerous (almost 15,000 objects) and their history less traceable to 449 

apply the same approach as for airports. Therefore, their area is kept constant at every time step and they did not interact with 450 

other land use classes. Patches of this land use are removed from the map only in connection to reservoir or polder construction 451 

(see sections 2.4.1 and 2.4.4). 452 

2.4.10 Agricultural areas 453 

Evolution in agricultural areas and increase in urban fabric after the baseline year are computed primarily using a Bayesian 454 

Network (BN) model. The BN is trained with the CLC-Changes dataset, which records 1.2 million transitions involving patches 455 

of land larger than 5 ha, and CLC 2012 identifying land-use types that didn’t transition between 2000 and 2018. The CLC-456 

Changes and CLC 2012 inventory were sampled to obtain 513,915 cases of transition and an equal number of land-use patches 457 

being stable between 2000 and 2018. For each location, information from different raster datasets (on terrain, agricultural 458 

suitability, population density and urbanisation) were extracted as predictors of land-use changes. The sampling procedure and 459 

a list of all tested predictors is described in the Supplementary Text S3. The general concept is the same as in HYDE (Klein 460 

Goldewijk et al. 2011), i.e. that local suitability for agriculture determines where this land-use class expands (most-suitable of 461 

available land first) and contracts (least-suitable falls into disuse first).  462 

As the land use information is categorical, a discrete BN was used. Land-use classes were collected into 5 bins (urban fabric, 463 

other artificial, croplands, pastures, natural). The bin with natural land excludes non-utilizable land cover types (CLC 331–464 

332, 334–335, 421-523), which are not allowed to interact with either artificial or agricultural land use. The BN model was 465 

constructed iteratively, starting with a simple three-node network, where the “old” land-use class is the parent of the “new” 466 
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land-use class, and a single predictor variable is the parent of both land-use nodes. More complex BNs with more predictors 467 

were respectively validated against a disjunct subset of samples of transitions and non-transitions not used for training (see 468 

Supplementary Text S3). Iteratively, the best predictors, number of predictors and numbers of bins (into which continuous 469 

variables were discretized) were selected. Three predictors were chosen, all of which are parents of the two land-use nodes 470 

(Fig. 4): 471 

● Population density per VLAU – 9 bins; 472 

● Suitability index for wheat: output density (potential production divided by total grid cell area) for wheat under rainfed 473 

conditions and high input level – 5 bins; 474 

● Suitability index for grass: agro-climatic potential yield for grass with an available water content of 200 mm/m (under 475 

irrigation conditions) and high input level – 10 bins. 476 

The two agricultural suitability indices were calculated by FAO (2022) in the Global Agro-Ecological Zoning version 4 477 

(GAEZ) database, based on 1971–2000 climate. As the BN is quantified with a conditional probability table (CPT), this 478 

configuration results in the CPT having 11,250 cells. Therefore, no more variables were added to avoid too few data points 479 

quantifying cells of the CPT. 480 

 481 

 482 

Figure 4. Bayesian Network for land-use transitions with 5 nodes and 7 arcs. The nodes indicate the number of bins of the discrete 483 

distributions and the intervals of the bins. 484 

 485 

Fig. 5 shows an example of application of the Bayesian Network. In this case, we know the present-day land use (croplands) 486 

and that in some earlier timestep the total area of croplands in a NUTS3 region was lower than at present. Therefore, we want 487 

to know the probability that land-use was different from croplands across the grid cells located in the region. Fig. 5a shows an 488 

area that was most likely a cropland before as well, due to relatively high population density and good suitability for agriculture. 489 

The area in Fig. 5b has lower suitability, which indicates a much higher probability that the area was used for other purposes 490 

than cropland. Consequently, the area in Fig. 5b will be ranked higher than area in Fig. 5a when selecting which grid cells of 491 

croplands will be removed from the map in order to match the total cropland area with historical statistical data. 492 

  493 
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 494 

 495 

 496 

Figure 5. Example of a conditionalized Bayesian Network for land-use transitions. Panel (a) shows a highly-suitable 497 

area for croplands, and (b) an unsuitable one. The graph indicates the prior (situation in Fig. 4) and posterior (nodes 498 

in grey being conditionalized with values indicated) probability of previous land-use type (60.8% in (a) and 43.4% in 499 

(b) for being croplands). 500 

 501 

The trained BN is used to generate probabilities of land-use transitions in nine cases, as follows: 502 

● from non-urban to urban after the baseline year; 503 

● from non-cropland to cropland after the baseline year; 504 

● from non-pasture to pasture after the baseline year; 505 

● from cropland to non-cropland after the baseline year; 506 

● from pasture to non-pasture after the baseline year; 507 
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● from non-cropland to cropland before the baseline year; 508 

● from non-pasture to pasture before the baseline year; 509 

● from cropland to non-cropland before the baseline year; 510 

● from pasture to non-pasture before the baseline year. 511 

As noted in section 2.4.3, the BN handles the case of non-urban to urban transition after 2011. When the housing needs of the 512 

population result in expansion of cities, areas with the highest probability of transition from non-urban to urban land-use are 513 

build-up first. The BN is used in the same way for the remaining eight cases related to agriculture, i.e. they determine in which 514 

agricultural areas to add or remove so that the total area of croplands and pastures in the land cover map for a given time step 515 

matches the values obtained from historical statistics per NUTS3 region. This is done iteratively starting with patches of land 516 

with the highest probability of transition between given classes (e.g. non-pasture to pasture). Cropland redistribution is 517 

modelled first, then pasture is redistributed in the second step. Land still occupied by croplands after the first step cannot 518 

transition to pasture. However, land emptied by redistribution of croplands in the first step can transition to pasture in the 519 

second step. 520 

We need to model transitions backward in time for timesteps before 2011. We partially remove urban fabric or roads/railways 521 

sites in case they occupied less land in the past and create an empty space, which croplands can occupy. Forward in time, it is 522 

a cropland to non-cropland transition. The probability of transition that is used to determine which cells to fill with croplands 523 

is the probability that a non-cropland cell was a cropland before. The same applies to pastures, with the condition that they 524 

cannot occupy cells already assigned to cropland. Transition of artificial surfaces still remaining at this step of the model to 525 

agricultural land-use is not allowed. 526 

In the iterative land-use redistribution process, the number of grid cells with equal probability of transition might exceed the 527 

number of cells that need to be converted to match the total area in the historical statistics. This often happens as the predictors 528 

(GAEZ dataset and population density by VLAU) have relatively coarse resolution together with a small number of bins in 529 

which the data is divided. In order to derive exact 100-m grid cells from patches of land of equal probability, another predictor 530 

of agricultural suitability was added. Slope of the terrain is an important predictor, also used in the two agricultural suitability 531 

indices from FAO. It is available in the target (100 m) resolution as a continuous quantity from the EU-DEM elevation dataset 532 

(Eurostat 2022). Lower slope indicates better suitability for agricultural activity, therefore 100 m cells of equal probability of 533 

transition are ranked according to the slope from lowest to highest. The appropriate number of highest-ranked cells is 534 

added/removed so that the total area of croplands or pastures exactly matches the total area in the historical statistics. 535 

2.4.11 Burnt areas 536 

Areas where vegetation has burned down (typically forests) are by definition a temporary land use. Burnt areas are very short-537 

lived: almost none of the land cover patches in this class (CLC 334) in 2012 were present in either 2006 or 2018 CLC 538 

inventories. For years 2007–2017, burnt area was assumed constant, while for years 1870–2006 and 2018–2020 all burnt areas 539 
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were removed from the dataset. As almost all burnt areas are formerly or subsequently CLC classes 311–324, this modelling 540 

step is done after redistributing agricultural areas. Still, there is no exposure in burnt areas, and very little exposure in preceding 541 

land-use, except for rare cases 542 

2.4.12 Forest and other natural land 543 

Natural areas are what remains after modelling artificial, agricultural and burnt areas as well as reservoirs and special cases. 544 

Natural areas would cover the entire continent without human activity. Therefore, if land becomes unoccupied as a result of 545 

the modelling, it is assigned the same natural land cover that is typical in its nearest neighbourhood. Typical natural vegetated 546 

land cover (classes CLC 311–324 and 411–422) is defined as the most frequently occurring one within the VLAU. The 547 

calculation is done separately for forests (CLC 311–313) and other natural land (CLC 321–324 and 411–422), and the more 548 

frequent of the two groups is used. If there is no natural cover in the VLAU, the dominant vegetated land cover of the applicable 549 

NUTS3 region is used. If no vegetated land cover was located in the NUTS3 region, the unoccupied land was assumed to be 550 

covered by transitional woodland-shrub (CLC 324), as it is the most common non-forest natural land in the study area.  551 

After the first allocation, the total area of forests is compared with the historical data in the NUTS3 database. If there is too 552 

much forest area in a given NUTS3 region, the land that was allocated to forest in this step is iteratively converted into the 553 

most frequent non-forest class, starting with the most-densely populated VLAU. Conversely, if there is not enough forest land, 554 

cells that were allocated to non-forest vegetation in this step are iteratively converted into the most frequent forest class, starting 555 

with the least-densely populated VLAU. 556 

All other natural land, without vegetation and usually prohibitive to construction or agriculture, i.e. beaches, dunes, sands 557 

(CLC 331), bare rocks (CLC 332), glaciers and perpetual snow (CLC 335), intertidal flats (CLC 423), and water (CLC 511-558 

523), were kept constant throughout. Patches of this land use are removed from the map only in connection to reservoir or 559 

polder construction (see sections 2.4.1 and 2.4.4). 560 

2.4.13 Soil sealing change map 561 

Changes in soil sealing are entirely based on land-use transitions, therefore this step is carried out after land-use modelling, 562 

but before economic data disaggregation (section 2.5). Soil sealing in the baseline map is increased to the average value for a 563 

given CLC class (Table 6) when non-artificial land transitions to artificial, unless it is already higher than that value. For the 564 

backward in time calculation for timesteps before 2011, wherever land that is currently artificial is changed to agricultural, the 565 

degree of soil sealing is reduced alongside to 1%. Similarly, it is reduced to 0% in cases when agricultural or artificial land is 566 

changed to natural land. 567 

  568 
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Table 6. Average soil sealing in the Imperviousness 2012 dataset per selected types of Corine Land Cover classes. 569 

CLC classes 
Average soil 

sealing in 2012 

Urban fabric (111–112) 28% 

Industrial or commercial units (121) 45% 

Road and rail networks (122) 29% 

Airports (124) 20% 

Agricultural areas (211–244) 1% 

Natural land (311–523) 0% 

 570 

2.5. Economic data disaggregation 571 

The disaggregation of economic data follows dasymetric mapping methods, similar to applied in European (e.g. Batista e Silva 572 

et al. 2019) or global (e.g. Murakami and Yamagata 2019) studies, including HANZE v1.0. Several revisions to the latter were 573 

introduced. Soil sealing was added as a predictor next to population and land use, as indicated in Table 5. Regional GDP is 574 

split partially proportionally to population and partially according to land-use (with soil sealing where appropriate). In this 575 

way, both labour (part of the total population) and capital (connected to land-use) input to GDP is represented. Labour share 576 

of GDP in advanced countries is about 60% and has been relatively stable over time (ILO and OECD 2015). Hence, 60% of 577 

GDP is disaggregated according to population and the remaining 40% using land use. Fixed assets in absolute terms per region 578 

are computed by multiplying regional GDP, or a sector thereof, by the respective wealth-to-GDP ratio for each sector, as 579 

defined by variables “Fixed assets” listed in Table 2 (section 2.3). Housing and consumer durables are distributed according 580 

to total population, as they are most closely related to population distribution. Other assets, related to economic activities, are 581 

distributed to appropriate land use classes, proportionally to the degree of soil sealing. Finally, infrastructure is distributed to 582 

urban and industrial land (CLC classes 111–121) proportionally to the area covered by roads and streets, and to roads/railways, 583 

ports, and airports (CLC classes 122–124) proportionally to the degree of soil sealing. 584 

There are also additional assumptions on disaggregation of GDP and wealth for two sectors. Agricultural sector encompasses 585 

farming, fishing and forestry, while the industrial sector includes mining, manufacturing, and utilities. A detailed breakdown 586 

of those subsectors is not available at regional level for GDP, or at all for fixed assets, except for a small number of countries. 587 

Hence the regional GDP and wealth from forestry and mining was estimated by computing “efficiency indices” at national 588 

level. The forestry index was compiled by computing GDP from agriculture (without forestry) at national level per ha of 589 

agricultural land from CLC and GDP from forestry per ha of forest land. Those values were computed for the year 2000 for 590 
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all countries and presented as efficiency of the forest economy relative to other agriculture in %. This ratio was used to compute 591 

the relative share of forestry in regional GDP in any given year based on land cover/use modelled for that year: 592 

𝐺𝑓,𝑟,𝑡 = 𝐺𝑎𝑓,𝑟,𝑡

𝐴𝑓,𝑟,𝑡𝐸𝑓,𝑐

(𝐴𝑎,𝑟,𝑡 + 𝐴𝑓,𝑟,𝑡𝐸𝑓,𝑐)
                                                                     (16) 593 

where 𝐺 is GDP, 𝐴 is area covered by land cover/use in a particular sector, 𝐸𝑐 is the efficiency index for country 𝑐. The forest 594 

sector is denoted by 𝑓, agricultural sector (without forestry) by 𝑎, NUTS3 region by 𝑟 and timestep by 𝑡. Agricultural GDP 595 

without forestry is therefore: 596 

𝐺𝑎,𝑟,𝑡 = 𝐺𝑎𝑓,𝑟,𝑡 − 𝐺𝑓,𝑟,𝑡                                                                                (17) 597 

The wealth-to-GDP ratio for agriculture is used for both forestry and other agriculture. Mining and quarrying are split from 598 

the remaining industrial activities (manufacturing and utilities) using a mining efficiency index, calculated like the forest index. 599 

In the same way, it uses the proportion of mining areas (CLC 131) relative to industrial areas (CLC 121) in each NUTS3 region 600 

and timestep to disaggregate the two sectors. Equations 16 and 17 are applicable with substituting the different sectors and 601 

land-use types. The wealth-to-GDP ratio for industry is used for both mining and other industries. 602 

 603 

Table 7. Disaggregation of economic variables by population and land use classes (CLC = Corine Land Cover class codes). 604 

Variable Category Population Land use Soil sealing 

GDP Agriculture excl. forestry Population in CLC 211–244 (60%) CLC 211–244 (40%) - 

Forestry Population in CLC 311–313 (60%) CLC 311–313 (40%) - 

Industry excl. mining Total population (60%) CLC 121 (40%) yes 

Mining Total population (60%) CLC 131 (40%) - 

Services Total population (60%) CLC 111–124/133/141/142 (40%) yes 

Wealth Housing Total population - - 

Consumer durables Total population - - 

Agriculture excl. forestry - CLC 211–244 yes 

Forestry - CLC 311–313 yes 

Industry excl. mining - CLC 121 yes 

Mining - CLC 131 yes 

Services - CLC 111–121/133/141/142 yes 

Infrastructure - CLC 111–124 yes (streets and 
roads for CLC 
111–121) 

 605 
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2.6 Validation & comparison datasets 606 

Validating high-resolution exposure data is a challenge due to limited availability of comparable observational datasets. Here, 607 

we utilise available population and land-use data for validation and further compare the results with other published modelled 608 

datasets. Validating the disaggregation of economic data is currently not possible due to the lack of data.  609 

2.6.1 Population disaggregation 610 

There is a general lack of very high-resolution population reference data (Leyk et al. 2019), partially due confidentiality 611 

reasons. The GEOSTAT 1 km grid is already modified in some countries (see metadata in the Excel input file 612 

“Region_database_population_lu”) for that reason. It provides the highest resolution available for an observational product. 613 

Therefore, we prepared an alternative disaggregation of 1 km population to 100 m using floor space of residential buildings as 614 

predictor, rather than aggregated land-use and soil sealing data. High-resolution building vector data (GUGiK 2022) for 615 

municipalities in Poland threatened by sea level rise from Paprotny and Terefenko (2017) are used here. The data is accurate 616 

as of 2012/2013, which is close to the census date (2011). Within each 1 km grid cell completely within the validation area, 617 

we computed the residential floor space in m² using the area of residential buildings, multiplied by the number of stories, per 618 

100 m grid cell of our high-resolution population grid. The population was distributed proportionally to floor space in each 619 

100 m cell. For the calculation we excluded collective-living facilities in which people do not normally register addresses, 620 

summer houses or abandoned buildings. 621 

We compare our modelled results with the alternative disaggregation and a previously-published 100 m disaggregation of 622 

GEOSTAT called GHS (Freire et al. 2016). We computed false negative and positive ratios for the study area for both HANZE 623 

v2.0 and GHS. Those grids were then intersected with pan-European flood hazard maps (riverine from Alfieri et al. 2014 and 624 

coastal from Paprotny et al. 2019). Median absolute error in total exposed population by municipality was computed for 625 

administrative units with at least 30 persons exposed in the reference data (48–53 units, depending on the maps). The results 626 

are discussed in section 3.2.1. 627 

2.6.2 Population change 628 

The most detailed level at which validation of the modelled population changes is possible is the municipality level. We 629 

obtained two reference datasets for this purpose. First, we use the pan-European dataset (1960–2010) with population data by 630 

local administrative unit that was applied in the statistical analysis in section 2.4.2 and is described in detail in the 631 

Supplementary Text S1. Secondly, we assembled a dataset with a longer timespan for Austria. Statistik Austria (2022) has 632 

published historical census data recomputed to present-day municipalities, hence it was possible to combine this data, 633 

interpolated where necessary, with municipal boundaries from the Bundesamt für Eich- und Vermessungswesen (2022). The 634 

resulting reference population dataset covers the entire time span of this study (1870–2020) and 2117 units (all municipalities 635 

plus the districts of Vienna), see Supplementary Fig. S8. For further comparison we use the HYDE 3.2 dataset (Klein 636 
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Goldewijk et al. 2017), recomputed from 5’ resolution to municipalities. Both HANZE and HYDE utilise subnational 637 

population data that is disaggregated both in space and time, making them the closest comparable exposure products. The 638 

results are discussed in section 3.2.2. 639 

2.6.3 Land cover/use change 640 

Validation of land cover/use change is based on samples of CLC and CLC-Changes from 2000 to 2018. Those samples were 641 

drawn as described in section 2.4, but the number of samples per cell was capped at 15, resulting in 97,790 samples each for 642 

transitions and non-transitions. The net amount of land that transitioned is known from historical statistics, hence a defined 643 

number of cells with the highest probability of transitioning according to the Bayesian Network model is selected. A validation 644 

metric can therefore be the percent of top-ranked cells, up to the amount that is known to have transitioned between defined 645 

land-use classes, that was correctly identified by the model. As the number of cells in different land-use classes varies, the 646 

success rate has to be contrasted with a random result, i.e. the success rate of randomly picking land-use cells as transitioning. 647 

Overall land cover/use modelling results in HANZE are compared with HILDA (Fuchs et al. 2011, 2013, 2015). It has a 648 

resolution of 1 km, containing changes in land cover/use for six classes (aggregated from CLC classification) from 1900 to 649 

2010 over a domain of 29 countries and territories (the European Union without Croatia, but with the United Kingdom, plus 650 

Switzerland and the Isle of Man). HILDA is primarily a model that reallocates land-use based on aggregate historical statistics 651 

and probability maps, similarly to HANZE and HYDE. However, it also integrates, where possible, digitised historical maps. 652 

On the other hand, HILDA is primarily focused on agricultural land and its interaction with natural vegetation, which is of less 653 

interest in this study due to relatively low exposure related to those land cover categories. The results are discussed in section 654 

3.2.3. 655 

2.6.4 Exposure per flood event 656 

The model enables computing exposure within defined hazard zones that cover only parts of NUTS3 regions together with 657 

uncertainty bounds. For that purpose, we added pan-European hazard maps with a 100-year return period (riverine from Alfieri 658 

et al. 2014 and coastal from Paprotny et al. 2019) to the input data files. Then, we ran the model using the option to sample 659 

the copula model of subnational population redistribution and the Bayesian Network for land-use transitions, rather than using 660 

mean predictions. Running multiple simulations with random sampling enabled deriving uncertainty bounds of exposure 661 

within defined hazard zones. Then, exposure was summed over the hazard zones located within NUTS3 regions that were 662 

impacted by historical events (information taken from HANZE v1.0, Paprotny et al. 2018a), assuming independence of 663 

exposure trends in different regions. This enables “normalizing” the flood losses that have occurred in any given year to a 664 

single benchmark year under the assumption of unchanged level of hazard and vulnerability. It should be noted that the river 665 

flood maps used here indicate flood hazard only among relatively large rivers, namely those with catchment areas of at least 666 

500 km². The results are discussed in section 3.2.4 667 
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3. Results 668 

3.1 Overview 669 

In the past 150 years covered by the model, exposure has grown significantly in the study area: population increased by more 670 

than 130%, the number of households jumped almost fivefold, GDP 29-fold in constant prices and fixed assets 31-fold. Urban 671 

population almost quadrupled whereas rural population declined by nearly 40% (see Supplementary Fig. S9). Coupled with 672 

massive expansion of transport infrastructure, this caused the area covered by artificial surfaces to triple. Spatially, the patterns 673 

differ greatly between locations. Fig. 6 shows the increase, and sometimes decrease, in the population exposed to river floods 674 

(using maps from Alfieri et al. 2014) in the past 150 years, aggregated to NUTS3 regions for visualisation (see Supplementary 675 

Fig. S10 for an equivalent figure for coastal floods). The native 100 m resolution is only visible when zooming into a smaller 676 

part of the dataset area. We present the example of Munich in Fig. 7. Population increase has driven the expansion of urban 677 

fabric, industry, and infrastructure, while economic growth has multiplied the value of fixed assets in the region. 678 

 679 
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 680 
Figure 6. Change in the population number within 100-year river flood zones (from Alfieri et al. 2014, minimum catchment area 681 

500 km²), 1870–2020, aggregated from 100 m resolution to NUTS3 regions. The black box indicates the Munich area shown in Fig. 682 

6. National boundaries outside the study area based on Natural Earth (2022). 683 

 684 
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 685 
Figure 7. An example of modelled exposure growth in Munich, southern Germany, between 1870 and 2020, contrasted with a 100-686 

year river flood map (grey shading). Figure generated with the model’s code. Flood hazard zone from Alfieri et al. (2014). 687 

 688 

Overall, exposure has grown faster within the European flood hazard zones than outside: population has grown within the river 689 

hazard zone by 193% [95% confidence interval: 168–216%] and the coastal hazard zone by 252% [228–268%], compared 690 

with increases of 131–132% in areas not endangered by floods. The same pattern was found for GDP and fixed assets, though 691 

less pronounced and additionally no increase or even decrease in the share of GDP/assets exposed to floods was found since 692 

the 1960s/1970s (Fig. 8). 693 

 694 
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 695 

Figure 8. Exposure to river and coastal floods in Europe, 1870–2020 in relative (a) and absolute (b) terms. It is assumed that the 696 

extent of flood hazard zones doesn’t change relative to the present climate. Flood hazard zones according to Alfieri et al. (2014) and 697 

Paprotny et al. (2019). 698 

3.2 Validation 699 

3.2.1 Population disaggregation 700 

We compare HANZE, the Joint Research Centre’s GHS population grid and the disaggregation based on building vector data 701 

(our benchmark dataset, see sec. 2.6.1). Both the HANZE and GHS grids smooth the spatial distribution of population too 702 

much, as indicated by false positive ratios (Table 6). Almost 40% of populated cells in HANZE have no population indicated 703 

in the benchmark dataset, though in half of those cases the indicated population is only one or two persons. The false positive 704 

ratio is higher in GHS than in HANZE and above 40%. Conversely, HANZE rarely indicates no population wrongly: only 705 

3.5% of cells not populated in HANZE are populated in the benchmark dataset. This is less than the 4.7% in GHS (false 706 

negative ratio in Table 6). Exposure within river and coastal flood zones for municipalities of the Polish coastal zone was 707 

mostly represented well, with a median error of above 10% in HANZE. HANZE achieved better results than GHS for river 708 

flood hazard zones, though exposure to coastal flood was better modelled by GHS. A final check of the datasets was carried 709 

out by binning the population per 100 m grid cells in intervals of increasing by factor of 2: [0,1], [1,2], [2,4], [4,8], [8,16] etc. 710 

We found that the population per cell in HANZE was within +/- 1 interval of the validation dataset in 53% of the cases, which 711 

is better than 44% computed for the GHS dataset. 712 

 713 
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Table 8. Accuracy of population disaggregation to 100 m resolution in this study and in the GHS grid, compared with the benchmark 714 

dataset (alternative disaggregation using residential building vector data). 715 

Metric This study GHS 

False negative ratio 3.5% 4.7% 

False positive ratio 37.5% 40.9% 

Median absolute error in total exposed population by municipality for coastal floods 11.6% 8.3% 

Median absolute error in total exposed population by municipality for river floods 10.3% 12.1% 

 716 

3.2.2 Population change 717 

Accuracy of population change at the level of local administrative units (LAUs) was analysed using the average absolute 718 

difference in modelled and observed population per LAU relative to observed population in a given year. Observed population 719 

was compiled from various sources as described in section 2.6.2. The metric is an average weighted by population size of LAU 720 

in a given year. As Fig. 9a indicates, error grows as more time elapses from the baseline year, reaching an average of about 721 

20% by 1960 (in both validation areas) and 40% by 1870 (in Austria). However, the majority of LAUs are small rural 722 

communities, with more than half of LAUs in Europe having a population of less than 1000 in 1960, and a third in Austria in 723 

1870 (Table 9). Both European and Austrian LAUs have changed population by more than a factor of two since 1960 and 724 

1870, respectively. Therefore, absolute errors are mostly small (less than 200 persons in half of the LAUs in Europe). In larger 725 

LAUs, the relative errors are smaller (Table 7), though in Austria in 1870 errors in particular the districts of Vienna dominated 726 

the largest grouping of LAUs. The error varies by country (Fig. 9b) and is partially connected to the size of LAUs (relatively 727 

small in France or the United Kingdom, large in Poland and Greece) or the number of LAUs per NUTS3 region (on average 728 

381 in France, but only 28 in Germany). Countries with large LAUs or small NUTS3 regions show less significant errors. In 729 

general, HANZE shows lower errors than HYDE, with small exceptions, for instance in Austria after 1980, though the 730 

population changes in that period were rather small compared to previous decades. From all major countries, France and 731 

Belgium show higher errors in HANZE than in HYDE in estimating population in 1960, while among small countries this 732 

only occurs for Luxembourg and Slovenia. 733 

 734 
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 735 

Figure 9. Accuracy of population change estimation compared with HYDE dataset. The error metric (in %) indicates average 736 

absolute difference in modelled and observed population per LAU relative to observed population in a given year. See section 2.6.2 737 

for sources of observational data. 738 

 739 

Table 9. Correctly identified transitions of land use in the validation dataset. 740 

LAU population class 
Number of LAUs (% 

share) 

Population in LAUs 

(% share) 

Average relative 

error (%) - 

HANZE 

Average relative 

error (%) - 

HYDE 

Europe, 1960     

<1000 persons 53% 6% 46% 58% 

1000–9999 persons 40% 34% 32% 39% 

10000 and more 7% 60% 20% 30% 

Austria, 1870     

<1000 persons 36% 10% 54% 52% 

1000–2499 persons 47% 35% 31% 36% 

2500 and more 17% 55% 41% 57% 

 741 
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3.2.3 Land cover/use change 742 

Validation results based on samples of CCL and CLC-Changes are presented in Table 10. In all considered cases of land-use 743 

transitions, the model’s success rate in correctly identifying transitioning cells in the validation dataset is much higher than if 744 

cells were picked randomly.  745 

 746 

Table 10. Correctly identified transitions of land use in the validation dataset. 747 

Transition Modelled Random result 

Other to urban 32% 7% 

Other to cropland 51% 20% 

Other to pasture 23% 5% 

Cropland to other 62% 33% 

Pasture to other 36% 13% 

 748 

Comparison with HILDA indicates some important similarities with HANZE. The area of artificial surfaces has a very similar 749 

trend in the two datasets between 1900 and 1990 (Fig. 10a), even though HANZE was calibrated only for years 2000–2018. 750 

This indicates that the underlying processes do not strongly change over time and the model is also applicable to times before 751 

the calibration period. HILDA indicates almost no growth in artificial surface area after 1990, in contrast to HANZE. However, 752 

CLC and other datasets indicate strong growth. For instance, the LUCAS land-use survey data (Eurostat 2022) for 23 countries 753 

show that artificial surface expansion of 11% in only nine years (2009–2018). Cropland change is similar in both datasets (Fig. 754 

10b) as largely similar data sources were used after 1950. Before that date HANZE used various national statistical data, while 755 

HILDA interpolated historical statistics or maps from 1950 backwards to 1900. The datasets differ significantly for pastures 756 

and forests. HILDA indicates a strong decrease in the area covered by pastures, which are replaced mostly by forests. By 757 

contrast, the historical statistics collected for HANZE do not indicate a decline in pasture area or growth in forest land as found 758 

in HILDA (see Supplement Fig. S9c). However, because there is no detailed model for transitions between forest land cover 759 

and other natural land in HANZE, reforestation of various natural land types that fall under “pastures” category in HILDA is 760 

not captured. Due to the low exposure and negligible importance for flood risk assessment of areas where these transitions 761 

occur we do not address them with a more detailed model. Finally, HILDA indicates a decline in area covered by water, which 762 

is opposite to HANZE, where reservoir construction leads to the overall expansion of water bodies in Europe. 763 

 764 
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 765 

Figure 10. Artificial surfaces in thousand km² (a) and other main land use classes relative to year 2010 (b) in HANZE (this study) 766 

and HILDA, for the 29 countries and six aggregated CLC land cover/use classes available in HILDA (see 2.6.3). 767 

 768 

3.2.4 Reported disaster losses and exposure change 769 

Five illustrative event examples are shown in Fig. 11/12 and Table 11 to highlight how varied, and at times uncertain, exposure 770 

changes can be. The map in Fig. 11 presents population change within flood footprints of those events. Economic growth has 771 

been very strong everywhere in the study area. Smaller maps in Fig. 12 present exposure change between 1870 and 2020 in 772 

the Adige basin, one of the affected areas, with middle panels showing the timestep of HANZE closest to the year of the 1928 773 

flood event. The other examples can be found in Supplementary Fig. S11. 774 

The event in south-western France in March 1930 affected a large area in the Garonne, Agout and Tarn basins after several 775 

days of exceptional rainfall. Strong and continuous population growth was recorded in the region, almost threefold since the 776 

event. Assuming constant flood intensity and vulnerability, if the same event happened today, it would have been a 10-billion-777 

euro disaster. Another event caused by heavy spring rainfall, in the Adige river basin (north-eastern Italy) in March-April 1928 778 

does not seem very damaging if analysing only the nominal losses at that time, which amounted to 90 million euro (at 2020 779 

price level). The population within the footprint of the event has grown by no more than a third since then, but assets in the 780 

area have grown much more strongly: when adjusting with fixed asset growth, more than 2 billion euro would have been lost 781 

today. Adjusting the loss with GDP leads to lower “normalized” loss of about 0.7 billion euro. This highlights the uncertainty 782 

when correcting the monetary estimate of losses. The differences stem from structural changes in the economy and evolution 783 

of wealth-to-GDP ratio for the different sectors, and changes in spatial distribution of population and assets. Still, historical 784 

estimates of flood losses almost exclusively pertain to direct loss of tangible assets, hence normalization by fixed assets is 785 
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more suitable. The ratio between losses normalized by fixed assets and losses normalized by GDP is a measure for the coping 786 

capacity, as when asset replacement value grows faster than incomes, it becomes more difficult to afford the losses incurred. 787 

A major flood in the Tisza river basin (eastern Hungary) in May-June 1970 happened, as our data show, at the peak of 788 

population exposure in the area. After growing strongly in the late 19th and early 20th century, population stagnated in the 789 

affected area and has declined by around 10% since the flood occurred. In the case of the catastrophic coastal flood in Hamburg 790 

caused by the highest storm surge in two centuries in February 1962, the trend of growing population exposure is clear. 791 

However, the large uncertainty especially in the first half of the 20th century is noticeable. At the same time, the median 792 

estimate is close to the lower bound. This indicates that a significant portion of the flood hazard zone is located on the edges 793 

of the city, where new development has taken place, but most likely still unbuilt until recent decades. The final example is a 794 

coastal flood that affected the Estonian city of Pärnu in January 2005, the only major flood in that country recorded in HANZE 795 

v1.0. Exposure changed rather little since this relatively recent event, but the past is more complicated with disruption caused 796 

by World War II clearly visible. The abrupt reduction in population in an otherwise slowly increasing trend creates large 797 

uncertainty on the exact distribution of population and, consequently, assets, in the preceding decades. After a period of quick 798 

rebound, the population stagnated in recent decades. Similarly to Hamburg, hazard zones are largely on the edges of urban 799 

areas, where it is most uncertain where exactly and how fast the local artificial environment has changed.  800 

 801 
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 802 

Figure 11. Flood hazard zones with a 100-year return period, not considering flood protection (coastal: Paprotny et al. 2019, riverine: 803 

Alfieri et al. 2014). Graphs show median (red line) total population in thousands (1870–2020), with 95% uncertainty intervals (red 804 

shadings) on the Y axis with years on the X axis, within the approximate footprints of large historical floods. Subplots were generated 805 

using the model’s code. National boundaries outside the study area based on Natural Earth (2022). 806 
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 807 

Table 11. Reported and normalized (exposure-adjusted) flood losses from large historical events (see also Fig. 5). Reported losses 808 
from HANZE v1.0. Normalized losses are shown with 95% uncertainty intervals. FA: fixed assets. 809 

Event 

Reported losses at the time of the event Normalized losses at 2020 level of exposure 

Fatalities 

Persons 

affected 

(‘000s) 

Assets damaged (billions) 

Fatalities 

Persons 

affected 

(‘000s) 

Assets damaged  

(billion euro) 

Original 

currency  
2020 euros 

GDP-

adjusted 

FA-

adjusted 

Coastal flood in 

Hamburg, 

Germany, 1962 

315 20.0 2.5  

[Mark] 

5.8 454  

[344–464] 

28.8  

[21.9–29.5] 

16.2  

[15.1–16.3] 

28.7  

[26.4–28.8] 

Riverine flood in 

southern France, 

1930 

230 16.2 1.0 

[Franc 

germinal] 

0.8 582 

[545–620] 

41.0 

[38.4–43.6] 

10.4 

[10.0–10.6] 

7.8 

[7.6–7.9] 

 

Riverine flood in 

eastern Hungary, 

1970 

215 27.2 5.1 

[Forint] 

0.6 196 

[193–200] 

24.8 

[24.4–25.4] 

1.60 

[1.58–1.62] 

2.35 

[2.33–2.37] 

Riverine flood in 

north-eastern Italy, 

1928 

0 6.5 0.08 

[Lira] 

0.09 0 7.7 

[7.2–8.5] 

0.65 

[0.64–0.67] 

2.25 

[2.19–2.34] 

Coastal flood in 

Pärnu, Estonia, 

2005 

1 3.15 0.75 

[Kroon] 

0.09 1 3.29 

[3.19–3.31] 

 

0.09 0.10 
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 810 

Figure 12. Land cover/use, population and fixed asset distribution around the area affected by the 1928 river flood in the Adige 811 
basin, in 1870, 1930 and 2020, contrasted with the 100-year river flood hazard zone (grey shading) from Paprotny et al. (2019). 812 
Figure generated with the model’s code. 813 

4. Usage 814 

The user can apply the model’s code in several ways. All input datasets (Supplementary Table S3) are available from the 815 

repository (see “Code and data availability”), hence the user only needs only to download them and change the defined path 816 

to the folder with data. Then, the code can be run using the basic options embedded in the code, which are: 817 

● generating five exposure rasters (land cover/use, population, GDP, fixed assets, soil sealing) in GeoTIFF format and 818 

100 m resolution. A single year or multiple years out of those included in the database (10-yearly 1870–1950, 5-819 

yearly 1950–2000, annually 2000–2020) could be run. Also, all NUTS3 regions could be included, or only a single 820 
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NUTS3 region, or several regions. The output exposure maps are also available in the repository, as even if the model 821 

is rather efficient given its resolution (about one hour for one timestep for all NUTS3 regions), computing all 40 822 

timesteps of the study would require large resources or time. 823 

● computing exposure (population, GDP, fixed assets) per hazard zone. A raster file with the same spatial extent as the 824 

other input raster files is needed for this. Example files are provided in the repository, which enable reproducing the 825 

analysis presented in section 3.2. Using this option, a text file with data (for years defined by the user) is saved 826 

separately for each NUTS3 region. 827 

● computing exposure with uncertainty bounds per hazard zone. This is an extension of the previous option, which 828 

saves a text file per region and variable (population, GDP, fixed assets) with the 5th, 20th, 50th, 80th, and 95th percentile. 829 

The code also enables, for reproducibility, computing some of the input data. Many of the input datasets required extensive 830 

one-off preparations, hence only certain pre-processing steps could be included. Importantly, the population disaggregation 831 

routine described in section 2.2.2 can be rerun. The population thresholds for dasymetric mapping can also be recomputed, as 832 

well as the probability maps used in land-use modelling (section 2.4). Code for reproducing the validation of population change 833 

(section 3.2.2) and land-use change (section 3.2.3) is also included. Finally, the code enables visualising selected exposure 834 

information per flood event (from HANZE v1.0) in the form of graphs (like the subplots in Fig. 11) and maps (as in Fig. 12) 835 

as well as reproducing Fig. 7 for any user-defined NUTS3 region. 836 

The model can be used beyond the temporal or spatial setting defined in it, though this requires user-defined input data 837 

(corresponding to those listed in Supplementary Table S3). Complexity of such adjustments depends on the desired outcomes: 838 

● To apply the model for different timesteps, the necessary historical statistics (i.e. all of those listed in Table 2) have 839 

to be added to the input Excel files (“Region_database_population_lu” and “Region_database_economy”). In 840 

principle, this possibility could be used to create exposure maps for future scenarios. 841 

● To run a different NUTS region definition, apart from adapting the historical statistics, the vector map with the 842 

administrative boundaries and attributes would need replacing together with a corresponding raster file. 843 

● To run the model in a completely different domain, all input files (historical statistics, vector map of regions and all 844 

rasters) need to be replaced with data that have a consistent definition of regional units and the same spatial extent. 845 

5. Discussion 846 

5.1 Limitations 847 

The model is in principle applicable in another domain, or to create future projections (e.g. disaggregating the global Shared 848 

Socio-Economic Pathways, or SSP, scenarios), but might not necessarily be the right model. This is because the processes that 849 

are represented are those that were observed in Europe (without Eastern Europe) in the past 150 years. The subcomponents of 850 

the model were quantified or calibrated based on high-resolution historical data specific for the continent in a particular time 851 
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frame. In some cases, calibration parameters could be easily changed in the model (weights for distance from urban centre, 852 

urban fabric transition or population disaggregation thresholds, elasticity of industrial area to production). In other crucial 853 

elements, such as the Bayesian Network for land-use transitions or the copulas for sub-regional populations, changes would 854 

require more substantial effort.  855 

As noted in the introduction, the HANZE is not a general-purpose land-use change model. Its focus on high-exposure areas: 856 

urban, industrial and agricultural results in natural land cover being modelled only parsimoniously or not at all. Changes in 857 

natural areas are represented as a consequence of encroachment of artificial or agricultural land, additionally modelled mainly 858 

in the reverse chronological sequence. Consequently, transitions between e.g. forests and grasslands are not represented by a 859 

dedicated sub-model. Some elements of infrastructure (e.g. ports) are kept constant in the model due to the lack of necessary 860 

data in the temporal dimension. Still, this has a small impact on the exposure distribution, as only about 1% of both population 861 

and assets are located in natural areas or those covered by infrastructure excluded from modelling (Table 3). The change in 862 

population distribution and asset value per unit area is applied across all land cover and use types. 863 

5.2 Uncertainties 864 

Several elements of the model generate uncertainty on the distribution of exposure at any given time point. The lowest 865 

uncertainty is related to the baseline layers, as they are the most precise products currently available. The 1 km population grid 866 

is almost entirely based on enumerated and georeferenced population, while the disaggregation performed here has shown 867 

favourable results relative to an alternative high-resolution benchmark dataset. There is a tendency to smooth the population 868 

distribution, which is difficult to avoid without more precise building data. The land cover/use and imperviousness datasets 869 

have nominal thematic accuracy of >85% and >90%, respectively (Copernicus Land Monitoring Service 2022), but 870 

misclassifications could locally strongly affect the disaggregation of population and asset value.  871 

Historical statistics that drive the model come from a vast array of heterogeneous sources. Whereas data on total population is 872 

generally taken from accurate census records and available in high spatial detail, the availability of other regional data and 873 

their comparability between countries vary to a larger degree. Official statistics on GDP and fixed assets have mostly short 874 

time series, and economic data beyond the recent decades are predominantly scientific reconstructions of varying detail and 875 

accuracy. Historical land cover/use and urban population data are affected by large differences in classification between 876 

countries and time periods. For all variables, inaccuracies could be introduced when recomputing data produced for historical 877 

administrative divisions to NUTS version 2010 (or data from newer NUTS editions, for that matter). Actual availability of 878 

NUTS3 data for population (total/urban) and GDP is summarised in Supplementary Fig. S2. 879 

Disaggregation of economic data has considerable uncertainty, mainly regarding GDP. In contrast to fixed assets, which have 880 

a defined geographical location, GDP can be allocated to different places, depending on the approach to measure it. Three 881 

main approaches exist: the production, income and the expenditure approach. Even at NUTS3 level, GDP is often problematic 882 

to measure (European Union 2013). Here, we apply the income approach, splitting GDP into labour (disaggregated according 883 
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to population) and capital (disaggregated by land-use) inputs. Using the production approach would have allocated a majority 884 

share to land-use, making the distribution very similar to fixed assets. The expenditure approach is not feasible already at 885 

NUTS3 level (European Union 2013). The labour/capital shares were simplified here to 60/40, even though the exact value 886 

varies by country and year. Data over longer time periods are not available for most countries, hence the simplification of a 887 

fixed 60/40 ratio. 888 

Finally, the most significant source of uncertainty are the model components. It is a combination of statistical and rule-based 889 

methods, focused on high-exposure areas, developed knowing the major constraint of data availability. Validation data is also 890 

limited and indicates that the model’s performance varies by country and drops the further it diverges from the baseline year. 891 

For the elements of the model using probabilistic methods (sub-regional population, agricultural land-use) the uncertainty is 892 

quantified and can be calculated for any user-defined hazard zone. Comparison with other datasets (GHS population grid, 893 

HILDA historical land use dataset) indicate that HANZE achieves similar or better results despite simplifying inputs and 894 

methods. Improved resolution of historical statistics results in better reconstruction of past population distribution than the 895 

global HYDE dataset that uses an approach similar to HANZE (in essence, disaggregating land-use and population changes 896 

defined in historical data). 897 

6. Conclusions 898 

HANZE is an openly-accessible model and dataset intended to support natural hazard research in Europe. The main application 899 

of the model is deriving exposure (demographic and economic) for any defined hazard zone or disaster footprint at any point 900 

in time since 1870. Past trends in events impacts on the population or the economy can’t be properly understood or attributed 901 

to changing climate without considering how exposure changed in the temporal dimension. Availability of hazard maps and 902 

footprints of historical events is not constrained to floods (Dottori et al. 2022), but covers e.g. wildfires (Giglio et al. 2018) 903 

and windstorms (Copernicus Climate Change Service 2022). Examples presented in section 3.2 highlight how different local 904 

exposure trends can be within Europe. 905 

Yet, the model could support climate change attribution in other aspects. Land cover/use and soil sealing maps could inform 906 

changes in impervious and agricultural land, which affect river runoff and therefore magnitude of flood hazard, especially in 907 

small river basins (Sebastian et al. 2019). Land cover/use, population and GDP all influence water use, another important 908 

factor in hydrological modelling (Vandecasteele et al. 2014). Therefore, HANZE could be a basis for creating factual and 909 

counterfactual scenarios for European hydrological models (Alfieri et al. 2016) that consider human influence on the 910 

environment beyond climate change. Vulnerability modelling, based on historical impact data, would be enabled by HANZE 911 

not only by providing information on exposure at the time when a particular disaster occurred, but also providing predictors 912 

of vulnerability. Paprotny et al. (2018b) has shown that vulnerability computed for major historical floods is correlated with 913 
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GDP per capita, population density, land use structure and wealth structure. In microscale, flood adaptation is correlated e.g. 914 

with household income (Bubeck et al. 2012), which is a major component of GDP. 915 

In the future, we expect to use the model for the array of applications highlighted above, with the ultimate goal of attributing 916 

historical flood impacts to both environmental and economic drivers. This will involve collecting improved historical flood 917 

impact data, the hydrodynamic modelling of historical floods and combining impact data with exposure computed in this work. 918 
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