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Abstract. Natural disasters caused by heavy rainfall often cause huge loss of life and property. Hence, the task of precipita-

tion nowcasting is of great importance. To solve this problem, several deep learning methods have been proposed to forecast

future radar echo images and then the predicted maps are converted to the distribution of rainfall. The prevailing spatiotem-

poral sequence prediction methods apply ConvRNN structure which combines the Convolution and Recurrent neural network.

Although ConvRNN methods achieve remarkable success, they ignore capturing both local and global spatial features simul-5

taneously, which degrades the nowcasting in regions of heavy rainfall. To address this issue, we propose a Region Attention

Block (RAB) and embed it into ConvRNN to enhance forecasting in the area with heavy rainfall. Besides, the ConvRNN mod-

els are hard to memorize longer historical representations with limited parameters. To this end, we propose Recall Attention

Mechanism (RAM) to improve the prediction. By preserving longer temporal information, RAM contributes to the forecast-

ing, especially in the moderate rainfall intensity. The experiments show that the proposed model Region Attention Predictive10

Network (RAP-Net) significantly outperforms state-of-the-art methods.

1 Introduction

Precipitation nowcasting has vital influence in the field of transportation, agriculture, tourism industry, and city alarming. Due

to the higher spatial and temporal resolution of the radar echo image, it is effective for forecasting the distribution of rainfall

by predicting the future radar echo maps and converting each pixel to the rainfall intensity according to the Z-R relationship15

Shi et al. (2017). Therefore, precipitation nowcasting is often defined as a spatiotemporal prediction problem.

Traditional approaches of precipitation nowcasting are motion field-based methods. The specific process can be briefly

divided into three parts. First, the motion field is estimated by variational radar echo tracking methods such as optical flow

Woo and Wong (2017). Second, the future radar reflectivities are advected by a semi-Lagrangian advection scheme under the

assumption of stationary movement. Third, the performance of forecasts is evaluated by comparing to ground truth. However,20

these methods do not exploit abundant historical observations.

To overcome the limitation, some deep learning-based methods have been proposed to handle precipitation nowcasting Shi

et al. (2017); Ayzel et al. (2020); Li et al. (2021). They usually build a mapping from previous observations to future maps

by learning from the abundant historical radar data. Generally, the prevailing approaches utilize the structure of ConvRNN,
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which combines the Convolution Neural Network (CNN) and Recurrent Neural Network (RNN). Furthermore, to enhance the25

spatiotemporal representation ability, other types of neural networks such as Spatial Transformer Network (STN) Shi et al.

(2017), Deformable Convolution Network (DCN) Wu et al. (2021) and Attention Module Lin et al. (2020) are introduced in

the ConvRNN unit and obtain better performance.

However, existed ConvRNN models confront three drawbacks: 1) The convolution employed in the current input only

extracts the local features instead of the large-scale representation due to fixed kernel size. It may lead to that useful information30

beyond the visual field of convolution cannot be captured and thus degrades the performance. 2) The convolution applied in

the previous hidden states only transmits local previous representation to the current states, which causes historical spatial

information cannot be fully used. 3) The update process of temporal memory limits the long-term spatiotemporal representation

preservation. Thus, the information including high echo reflectivity is easily dropped. Although some remedial solutions Wang

et al. (2018b); Luo et al. (2021) based on attention mechanism are proposed, they are hard to be applied in large-scale inputs35

and long-term predictions due to the limitation of space occupation.

To address the first two problems, we propose a Region Attention Block (RAB) and embed it into the input and hidden state,

respectively. It simultaneously exploits the global spatial representation and preserves the local feature. RAB classifies each

feature map into equal-sized tensors and each tensor gatherers a similar semantic. Then, the attention module is used to interact

with the contents of all semantics. To this end, the large-scale feature map can be captured from the global view, and meanwhile40

maintain local representations. Therefore, the large-scale spatial feature of the current input and previous hidden states can be

preserved. Moreover, to capture the long-term spatiotemporal dependency of representation without increasing parameters, we

present the Recall Attention Mechanism (RAM) to retrieval all historical inputs. More rainfall information is captured by this

component. By combining these modules, the performance for heavy and moderate rainfall can be significantly improved. In

brief, the main contributions of the paper are summarized as follows:45

1. We first propose a new attention method, namely Region Attention Block (RAB), to capture both global and local spatial

features simultaneously to improve the spatial expressivity of feature maps.

2. We embed the RAB into current inputs and previous hidden states to obtain the large-scale spatial information from the

global view and persevere different semantics at the same time. For the same echo with large-scale size and long-range

movement between the adjacent time, more useful spatial information can be extracted, which leads to more accurate50

predictions in those regions with heavy rainfall.

3. We propose the Recall Attention Mechanism (RAM) to retrieval all historical inputs with limited parameters. The repre-

sentation of moderate and heavy rainfall intensity can be preserved in the predicted unit.

2 Related Work

Traditional methods Pulkkinen et al. (2019) mainly focus on estimating the motion field between the adjacent radar maps and55

then the next prediction can be extrapolated based on this movement. Here, the motion field describes the direction and distance
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of each pixel that need to be moved at the next moment. To obtain the movement, Tracking Radar Echoes by Correlation

(TREC) Wang et al. (2013) divides the whole radar maps into serval equal-sized boxes and calculates the motion vector of each

pair’s box center by searching the highest correlation between boxes at the adjacent time steps. Another type of approach is the

optical flow-based method Woo and Wong (2017). It calculates the motion field under pixel level based on the assumption that60

the brightness of pixels remains unchanged. Upon the idea, many algorithms Ryu et al. (2020) are developed to apply the radar

maps with the large movement vector. However, the invariant brightness assumption conflicts with the realistic movements of

hydrometeors and massive historical data are utilized.

To overcome it, many deep learning-based methods Wang et al. (2017, 2019); Trebing et al. (2021) are proposed to predict

the radar sequence without the above unreasonable assumption. Most of methods commonly exploit the structure of ConvRNN.65

It combines Convolution Neural Network (CNN) and Recurrent Neural Network (RNN) to preserve the spatiotemporal feature

of the historical sequence. Furthermore, Wang et.al added a spatial memory in predicted unit Wang et al. (2017, 2018a) and

attention mechanism in temporal memory Wang et al. (2018b) to enhance the spatiotemporal representation ability of short-

term and long-term, respectively. Although these methods have remarkable performance, the visualization of their predictions

is usually burry due to the loss function and the architecture of the model Shouno (2020). To handle the issue, Generative70

Adversarial Network (GAN) Tian et al. (2019); Xie et al. (2020); Zheng et al. (2021) has been introduced in the ConvRNN

model to improve predictive clarity. Nevertheless, the non-convergence and collapse problem would cause a negative influence

on prediction. Our proposed method is different from existed deep learning methods in two aspects. In the short term, the

proposed RAB can simultaneously exploit local and global spatial-temporal representations. In the long term, the RAM can

effectively recall all historical observations with limited space occupancy.75

3 Proposed Method

3.1 Problem Definition

The precipitation nowcasting task can be defined as the spatiotemporal sequence prediction problem Shi et al. (2017). Based

on historical observations X0:t, it aims to forecast the future radar echo images X̄t+1:T that have maximum probability with

ground truth Xt+1:T as following:80

X̄t+1:T = argmaxP (Xt+1:T

∣∣X0,X1, · · · ,Xt). (1)

In this paper, t and T are set to 5 and 15 respectively, which means that ten continuous radar maps need to be predicted

according to five historical images.

3.2 Overall Architecture

The overall architecture of the proposed model RAP-Net is presented in Figure 1. It utilizes the structure of PredRNN Wang85

et al. (2017) and stacks several RAP-Units to generate the predictions from timestamp 2 to T . At any timestamp t, model pre-
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Figure 1. The overall architecture of the Region Attention Predictive Network (RAP-Net)
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Figure 2. The internal structure of the Region Attention Predictive Unit (RAP-Unit)

dicts a radar map X̂t+1 at the next timestamp t+1 according to the current radar map Xt and historical radar sequence X0:t.

The red and blue arrows denote the delivering direction of spatial memory M and temporal memory C, respectively. These two

memories preserve spatial and temporal representations, respectively. Different from the PredRNN, RAP-Net exploit dissimilar

data flow to transmit long-term spatiotemporal information X l
h which preserves all historical representations. Besides, we90
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notice that the majority of ConvRNN models Wang et al. (2017, 2018a, b, 2019); Lin et al. (2020) employ similar architecture.

Hence, the difference lies in their units instead of the employed architecture. In the experiment section, we will discuss and

analyze the performance of different units utilized by the existed methods.

The interal structure of Region Attention Unit (RAP-Unit) is shown in Figure 2. The inputs include the current input X l
t ,

previous hidden state H l
t−1, temporal memory Cl

t−1, spatial memory M l−1
t and long-term historical representation X l−1

h .95

According to Figure 1, RAP-Net is consisted of four stacked RAP-Units. At the bottom layer, X l−1
h represents all historical

inputs X0:t. While at other layers, X l−1
h is the output of previous layer. The outputs of RAP-Unit are the current hidden state

H l
t , spatial memory M l

t , temporal memory Cl
t and new long-term representation X l

h. The details of calculation are presented

according to following formulas:

X ′l
t =RAB(Xl

t),100

H ′l
t−1 =RAB(Hl

t−1),

it = σ(Wxi ∗X ′l
t +Whi ∗H ′l

t−1 + bi),

gt = tanh(Wxg ∗X ′l
t +Whg ∗H ′l

t−1 + bg),

ft = σ(Wxf ∗X ′l
t +Whf ∗H ′l

t−1 + bf ),

i′t = σ(W ′
xi ∗X ′l

t +Wmi ∗M l−1
t + b′i),105

g′t = tanh(W ′
xg ∗X ′l

t +Wmg ∗M l−1
t + b′g),

f ′
t = σ(W ′

xf ∗X ′l
t +Wmf ∗M l−1

t + b′f ),

Cl
t = it ◦ gt + ft ◦Cl

t−1,

M l
t = i′t ◦ g′t + f ′

t ◦M l−1
t ,

ot = σ(Wxo ∗X ′l
t +Who ∗H ′l

t−1 +Wco ∗Cl
t +Wmo ∗M l

t + bo),110

Hl
t = ot ◦ tanh(W1×1 ∗ [X ′l

t ,M
k
t ]),

Hl
t,X

l
h =RAM(Hl

t,X
l−1
h ∗Wl), (2)

where ‘∗’ and ‘◦’ denote the convolution and Hadamard product respectively. ‘it’,‘gt’,‘ft’,‘i′t’,‘g
′
t’,‘f

′
t’ indicate various gates,

which can be viewed as intermediate variables. Here, RAB and RAM are the Region Attention Block and Recall Attention115

Mechanism, respectively.

3.3 Region Attention Block

To address the issue, we expect that these patches can be divided adaptively and those elements with similar semantic rela-

tionships are classified into the same patch shown in Figure 3(c). To realize this idea, we propose the Region Attention Block

(RAB) whose structure is illustrated in Figure 4. First, a convolution and softmax layer are employed in the input feature map120
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Figure 4. The structure of Region Attention Block (RAB).
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F i ∈RB×C×H×W to generate F c ∈RB×N×H×W for distinguishing N classifications. Second, the original input F i is split

N groups of feature maps Fn ∈RN×B×C×H×W by the Split module following this formula:

Split(F i,F c) =Concatenate({F i
j,k,h,w ·F c

j,n,h,w|1< n <N,n ∈ Z},

axis= 0), (3)

These groups denote various semantic information extracted from different positions. Third, F qk ∈RB×N×c×h×w is con-125

volved by Fn to further exploit the feature of Fn and reduce the parameters, where the c, h and w are smaller than C, H

and W . Besides, F v ∈RN×B×C×H×W are outputed by a convolution layer applied in Fn to preserve original information.

Forth, three different convolutions are used to generate query Qs, key Ks and value Vs based on F qk and F v . After flatten-

ing, Qs ∈RB×N×c∗h∗w, Ks ∈RB×N×c∗h∗w and Vs ∈RB×N×C∗H∗W are fed into the spatial attention function to obtain

F a ∈RB×N×C×H×W that have been interacted the local representation from different regions. The output after attention130

function Fu et al. (2019) is:

Attention(Qs,Ks,Vs) = softmax(
f(Qs,K

T
s )√

dk
)Vs, (4)

where f denotes dot-product and dk is the dimension of key Ks. f(Qs,K
T
s ) ∈RB×N×N is the similarly matrix of various

semantics in different regions. Fifth, an Integration module is utilized to integrate F a based on the F c and get the result F a′

by this equation:135

F a′
= Integration(F a,F c)

=

N∑
n=1

F a
j,k,h,w ·F c

j,n,k,h,w. (5)

where, F a′
has the same size as input feature map F i. Finally, the structure of ResNet He et al. (2016) is introduced to deeply

exploit spatial feature and achieve the final result F o ∈RB×N×C×H×W . In summary, the calculation process is described by

the following formulas:140

F c = softmax(F i ∗Wc),

Fn = Split(F i,F c),

F qk = Fn ∗W ′
qk,

F v = Fn ∗W ′
v,

F a = Attention(F qk ∗Wq,F
qk ∗Wk,F

v ∗Wv),145
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F a′
= Integration(F a,F c),

F o = F i +F a′
. (6)

Traditional attention mechanism calculates in Figure 3(a) the similarity between different pixels and the attention manner

in from Vision Transformer in Figure 3(b) compares different regions in fixed location. Different from both, the attention sim-

ilarity from Region Attention (ours) in Figure 3(c) compares the difference between regions with flexible size and position.150

Due to the irregular shape of radar echo and different distribution, RAB can capture the correlation between the different radar

echoes better. Therefore, the introduction of this block can improve the spatiotemporal ability of model.

3.4 Recall Attention Mechanism

To capture the temporal long-dependencies of representation, Wang et.al Wang et al. (2018b) embedded the spatial attention

module in the updating of temporal memory. However, it has two limitations: 1) It saves abundant history temporal memories,155

which leads that the number of parameters easily exceeds the space occupancy as lead time goes. 2) The temporal memory has

lost some information during the generation of various gates. Therefore, the preserved previous representation fails to capture

all the information and long-term spatiotemporal expressivity is limited.

To address these issues, we propose the Recall Attention Mechanism (RAM) to enhance the long-term spatiotemporal

representation ability with fixed space occupation as Figure 5 shows. First, we build an empty long-memory feature map160

X0
h ∈RB×T×C×H×W in the bottom layer and feed into the current input Xt continually. Note that the X0

h contains all original

previous inputs X0:t ∈RB×T×C×H×W . Second, a convolution neural network is employed to extract the feature of X0
h and

output the long-memory hidden state X1
h ∈RB×T×C×H×W . Lastly, X1

h and the output H ′1
t of RAP-Cell feed into the channel

attention module to generate new hidden states, where the X1
h can be regarded as the key Kc ∈RB×T∗C×H∗W and value

Vc ∈RB×T∗C×H∗W , and the H ′
t represents the query Qc ∈RB×C×H∗W . The formula of channel attention is shown as:165

Attention(Qc,Kc,Vc) = softmax(
f(Qc,K

T
c )√

dk
)Vc, (7)

where, the f denotes dot-product and dk is the dimension of key Kc. f(Qc,K
T
c ) ∈RB×T×T∗C is the similarly matrix between

channels of Qs and channels of Kc. From Eq. 7, we can see that the Vc can be extracted according to the f(Qc,K
T
c ), where Qc

decides how to explore the Vc by dot-producing with Kc. Therefore, the original output H ′1
t of RAP-Cell can be regarded as

query Qc to explore long-term spatiotemporal representations X1
h that is key Kc and value Vc. In this way, the new output H1

t170

has recalled all original historical representation and long-term dependencies can be effectively preserved. Besides, the size of

the long-memory feature map X l
h is fixed at any time step. Because the size of Xh is predefined and corresponding content at

different timestamps are fed into Xh. Similarly, in the lth layer, the input of the long-memory hidden state is the X1
h. In the

bottom layer, X l
h is the result after convolution by historical input sequences X0:t. In the other layers, the X l

h is the result after

convolution by the X l−1
h . By RAM, the long-term historical representation can be delivered to the next layer.175
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Figure 5. The manner of embedding Recall Attention Mechanism (RAM) into the proposed predicted unit. Here, the RAP-Cell is RAP unit

without RAM.

4 Experiments

4.1 Dataset

The dataset is collected from the CIKM AnalytiCup2017 competition 1, which covers the whole area of Shenzhen city, China.

For convenience, we name this public dataset to RadarCIKM. RadarCIKM has a training set and test set with 10,000 and 4,000

sequences, respectively. There are 2,000 sequences randomly sampled from the training set to build the validation set. Each180

sequence contains 15 continual observations within 90 minutes, where the spatial and temporal resolution of each map is 101

× 101 and six minutes, respectively. The range of each pixel is from 0 to 255 and each pixel denotes 1km × 1km. Moreover,

the type of pixel is an integer and each value can be converted to radar reflectivity (dBZ) by the following equation:

1The dataset can be available in:https://tianchi.aliyun.com/competition/entrance/231596/information
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dBZ = p× 95

255
− 10. (8)

Then, the rainfall intensity can be obtained by the radar reflectivity (dBZ) and Z-R relationship:185

dBZ = 10loga+10blogR. (9)

where the R is rain-rate level, a=58.53,b=1.56.

Table 1. The parameters setting of RAP-Unit

Attention Type Name Kernel Stride Pad Ch I/O In Res Out Res Type

Region Attention Block

CNNc 5 × 5 1 × 1 2 × 2 64/64 32 × 32 32 × 32 Conv

CNNqk 4 × 4 4 × 4 0 × 0 64/8 8 × 8 8 × 8 Conv

CNNv 5 × 5 1 × 1 2 × 2 64/64 32 × 32 32 × 32 Conv

Linq - - - - 512 512 Linear

Link - - - - 512 512 Linear

Recall Attention Mechanism CNN 5 × 5 1 × 1 2 × 2 14/64 32 × 32 32 × 32 Conv

RNN unit

CNNx 5 × 5 1 × 1 2 × 2 64/448 32 × 32 32 × 32 Conv

CNNh 5 × 5 1 × 1 2 × 2 64/256 32 × 32 32 × 32 Conv

CNNm 5 × 5 1 × 1 2 × 2 64/192 32 × 32 32 × 32 Conv

CNNo 5 × 5 1 × 1 2 × 2 64/128 32 × 32 32 × 32 Conv

CNNlast 1 × 1 1 × 1 0 × 0 128/64 32 × 32 32 × 32 Conv

4.2 Evaluation Metrics

In this paper, in addition to common measurements such as Structural Similarity (SSIM) and Mean Absolute Error (MAE) in

video prediction, we also utilize the Heidke Skill Score (HSS) and Critical Success Index (CSI) that are commonly used in190

precipitation nowcasting task. The HSS evaluates the fraction of correct forecasts after eliminating random predictions. The CSI

measures the number of correct forecasts divided by the total number of occasions when the rainfall events were forecasted

or observed. Specifically, the prediction and ground truth are converted to binary matric based on a threshold τ . When the

value of dBZ is larger than τ , it is set to 1 otherwise to 0. Next, the number of the True-Positive (TP, prediction=1 and truth

= 1), False-Negative (FN, prediction = 0 and truth=1), False-Positive (FP, prediction=1 and truth=0) and True-Negative (TN,195

prediction=0 and truth=0) are counted. Finally, the HSS and CSI can be calculated by the following formulas:

HSS =
2(TP ×TN −FN ×FP )

(TP +FN)(FN +TN)+ (TP +FP )(FP +TN)
, (10)
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Table 2. Comparison results on RadarCIKM in terms of HSS, CSI, SSIM, and MAE

Methods
HSS ↑ CSI ↑

MAE ↓ SSIM ↑
5dBZ 20dBZ 40dBZ avg 5dBZ 20dBZ 40dBZ avg

ConvLSTM Xingjian et al. (2015) 0.7031 0.4857 0.1470 0.4453 0.7663 0.4092 0.0801 0.4186 5.97 0.6334

ConvGRU Shi et al. (2017) 0.6816 0.4827 0.1225 0.4289 0.7522 0.3952 0.0657 0.4043 6.00 0.6338

TrajGRU Shi et al. (2017) 0.6809 0.4945 0.1907 0.4553 0.7466 0.4028 0.1061 0.4185 5.90 0.6424

DFN Jia et al. (2016) 0.6772 0.4719 0.1306 0.4266 0.7489 0.3771 0.0704 0.3988 6.03 0.6268

PredRNN Wang et al. (2017) 0.7082 0.4915 0.1639 0.4606 0.7692 0.4051 0.0901 0.4215 5.42 0.6887

PredRNN++ Wang et al. (2018a) 0.7061 0.5047 0.1710 0.4548 0.7642 0.4176 0.0940 0.4253 5.44 0.6851

E3D-LSTM Wang et al. (2018b) 0.7111 0.4810 0.1361 0.4427 0.7720 0.4060 0.0734 0.4171 5.51 0.6958

MIM Wang et al. (2019) 0.7052 0.5166 0.1858 0.4692 0.7628 0.4279 0.1034 0.4313 5.47 0.6796

PhyDNet Guen and Thome (2020) 0.6741 0.4709 0.1832 0.4427 0.7402 0.4003 0.1017 0.4141 6.25 0.6443

SA-ConvLSTM Lin et al. (2020) 0.7118 0.4861 0.1582 0.4520 0.7725 0.4161 0.0870 0.4252 5.71 0.6709

PFST-LSTM Luo et al. (2020) 0.7045 0.5071 0.2218 0.4778 0.7680 0.4175 0.1257 0.4371 5.82 0.6367

CMS-LSTM Chai et al. (2021) 0.6835 0.4605 0.1720 0.4387 0.7567 0.3788 0.0948 0.4101 5.95 0.6496

RAP-Net 0.7117 0.5116 0.2293 0.4842 0.7666 0.4305 0.1307 0.4426 5.37 0.7019

CSI =
TP

TP +FN +FP
. (11)

Here, the range of HSS, CSI and SSIM is [0,1]. The range of MAE is [0,+∞].

4.3 Parameters Setting200

The proposed RAP-Net takes five previous radar echo maps as inputs and outputs ten predictions. It utilizes four layers RAP-

Units as shown in Figure 1 and the parameters setting of each RAP-Unit are shown in Table 1. The Adam optimizer is applied

to train our model with learning rate 0.0004. Besides, the early stopping and scheduled sampling strategies are also used to

optimize our model. The loss function combines the L1 and L2 to train RAP-Net. All experiments are implemented in Pytorch

and conducted on NVIDIA 3090 GPUs.205

4.4 Result and Analysis

Table 2 shows the results of all models. The best results are in boldface and the second best scores are underlined. We find that

the RAP-Net achieves the smallest error and the highest structural similarity according to the MAE and SSIM. It is observed that

our model outperforms other models in terms of the comprehensive performance. Besides, the proposed model has significant

superiority especially for the nowcasting in heavy rainfall regions. Because the HSS and CSI keep the top position in the middle210

and high thresholds (20 dBZ and 40 dBZ). For the state-of-art method, PFST-LSTM Luo et al. (2020), all measurements of it
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Figure 6. The HSS and CSI scores of different nowcase lead time values. (Best view in color)
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Figure 7. The first row is the reflectivity of ground truth and reminders are the predicted reflectivity of various methods on an example from

the RadarCIKM dataset (Best view in color)
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are exceeded by RAP-Net, which shows the performance of our model furthermore. Comparing with PredRNN, PredRNN++,

and RAP-Net, we can see that they have similar SSIM due to applying the same architecture. However, the other evaluation

scores of RAP-Net are significantly higher than PredRNN and PredRNN++, which implies the benefit of RAP-Unit. Lastly,

we notice the SA-ConvLSTM Lin et al. (2020) gets the best HSS and CSI in the lowest threshold (5 dBZ). Nevertheless, its215

performance is poor in the highest threshold (40dBZ), which implies the RAB and RAM can improve the prediction in the

area with high radar echo compared to traditional attention mechanism. Because the main difference between the RAP-Net and

SA-ConvLSTM is that they introduce different attention sub modules

To show the performances of various models at different nowcasting lead times, Figure 6 presents the HSS and CSI curves

w.r.t different lead times under all thresholds. We observe that both HSS and CSI scores of all models become decrease220

as the lead time increases, which shows the difficulty of long-term predictions. Among these models, RAP-Net achieves

notable superiority in the middle and late stages of the nowcasting period at the highest threshold. Especially in the last

prediction, all baseline methods trend to get the same worse result. The RAP-Net remarkably outperforms other models. It

implies that the introduction of RAB and RAM in the proposed model contributes to generating long-term predictions with

heavy rainfall region. Although the performance of RAP-Net would be degraded when the threshold becomes small, it still has225

competitiveness compared to other models.

Figure 7 shows an example of predictions from these models. The various colors denote the different ranges of reflectivity

according to the color bar in the bottom of Figure 7. From the ground truth in the first row, the rainfall event is obviously the

trend of increasing the rainfall intensity. However, only our model can forecast this trend and keep the intensity of the regions.

The RAP-Net can generate a high reflectivity area, which can also explain why our model can achieve the highest evaluate230

index HSS and CSI in the middle and high thresholds.

4.5 Ablation Study

To investigate the influence of various modules, we conduct an ablation study to discuss the effectiveness of Region Attention

Block to the current input and the last hidden state. The result of evaluations is shown in Table 3. RAP-Cellx and RAP-

Cellh denote the PredRNN model embedding the RAB into the input and hidden state, respectively. RAP-Cell model is the235

combination of RAP-Cellx and RAP-Cellh, and can also be regarded as RAP-Net without RAM. The results of RAP-Cellx

and RAP-Cellh are higher than PredRNN, which shows the advantage of introducing Region Attention Block. Specially, the

RAP-Cellh significantly reduces the error according to MAE. Besides, the HSS, CSI and SSIM of RAP-Cell have significant

improvements particularly when threshold τ is 40dBZ, which implies that RAB simultaneously employed in the input and

hidden state contributes to the prediction in the heavy rainfall regions. Moreover, by comparing the RAP-Cell and RAP-Net,240

we find that the RAM can enhance the accuracy of nowcasting especially in the area with moderate-intensity rainfall.

Similarly, we also plot Figure 8 to show experimental results of all models against different nowcast lead times. We can see

that RAP-Net delivers more promising result when the threshold increases, which demonstrates the effectiveness of combining

RAB and RAM in terms of long-term prediction in high reflectivity area. The performance of RAM can be shown by com-

paring RAP-Cell and RAP-Net. We notice that the introduction of RAM can improve the prediction in the region of moderate245
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Figure 8. The performance changes against different nowcast lead time in terms of HSS and CSI scores in ablation study. (Best view in

color)
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Table 3. Ablation results on RadarCIKM in terms of HSS, CSI, MAE, and SSIM

Methods
HSS ↑ CSI ↑

MAE ↓ SSIM ↑
5dBZ 20dBZ 40dBZ avg 5dBZ 20dBZ 40dBZ avg

PredRNN 0.7082 0.4915 0.1639 0.4545 0.7692 0.4051 0.0901 0.4215 5.42 0.6887

RAP-Cellx 0.7102 0.5042 0.1754 0.4633 0.7747 0.4235 0.0967 0.4316 5.36 0.6965

RAP-Cellh 0.7149 0.4967 0.1753 0.4623 0.7772 0.4138 0.0967 0.4292 5.32 0.7009

RAP-Cell 0.7234 0.4757 0.2283 0.4758 0.7817 0.4143 0.1300 0.4420 5.64 0.7036

RAP-Net 0.7117 0.5116 0.2293 0.4842 0.7666 0.4305 0.1307 0.4429 5.37 0.7019

PredRNN

RAP-Cellx

RAP-Cellh

RAP-Cell

RAP-Unit

-5-0 0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-55 55-60 60-65
dBZ

Figure 9. The first row is the reflectivity of ground truth and reminders are the predicted reflectivity of different methods on an example from

the RadarCIKM dataset (Best view in color)

rainfall intensity. Besides, RAP-Cellx and RAP-Cellh embed RAB in the current input and the hidden state, respectively. Their

performance is better than the original model PredRNN, especially in 20dBZ threshold. It shows the superiority of RAB.

We also show predictions of different methods for a given sample in Figure 9. We find that RAP-Cell can generate the red

area which is reflected by better evaluation indexes of HSS and CSI in the highest threshold. However, all forecasts except for
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RAP-Net have a gap in the radar echo block, which is obviously different from the ground truth. The improvement of prediction250

in moderate rainfall intensity can be owed to the embedding RAM.

5 Conclusions

In this paper, we propose the RAP-Net to handle the precipitation nowcasting task. On the one hand, it embeds the Region

Attention Block to enhance the local and global spatial representation ability simultaneously by extracting and delivering the

features in ConvRNN. The improvement can significantly enhance the accuracy especially in those regions with heavy rainfall.255

On the other hand, we introduce the Recall Attention Mechanism to improve the temporal expressivity in the long term. It

can preserve and retrieve longer historical information and effectively enhance the performance of prediction, particularly for

the moderate rainfall intensity. We conduct extensive experiments to evaluate the performances of most ConvRNN models.

Empirically, RAP-Net can preserve regions of heavy intensity in long-term predictions. It shows the effectiveness of RAB and

RAM to improve forecasting. The ablation study independently measures the influence of these two modules. The RAB is able260

to enhance the accuracy in the high threshold and RAM can improve the prediction in the middle threshold.

Currently, most of existed methods focus on radar echo maps prediction based on a single altitude layer. The variety and

movement of echo not only need to consider the previous sequence in the same layers but also need to use different altitude

layers. Because the hydrometeors not only happen in the horizontal direction but also act in the vertical direction. For fu-

ture work, we will consider integrating other layers’ historical information to improve the forecasting. In detail, we intend to265

utilize channel attention to exploit the spatiotemporal representations and then integrate those into the RAP unit. After train-

ing, the model can adaptively extract valid spatial information from different levels. We will perform further experiments on

multi-channel RAP-Net based on multi-layers radar echo images. Besides, by visualization of the similarity matrix in channel

attention, which level is more important for final predictions can be found out.
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