
1 
 

A simple, efficient, mass conservative approach to solving Richards’ 
Equation (openRE, v1.0) 
 
Andrew M. Ireson1,2, Raymond J. Spiteri3, Martyn P. Clark4, Simon A. Mathias5 
1Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada 5 
2School for Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada 
3Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada 
4Department of Geography and Planning, University of Saskatchewan, Saskatoon, Saskatchewan, Canada 
5Department of Engineering, Durham University, Durham, UK 
 10 

Correspondence to: Andrew M. Ireson (andrew.ireson@usask.ca) 

Abstract. We show that a simple numerical solution procedure – namely the method of lines combined with an off-the-shelf 

ODE solver – can provide efficient, mass conservative solutions to the pressure-head form of Richards’ equation. We present 

a novel method to quantify the boundary fluxes that reduces water balance errors without negative impacts on model 

runtimes. We compare this solution with alternatives, including the classic Modified Picard Iteration method of Celia et al. 15 

(1990) and the Hydrus 1D model (Šimůnek et al., 2005, 2016). We reproduce a set of benchmark solutions with all models. 

We find that Celia’s solution has the best water balance, but it can incur significant truncation errors in the simulated 

boundary fluxes, depending on the time steps used. Our solution has comparable run-times to Hydrus and better water 

balance performance (though both models have excellent water balance closure for all the problems we considered). Our 

solution can be implemented in an interpreted language, such as MATLAB or Python, making use of off-the-shelf ODE 20 

solvers. We investigated alternative scipy ODE solvers in Python and make practical recommendations about the best way to 

implement them for Richards’ equation. There are two advantages of our approach: i) the code is short and simple, making it 

ideal for teaching purposes; and ii) the method can be easily extended to represent alternative properties (e.g., novel ways to 

parameterize the K(ψ) relationship) and processes (e.g., it is straightforward to couple heat or solute transport), making it 

ideal for testing alternative hypotheses. 25 

 

1. Introduction 

Richards’ equation (RE) describes the movement of water in variably saturated porous media. Almost any practical 

application of RE requires a numerical solution, yet RE remains challenging to solve reliably and accurately for a given set 

of boundary conditions and soil hydraulic properties (Farthing and Ogden, 2017). RE has been extensively reviewed 30 

elsewhere (e.g., Vereecken et al., 2016; Farthing and Ogden, 2017, and references therein). RE has practical limitations in 

representing the flow processes in real soils containing macropores, especially with modelling infiltration and rapid 

percolation processes (Beven and Germann, 2013). The strength of RE is its ability to represent matrix drainage and 

capillary flows, which control evapotranspiration processes, and its ability to be coupled to heat and solute transport models. 

https://doi.org/10.5194/gmd-2022-185
Preprint. Discussion started: 2 August 2022
c© Author(s) 2022. CC BY 4.0 License.



2 
 

For this reason, RE remains a common approach to simulate soil moisture in many terrestrial system models (e.g., vadose 35 

zone models, ecohydrology models, and land-surface models; Vereecken et al., 2016, Clark et al., 2021).  

 

Our objective in this manuscript is to i) present a simple and practical approach to solve RE that is efficient, mass 

conservative, and uses open-source software (written in Python) that is readily available to everyone, including as a teaching 

tool; and ii) present an improved mass balance calculation procedure for use with ordinary differential equation (ODE) 40 

solvers that apply adaptive-time stepping schemes (ATS). We investigate how to maximize the efficiency and accuracy of 

ODE solvers and provide guidance on the subtle challenges that arise in evaluating the boundary fluxes and the water 

balance. For our purposes, we define the following five criteria for success for an RE solver: i) successfully reproduce 

benchmark solutions for 𝜓(𝑡, 𝑧) and/or 𝜃(𝑡, 𝑧); ii) be mass conservative, with errors that are negligible based on the specific 

application; iii) truncation errors in the simulated boundary fluxes should be tested and be negligible for the given time-step; 45 

iv) the solver should be computationally efficient; and v) all else being equal on criteria i-iv, the simplest code should be 

preferred. Simple code should be the most human readable/editable code, which means it should be clean, concise, modular, 

and free from redundancies.  

 

The remainder of this paper is organized as follows. In section 2, we describe a simple yet powerful approach to solve RE 50 

numerically using ODE solvers that we implement and test in the Python and MATLAB programming languages. In section 

2, we also discuss the complexities of closing the water balance in RE and present a novel solution that can be applied with 

any ODE solver: openRE. In section 3, we benchmark the performance of our proposed solution against existing numerical 

models and solutions, including Hydrus 1D, and the solution method proposed by Celia at al. (1990). In section 4, we 

summarize our recommendations. 55 

 

2. Solving Richards’ Equation 

 

RE is derived from the mass continuity equation applied to a control volume of soil, Δ𝑥Δ𝑦Δ𝑧 (L3), and for vertical flow 

passing through the area Δ𝑥Δ𝑦 (L2), we have 60 

 

𝜕𝑚
𝜕𝑡 = −

𝜕(𝑞𝜌)
𝜕𝑧  

(1) 

 

where 𝑚 (M L-3) is the mass of water per control volume of soil, 𝜌 (M L-3) is the density of water,  𝑞 (L T-1) is the flux of 

water, 𝑡 (T) is time and 𝑧 (L) is depth below some fixed datum. Assuming that density is constant, we may write  

 65 

https://doi.org/10.5194/gmd-2022-185
Preprint. Discussion started: 2 August 2022
c© Author(s) 2022. CC BY 4.0 License.



3 
 

𝜕𝜃
𝜕𝑡 = −

𝜕𝑞
𝜕𝑧 

(2) 

 

where 𝜃 (L3 L-3) is the volumetric water content, defined as the volume of water per control volume of soil. The vertical flux 

is given by Darcy’s law,  

  

𝑞! = −𝐾(𝜓)
𝑑ℎ
𝑑𝑧 	= −𝐾(𝜓) 5

𝑑𝜓
𝑑𝑧 − 17 

(3) 

 70 

where ℎ (L) and 𝜓 (L) are the hydraulic head and matric potential head, respectively, and 𝐾(𝜓) (L T-1) is the hydraulic 

conductivity. Combining Eqs. (2) and (3) we have  

 

𝜕𝜃
𝜕𝑡 =

𝜕
𝜕𝑧 8𝐾

(𝜓) 5
𝜕𝜓
𝜕𝑧 − 179 

(4) 

 

which is the mixed form of RE (Celia et al., 1990). If we let 𝐶(𝜓) = 𝑑𝜃/𝑑𝜓 (L-1), we can write 75 

  

𝐶(𝜓)
𝜕𝜓
𝜕𝑡 =

𝜕
𝜕𝑧 8𝐾

(𝜓) 5
𝜕𝜓
𝜕𝑧 − 179 

(5) 

 

which is the 𝜓 based form of RE (Celia et al., 1990). We can also express this as the 𝜃 form of RE, given by 

 
𝜕𝜃
𝜕𝑡 =

𝜕
𝜕𝑧 5

𝐾(𝜃)
𝐶(𝜃)

𝜕𝜃
𝜕𝑧 − 𝐾(𝜃)7 

(6) 

 80 

where the constitutive relationships 𝐶(𝜃) and 𝐾(𝜃) are expressed as functions of 𝜃 (Celia et al., 1990). Changes in storage, 

𝑑𝜃, in Eqs. (4), (5), and (6) are associated with the filling and draining of soil pores. Because lim
"→$!

𝑑𝜃/𝑑𝜓 = 0, an elastic 

storage term is needed to solve RE in saturated, or close to saturated, conditions. This term represents the compression of the 

pore-water and the expansion of the pore-space as a function of increasing pore water pressure (though the latter is orders of 

magnitude larger than the former).  The 𝜓 form of RE with elastic storage is written 85 

 

5𝑆%
𝜃(𝜓)
𝜃%

+
𝜕𝜃
𝜕𝜓7

𝜕𝜓
𝜕𝑡 =

𝜕
𝜕𝑧 8𝐾

(𝜓) 5
𝜕𝜓
𝜕𝑧 − 179 

(7) 

  

https://doi.org/10.5194/gmd-2022-185
Preprint. Discussion started: 2 August 2022
c© Author(s) 2022. CC BY 4.0 License.



4 
 

where 𝑆% (L-1) is the specific storage coefficient, and 𝜃% is the saturated water content, equal to the porosity (Kavetski et al., 

2001). If 𝑆% is large it may have a non-negligible impact on the water balance, which needs to be accounted for (e.g., as in 

Clark et al., 2021, Eq. 80). 𝑆% is often treated as a numerical smoothing factor for RE when conditions are saturated or close 90 

to saturation and its impact on the water balance is neglected (e.g., as in Tocci et al., 1997; Ireson et al., 2009). For 

convenience, hereafter we will define 𝐶(𝜓) = 𝑆%
&(")
&"

+ )&
)"

, such that elastic storage can be ignored by setting 𝑆% = 0. 

 

The 𝜓 form or mixed form of RE with elastic storage included can be shown to work for saturated conditions (Miller et al., 

1998) and so can be considered a general governing equation for flow in soils, aquitards, and confined and unconfined 95 

aquifers. The 𝜓 form of RE is widely reported not to be mass conservative (Milly, 1984, 1985, Celia et al., 1990, Farthing 

and Ogden, 2017), though it has been shown that mass conservative solutions are possible (Rathfelder and Abriola, 1994, 

Tocci et al., 1997). This issue will be explored in detail in this paper. 

   

We consider a finite difference numerical solution for the 𝜓 form of RE that applies the method of lines to reduce the PDE in 100 

Eq. (7) to a system of ODEs of the form 

 
𝑑𝝍
𝑑𝑡 = 𝑓(𝝍, 𝑡, 𝒛) (9) 

 

where 𝝍 and 𝒛 represent vectors containing discrete values of 𝜓 and 𝑧. A similar approach was taken by Tocci et al. (1997) 

and Felder and Ogden (2017). There are three methods that can be applied to integrate Eq. (9) with respect to time: 105 

• One-step methods with no iteration. Either forward stepping explicit methods or backward stepping implicit 

methods, where a single evaluation of Eq. (9) is performed for each time step. First order (Euler) or higher order 

methods in time are possible, but higher order methods introduce complexities when dealing with the water balance. 

Explicit methods are a simple starting point for new researchers to understand the problem but are not useful in 

practice because they require very small time-steps. Semi-implicit one-step methods may employ the Thomas 110 

Algorithm, or similar, to solve the tri-diagonal matrix problem, but they do not iterate to improve the convergence 

of the problem, which is problematic due to the non-linear dependence of 𝐾  and 𝐶  on 𝜓  (Celia et al., 1990, 

reproduced below). 

• Iterative methods that take one-step . Iterative backward stepping implicit methods are very widely used (Celia et 

al., 1990, Rathfelder and Abriola, 2001). The iterations allow the solution to find the correct values of 𝐾 and 𝐶 at 115 

the next time step, as is required in a fully implicit solution. These methods can be applied to either the 𝜓 form or 

mixed form of RE. For the mixed form of RE, the convergence criterion can be based directly on water balance 

closure, as in Celia’s Modified Picard Iteration method. For the 𝜓 form of RE, the convergence criterion is based on 

https://doi.org/10.5194/gmd-2022-185
Preprint. Discussion started: 2 August 2022
c© Author(s) 2022. CC BY 4.0 License.



5 
 

𝜓 values, and the solution is subject to larger water balance errors (Celia et al., 1990, Rathfelder and Abriola, 1994, 

Felder and Ogden, 2017).   120 

• Adaptive time stepping (ATS) methods. An implicit or explicit method is used to find 𝝍*+,*  over some 

calculation timestep; the truncation error in the solution is assessed, for example, by comparing two different-order 

solutions, as in Kavetski et al. (2001); and depending on the size of the error, the time step is either reduced to 

improve the accuracy or increased to improve the efficiency. The solution marches forward until reaching what we 

term the reporting timestep, where  the state variables are output. The advantage of this approach is that the states 125 

and fluxes calculated at the intermediate calculation steps contain useful information which can be exploited in the 

output, as we demonstrate in this paper. Kavetski et al. (2001, 2002a, 2002b) developed ATS solvers designed 

specifically to solve the different forms of RE, while other workers have applied “black-box” (Kavetski, et al., 

2001) ODE or DAE (Differential Algebraic Equation) solvers to RE (Tocci et al., 1997; Ireson et al., 2009; Ireson 

and Butler, 2013; Mathias et al., 2015, Clark et al., 2021). A wide range of ODE solvers are available in many 130 

different programming languages. Solutions are simple to implement and, as we show in this study, can outperform 

other methods in terms of accuracy and efficiency. 

 

In this study, we implement each of the three possible methods for solving RE in scripts that are available from Ireson (2022, 

https://github.com/amireson/openRE). All of the models in this study were coded in Python (version 3.8.11). We make use 135 

of the following libraries: numpy (version 1.20.3); matplotlib (version 3.4.2); scipy (version 1.7.1), which contains various 

ODE solvers, described below; and numba (version 0.53.1), which is a just-in-time compiler that is optional but speeds up 

the model runs considerably. We organize and run the models using makefiles (Jackson, 2016). 

 

We also provide a MATLAB version of our recommended solution (implemented in MATLAB R2017b installed on a mac). 140 

The MATLAB implementation will not be described further, but compared with the optimal Python solution, the MATLAB 

model is somewhat simpler and achieves an equivalent performance in terms of simulated states and fluxes. We do not 

recommend Python over MATLAB (or vice versa) – both platforms work well, and the choice will come down to numerous 

factors, including, e.g., the availability of, and user familiarity with, either package or the need to use non-proprietary 

software to satisfy open science requirements. 145 

 

2. 1 One-step and iterative solutions 

 

For the one-step and iterative methods, we have coded up the numerical solutions from Celia et al. (1990). This provides a 

typical one-step method (first-order backward Euler implicit solution), and an excellent iterative method in their improved 150 

Modified Picard Iteration Method (MPM) solution. Fully reproducible details of these models were provided by Celia et al. 

(1990) and so will not be repeated here. These models were implemented in Python, and the code is provided at Ireson 

https://doi.org/10.5194/gmd-2022-185
Preprint. Discussion started: 2 August 2022
c© Author(s) 2022. CC BY 4.0 License.



6 
 

(2022, https://github.com/amireson/openRE). The one-step model was coded up in 67 lines of code (note, blank lines and 

comment lines are not counted in the number of lines of code), with an additional 52 lines of code to configure the problem 

(define the grid, hydraulic properties, etc.). The Picard Iteration method was coded up in 79 lines of code and required the 155 

same 52 lines of code to configure the problem. The Modified Picard Iteration was implemented using the numba just-in-

time compiler (Appendix A.5) and was coded up in 90 lines of code, with an additional 59 lines of code to configure the 

problem. All solutions make use of the Thomas Algorithm to solve the tridiagonal linear system arising from the implicit 

method.  

 160 

2.2 Adaptive time-stepping solution 

 

One major benefit of using a standard ODE solver to integrate RE is that the code is concise and easy to read and understand. 

Our objective is to write a function that will evaluate the right-hand side of Eq. (9) and feed this to the ODE solver. Within 

this function the problem can be treated as instantaneous in time so that we only need to consider the spatial differences in 165 

our finite difference solution scheme. We will use a block-centered grid in space; i.e., state variables are stored at nodes 

located at the center of grid cells, while fluxes are defined at the block boundaries, as shown schematically in Figure 1. For 

simplicity here, we consider a uniform grid (constant Δ𝑧), but it is straightforward to adapt these solutions to non-uniform 

grids. We introduce two spatial indices (Figure 1): 𝑖 represents the nodal values, and 𝑗 represents the block boundaries, both 

of which have an initial value of zero (since Python uses zero based indexing). Hence 𝑗 = 𝑖 + 1/2.	 We will start with the 𝜓 170 

form of RE, for which the governing equation is given in the form 

 
𝜕𝜓
𝜕𝑡 I-

	= −
1

𝐶(𝜓-)
	
𝜕𝑞
𝜕𝑧I-

 
(10) 

and  

𝜕𝑞
𝜕𝑧I-

	=
𝑞
-+./

− 𝑞
-0./

Δ𝑧 =
𝑞1+. − 𝑞1

Δ𝑧  
(11) 

 

 175 

https://doi.org/10.5194/gmd-2022-185
Preprint. Discussion started: 2 August 2022
c© Author(s) 2022. CC BY 4.0 License.



7 
 

 
Figure 1. Schematic representation of the block centered finite difference grid, for a soil column of depth 𝐿, showing the 

zero-based Python indices of the states (𝜓-) and fluxes (𝑞1) on the left and depths of the nodes on the right, assuming a 

regular grid. There are 𝑁 states and 𝑁 + 1 fluxes. The upper and lower boundary conditions are 𝑞12$ and 𝑞1# respectively. 

 180 

Here, the fluxes are given by  

 

𝑞
-+./

= 𝑞1+. = −
𝐾(𝜓-+.) + 𝐾(𝜓-)	

2 5
𝜓-+. −𝜓- 	

Δ𝑧 − 17 

𝑞
-0./

= 𝑞1 = −
𝐾(𝜓-) + 𝐾(𝜓-0.)	

2 5
𝜓- −𝜓-0.	

Δ𝑧 − 17 
(12) 

 

In Eq (12), we are using the arithmetic mean of 𝐾 at the nodal points to estimate 𝐾 at the block boundaries, but other options 

are possible (see, e.g., Bear and Cheng, 2010, p. 535). It is possible to combine Eqs. (10)-(12), but keeping them separate 185 

keeps the code modular and simple.  

 

There are three commonly used boundary conditions for this problem, namely: i) a specified flux, 𝑞3  (L T-1) (type II 

boundary) is often used at the upper boundary to represent infiltration, where  

https://doi.org/10.5194/gmd-2022-185
Preprint. Discussion started: 2 August 2022
c© Author(s) 2022. CC BY 4.0 License.



8 
 

 190 

𝑞12$ = 𝑞3 (13) 

 

ii) a free drainage boundary if often used at the lower boundary, where 

 

𝑞124 = 𝐾(𝜓-240.) (14) 

 

iii) a fixed 𝜓 (type I) boundary maybe used at the upper boundary, 𝜓3 (L), typically to indicate a ponding depth, or at the 195 

lower boundary, 𝜓5 (L), typically to represent a fixed water table, where 

 

𝑞12$ = −
𝐾(𝜓3) + 𝐾(𝜓-2$)	

2 5
𝜓3 −𝜓-2$	
Δ𝑧/2 − 17 

𝑞124 = −
𝐾(𝜓-240.) + 𝐾(𝜓5)	

2 5
𝜓-240. −𝜓5	

Δ𝑧/2 − 17 

 

(15) 

 

Box 1 provides Python-based pseudo code that implements this solution (Eqs. 10 – 14) in a function for 𝑑𝜓/𝑑𝑡 with a type II 

boundary at the upper boundary and a free drainage boundary at the lower boundary and contains just 7 lines of code. This 200 

function can be called by the ODE solver. 

 

  

https://doi.org/10.5194/gmd-2022-185
Preprint. Discussion started: 2 August 2022
c© Author(s) 2022. CC BY 4.0 License.



9 
 

 

# Function inputs: psi,pars,dz,n,qT,psi_old 
# psi is an array containing the dependent variable 
# pars is a dictionary containing the soil parameters 
# dz is the space step 
# n is the number of spatial nodes 
# qT is the upper boundary flux 
# psi_old is psi at the previous time step (needed for  
# the mixed-form of RE) 

# Function outputs: dpsidt 
# dpsidt is an array containing the derivative dpsi/dt 

# Python based pseudo code: 
# Kfun function that returns the hydraulic conductivity 
# Cfun function that returns the specific storage 
 
# Calculate K and C at each node 
K=Kfun(psi,pars) 
C=Cfun(psi,pars,psi_old) 
 
# Initialize the flux array for grid boundaries: 
q=zeros[n+1] 
# Upper boundary condition: 
q[0]=qT 
# Fluxes for internal nodes: 
q[1:-1]=-(K[1:]+K[:-1])/2*((psi[1:]-psi[:-1])/dz-1) 
# Lower boundary condition: 
q[-1]=K[-1] 
# Continuity equation: 
dpsidt=-(1/C)*(q[1:]-q[:-1])/dz 

Box 1. Python-based pseudo code implementation of RE with a block centered finite difference approach in a function to be 205 

called by an ODE solver. Arrays are zero-indexed; q[0] and q[-1] refer to the first and last item in the q array, 

respectively, and K[1:] and K[:-1] refer to a slice of the array K from the 2nd to the last node, and from the 1st to the 2nd 

to last node, respectively. 

 

 210 

 

https://doi.org/10.5194/gmd-2022-185
Preprint. Discussion started: 2 August 2022
c© Author(s) 2022. CC BY 4.0 License.



10 
 

2.3  Mass balance closure  

 

When RE is solved over some time interval, 𝑡 = 𝑡$ → 𝑡6 (where 𝑡6 − 𝑡$ is typically multiple years in practical application) 

for a soil profile 0 ≤ 𝑧 ≤ 𝐿, the cumulative inflow minus outflow should equal the change in storage in the profile over the 215 

same interval; i.e., 𝜖5 (mm), the bias error, defined in Eq. 16, should be zero. 

 

𝜖5 	= O P𝑞(𝑡, 0) − 𝑞(𝑡, 𝑧4)Q𝑑𝑡
*$

*2*%
−O P𝜃(𝑡6 , 𝑧) − 𝜃(𝑡$, 𝑧)Q𝑑𝑧	

7

!2$
 

(16) 

 

The bias error can be treated as a mass balance performance metric for the model, but this metric may underestimate the true 

errors in the water balance that occur within the time period simulated, which may cancel out over the entire run. The metric 220 

used by Celia et al., (1990), Rathfelder and Abriola (1994), and Tocci et al. (1997) has the same problem. A more rigorous 

mass balance performance metric is the root mean squared error of the daily (or some other time increment) cumulative net 

flux minus the change in storage, 𝜖8 (mm), where 

 

𝜖8 = RS8O P𝑞(𝑡, 0) − 𝑞(𝑡, 𝑧4)Q𝑑𝑡
*&'(

*2*&
−O T𝜃P𝑡1+., 𝑧Q − 𝜃P𝑡1 , 𝑧QU𝑑𝑧	

7

!2$
9
/

/𝑀
6

12.

 

(17) 

 225 

where 𝑗 is an index in time, and 𝑀 is the number of timesteps considered. Reporting both metrics is informative – a high 𝜖8 

with a low 𝜖5 indicates that daily errors are occurring but cancelling one another out; a high 𝜖5 with a low 𝜖8 indicates that 

small daily errors are systematic in one direction and hence accumulate to give a high bias. 

 

The fluxes in the mass balance calculation depend on the boundary conditions. For type I (specified 𝜓) and free drainage 230 

type boundary conditions, the boundary flux depends on the simulated 𝜓 value at the node closest to the boundary. Over a 

time increment 𝑡1 to 𝑡1+., 𝜓 values will change continuously and hence so will the boundary flux. Due to the non-linearity of 

the 𝐾(𝜓) relationship, the flux will change in a non-linear manner. The cumulative flux over the time increment, 𝑄1→1+. 

(mm), is given by 

 235 

𝑄1→1+. = O 𝑞(𝑡)𝑑𝑡
*&'(

*2*&
 

(18) 

 

https://doi.org/10.5194/gmd-2022-185
Preprint. Discussion started: 2 August 2022
c© Author(s) 2022. CC BY 4.0 License.



11 
 

𝑄1→1+. is estimated from discrete values of 𝑞 (which in turn are approximated from discrete values of 𝜓, using either a 

forward difference approximation, where 𝑄1→1+. ≈ 𝑞1Δ𝑡, a backward difference approximation (as in Celia et al., 1990), 

where 𝑄1→1+. ≈ 𝑞1+.Δ𝑡 , or a central difference approximation (as in trapezoidal integration), where 𝑄1→1+. ≈ P𝑞1 +

𝑞1+.QΔ𝑡/2. These discrete approximations for 𝑄1→1+. can be poor if the time step is large – or more precisely, if the changes 240 

in 𝑞 over a time step are large and non-linear. 

 

This leads to an important limitation with Celia’s mixed form solution to RE (and other equivalent iterative solutions). This 

solution has excellent mass balance closure, but because it uses a one-step iterative solution procedure with a backward 

difference approximation for 𝑄1→1+., the simulated boundary fluxes can be shown to be sensitive to the time step (see 245 

Section 3.2). Hence, even though for larger D𝑡 the water balance is still perfectly closed, the actual terms within the water 

balance have changed, so there is less inflow and less change in storage.  

 

ATS solvers can provide a practical solution to solving RE with good mass balance performance and boundary fluxes that do 

not depend on the user specified timestep. The basic idea behind ATS solvers is that when there are large changes in 𝜓 in the 250 

model, small steps can be taken to capture the shape of 𝐶(𝜓) and 𝑄1→1+.  and minimize the integration errors over a 

timestep. When the changes in 𝜓 are small, larger steps can be taken to maximize efficiency. We will refer to these adaptive 

time steps as calculation steps. The user specifies the time steps at which they wish the results to be saved, which we will 

refer to as the reporting time steps. In typical practical applications, the reporting step would be the resolution of the driving 

data (e.g., hourly or daily). The solver may take many calculation steps of varying lengths between the reporting steps, 255 

saving the outcomes internally each time that the error tolerance is satisfied, and a successful step is taken.  

 

To accurately calculate the boundary fluxes, it is necessary to use the 𝜓 information from the calculation time steps because 

𝜓 may have evolved non-linearly over the reporting time step. However, this is not trivial. Two possible ways to do this 

(which are equivalent to one another) are to i) enable dense output from the ODE solver (if this feature is supported by the 260 

ODE solver); or ii) force the ODE solver to make the reporting steps equal to the calculation steps. However, both of these 

approaches are more computationally demanding in terms of memory and runtime – a significant disadvantage. We propose 

here a third method for calculating the boundary fluxes that can be used with any ODE solver. At an instance in time, the 

cumulative boundary flux, 𝑄 is related to the instantaneous flux, 𝑞 by 

 265 
𝑑𝑄
𝑑𝑡 = 𝑞 (19) 

 

https://doi.org/10.5194/gmd-2022-185
Preprint. Discussion started: 2 August 2022
c© Author(s) 2022. CC BY 4.0 License.



12 
 

We can therefore use the ODE solver to integrate this expression and solve for 𝑄. To do this, we add to the system of ODEs 

defined by Eq. 9 two new ODE expressions that represent the cumulative boundary fluxes. The dependent variable vector 

that is sent to the ODE solver now is 𝑭, defined 

 270 

𝑭 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑄3:*%→*
𝜓$
𝜓.
⋮

𝜓40/
𝜓40.
𝑄5:*%→*⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (20) 

 

where 𝑄3:*%→* and 𝑄5:*%→* are the cumulative boundary fluxes at the current time, 𝑡, since the start of the simulation, 𝑡$. The 

ODE solver will integrate the equation  

 
𝑑𝑭
𝑑𝑡 = 𝑓(𝑭, 𝑡, 𝒛) 

 
(21) 

to solve for 𝑭. The function that is called by the ODE solver will evaluate the vector 275 

 

𝑑𝑭
𝑑𝑡 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑑𝑄3:*%→*&

𝑑𝑡
𝑑𝜓$
𝑑𝑡
𝑑𝜓.
𝑑𝑡
⋮

𝑑𝜓40/
𝑑𝑡

𝑑𝜓40.
𝑑𝑡

𝑑𝑄5:*%→*&
𝑑𝑡 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑞3	

−
1

𝐶(𝜓$)
	
𝜕𝑞
𝜕𝑧I$

−
1

𝐶(𝜓.)
	
𝜕𝑞
𝜕𝑧I.

⋮

−
1

𝐶(𝜓40/)
	
𝜕𝑞
𝜕𝑧I40/

−
1

𝐶(𝜓40.)
	
𝜕𝑞
𝜕𝑧I40.

𝑞5 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

(22) 

 

Note that each term in Eq. (22) is expressed at a single instant in time, 𝑡, and subscripts 0, 1, … ,𝑁 − 2,𝑁 − 1 refer to the 

indices of the finite difference discretization points, and we use zero-based indexing to be consistent with the Python 

language and Figure 1. After solving for 𝑭, the first and last rows of 𝑭 correspond to the cumulative boundary fluxes, which 280 

at time 𝑡 are 𝑄3:*%→* and 𝑄5:*%→*. The cumulative fluxes over each time step are obtained from 

https://doi.org/10.5194/gmd-2022-185
Preprint. Discussion started: 2 August 2022
c© Author(s) 2022. CC BY 4.0 License.



13 
 

 

𝑄3:*&→*&'( = 𝑄3:*%→*&'( − 𝑄3:*%→*& 

𝑄5:*&→*&'( = 𝑄5:*%→*&'( − 𝑄5:*%→*&  
(23) 

 

Solving systems of ODEs in this way is straightforward – requiring the user to pack and unpack the dependent variable 

vector. Python based pseudo code showing how this can be implemented is given in Box 2. Note, here we multiply the fluxes 285 

by 1000 within the solver (equivalent to converting the fluxes from m/d to mm/d), so that the magnitude of the fluxes is 

comparable with the magnitude of the changes in 𝜓 (typically in m), which can improve the water balance estimate. Any 

arbitrary scaling factor can be applied here, as long as the output fluxes are scaled back to the correct units. We shall refer to 

this method for calculating the boundary fluxes as the solver flux output method (SFOM). 

  290 

https://doi.org/10.5194/gmd-2022-185
Preprint. Discussion started: 2 August 2022
c© Author(s) 2022. CC BY 4.0 License.



14 
 

 

# ODE function inputs: tSpan,F,args 
# tSpan array with the start and end date for the integration 
# F array with the dependent variable 
# args list of other variables (see Box 1) 

# ODE function outputs: dFdt 
# dFdt array with the time derivative of the dependent variable  

# Python based pseudo code for the ODE function: 
# Unpack the dependent variable: 
QT=F[0]/1000.      # Cumulative flux at the upper boundary 
QB=F[-1]/1000.     # Cumulative flux at the lower boundary 
psi=F[1:-1].       # matric potential at each node 

# Insert here the contents of the function in Box 1, which  
# calculates dpsidt, q[0] and q[-1] 

# Pack up the dependent variable in a single column array:  
dFdt=hstack([q[0]*1000.,dpsidt,q[-1]*1000.]) 

# Pseudo code to call the ODE solver: 
# Initialize the 2D array (t,z) for the dependent variable 
F=zeros(nt,nz) 

# Pack up the initial condition: 
F[0,0]=0.    # Cumulative flux at the upper boundary 
F[0,1:-1]=psiI 
F[0,-1]=0.   # Cumulative flux at the lower boundary 

# Solve using a time loop: 
for j in 1 to M-1: 

F[j+1,:]=CallODE(ODEfunction,tSpan=[0,dt],F[j,:],args) 
 
# Unpack dependent variable: 
QT=hstack([0,F[1:,0]-F[:-1,0]])/1000. 
psi=F[:,1:-1] 
QB=hstack([0,F[1:,-1]-F[:-1,-1]])/1000. 

Box 2. Python-based pseudo code implementation of an ODE solver solution. The ODE function returns the time derivative 

of the dependent variable array, given in Eq. 19. Note, F[:,1:-1] is a slice through the array F that takes all the items in 

the first (time) dimension and the 2nd to 2nd to last items in the second dimension. 

 295 

https://doi.org/10.5194/gmd-2022-185
Preprint. Discussion started: 2 August 2022
c© Author(s) 2022. CC BY 4.0 License.



15 
 

2.4 Improving efficiency  

 

Here, we provide details of two techniques that can be used to improve the computational runtime of the model. These 

methods have no impact on the accuracy of the solution, so are optional, but combined they can result in better than a factor 

of 10 reduction in the runtime at the cost of only a few additional lines of code. In Appendix A, we investigate the impact of 300 

a range of different possible model decisions/assumptions on the accuracy, mass balance, efficiency, and simplicity of the 

model. 

 

2.4.1 Defining the Jacobian Pattern 

 305 

For the form of RE given by Eq. 10, the Jacobian matrix, 𝐽, is an 𝑛 × 𝑛 matrix, where the cell in each row, 𝑖, and column, 𝑗, 

is defined by the derivative 

 

𝐽-,1 =
𝑑
𝑑𝜓1

5
𝑑𝜓
𝑑𝑡 I-

7 =
𝑑
𝑑𝜓1

5−
1

𝐶(𝜓-)
	
𝜕𝑞
𝜕𝑧I-

7 
(24) 

 

Each entry in 𝐽-,1 can be evaluated in a function that is passed to the ODE solver (assuming that the particular ODE solver 310 

being used has this functionality), in order to speed up the solution process. For the spatial discretization scheme described 

above, all the terms of the Jacobian are zero, except for where 𝑗 = 𝑖 − 1, 𝑗 = 𝑖, and 𝑗 = 𝑖 + 1 (ignoring when 𝑖 − 1 < 1 and 

𝑖 + 1 > 𝑛, which would be zero terms anyway, for any boundary condition). A simpler alternative to defining the full 

Jacobian matrix is to define the Jacobian Pattern. The Jacobian Pattern is a matrix of ones and zeros that defines the location 

of the structurally non-zero elements of the Jacobian – that is, where the terms are not identically zero. For the spatially 315 

discretized RE as given in Eq. 10, the Jacobian Pattern is a simple tridiagonal matrix, with ones on the three main diagonals, 

and zeros everywhere else. To implement this requires an ODE solver capable of using the Jacobian Pattern (also referred to 

as the Jacobian sparsity matrix). The scipy ODE solvers ode and solve_ivp have the ability to define a banded Jacobian 

pattern: setting uband and lband arguments to 1 tells the ODE solver that the Jacobian is a tri-diagonal matrix. The scipy 

ODE solver solve_ivp can also handle a general 𝑛 × 𝑛  Jacobian pattern, which is more adaptable for multi-dependent 320 

variable coupled problems (e.g., Goudarzi et al., 2016). The MATLAB ODE solvers can read the Jacobian sparsity pattern 

matrix from the JPattern argument. We report on the relative performance/complexity of each of these methods in Appendix 

A.4. 

 

 325 

 

 

https://doi.org/10.5194/gmd-2022-185
Preprint. Discussion started: 2 August 2022
c© Author(s) 2022. CC BY 4.0 License.



16 
 

2.4.2 Just-in-time compilation 

 

In this paper, we are providing guidance for the use of  interpreted programming languages (e.g., Python or MATLAB) to 330 

solve RE. Interpreted languages have a number of advantages over compiled languages (such as FORTRAN and C), 

including that: they are easier to learn, with excellent teaching resources widely and freely available; they tend to have 

higher level abstractions, so that the same task can be completed in fewer lines of code; and they are cross platform and 

typically easier to install on any computer. Interpreted languages are compiled on the fly, meaning every individual line of 

code is compiled at run-time. By contrast, compiled languages are more efficient because the compilation and running of the 335 

code are separated, and you typically only have to compile the code once before it can be run many times. A nice 

compromise between the simplicity of interpreted languages and efficiency of compiled languages is to use a just-in-time 

compiler. In Python, the numba library is such a just-in-time compiler. Numba compiles all the lines of the Python code once 

at the start of the runtime, and then all subsequent calls to the code run much faster. We find that using numba in conjunction 

with our preferred ODE solver solution described above, results in up to 10x faster code execution (see Appendix A.5). The 340 

drawback to using numba is that some re-factoring of the code may be necessary to make a script that previously ran without 

numba work using numba – in particular, there are complications around how variables are allocated into numpy arrays. We 

include code in Ireson (2022, https://github.com/amireson/openRE) that demonstrates how to successfully implement 

numba. 

 345 

3. Benchmarking the model performance 

 

In this section, we run our RE solver, openRE, on a number of benchmark problems, comparing the different solution 

procedures and assessing the performance of all solutions against the five success criteria identified in the introduction, 

namely: i) accuracy of 𝜃(𝑡, 𝑧) and 𝜓(𝑡, 𝑧); ii) mass balance performance; iii) consistency boundary fluxes with Δ𝑡; iv) 350 

computational efficiency (i.e., runtime); and v) simplicity of the code. 

 

3.1 Published model benchmarks 

 

3.1.1 Celia’s problem 355 

Celia’s test case (Celia et al., 1990) is used to compare our ATS solution with the different solutions schemes previously 

proposed by Celia et al. (1990). The test problem uses a 40 cm deep vertical soil profile (𝑧4 = 40) with a uniform 1 cm 

space step (𝑑𝑧 = 1), a 360 second duration (𝑡$ = 0;	𝑡6 = 360) with a 1 second time step (Δ𝑡 = 1), and the following initial 

and type I boundary conditions: 

 360 

https://doi.org/10.5194/gmd-2022-185
Preprint. Discussion started: 2 August 2022
c© Author(s) 2022. CC BY 4.0 License.



17 
 

𝜓(𝑡 = 𝑡$, 0 ≤ 𝑧 ≤ 𝑧4) = −61.5	cm 

𝜓(𝑡$ ≤ 𝑡 ≤ 𝑡6 , 𝑧 = 0) = −20.7	cm 

𝜓(𝑡$ ≤ 𝑡 ≤ 𝑡6 , 𝑧 = 𝑧4) = −61.5	cm 

 

(25) 

 

The soil hydraulic properties are given by 

 

𝜃 =
𝛼(𝜃; − 𝜃<)
𝛼 + |𝜓|= + 𝜃< 

𝐾 = 𝐾;
𝐴

𝐴 + |𝜓|> 

 

(26) 

 

where the parameter values are 𝛼 = 1.611 × 10? , 𝜃; = 0.287 , 𝜃< = 0.075 , 𝛽 = 3.96 , 𝐾; = 0.00944  cm/s, 𝐴 =365 

1.175 × 10?, and 𝛾 = 4.74. Celia et al. (1990) presented three solution schemes: the “No iteration scheme” uses the 𝜓 form 

of RE and solves the problem with a single backward implicit step and no iteration (which we achieved using the Thomas 

Algorithm); the “Picard Iteration scheme” also solves the 𝜓 form of RE, but uses the Picard iteration method to improve the 

solution, with errors in 𝜓 used as a convergence criterion; finally the “Modified Picard Iteration Method” (MPM) uses the 

mixed-form of RE and uses errors in 𝜃 as a convergence criterion. The MPM is mass conservative because the iteration 370 

ensures that the cumulative change in fluxes (the right-hand-side of RE) balance the changes in storage (the left-hand-side of 

the mixed form of RE). Celia’s three solutions were reproduced in Python scripts (https://github.com/amireson/openRE) and 

compared with our ATS/SFOM solution. Results from all three solutions are shown in Figure 2. All methods are consistent 

for very small timesteps. The one-step method with no iteration performs poorly, with delayed breakthrough of the wetting 

front when the time step is large. The solution is improved by using Picard iteration, but there are still some delays. The 375 

MPM has a much better performance but, as with all implicit Euler time-stepping schemes, is still subject to some numerical 

dispersion for larger timesteps (van Genuchten et al., 1978). The ATS solution reproduces the 𝜓 breakthrough curve but with 

no dispersion and no differences associated with the timestep. Note that the time steps for plotting the ATS solution only 

represent the reporting time step - the underlying calculation time steps – are likely much smaller (Section 2.2).  

 380 

https://doi.org/10.5194/gmd-2022-185
Preprint. Discussion started: 2 August 2022
c© Author(s) 2022. CC BY 4.0 License.



18 
 

 
Figure 2. Reproduction of Celia’s model benchmark: the 𝜓 breakthrough curve using a backward difference implicit Euler 

solution with no iteration scheme; backward difference implicit Euler with Picard iteration; Celia’s modified Picard iteration 

Method (MPM); and the ODE solver with adaptive time stepping. The ODE solver produces consistent 𝜓(𝑡, 𝑧) results 

independently of the mass balance calculation procedure. The time steps reported are calculation time steps for Celia’s 385 

solutions but are reporting timesteps for the ODE solver, which uses an adaptive time step for calculation steps. 

 

In Figure 3, we show the cumulative inflow simulated by each of these models for Celia’s benchmark problem, along with 

the mass balance bias error, for different reporting timesteps. The one-step solution with no iteration and the Picard Iteration 

solution both have poor mass balance performance unless the time step is very small – on this basis, we do not consider these 390 

solutions further. We see that the MPM method is perfectly mass conservative for any Δ𝑡 used in the model, as we should 

expect. However, we can see that the cumulative inflow is sensitive to Δ𝑡. Hence, even though for larger Δ𝑡 the water 

balance is still perfectly closed, the actual terms within the water balance have changed, so there is less inflow and less 

change in storage. This is perhaps an under-appreciated limitation of Celia’s MPM solution, and solutions to the mixed form 

of RE generally – which is that mass balance is a necessary but insufficient criterion for model performance assessment, and 395 

truncation errors can still be present in the fluxes with perfect water balance closure.  

 

In Figure 3, we also show the water balance performance of our ATS solution, using either reporting time step information 

for the water balance calculation or using calculation time step information (i.e., using the SFOM described in Section 2.3). 

Using reporting timestep information is the easiest and most intuitive approach to take – you numerically integrate (1) 400 

discrete 𝜃  values over depth to get storage and (2) discrete 𝑞  values during reporting timesteps to get 𝑄  (e.g., using 

trapezoidal integration). However, this approach fails to capture non-linear changes in 𝑞 over a reporting timestep and results 

in large water balance errors and errors in the cumulative fluxes, as is clear in Figure 3. Using the SFOM, we see that the 

water balance is almost exactly closed, and the boundary fluxes are independent of the reporting timestep. It is also 

https://doi.org/10.5194/gmd-2022-185
Preprint. Discussion started: 2 August 2022
c© Author(s) 2022. CC BY 4.0 License.



19 
 

important to note that the discrete 𝜓(𝑡, 𝑧) values simulated by both ATS solution procedures here are identical (see Figure 2) 405 

– the only difference is how the boundary fluxes are calculated. 

 

 
Figure 3. Mass balance of Celia’s three models and our adaptive time-stepping model. The upper plot shows a reproduction 

of Celia’s mass balance calculation. The lower plot shows the cumulative inflow that is simulated. 410 

 

 

3.1.2 Miller’s saturated infiltration pulse problem 

 

Miller et al. (1998) investigated solutions to RE that aimed to address numerical convergence problems associated with 415 

challenging boundary conditions, and they specifically looked at the problem of infiltration from a ponded upper boundary 

into a hydrostatic soil profile with a fixed water table at the lower boundary. This is a good benchmark because it requires 

the model to deal with perched saturated conditions over unsaturated conditions and involves highly non-linear changes in 

properties over short distances and time steps. The problem uses van Genuchten (1980) hydraulic properties, given by 

𝑆@ = (1 + (𝛼𝜓)A)0B (27) 

https://doi.org/10.5194/gmd-2022-185
Preprint. Discussion started: 2 August 2022
c© Author(s) 2022. CC BY 4.0 License.



20 
 

𝜃 = 𝜃< + (𝜃; − 𝜃<)𝑆@ (28) 

𝑑𝜃
𝑑𝜓 =

−𝛼𝑚(𝜃; − 𝜃<)
1 −𝑚 𝑆@

./B		P1 − 𝑆@
./BQ

B
 

(29) 

𝐾 = 𝐾;𝑆@
.// T1 − P1 − 𝑆@

./BQ
B
U (30) 

 420 

where 𝑆@ (-) is the effective saturation, 𝛼 (L-1), 𝑛 (-) and 𝑚 (-) are parameters that determine the shape of the 𝜃(𝜓) curve, 𝜃< 

(-) and 𝜃; (-) are the residual and saturated volumetric water contents and 𝐾; (L T-1) is the saturated hydraulic conductivity. 

Miller’s problem uses the parameters in Table 1 for three different soil types.  

 

Parameter Sand Loam Clay Loam 

𝜃< 0.093 0.078 0.095 

𝜃; 0.301 0.430 0.410 

𝛼 (1/m) 5.470 3.600 1.900 

𝑛 4.264 1.560 1.310 

𝐾; (m/d) 5.040 0.250 0.062 

𝑆; (1/m) 10-6 10-6 10-6 

Table 1. Soil hydraulic properties used the Miller et al. (1998) problem 425 

 

A hydrostatic initial condition is used, with a fixed water table at depth of 10, 5, and 2 m below ground surface for sand, 

loam, and clay loam, respectively. At the upper boundary, 0.1 m of ponding is applied throughout the simulation run time of 

0.18, 2.25, and 1.0 days for sand, loam, and clay loam, respectively. We simulated this problem with our ATS solution and 

with Celia’s MPM model, for comparison purposes. Both models faced challenges with this problem. For Celia’s MPM, we 430 

had to use a small timestep to get the solver to produce accurate 𝜓(𝑧) profiles (Figure 4). For the ATS solutions using the 

default ODE solver settings, the models failed to propagate the wetting front into the soil correctly. It was necessary to 

increase the maximum number of calculation steps allowed per reporting time step (we increased this from the default 500 to 

10,000) so that very small timesteps could be taken (Table 2). It was also necessary (for loam and clayloam) or beneficial 

(for sand) to reduce the solver error tolerances – see values in Figure 4 and Table 2. The results from these simulations are 435 

shown in Figure 4 and are consistent with those reported in Figure 1 of Miller et al. (1998), showing that both models are 

able to successfully reproduce this benchmark. The runtimes and water balance for each solution are tabulated in Table 2. 

Celia’s MPM has consistently better water balance performance, though we think the water balance errors in both models are 

acceptably low. The ATS solution is slower for sand, faster for loam, and about the same for clayloam. Note that the 

https://doi.org/10.5194/gmd-2022-185
Preprint. Discussion started: 2 August 2022
c© Author(s) 2022. CC BY 4.0 License.



21 
 

runtimes and water balances of the ATS solution are sensitive to the reporting timestep Δ𝑡 and the solver settings nsteps, 440 

atol, and rtol – an improved solution might be attainable by optimizing these settings. On the other hand, for Celia’s MPM 

solution we only needed to optimize Δ𝑡. 

 
Figure 4. Reproduction of the Miller infiltration pulse result, using Celia’s MPM model and our ATS SFOM solution. Both 

models are satisfactorily consistent with the output reported by Miller et al. (1998), in their Figure 1. 445 

 

 

 

 

 450 

 

 

 

 

 455 

 

https://doi.org/10.5194/gmd-2022-185
Preprint. Discussion started: 2 August 2022
c© Author(s) 2022. CC BY 4.0 License.



22 
 

Solution Soil Solver settings runtime (s) MB bias (mm) 
MB RMSE 

(mm) 

Celia MPM 

Sand 𝑑𝑡 = 0.001 d 4.4 -4.2E-06 4.5E-06 

Loam 𝑑𝑡 = 0.001 d 31.7 -1.6E-03 5.3E-06 

Clay loam 𝑑𝑡 = 0.001 d 32.6 -8.0E-02 2.5E-04 

ATS SFOM  

Sand 

atol/rtol = 10-6 

nsteps = 10,000 

𝑑𝑡 = 0.01 

11.7 -1.5E-02 8.8E-04 

Loam 

atol/rtol = 10-6 

nsteps = 10,000 

𝑑𝑡 = 0.01 

16.7 -8.8E-02 2.0E-03 

Clay loam 

atol/rtol = 10-5 

nsteps = 10,000 

𝑑𝑡 = 0.001 

30.8 -3.2E-01 1.3E-03 

Table 2. Runtime and water balance performance for the Celia MPM and ATS SFOM solutions, applied to the problem in 

Miller et al., (1988). We also show here the solver settings. For the ATS solutions, we had to reduce the relative and absolute 

tolerances (atol/rtol) of the integrator and increase the maximum number of calculations steps allowed within a 

reporting step (nsteps). Note, timesteps (𝑑𝑡) in ATS solutions are reporting timesteps. 460 

 

3.1.3 Mathias’ solution for horizontal infiltration 

 

Mathias and Sander (2021) developed a pseudospectral similarity solution for horizontal infiltration (i.e., solving RE without 

gravity) that is fast and accurate. This solution assumes a semi-infinite horizontal soil column with a uniform initial 465 

condition and a type 1 boundary condition on the left boundary. The solution can resolve very large gradients in saturation 

and 𝜓 at the boundary, which propagate into the soil rapidly – and as such this is another challenging problem for a 

numerical RE model to reproduce. We solved this problem for three soil types, namely Hygiene sandstone, silt loam G.E.3, 

and Beit Netofa Clay, with properties from van Genuchten (1980), as listed in Table 3. 𝑆; was set to 0, consistent with 

Mathias’ solution. To configure our model for horizontal flow, it is necessary to remove the gravity term from the flux 470 

calculations (i.e.,  Eq. 12). We solved this problem for a left-hand boundary effective saturation of 0.99 and an initial 

saturation of 0.01. The grid is configured such that the wetting pulse does not reach the right-hand boundary over the 

simulation runtime. 

https://doi.org/10.5194/gmd-2022-185
Preprint. Discussion started: 2 August 2022
c© Author(s) 2022. CC BY 4.0 License.



23 
 

 

Parameter Sand Loam Clay Loam 

𝜃< 0.153 0.131 0. 

𝜃; 0.250 0.396 0.446 

𝛼 (1/cm) 0.0079 0.00423 0.00152 

𝑛 10.4 2.06 1.17 

𝐾; (cm/d) 108. 4.96 0.082 

𝑆; (1/m) 0. 0. 0. 

𝑑𝑡 (min) 0.1 0.01 0.01 

𝑑𝑥 (cm) 0.25 0.05 0.0025 

Table 3. Soil hydraulic properties used the Miller et al. (1998) problem 475 

 

We solved this problem with our ATS solution, with Celia’s MPM solution, and with the pseudospectral similarity solution 

(Mathias and Sander, 2021, implemented in MATLAB). The results in Figure 5 shows that both the ATS solution and the 

Celia solution do an excellent job of reproducing this solution for 𝜃(𝑡, 𝑥) (where 𝑥, m, is horizontal distance). The runtimes 

and water balance for each solution are tabulated in Table 4. Here we see that the ATS and Celia solutions have the same 480 

performance in terms of the water balance and the cumulative fluxes simulated. Runtimes vary between models: both are the 

same for sandstone, Celia’s solution is faster for silt loam, while the ATS solution is faster for clay. 

https://doi.org/10.5194/gmd-2022-185
Preprint. Discussion started: 2 August 2022
c© Author(s) 2022. CC BY 4.0 License.



24 
 

 

  485 

Figure 5. Comparison of our ATS solver flux output model for horizontal infiltration with the Mathias and Sander (2021) 

pseudospectral similarity solution (denoted analytical in the legend).  

 

 

 490 

 

 

 

 

https://doi.org/10.5194/gmd-2022-185
Preprint. Discussion started: 2 August 2022
c© Author(s) 2022. CC BY 4.0 License.



25 
 

Solution Soil runtime (s) MB bias (mm) 
MB RMSE 

(mm) 

Cumulative 

infiltration 

(mm) 

Celia MPM 

Sandstone 2.4 4.0E-03 6.5E-06 63.2 

Silt loam 12.8 2.2E-02 3.8E-06 34.2 

Clay 69.4 2.2E-03 4.1E-07 3.4 

ATS SFOM  

Sandstone 2.3 -1.1E-03 4.8E-06 63.3 

Silt loam 18.8 1.9E-02 3.9E-06 34.2 

Clay 32.1 2.2E-03 3.9E-07 3.4 

Table 4. Runtime and water balance performance for the Celia MPM and ATS SFOM solutions, applied to the problem 495 

described by Mathias and Sander (2021). 

 

 

3.2 Comparison with Hydrus 1D 

 500 

Hydrus 1D (Šimůnek et al., 2005, 2016) is a widely used one-dimensional RE solver. The calculations within Hydrus are 

undertaken using openly available FORTRAN source code, and the software runs through a (closed-source) graphical user 

interface on Microsoft Windows. The FORTRAN code can be compiled using gfortran on the MacOS operating system and 

run from the command line, which we did here, so that the runtime comparisons with our model are fair. Within HYDRUS, 

the user interface provides somewhat limited control over the error tolerances. We were unable to modify any settings to 505 

improve the water balance, and so we present here model runs that use the default iteration criteria (maximum number of 

iterations = 100; water content tolerance = 0.001; pressure head tolerance = 10 mm; lower/upper optimal iteration range = 

0.7/1.3; lower/upper timestep multiplication factor = 1.3/0.7; lower/upper limit of tension interval = 10-6/103 cm). 

 

We configured Hydrus 1D, our ATS solution, and our implementation of Celia’s MPM solution for a simple numerical 510 

experiment, where we simulate the infiltration of a ten-year timeseries of daily precipitation into a 1.5 m deep soil column, 

with a free drainage lower boundary condition. The minimum, mean, and maximum annual precipitation was 265, 484, and 

680 mm/yr, and the maximum daily precipitation was 55 mm/d. We used Silt Loam G.E. 3 soil hydraulic properties from 

van Genuchten (1980), where 𝜃< = 0.131,	𝜃; = 0.396, 𝛼 = 0.423 m-1, 𝐾; = 0.0496 m/d, 𝑛 = 2.06. We set 𝑆; = 100? m-1 

and used a uniform 𝜓 initial condition of -3.59 m. The results of the simulations with each model are given in Table 5, 515 

https://doi.org/10.5194/gmd-2022-185
Preprint. Discussion started: 2 August 2022
c© Author(s) 2022. CC BY 4.0 License.



26 
 

showing the runtime and water balance performance, Figure 6, showing the detailed water balance performance, and Figure 

7, showing the simulated storage and drainage. 

 

In our ATS solution, we can trade-off between water balance error and the runtime by modifying the rtol argument for the 

ODE solver. We found that the default rtol of 10-6 had the fastest runtime, but the water balance performance, whilst good 520 

enough for all practical purposes, was the worst overall (Table 5, Figure 6). Therefore, we reduced rtol to 10-7, which 

improved the water balance performance but increased the runtime. Even though the water balance errors reported here are 

all very small, it is still interesting to look closely at how these compare for the different models, as shown in Figure 6. The 

first thing to note is that the Celia MPM solution has water balance errors of essentially zero, which we expect, because this 

solution enforces water balance closure. Celia’s solution did have the longest runtime – approximately 40% slower than the 525 

other solutions. In the ATS solutions, on a daily basis, the water balance errors are much smaller than in Hydrus. However, 

in Hydrus, the water balance errors appear random, with a mean of zero, and hence when looking at the cumulative errors in 

Hydrus, there is no systematic accumulation in the errors. In the ATS solutions, in the lower right plot of Figure 6, we can 

see that the water balance errors are strongly correlated to the infiltration flux at the upper boundary – larger fluxes result in 

larger errors. Hence for the ATS solution with rtol=10-6, we see that the errors accumulate, and after 4 years, the cumulative 530 

errors in the ATS solution exceed those in Hydrus. For the ATS solution with rtol=10-7, the errors do not accumulate 

monotonically, and the long-term cumulative errors tend to oscillate about zero. The water balance performance of the ATS 

solution with rtol=10-7 is therefore better than the performance in Hydrus (Table 5, Figure 6), while the runtimes of these 

models are essentially the same (Hydrus is slightly faster, with a runtime of 2.21 vs 2.30 seconds, Table 5).  

 535 

Looking at the simulated storage and discharge in Figure 7, the two ATS solutions are visually indistinguishable and are both 

broadly consistent with the Hydrus 1D model outputs. The Celia MPM solution has non-negligible differences with all other 

solutions. This is because the MPM solution applies an iterative solution procedure to solve the model at a daily timestep, 

and the boundary fluxes are therefore subject to errors, as discussed above. The solution scheme imposes mass balance on 

the problem but does not track the truncation errors in the fluxes. The avoidance of this issue represents a significant 540 

advantage of adaptive time stepping solutions. 

Model runtime (s) MB bias (mm) MB RMSE (mm) 

ATS solution, rtol=10-6 1.71 -0.018 8.06E-05 

ATS solution, rtol=10-7 2.30 0.0003 6.92E-05 

Celia MPM solution 3.2 0.0 2.3E-10 

Hydrus 2.21 -0.0021 4.05E-03 

Table 5. Comparison of model runtimes and mass balance performance. 

https://doi.org/10.5194/gmd-2022-185
Preprint. Discussion started: 2 August 2022
c© Author(s) 2022. CC BY 4.0 License.



27 
 

 

 
Figure 6. Comparison of water balance performance from Hydrus 1D, the ATS solution, and our implementation of Celia’s 545 

MPM solution. The water balance error is 𝑞3 − 𝑞5 − Δ𝑆, and we show the balance for each time step (top) and cumulative 

balances since the start of the simulation (bottom).  

 

 

https://doi.org/10.5194/gmd-2022-185
Preprint. Discussion started: 2 August 2022
c© Author(s) 2022. CC BY 4.0 License.



28 
 

 550 
Figure 7. Simulated storage and discharge using Hydrus 1D, the ATS solution and our implementation of Celia’s MPM 

solution.  

 

4. Summary and recommendations 

 555 

We developed a simple adaptive time-stepping scheme (ATS) for RE using the interpreted language Python and making use 

of the scipy ODE solver ode. We also developed a new solver flux output method (SFOM) whereby cumulative boundary 

fluxes can be included within the dependent variable vector, allowing the determination of highly accurate integrated fluxes 

over designated time periods.  The SFOM is particularly useful for providing reliable assessment of mass balance closure. In 

principle, SFOM can be implemented in any ODE solver because it does not require any special output (such as dense 560 

output) to be available). Our model was coded up in python and released with the name openRE (Ireson, 2022). Our model 

performed well against our five success criteria, namely: i) we successfully reproduced benchmark solutions for 𝜓(𝑡, 𝑧) and 

𝜃(𝑡, 𝑧) from Celia et al., (1990), Miller et al. (1998) and Mathias and Sander (2021); ii) we report negligibly low mass 

https://doi.org/10.5194/gmd-2022-185
Preprint. Discussion started: 2 August 2022
c© Author(s) 2022. CC BY 4.0 License.



29 
 

balance errors; iii) we simulate boundary fluxes that are independent of the reporting time step (unlike Celia’s solution, as 

demonstrated in Figure 7); iv) we have low runtimes (as good as Hydrus 1D), and v) our code is very simple, concise (92 565 

lines of code for the solver plus 68 lines of code for model configuration for the numerical experiment in Section 3.2), and 

easily adaptable to new problems. Our solution had the best balance of efficiency, accuracy, and simplicity as compared to 

alternative established solution procedures. 

 

Appendix A: Navigating pitfalls in ODE solver solutions 570 

 

There are several subtle decisions that must be made when solving RE using a generic ODE solver. Here, we test a number 

of alternative model configurations and report the impact of these decisions using the following metrics: for model accuracy 

(criteria i), we report the RMSE of 	𝜓 at all grid points in 𝑡 and 𝑧 between the current model run and a reference model run; 

for the mass balance (criteria ii), we report both the bias error (Eq. 16) and the more rigorous daily water balance RMSE (Eq. 575 

17); for the model efficiency (criteria iv), we simply report the runtime, where all runs were undertaken on the same laptop 

computer. For these numerical experiments, we used the ten-year infiltration numerical experiment described in Section 3.2. 

 

The best model configuration, against which all other model configurations are compared, was as follows: use the scipy 

ODE solver “ode” with the method “BDF” (backward differentiation formulas, Brown et al., 1989); use our SFOM solution 580 

(Section 2.3/Appendix A.2); use the analytical expression for 𝐶(𝜓); use a banded Jacobian sparsity pattern matrix (Section 

2.4.1/Appendix A.4); and use the numba JIT compiler (Section 2.4.2/Appendix A.5). The water balance performance of this 

model, showing the cumulative change in storage against cumulative inflow (as infiltration at the surface) minus outflow (as 

drainage at the base) is plotted in Figure A1. 

 585 

 

 

https://doi.org/10.5194/gmd-2022-185
Preprint. Discussion started: 2 August 2022
c© Author(s) 2022. CC BY 4.0 License.



30 
 

 
Figure A1. Water balance performance plot for 10-year infiltration experiment, with the best model configuration, showing 

the cumulative change in storage in the profile, and the cumulative inflow minus outflow. The water balance bias was -0.018 590 

mm, and the RMSE of the daily water balance errors was 8.06x10-5 mm. 

 

A.1 Alternative scipy ODE solvers 

 

Here we compare the alternative ODE solvers that were available in scipy at the time of writing, which includes ode, odeint, 595 

and solve_ivp. These functions are alternative wrappers to classic ODE solvers written in Fortran, of which we consider here 

VODE with the method BDF (Brown et al., 1989, available within “ode” and “solve_ivp”), and LSODA (available with all 

three functions, Petzold, 1983). Note that for all solutions reported here we used the banded Jacobian sparsity pattern, with 

the exception of solve_ivp-BDF, which only allows for the full Jacobian sparsity pattern to be defined and which we found 

slowed the solution down – hence the results for the solve_ivp-BDF model do not use any information about the Jacobian 600 

matrix. 

ODE solver Method runtime (s) 𝝍 RMSE (m) MB bias (mm) 
MB RMSE 

(mm) 

ode BDF 1.71 0.000* -0.018 8.06E-05 

ode LSODA 1.96 0.000 0.001 7.11E-05 

odeint LSODA 2.69 0.000 0.000 7.04E-05 

solve_ivp BDF 7.45 0.001 -0.594 3.33E-03 

solve_ivp LSODA 2.44 0.000 0.059 6.12E-04 

Table A1. Model performance for the different ODE solvers/methods available in scipy. 

https://doi.org/10.5194/gmd-2022-185
Preprint. Discussion started: 2 August 2022
c© Author(s) 2022. CC BY 4.0 License.



31 
 

 

We see that solve_ivp underperforms in accuracy, water balance, and efficiency. The odeint solver has the best performance 

in terms of accuracy and water balance but is slower by a non-negligible amount. The ode-BDF method is the most efficient 605 

but has slightly worse water balance performance – however, the water balance performance of all methods is extremely 

good, and errors are negligible for practical purposes. We therefore chose ode-BDF as our preferred solution – but ode-

LSODA is also a good option. It is also possible to increase the error tolerances in the ODE solver, reduce the maximum 

number of timesteps and increase the minimum timestep – all of which could result in a faster runtime at the cost of lower 

accuracy/water balance closure. 610 

 

A.2 Alternative boundary flux calculation methods 

 

As detailed in Section 2.3, there are alternative ways to calculate the boundary fluxes for use in the water balance 

calculation. In Section 3.3, we developed a novel approach to calculating the boundary fluxes – the SFOM. In addition to 615 

this method, we consider methods that calculate the boundary fluxes based on the output model states at either reporting step 

or calculation step information. We also consider using forward, backward, or central difference approximations to integrate 

the flux over a timestep (Eq. 18). The results of this analysis are provided in Table A2. 

 

Method runtime (s) 𝝍 RMSE (m) MB bias (mm) 
MB RMSE 

(mm) 

SFOM 1.71 0.000 -0.018 8.06E-05 

Reporting step central 1.66 0.000 0.119 2.64E+00 

Reporting step forward 1.66 0.000 0.119 5.29E+00 

Reporting step backward 1.66 0.000 0.119 5.92E-02 

Calculation step central 5.24 0.000 0.046 1.13E-04 

Calculation step forward 5.24 0.000 0.046 3.24E-03 

Calculation step backward 5.24 0.000 0.046 3.14E-03 

Table A2. Model performance using different calculation methods for the boundary fluxes. 620 

 

Model state variables are unaffected by the different boundary flux calculation methods. The SFOM has the best water 

balance performance, both in terms of bias and RMSE. Using calculation step level information results in good water 

balance closure, with the central difference approximation giving the lowest errors. However, the efficiency of this is poor, 

https://doi.org/10.5194/gmd-2022-185
Preprint. Discussion started: 2 August 2022
c© Author(s) 2022. CC BY 4.0 License.



32 
 

with runtimes increased by more than a factor of three. This is because many additional calculations need to be performed 625 

outside the ODE solver for each calculation time step. By default, the ODE solver allows up to 500 calculation time steps for 

every reporting timestep – so this is very inefficient. Calculating the boundary fluxes using reporting timestep information is 

very efficient, slightly faster than our method, but the water balance errors are significantly larger. These reporting step 

errors will increase with an increased reporting time step, as is shown in Figure 3. Overall then, the SFOM provides the 

performance of using calculation step information without the loss of computational efficiency. 630 

 

The key take home point here is that the easiest and most obvious approach to calculating the boundary fluxes is to use 

reporting step information. This is a bad idea – the mass balance errors are large, and if this is combined with other bad 

decisions (such as using discrete approximations for 𝐶(𝜓) as discussed in the next section), the results can be catastrophic 

(water balance errors > 100 mm). 635 

 

A.3 Alternative estimation methods for 𝒅𝜽/𝒅𝝍 

 

When we use a parametric expression for 𝜃(𝜓), such as the van Genuchten equations (Eqs. 27-30), we can obtain an 

analytical expression for 𝑑𝜃/𝑑𝜓, as in Eq. 29, and this can be used to calculate 𝐶(𝜓) as implemented in RE in Eq. 5. 640 

However, depending on the numerical solution procedure that is adopted, this can lead to errors with mass conservation, and 

it is recommended by some researchers (Rathfelder & Abriola, 1994, Clark et al., 2021) that a discrete approximation is used 

for 𝑑𝜃/𝑑𝜓, whereby 

 
𝑑𝜃
𝑑𝜓 =

𝜃A − 𝜃A0.
𝜓A −𝜓A0.

 
(31) 

 645 

where here 𝑛 is a time index. This approach could be seen as equivalent to solving the mixed form of RE and can minimize 

water balance errors in the model that arise because the changes in 𝑑𝜃/𝑑𝜓 over a time step are non-linear, as shown by Celia 

et al., (1990). However, it is necessary to apply this very carefully in the context of ATS methods. The values of 𝜃A0. and 

𝜓A0. must be available from the previous calculation time step and not the previous reporting time step. If reporting timestep 

information is used, the model will fail badly because as the calculation steps move forward in time over a reporting step, 650 

𝐶(𝜓) is constantly referenced back to the beginning of the reporting step. This is clearly an erroneous approach, resulting in 

mass balance errors of > 100 mm for our problem. For the solver flux output method of calculating the boundary fluxes, it is 

necessary to output states at reporting steps, and therefore it is not possible to use the discrete approximation for 𝐶(𝜓). The 

results in Table WQ3 all use calculation step information. A more subtle issue is the order of the temporal integrator used by 

the ODE solver, which can be specified by the user. Here, we use either 1st order or (variable) higher order (as determined by 655 

https://doi.org/10.5194/gmd-2022-185
Preprint. Discussion started: 2 August 2022
c© Author(s) 2022. CC BY 4.0 License.



33 
 

the ODE solver) temporal integration methods. For the solver flux output method, we use higher order temporal integration. 

The results are given in Table A3. 

 

Method runtime (s) 𝝍 RMSE (m) MB bias (mm) 
MB RMSE 

(mm) 

Analytical 𝐶(𝜓) 
Solver flux output 

method 
1.71 0.000 -0.018 8.06E-05 

Analytical 𝐶(𝜓) 1st Order 36.25 0.000 -0.49 4.97E-04 

Analytical 𝐶(𝜓) High Order 5.17 0.000 0.046 3.14E-03 

Discrete 𝐶(𝜓) 1st Order 44.62 0.000 0.317 1.92E-07 

Discrete 𝐶(𝜓) High Order 7.2 0.003 11.939 9.72E-03 

Table A3. Model performance using different approaches to calculate 𝐶(𝜓). 

 660 

We see in Table 3 that the discrete 𝐶(𝜓) approach works quite well for 1st order integration methods but is very slow. When 

higher order integration methods are used, the model is faster, but the mass balance is chronically degraded. We think that 

this happens because with higher order methods the model states evolve in a more complex manner (i.e., non-linear manner) 

over a calculation timestep, so the linear approximation in Eq. 28 is not good. It is noteworthy that the modelled 𝜓 values 

were slightly modified using the discrete high order approach. For comparison purposes, we looked at using analytical 665 

representations of 𝐶(𝜓) with 1st order and higher order methods, and this time the higher order methods performed better. 

Overall, we recommend against using discrete 𝐶(𝜓)  approximations, unless using a tailor-made ODE solver (such as 

Kavetski 2001, 2002a, 2002b). 

 

A.4 Alternative approaches to defining the Jacobian 670 

 

As described in Section 4.1, providing the ODE solver with information about the Jacobian matrix is reported to improve the 

solution efficiency. Here we compare three approaches: no information provided about the Jacobian; defining the Jacobian 

pattern; and defining the full Jacobian matrix. For the last case, this was complex to define for our method, and therefore this 

was implemented for the high order reporting step solution procedure described in 4.3.2. The results are reported in Table 675 

A4. 

 

 

 

https://doi.org/10.5194/gmd-2022-185
Preprint. Discussion started: 2 August 2022
c© Author(s) 2022. CC BY 4.0 License.



34 
 

 680 

 

Method runtime (s) 𝝍 RMSE (m) MB bias (mm) 
MB RMSE 

(mm) 

Solver flux output 

method  

Jacobian pattern 1.71 0 -0.018 8.06E-05 

no Jacobian 2.17 0 -0.015 7.53E-05 

Reporting step flux 

calculation method 

no Jacobian 2.16 0 0.119 5.92E-02 

Jacobian pattern 1.63 0 0.119 5.92E-02 

full Jacobian 1.58 0 0.123 5.92E-02 

Table A4. Model performance using different approaches to define the Jacobian matrix. 

 

We see that for both model configurations, defining the banded Jacobian sparsity pattern matrix led to improvements in 

performance of around 20%. This is modest, but because it is trivial to define the banded matrix, this is worthwhile. For the 685 

reporting step model, when we defined the full Jacobian matrix, this led to a very slight improvement in performance over 

the banded solution (1.58 seconds vs 1.63 seconds). Defining the full Jacobian is challenging and requires an additional 

function/function call in the code – we therefore recommend against using the full Jacobian matrix and recommend instead 

defining the banded matrix.  

 690 

A.5 Running the model with and without numba JIT compilation 

 

The best model configuration was also run with and without 𝑛𝑢𝑚𝑏𝑎 JIT compiler, and the result is shown in Table A5. It 

can be seen that 𝑛𝑢𝑚𝑏𝑎	has no impact on the model output (accuracy and mass balance are identical for each run) as 

expected, but using numba improves the runtime by a factor of ~15. All other model runs reported in this paper use numba. 695 

 

Configuration runtime (s) 𝝍 RMSE (m) MB bias (mm) MB RMSE (mm) 

With numba 1.71 0.00 -0.018 8.06E-05 

Without numba 26.07 0.00 -0.018 8.06E-05 

Table A5. Model performance with and without numba JIT compliation. 

 

 

 700 

https://doi.org/10.5194/gmd-2022-185
Preprint. Discussion started: 2 August 2022
c© Author(s) 2022. CC BY 4.0 License.



35 
 

Code and/or data availability 

All of the scripts developed in this study are available from https://github.com/amireson/openRE, release v1.0.0, DOI: 

10.5281/zenodo.6939855 (Ireson, 2022). The code is written in Python and MATLAB, and run using Makefiles, which 

reproduce Figures 2 – 7.  

 705 

Author contribution 

Ireson conceived of this study, wrote all the scripts (except the pseudospectral similarity solution, written in MATLAB by 

Mathias), performed the analysis and drafted the manuscript. Mathias came up with the idea for the proposed solver flux 

output method (SFOM). Clark, Spiteri and Mathias assisted with the study design and implementation and edited the 

manuscript. 710 

 

References 

Anaconda Software Distribution. Anaconda Documentation. Anaconda Inc. https://docs.anaconda.com/, 2020 

Bear, J. & Cheng, A. H. D. Modeling groundwater flow and contaminant transport. (Vol. 23, p. 834). Dordrecht: Springer., 
2010 715 

Beven, K., & Germann, P. Macropores and water flow in soils revisited. Water Resources Research, 49(6), 3071–3092, 
doi:10.1002/wrcr.20156, 2013 

Brown, P. N., Hindmarsh, A. C., & Byrne, G. D. VODE. Variable Coefficient ODE Solver. SIAM Journal on Scientific and 
Statistical Computing, 10(5), 1038-1051. doi:10.1137/0910062, 1989 

Celia, M. A., Bouloutas, E. T., & Zarba, R. L. A general mass-conservative numerical solution for the unsaturated flow 720 
equation. Water Resources Research, 26(7), 1483–1496. doi:10.1029/WR026i007p01483, 1990 

Clark, M. P., Zolfaghari, R., Green, K. R., Trim, S., Knoben, W. J. M., Bennett, A., Nijssen, B., Ireson, A., & Spiteri, R. J. 
The Numerical Implementation of Land Models: Problem Formulation and Laugh Tests. Journal of Hydrometeorology, 
22(6), 1627–1648. doi:10.1175/JHM-D-20-0175.1, 2021 

Farthing, M. W., & Ogden, F. L. Numerical Solution of Richards’ Equation: A Review of Advances and Challenges. Soil 725 
Science Society of America Journal, 81(6), 1257–1269. doi:10.2136/sssaj2017.02.0058, 2017 

Goudarzi, S., Mathias, S. A., & Gluyas, J. G. (2016). Simulation of three-component two-phase flow in porous media using 
method of lines. Transport in Porous Media, 112(1), 1-19, doi:10.1007/s11242-016-0639-5, 2016 

Ireson, A.M. openRE, v1.0.0, Zenodo, doi:10.5281/zenodo.6939855, 2022 

Ireson, A. M., and Butler, A. P. A critical assessment of simple recharge models: application to the UK Chalk. Hydrology 730 
and Earth Systems Science, doi:10.5194/hessd-9-12061-2012, 2013 

Ireson, A. M., Mathias, S. A., Wheater, H. S., Butler, A. P. and Finch, J. A model for flow in the Chalk unsaturated zone 
incorporating progressive weathering. A model for flow in the Chalk unsaturated zone incorporating progressive weathering. 
Journal of Hydrology., 365. 244-260. doi:10.1016/j.jhydrol.2008.11.043, 2009 

https://doi.org/10.5194/gmd-2022-185
Preprint. Discussion started: 2 August 2022
c© Author(s) 2022. CC BY 4.0 License.



36 
 

Jackson, M. Software Carpentry: Automation and Make. (Version 2016.06). https://swcarpentry.github.io/make-novice/, 735 
2016 

Kavetski, D., Binning, P., & Sloan, S. W. Adaptive time stepping and error control in a mass conservative numerical solution 
of the mixed form of Richards equation. Advances in Water Resources, 24(6), 595–605. doi:10.1016/S0309-1708(00)00076-
2, 2001 

Kavetski, D., Binning, P., & Sloan, S. W. Adaptive backward Euler time stepping with truncation error control for numerical 740 
modelling of unsaturated fluid flow. International Journal for Numerical Methods in Engineering, 53(6), 1301–1322. 
doi:10.1002/nme.329, 2002a 

Kavetski, D., Binning, P., & Sloan, S. W. Noniterative time stepping schemes with adaptive truncation error control for the 
solution of Richards equation: NONITERATIVE TIME STEPPING SCHEMES. Water Resources Research, 38(10), 29-1-
29–10. doi:10.1029/2001WR000720, 2002b 745 

Mathias, S. A., Skaggs, T. H., Quinn, S. A., Egan, S. N., Finch, L. E., & Oldham, C. D. A soil moisture accounting‐
procedure with a Richards' equation‐based soil texture‐dependent parameterization. Water resources research, 51(1), 506-
523, doi:10.1002/2014WR016144, 2015 

Mathias, S. A., & Sander, G. C. Pseudospectral methods provide fast and accurate solutions for the horizontal infiltration 
equation. Journal of Hydrology, 598, 126407. doi:10.1016/j.jhydrol.2021.126407, 2021 750 

Miller, C. T., Williams, G. A., Kelley, C. T., & Tocci, M. D. Robust solution of Richards’ equation for nonuniform porous 
media. Water Resources Research, 34(10), 2599–2610. doi:10.1029/98WR01673, 1998 

Milly, P. C. D. A mass-conservative procedure for time-stepping in models of unsaturated flow. Advances in Water 
Resources, 8(1), 32–36. doi:10.1016/0309-1708(85)90078-8, 1985 

Milly, P. C. D. A Mass-Conservative Procedure for Time-Stepping in Models of Unsaturated Flow. In J. P. Laible, C. A. 755 
Brebbia, W. Gray, & G. Pinder (Eds.), Finite Elements in Water Resources (pp. 103–112). Springer. doi:10.1007/978-3-662-
11744-6_9, 1984 

Ogden, F. L., Lai, W., Steinke, R. C., Zhu, J., Talbot, C. A., & Wilson, J. L. A new general 1-D vadose zone flow solution 
method. Water Resources Research, 51(6), 4282–4300. doi:10.1002/2015WR017126, 2015 

Petzold, L. Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of Ordinary Differential Equations. 760 
SIAM Journal on Scientific and Statistical Computing, 4(1), 136–148. doi:10.1137/0904010, 1983 

Rathfelder, K., & Abriola, L. M. Mass conservative numerical solutions of the head-based Richards equation. Water 
Resources Research, 30(9), 2579–2586. doi:10.1029/94WR01302, 1994 

scipy. SciPy documentation—SciPy v1.7.1 Manual. https://docs.scipy.org/doc/scipy/index.html, 2021 

Šimůnek, J., M. Th. van Genuchten, and M. Šejna. The Hydrus-1D software package for simulating the one-dimensional 765 
movement of water, heat, and multiple solutes in variably-saturated media. Version 3.0, HYDRUS Software Series 1, 
Department of Environmental Sciences, University of California Riverside, Riverside, CA, 2005 

Šimůnek, J., M. Th. van Genuchten, and M. Šejna. Recent developments and applications of the HYDRUS computer 
software packages, Vadose Zone Journal, 15(7), pp. 25, doi:10.2136/vzj2016.04.0033, 2016 

Tocci, M. D., Kelley, C. T., & Miller, C. T. Accurate and economical solution of the pressure-head form of Richards’ 770 
equation by the method of lines. Advances in Water Resources, 20(1), 1–14. doi:10.1016/S0309-1708(96)00008-5, 1997 

https://doi.org/10.5194/gmd-2022-185
Preprint. Discussion started: 2 August 2022
c© Author(s) 2022. CC BY 4.0 License.



37 
 

Van Genuchten, M. T. H., & Gray, W. G. Analysis of some dispersion corrected numerical schemes for solution of the 
transport equation. International Journal for Numerical Methods in Engineering, 12(3), 387-404, doi: 
10.1002/nme.1620120302, 1978 

van Genuchten, M. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils 1. Soil Science 775 
Society of America Journal, 44(5), 892–898, doi:10.2136/sssaj1980.03615995004400050002x, 1980 

Vereecken, H., Schnepf, A., Hopmans, J. W., Javaux, M., Or, D., Roose, T., Vanderborght, J., Young, M. H., Amelung, W., 
Aitkenhead, M., Allison, S. D., Assouline, S., Baveye, P., Berli, M., Brüggemann, N., Finke, P., Flury, M., Gaiser, T., 
Govers, G., … Young, I. M. Modeling Soil Processes: Review, Key Challenges, and New Perspectives. Vadose Zone 
Journal, 15(5), vzj2015.09.0131, doi:10.2136/vzj2015.09.0131, 2016 780 

https://doi.org/10.5194/gmd-2022-185
Preprint. Discussion started: 2 August 2022
c© Author(s) 2022. CC BY 4.0 License.


