¹ Supplementary Information for

- ² "Reconstruction of past exposure to natural
- hazards driven by historical statistics: HANZE
 v2.0"
- 5

6 Contents

7	Supplementary Figure S1. HANZE domain	2
8	Supplementary Table S1. Sources of administrative boundaries	3
9	Supplementary Figure S2. Regional data availability in HANZE	5
10	Supplementary Figure S3. Special case of Dutch land reclamations	6
11	Supplementary Text S1. Local population estimates, 1961-2011	7
12	Supplementary Figure S5. Virtual LAUs	9
13	Supplementary Text S2. Calibrating urban population change	10
14	Supplementary Text S3. Data for the land-use transition model	12
15	Supplementary Figure S8. Observed population change in Austria	14
16	Supplementary Figure S9. Drivers of exposure in Europe	15
17	Supplementary Figure S10. Exposure to coastal floods, 1870-2020	16
18	Supplementary Figure S11. Exposure to floods for selected flood events	17
19	Supplementary Table S3. Input and output files	19
20	Supplementary references	22

21

Supplementary Figure S1. HANZE domain. National boundaries outside the study area based on Natural Earth (2022). See
 Table S1 for sources of boundary data within the study area.

28 Supplementary Table S1. Sources of administrative boundaries

- 29 Supplementary Table S1. Sources of administrative boundaries. Countries not listed here were collected from
- 30 OpenStreetMap (© OpenStreetMap contributors 2022. Distributed under the Open Data Commons Open Database

31 License (ODbL) v1.0). All links last accessed 5 May 2022.

Country	Provider	Dataset name	URL
Austria	Bundesamt für Eich- und	Verwaltungsgrenzen (VGD) - Stichtagsdaten	[1]
	Vermessungswesen	grundstücksgenau	
Belgium	FPS Finance - General	Administrative units - Municipalities	[2]
	Administration of Patrimonial		
	Documentation (GAPD)		
Estonia	Estonian Administrative and	Counties	[3]
	Settlement Division		
Finland	The National Land Survey of	The regions of Finland 2021 with the 2018	[4]
	Finland	regional codes [used in combination with	
		OpenStreetMap data]	
Germany	Bundesamt für Kartographie	NUTS-Gebiete 1:250 000, Stand 01.01.	[5]
	und Geodäsie	(NUTS250 01.01.) [except Mecklenburg-	
		Vorpommern, where OpenStreetMap data	
		were used]	
Greece	Hellenic Mapping and	Boundaries of Prefectures (HMCO);	[6][7]
	Cadastral Organisation	Boundaries of the Local Authorities (LAs)	
		(pre-Kapodistrian)	
Ireland	Ordnance Survey Ireland	Small Areas Ungeneralised - OSi National	[8][9]
		Statistical Boundaries – 2015; Local	
		Electoral Areas Boundaries Ungeneralised -	
		OSi National Administrative Boundaries -	
		2015	
Italy	Istituto Nazionale di Statistica	Municipal Boundaries of Italy 2019 [only for	[10]
	(ISTAT)	Sardegna, otherwise OpenStreetMap	
		provinces used]	
Norway	Kartverket	Administrative enheter kommuner	[11]
Poland	Główny Urząd Geodezji i	PRG – jednostki administracyjne	[12]
	Kartografii		
United	Office for National Statistics	Local Authority Districts (May 2020)	[13]
Kingdom		Boundaries UK BFE	

- 33 [1] <u>https://www.data.gv.at/katalog/dataset/verwaltungsgrenzen-vgd-stichtagsdaten-</u>
- 34 grundstucksgenau
- 35 [2] <u>https://www.geo.be/catalog/details/591e7f88-c443-4659-b8b7-23601d647ee6?l=en</u>
- 36 [3] <u>https://geoportaal.maaamet.ee/eng/Spatial-Data/Administrative-and-Settlement-Division-</u>
 37 p312.html
- 38 [4] <u>https://www.avoindata.fi/data/en_GB/dataset/suomen-maakunnat-2021-vuoden-2018-</u>
 39 maakuntakoodeilla
- 40 [5] <u>https://gdzshopv-lpz.bkg.bund.de/index.php/default/catalog/product/view/id/773/s/nuts-</u>
- 41 gebiete-1-250-000-stand-01-01-nuts250-01-01/category/8/?___store=default
- 42 [6] <u>http://geodata.gov.gr/en/dataset/oria-nomon-okkhe</u>

- 43 [7] <u>http://geodata.gov.gr/en/dataset/oria-ota-pro-kapodistria</u>
- 44 [8] <u>https://data-osi.opendata.arcgis.com/datasets/small-areas-ungeneralised-osi-national-statistical-</u>
- 45 <u>boundaries-2015/explore?location=53.424600%2C-8.379100%2C7.63</u>
- 46 [9] <u>https://data-</u>
- 47 <u>osi.opendata.arcgis.com/datasets/1516dc49dfc64395b5a6ff582cba8150_3/explore?location=53.424</u>
- 48 <u>600%2C-8.379100%2C7.63</u>
- 49 [10] <u>https://hub.arcgis.com/datasets/inspire-esri::municipal-boundaries-of-italy-2019/about</u>
- 50 [11] <u>https://kartkatalog.geonorge.no/metadata/administrative-enheter-kommuner/041f1e6e-bdbc-</u>
- 51 <u>4091-b48f-8a5990f3cc5b</u>
- 52 [12] <u>https://www.geoportal.gov.pl/dane/panstwowy-rejestr-granic</u>
- 53 [13] <u>https://geoportal.statistics.gov.uk/datasets/local-authority-districts-may-2020-boundaries-uk-</u>
- 54 <u>bfe?geometry=-44.245%2C51.101%2C39.383%2C59.782</u>
- 55

Supplementary Figure S2. Regional data availability in HANZE 56

59 Supplementary Figure S2. Availability of regional data in HANZE (v1 from 2017 and v2 in this study) and HYDE v3.2. The

60 data are for the domain of HANZE v1, i.e. without non-EU Balkan countries, and with a 10-yearly timestep for 1870-2000

61 and 5-yearly for 2000-2020, except GDP shown with a 10-yearly timestep for 1870-1970 and 5-yearly for 1970-2020.

Supplementary Figure S3. "Zuiderzeewerken" land reclamations by year of construction, overlaying Corine Land Cover
 2012 map (Copernicus Land Monitoring Service 2022).

68 Supplementary Text S1. Local population estimates, 1961-2011

- 69 Gløersen and Lüer (2013) collected population data at the level of local administrative units (LAUs) 70 based on censuses made from ca. 1960 to 2011. The data were recalculated to a single set of
- subdivisions to allow consistent comparison through time. For most countries, data represent LAU
- 72 level 2 (as defined by Eurostat), which is the lowest level of administrative divisions in a given country.
- 73 For Lithuania and Slovenia, a more aggregated level (LAU 1) was provided. The data was provided at
- 74 census dates and interpolated (sometimes also extrapolated) to benchmark dates, spanning full
- 75 decades from 1 January 1961 to 1 January 2011; the interpolated data were used in the analysis. The
- coverage of the study area is not complete. The following additions were made:
- In North Macedonia, there has been no census since 2002, hence mid-year estimates for 2011
 from the Republic of North Macedonia State Statistical Office (2021) was used. Due to gaps in
 data and spatial data limitations, the population figures were aggregated to LAU 1 level, with
 10 LAUs in the Skopje area aggregated further to a single unit;
- Data for Serbia was taken at LAU 1 level from the Statistical Office of the Republic of Serbia
 (2021);
- For five small countries and territories (Andorra, Isle of Man, Monaco, San Marino, the
 Vatican), population for the entire territory as compiled in the HANZE database was used.

The Eurostat's dataset doesn't also cover Albania, Bosnia and Herzegovina, Kosovo and Montenegro. Those countries were excluded from further analysis due to difficulty in gathering the necessary population and spatial data. Also, data is completely missing for 240 out of 614 LAUs in Cyprus, however the vast majority of those are located wholly or partially in Northern Cyprus, therefore outside this study's domain. Data is also missing for some years in 15 LAUs located in Czechia (3), Cyprus (1), France (1), Germany (3), Malta (2) and Slovakia (5).

91 The tabular data were merged with spatial data from Eurostat. As the subdivisions refer to different 92 time points for different countries, and are also not always internally consistent, several datasets 93 produced by EuroGeographics and provided to Eurostat were used ("Communes" for different years 94 and "Census units 2011"). Due to the resolution of spatial data, population figures for Denmark, 95 Greece, North Macedonia and Portugal had to be aggregated to LAU 1 level. For some countries, 96 individual local units had to be aggregated, split or redrawn in order to match the subdivisions used 97 in the population dataset. For 37 out of 3441 LAUs in Ireland and 86 out of 9499 LAUs in the United 98 Kingdom it was to possible to match tabular and spatial data due to large administrative boundary 99 changes.

100 The final map contains 109,419 LAUs (Fig. S4). Of these, 378 LAUs are not usable due to missing 101 population data and 364 LAUs have no population¹, resulting in a total of 108,679 LAUs with generally 102 consistent population data for 1961-2011. It was noticed for a small number of cases (e.g. for some 103 locations in Italy) that the data were not fully adjusted for administrative boundary changes. Still, the 104 benefit of the dataset for analysing for population changes in Europe is very large.

¹ These are non-municipal areas, e.g. lakes, forests or military bases, occurring in Cyprus, Estonia, France, Germany, Lithuania, North Macedonia, Spain and Switzerland.

Supplementary Figure S4. Population change by local administrative unit between 1961 and 2011 (see text for data sources). National boundaries outside the study area based on Natural Earth (2022).

109 Supplementary Figure S5. Virtual LAUs

110 Supplementary Figure S5. Virtual LAUs (red lines) in a fragment of Germany and Poland compared with actual LAUs 112 (black line) from Eurostat 2021.

114 Supplementary Text S2. Calibrating urban population change

115 The calibration utilizes Clark's (1951) model of population density, which he described with an 116 exponential function:

 $y = Ae^{-bx}$

(1)

where y is the population density (in persons per ha), x is the distance from the city centre (in km), A 118 and b are exponential function coefficients. Clark (1951, 1967) provided estimates of A and b for 16 119 120 cities in 9 countries for 29 time points. Hourihan (1982) provided additional estimates for 3 cities from 121 several censuses, of which 13 cases were used (estimates made with only a few data points were 122 excluded). That gives a total of 42 estimates spanning a whole century, from 1871 to 1971 (Table S2). 123 In the population map constructed here the population density was calculated for 500 m wide zones 124 around (arbitrarily chosen) city centre, interpolated to match the time points from literature and then 125 fitted to an exponential function. The model was run many times using random weighting of five 126 datasets indicating distance from urban centre. A comparison of function parameters for a most optimal combination is presented in Fig. S6. Overall, the fit is moderate, but a better match of 127 128 modelled and observed estimates of eq. 1 parameters would be difficult, since the exponential curve 129 fits are very sensitive to the sample size, i.e. spatial resolution of data and maximum distance from 130 the city centre. The latter is not known for all cities. Additionally, the source literature studies used 131 census wards of different sizes instead of a disaggregated population grid used here.

133 Supplementary Figure S6. Estimates of A and b parameters (eq. A1) from modelled and observed population data.

135 Supplementary Table S2. Estimates of urban population density. A, b – exponential function parameters (adjusted to

136 give population density in persons per ha, rather than persons per sq. mile as in Clark 1951 and Hourihan 1982). D – 137 maximum distance from the city centre (km), for which population data were used to calculate exponential function

138 parameters (values in red are estimates, as the source does not specify the distance).

Name	Region	Year	Α	b	D	Source
Aarhus	DK042	1950	279	0,96	5	Clark 1967
Berlin	DE300	1885	1120	0,68	8	Clark 1951; Clark 1967
Berlin	DE300	1900	1580	0,59	10	Clark 1951; Clark 1967
Birmingham	UKG31	1921	401	0,50	11	Clark 1967
Birmingham	UKG31	1938	201	0,29	12	Clark 1967
Budapest	HU101	1935	1080	0,56	5	Clark 1951; Clark 1967
Copenhagen	DK011	1940	231	0,37	7	Clark 1967
Cork	IE025	1926	199	1,02	3	Hourihan 1982
Cork	IE025	1936	177	0,88	3	Hourihan 1982
Cork	IE025	1951	176	0,91	4	Hourihan 1982
Cork	IE025	1961	114	0,70	4	Hourihan 1982
Cork	IE025	1971	158	0,62	4	Hourihan 1982
Dublin	IE021	1901	391	0,68	4	Hourihan 1982
Dublin	IE021	1911	379	0,65	4	Hourihan 1982
Dublin	IE021	1926	352	0,59	4	Hourihan 1982
Dublin	IE021	1936	270	0,53	6	Clark 1951; Clark 1967
Dublin	IE021	1951	106	0,25	8	Hourihan 1982
Dublin	IE021	1961	105	0,21	8	Hourihan 1982
Dublin	IE021	1971	113	0,17	8	Hourihan 1982
Frankfurt am Main	DE712	1890	550	1,16	5	Clark 1967
Frankfurt am Main	DE712	1933	340	0,57	6	Clark 1967
Leeds	UKE42	1951	116	0,31	9	Clark 1967
Limerick	IE023	1961	136	1,09	3	Hourihan 1982
Limerick	IE023	1971	126	0,88	3	Hourihan 1982
Liverpool	UKD72	1921	1275	0,50	9	Clark 1951; Clark 1967
London	UKI11	1871	865	0,38	17	Clark 1967
London	UKI11	1901	660	0,23	20	Clark 1967
London	UKI11	1921	443	0,17	25	Clark 1967
London	UKI11	1931	475	0,17	26	Clark 1967
London	UKI11	1939	320	0,14	28	Clark 1967
London	UKI11	1951	240	0,12	29	Clark 1967
London	UKI11	1961	205	0,09	33	Clark 1967
Manchester	UKD31	1931	155	0,16	18	Clark 1951
Manchester	UKD31	1939	143	0,18	20	Clark 1967
Oslo	NO011	1938	308	0,50	4	Clark 1951; Clark 1967
Paris	FR101	1896	1430	0,50	12	Clark 1951; Clark 1967
Paris	FR101	1931	1820	0,47	14	Clark 1951; Clark 1967
Paris	FR101	1946	695	0,21	16	Clark 1967
Stockholm	SE110	1880	610	1,30	10	Clark 1967
Stockholm	SE110	1940	425	0,48	10	Clark 1967
Vienna	AT130	1890	660	0,50	7	Clark 1951; Clark 1967
Zurich	CH040	1936	328	0,29	8	Clark 1967

140 Supplementary Text S3. Data for the land-use transition model

Data for the land-use transition model, implemented as Bayesian Network, was obtained by sampling the CLC inventory. Firstly, vector layers of CLC-Changes 2000-2006, 2006-2012 and 2012-2018 were obtained (1,194,980 patches). The CLC classes before and after transition were grouped together as follows:

- Urban fabric (CLC 111-112);
- Other artificial (CLC 121-142);
- Croplands (CLC 211-223 and 241-244);
- 148 Pastures (CLC 231);
- Natural (CLC 311-324, 333 and 411-412);
- Other (CLC 331-332, 334-335, 421-523).

CLC-Changes patches transitioning within a given group, or transitioning from/to "Other" classes were 151 excluded from further analysis, leaving 240,870 patches of varying size. To sample the inventory, a 152 153 "fishnet" of 25x25 km cells was created and clipped to the land mask of the baseline land cover/use map. It was further clipped to the remaining CLC-Changes patches. In each cell of the fishnet, $1 + \frac{A}{r}$ 154 samples (rounded to the nearest integer) within the borders of CLC-Changes patches were generated², 155 156 where A is the area of all patches within a fishnet cell (in hectares). The samples were generated at 157 least 100 meters apart due to the resolution of most raster data used throughout this study. In total, 158 513,915 locations with land-use transitions were obtained. Then, an equal number of samples in each 159 fishnet cell were generated in the remaining area of the cells. In this way, the same number of random 160 locations where no land-use transitions took place between 2000 and 2018 was obtained with the 161 same spatial distribution as the other dataset. Instances of transitions are many times fewer in reality, but as we are interested in the relative probability of transition between CLC classes rather than the 162 163 total probability, we can sample a greater proportion of transitions to better quantify the patterns of 164 land-use changes. An example of sample locations is presented in Fig. S7. 165 A smaller validation dataset was created as well. A new set of random points was generated in the 166 fishnet, but the number of samples per cell was capped at 15, resulting in 97,790 samples each for

167 transitions and non-transitions, with a much more even spatial distribution throughout Europe.

- 168 The sample locations were used to extract data from various raster datasets, as follows:
- Population density in 2011 computed using kernel density and per "virtual" LAU (see section 3.4.1);
- Euclidean distances from urban centres based on five datasets (see section 3.4.1);
- Elevation (in meters) and slope (per mille) computed from EU-DEM dataset at 100 m resolution (Eurostat 2021);
- Agricultural suitability indices calculated by FAO (2021) in the Global Agro-Ecological Zoning version 4 (GAEZ) database for five different crops (alfalfa, grass, wheat, rye and white potato):
 - Suitability index range (0–10000), with all land in grid cell under rainfed conditions;
 - Output density (potential production divided by total grid cell area) under rainfed conditions;
- Agro-climatic potential yield with an available water content of 200 mm/m (under irrigation conditions).

176

177

² Using "Create Random Points" tool in ArcGIS 10.7.1

- 181 The agricultural indices were all for the historical period 1971-2000 using CRUTS32 climate data,
- assuming high input level and without CO₂ fertilization. The indices combine data on climate, soil and

terrain to estimate potential yield of various crops. The resolution of this dataset is 5' (about 4–7 km,

- 184 depending on location).
- 185

188

189 Supplementary Figure S8. Observed population change in Austria

190

Supplementary Figure S8 Observed population change in Austria by local administrative unit, 1870-2020 (based on
 Statistik Austria 2022).

194 Supplementary Figure S9. Drivers of exposure in Europe

201 Supplementary Figure S10. Exposure to coastal floods, 1870-2020

Supplementary Figure S10. Change in the number of population within 100-year coastal flood zones (Paprotny et al.
 2019), 1870-2020, aggregated from 100 m resolution to NUTS3 regions.

206 Supplementary Figure S11. Exposure to floods for selected flood events Estonia (2005)

Supplementary Figure S11. Exposure in the vicinity of floods described in the paper, in 1870, timestep nearest to the year
 of the event and 2020. River or coastal flood hazard zone is shown in the background.

213 Supplementary Table S3. Input and output files

214

215 Supplementary Table S3. List of files of HANZE v2.0 model. XXXX = timestep (year). Sections refer to the main text.

File	Format	Variables / contents
Output		
CLC_XXXX	8-bit GeoTIFF	Land cover/use type, 44 classes according to Corine Land Cover
Pop_XXXX	16-bit GeoTIFF	Total population per grid cell (in persons)
GDP_XXXX	32-bit GeoTIFF	Gross domestic product (GDP) per grid cell per year (euro in constant 2020 prices)
FA_XXXX	32-bit GeoTIFF	Wealth per grid cell (euro in constant 2020 prices)
Imp_XXXX	8-bit GeoTIFF	Soil sealing degree (%)
Input		
Region_database_population_lu	Excel file	Input land use/cover and population data (2.3)
Region_database_economy	Excel file	Input and auxiliary economic data (2.3)
CLC_base_HANZE2	8-bit GeoTIFF	Baseline land cover/use type, 44 classes according to Corine Land Cover (2.2.1)
Population_100m	16-bit GeoTIFF	Total baseline (disaggregated) population per 100 m grid cell (in persons) (2.2.2)
IMD2012_extent_adjusted	8-bit GeoTIFF	Soil sealing degree in % (2.2.1)
NUTS2010_final_100m	Shapefile	NUTS3 (version 2010) region definitions (2.2.3)
NUTS2010_100m_c	8-bit GeoTIFF	NUTS3 region definitions (numerical value from vector file attribute table) (2.2.3)
gras200a_yld_LAEA2	16-bit GeoTIFF	Agro-climatic potential yield for grass (2.4.10)
ylHr0_whe_LAEA2	16-bit GeoTIFF	Output density for wheat (2.4.10)
Airports_year_v2	8-bit GeoTIFF	Airports by year of construction (2.4.4)
Slope_per_mille_int_masked	16-bit GeoTIFF	Slope (per mille) from EU-DEM (2.4.10)
BN_to_urban	16-bit GeoTIFF	Probability map of transition from non-urban to urban after the baseline year (2.4.10)
BN_to_crop	16-bit GeoTIFF	Probability map of transition from non- cropland to cropland after the baseline year (2.4.10)
BN_to_past	16-bit GeoTIFF	Probability map of transition from non-pasture to pasture after the baseline year (2.4.10)
BN_from_crop	16-bit GeoTIFF	Probability map of transition from cropland to non-cropland after the baseline year (2.4.10)

BN_from_past	16-bit GeoTIFF	Probability map of transition from pasture to non-pasture after the baseline year (2.4.10)
BN_to_crop_p	16-bit GeoTIFF	Probability map of transition from non- cropland to cropland before the baseline year (2.4.10)
BN_to_past_p	16-bit GeoTIFF	Probability map of transition from non-pasture to pasture before the baseline year (2.4.10)
BN_from_crop_p	16-bit GeoTIFF	Probability map of transition from cropland to non-cropland before the baseline year (2.4.10)
BN_from_past_p	16-bit GeoTIFF	Probability map of transition from pasture to non-pasture before the baseline year (2.4.10)
ESM2012_street_ext_adj	8-bit GeoTIFF	Surface covered by roads and streets (%) from European Settlement Map 2012 (2.2.2/2.5)
Industry_centroids_int	32-bit GeoTIFF	Distance from centroids of industrial CLC patches in meters (2.4.6)
NL_polders	16-bit GeoTIFF	Year of construction of Dutch polders (2.4.1)
CLC_141_142_selected_v2	32-bit GeoTIFF	Green urban areas and sport facilities than are adjacent to selected artificial surfaces (2.4.9)
CLC2012_urban_d_int	32-bit GeoTIFF	Euclidean distance from centroids of urban CLC 2012 patches (2.4.2)
Clusters2011_high_density_d_int	32-bit GeoTIFF	Euclidean distance from centroids of high- density population clusters (2.4.2)
KernelDensityPop1km_int	32-bit GeoTIFF	Kernel population density with 10-km radius (2.4.1)
UN_agglomerations_d_int	32-bit GeoTIFF	Euclidean distance from centres of large agglomerations and capital cities (2.4.2)
UrbanAudit2018_d_int	32-bit GeoTIFF	Euclidean distance from centroids of cities in Urban Atlas 2018 (2.4.2)
VirtualLAU_PD_int_new	32-bit GeoTIFF	Population density of "virtual" LAUs (2.4.1)
LAU_data	CSV	Population data (1961-2011) per LAU (2.4.1)

Preprocessing data (for reproduction of certain inputs)		
Pure_Population_CLC_cells	CSV	GEOSTAT population 1 km grid cells covered with a single CLC class (2.2.2)
Population_thresholds	CSV	Thresholds for population disaggregation (2.2.2)
ESM2012_buildings	8-bit GeoTIFF	Surface covered by buildings (%) from European Settlement Map 2012 (2.2.2)
GEOSTAT_extent_adjusted	8-bit GeoTIFF	GEOSTAT 1 km population grid (2.2.2)

ESM_GEOSTAT_statistics	CSV	Average population per surface covered by buildings (%) (2.2.2)
ESM_Street_GEOSTAT_statistics	CSV	Average population per surface covered by roads and streets (%) (2.2.2)
IMP_GEOSTAT_statistics	CSV	Average population per surface covered by impervious surfaces (%) (2.2.2)
CLC_changes_sample_data	CSV	CLC land-use transition samples used to train the BN land-use model (2.4.10)
CLC_changes_nosample_data	CSV	CLC land-use non-transition samples used to train the BN land-use model (2.4.10)
BN_sample_data	NumPy file	Processed CLC land-use transition and non- transition samples used to train the BN land- use model (2.4.10)
Validation and analysis data		
LAU2_Austria_pop	Shapefile	Population of Austria by municipality, 1870- 2020, for validation (2.6.2)
BN_sample_data_validation	NumPy file	CLC land-use transition and non-transition samples used to validate the BN land-use model (2.6.3)
RAIN_coastalmap_100y	8-bit GeoTIFF	Coastal flood hazard map, 100-year return period (2.6.4)
JRC_flood_mask_100	8-bit GeoTIFF	River flood hazard map, 100-year return period (2.6.4)
Flood_events_v1.0_list	Excel file	Data on damaging floods, 1870-2016, from HANZE v1.0 (2.6.4)

218 Supplementary references

- Clark, C.: Urban Population Densities. Journal of the Royal Statistical Society: Series A, 114(4), 490–
 496, 1951.
- 221 Clark, C.: Population Growth and Land Use. Macmillan, London, 1967.
- Copernicus Land Monitoring Service: Pan-European, http://land.copernicus.eu/pan-european/, last
 accessed 6 May 2022.
- 224 Eurostat: GISCO the Geographic Information System of the COmmission,
- 225 https://ec.europa.eu/eurostat/web/gisco/overview. Last accessed 21 October 2021.
- 226 FAO: Global Agro-Ecological Zoning version 4 (GAEZ v4), https://gaez-data-portal-
- 227 hqfao.hub.arcgis.com/. Last accessed 25 November 2021.
- 228 Gløersen, E. and Lüer, C.: Population data collection for European local administrative units from
- 1960 onwards final report. Spatial Foresight GmbH, Luxembourg, 17 pp., 2013 [data available at
- 230 Eurostat, http://ec.europa.eu/eurostat/web/nuts/local-administrative-units]
- Hourihan, K.: Urban Population Density Patterns and Change in Ireland, 1901-1979. The Economic
 and Social Review, 13(2), 125–147, 1982.
- Natural Earth: 1:10m Cultural Vectors, https://www.naturalearthdata.com/downloads/10m-cultural vectors/, last accessed 8 September 2022.
- Paprotny, D., Morales Nápoles, O., Vousdoukas, M. I., Jonkman, S. N., and Nikulin, G.: Accuracy of panEuropean coastal flood mapping, J. Flood Risk Manag., 12(2), e12459, doi:10.1111/jfr3.12459, 2019.
- Republic of North Macedonia State Statistical Office: https://www.stat.gov.mk/Default_en.aspx. Last
 accessed 30 October 2021.
- Statistical Office of the Republic of Serbia: https://www.stat.gov.rs/en-us/. Last accessed 2November 2021.
- 241 Statistik Austria: http://www.statistik.at/, last accessed 15 February 2022.