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Abstract. A simple numerical solution procedure – namely the method of lines combined with an off-the-shelf ODE solver – 

was shown in previous work to provide efficient, mass conservative solutions to the pressure-head form of Richards’ equation. 

We implement such a solution in our model openRE. We developed a novel method to quantify the boundary fluxes that reduce 

water balance errors without negative impacts on model runtimes – the Solver Flux Output Method (SFOM). We compare this 15 

solution with alternatives, including the classic Modified Picard Iteration method and the Hydrus 1D model. We reproduce a 

set of benchmark solutions with all models. We find that Celia’s solution has the best water balance, but it can incur significant 

truncation errors in the simulated boundary fluxes, depending on the time steps used. Our solution has comparable run-times 

to Hydrus and better water balance performance (though both models have excellent water balance closure for all the problems 

we considered). Our solution can be implemented in an interpreted language, such as MATLAB or Python, making use of off-20 

the-shelf ODE solvers. We evaluated alternative scipy ODE solvers that are available in Python and make practical 

recommendations about the best way to implement them for Richards’ equation. There are two advantages of our approach: i) 

the code is short and simple, making it ideal for teaching purposes; and ii) the method can be easily extended to represent 

alternative properties (e.g., novel ways to parameterize the 𝐾(𝜓) relationship) and processes (e.g., it is straightforward to 

couple heat or solute transport), making it ideal for testing alternative hypotheses. 25 

 

1. Introduction 

Richards’ equation (RE) describes the movement of water in variably saturated porous media. Almost any practical application 

of RE requires a numerical solution; yet RE remains challenging to solve reliably and accurately for a given set of boundary 

conditions and soil hydraulic properties (Farthing and Ogden, 2017). RE has been extensively reviewed (e.g., Vereecken et 30 

al., 2016; Farthing and Ogden, 2017, and references therein). RE has practical limitations in representing the flow processes 

in real soils containing macropores, especially with modelling infiltration and rapid percolation processes (Beven and 

Germann, 2013). The strength of RE is its ability to represent matrix drainage and capillary flows, which control 

evapotranspiration processes, and its ability to be coupled to heat and solute transport models. For this reason, RE remains a 
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common approach to simulate soil moisture in many terrestrial system models (e.g., vadose zone models, ecohydrology 35 

models, and land-surface models; Vereecken et al., 2016, Clark et al., 2015; 2021).  

 

Our objective in this manuscript is to i) implement a simple and practical approach to solve RE that is efficient, mass 

conservative, and uses open-source software (written in Python) that is readily available, including as a teaching tool; and ii) 

present an improved mass balance calculation procedure for use with ordinary differential equation (ODE) solvers that apply 40 

adaptive-time stepping (ATS) schemes. We investigate how to maximize the efficiency and accuracy of ODE solvers and 

provide guidance on the subtle challenges that arise in evaluating the boundary fluxes and the water balance. For our purposes, 

we define the following five criteria for success for an RE solver: i) the solver  should successfully reproduce benchmark 

solutions for 𝜓(𝑡, 𝑧) or 𝜃(𝑡, 𝑧); ii) the solver should be mass conservative, with errors that are negligible based on the specific 

application; iii) truncation errors in the simulated boundary fluxes should be negligible for the given time-step; iv) the solver 45 

should be computationally efficient; and v) all else being equal on criteria i-iv, the simplest code should be preferred. Simple 

code should be the most human readable/editable code, which means it should be clean, concise, modular, and free from 

redundancies.  

 

The remainder of this paper is organized as follows. In section 2, we describe a simple yet powerful approach to solve RE 50 

numerically using ODE solvers that we implement and test in the Python and MATLAB programming languages. In section 

2, we also discuss the complexities of closing the water balance in RE and present a novel solution that can be applied with 

any ODE solver: openRE. In section 3, we benchmark the performance of our proposed solution against existing numerical 

models and solutions, including Hydrus 1D, and the solution method proposed by Celia at al. (1990). In section 4, we 

summarize our recommendations. 55 

 

2. Solving Richards’ Equation 

 

RE is derived from the mass continuity equation applied to a control volume of soil, Δ𝑥Δ𝑦Δ𝑧 (L3), and for one-dimensional 

vertical flow passing through the area Δ𝑥Δ𝑦 (L2), we have 60 

 

𝜕𝑚
𝜕𝑡 = −

𝜕(𝑞𝜌)
𝜕𝑧  

(1) 

 

where 𝑚 (M L-3) is the mass of water per control volume of soil, 𝜌 (M L-3) is the density of water,  𝑞 (L T-1) is the flux of 

water, 𝑡 (T) is time and 𝑧 (L) is depth below some fixed datum. Assuming that density is constant, we may write  

 65 



 

3 
 

𝜕𝜃
𝜕𝑡 = −

𝜕𝑞
𝜕𝑧 

(2) 

 

where 𝜃 (L3 L-3) is the volumetric water content, defined as the volume of water per control volume of soil. The vertical flux 

is given by Darcy’s law,  

  

𝑞! = −𝐾(𝜓)
𝑑ℎ
𝑑𝑧 	= −𝐾(𝜓) 5

𝑑𝜓
𝑑𝑧 − 17 

(3) 

 70 

where ℎ (L) and 𝜓 (L) are the hydraulic head and matric potential head, respectively, and 𝐾(𝜓) (L T-1) is the hydraulic 

conductivity. Combining Eqs. (2) and (3) we have  

 

𝜕𝜃
𝜕𝑡 =

𝜕
𝜕𝑧 8𝐾

(𝜓) 5
𝜕𝜓
𝜕𝑧 − 179 

(4) 

 

which is the mixed form of RE (Celia et al., 1990). If we let 𝐶(𝜓) = 𝑑𝜃/𝑑𝜓 (L-1), we can write 75 

  

𝐶(𝜓)
𝜕𝜓
𝜕𝑡 =

𝜕
𝜕𝑧8𝐾

(𝜓) 5
𝜕𝜓
𝜕𝑧 − 179 

(5) 

 

which is the 𝜓 based form of RE (Celia et al., 1990). We can also express this as the 𝜃 form of RE, given by 

 
𝜕𝜃
𝜕𝑡 =

𝜕
𝜕𝑧 5

𝐾(𝜃)
𝐶(𝜃)

𝜕𝜃
𝜕𝑧 − 𝐾(𝜃)7 

(6) 

 80 

where the constitutive relationships 𝐶(𝜃) and 𝐾(𝜃) are expressed as functions of 𝜃 (Celia et al., 1990). Changes in storage in 

Eqs. (4), (5), and (6) are associated with the filling and draining of soil pores. Because lim
"→$!

𝑑𝜃/𝑑𝜓 = 0, an elastic storage 

term is needed to solve RE in saturated, or close to saturated, conditions. This term represents the compression of the pore-

water and the expansion of the pore-space as a function of increasing pore water pressure (though the latter is orders of 

magnitude larger than the former).  The 𝜓 form of RE with elastic storage is written 85 

 

5𝑆%
𝜃(𝜓)
𝜃%

+
𝜕𝜃
𝜕𝜓7

𝜕𝜓
𝜕𝑡 =

𝜕
𝜕𝑧 8𝐾

(𝜓) 5
𝜕𝜓
𝜕𝑧 − 179 

(7) 
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where 𝑆% (L-1) is the specific storage coefficient and 𝜃% is the saturated water content, equal to the porosity (Kavetski et al., 

2001). If 𝑆% is large, it may have a non-negligible impact on the water balance, which needs to be accounted for (e.g., as in 

Clark et al., 2021, Eq. 80). 𝑆% is often treated as a numerical smoothing factor for RE when conditions are saturated or close 90 

to saturation, and its impact on the water balance is neglected (e.g., as in Tocci et al., 1997; Ireson et al., 2009). For 

convenience, hereafter we define 𝐶(𝜓) = 𝑆%
&(")
&"

+ )&
)"

, such that elastic storage can be ignored by setting 𝑆% = 0. 

 

The 𝜓 form or mixed form of RE with elastic storage included can be shown to work for saturated conditions (Miller et al., 

1998) and so can be considered a general governing equation for flow in soils, aquitards, and confined and unconfined aquifers. 95 

Some numerical solutions to the 𝜓 form of RE are reportedly subject to poor mass conservation (Milly, 1984, 1985, Celia et 

al., 1990, Farthing and Ogden, 2017, Clark et al., 2021; Turbini et al., 2022), though it has been shown that mass balance errors 

can be effectively controlled using ATS (Rathfelder and Abriola, 1994, Tocci et al., 1997). We carefully assess the mass 

balance performance of our model in this paper. 

   100 

We consider a finite difference numerical solution for the 𝜓 form of RE that applies the method of lines to reduce the PDE in 

Eq. (7) to a system of ODEs of the form 

 
𝑑𝝍
𝑑𝑡 = 𝑓(𝝍, 𝑡, 𝒛) (9) 

 

where 𝝍 and 𝒛 represent vectors containing discrete values of 𝜓 and 𝑧. A similar approach was taken by Tocci et al. (1997) 105 

and Felder and Ogden (2017). There are various methods that can be applied to integrate Eq. (9) with respect to time – for our 

purposes, it is useful to consider three specific classes of methods: 

• Fixed-step Non-iterative Methods (NIM). These methods provide a solution for a fixed time interval, and can be 

either explicit or implicit. Explicit methods are simple but impractical because they require very small time-steps. 

Semi-implicit non-iterative methods take a single iteration based on the linearization of the spatially discretized 110 

governing equations. These methods are more stable than explicit methods, but have limitations for solving RE over 

a fixed time interval because they do not iterate to improve the convergence of the problem, which is problematic due 

to the non-linear dependence of 𝐾 and 𝐶 on 𝜓 (Celia et al., 1990). Celia et al. (1990) did not present results using a 

NIM, but their Equation 4 can be solved directly (a semi-implicit non-iterative method, which we implemented and 

discuss in Section 3.1). We include NIM here because they may be instructive to new researchers learning about these 115 

problems.  

• Fixed-step Iterative methods (FIM). Iterative implicit methods are very widely used (Celia et al., 1990, Rathfelder 

and Abriola, 2001). The iterations allow the solution to find more representative values of 𝐾 and 𝐶 over the time step. 
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These methods can be applied to either the 𝜓 form or mixed form of RE. For the mixed form of RE, the convergence 

criterion can be based directly on water balance closure, as in Celia’s Modified Picard Iteration method. For the 𝜓 120 

form of RE, the convergence criterion is based on 𝜓 values, and the solution is subject to larger water balance errors 

(Celia et al., 1990, Rathfelder and Abriola, 1994, Felder and Ogden, 2017).   

• Adaptive time stepping (ATS) methods. An implicit or explicit method is used to find 𝝍*+,* over some calculation 

timestep; the truncation error in the solution is assessed, for example, by comparing two different-order solutions, as 

in Kavetski et al. (2001); and depending on the size of the error, the time step is either reduced to improve the accuracy 125 

or increased to improve the efficiency. The solution marches forward until reaching what we term the reporting 

timestep, where the state variables are output. The advantage of this approach is that the states and fluxes calculated 

at the intermediate calculation steps contain useful information that can be exploited in the output, as we demonstrate 

in this paper. Kavetski et al. (2001, 2002a, 2002b) developed ATS solvers designed specifically to solve the different 

forms of RE, while other workers have applied readily available “black-box” (Kavetski, et al., 2001) ODE or DAE 130 

(Differential Algebraic Equation) solvers to RE (Tocci et al., 1997; Ireson et al., 2009; Ireson and Butler, 2013; 

Mathias et al., 2015, Clark et al., 2021). A wide range of ODE solvers are available in many different programming 

languages. Solutions are simple to implement and, as we show in this study, can outperform other methods in terms 

of accuracy and efficiency. 

 135 

In this study, we implement each of the three possible methods for solving RE in scripts that are available from Ireson (2022, 

https://github.com/amireson/openRE). All of the models in this study were coded in Python (version 3.8.11). We make use of 

the following libraries: numpy (version 1.20.3); matplotlib (version 3.4.2); scipy (version 1.7.1), which contains various ODE 

solvers, described below; and numba (version 0.53.1, Lam et al., 2015), which is a just-in-time compiler that is optional but 

speeds up the model runs considerably. We organize and run the models using makefiles (Jackson, 2016). 140 

 

We also provide a MATLAB version of our recommended solution (implemented in MATLAB R2017b installed on a mac). 

The MATLAB implementation will not be described further, but compared with the optimal Python solution, the MATLAB 

model is somewhat simpler and achieves an equivalent performance in terms of simulated states and fluxes. We do not 

recommend Python over MATLAB (or vice versa) – both platforms work well, and the choice will come down to numerous 145 

factors, including, e.g., the availability of, and user familiarity with, either package or the need to use non-proprietary software 

to satisfy open science requirements. 

 

2. 1 Fixed-step non-iterative and iterative solutions 

 150 

For the NIM and FIM methods, we have coded up the numerical solutions from Celia et al. (1990). This provides a typical 

NIM method (first-order backward Euler implicit solution, Equation 4 in Celia et al., 1990), and two alternative FIMs: Picard 
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Iteration that solves the 𝜓 form of RE; and their improved Modified Picard Iteration Method (MPM) solution that solves the 

mixed form of RE. Fully reproducible details of these models were provided by Celia et al. (1990) and so will not be repeated 

here. These models were implemented in Python, and the code is provided at Ireson (2022, 155 

https://github.com/amireson/openRE). The NIM model was coded up in 67 lines of code (note, blank lines and comment lines 

are not counted in the number of lines of code), with an additional 52 lines of code to configure the problem (define the grid, 

hydraulic properties, etc.). The FIM Picard Iteration method was coded up in 79 lines of code and required the same 52 lines 

of code to configure the problem. The FIM Modified Picard Iteration was implemented using the numba just-in-time compiler 

(Appendix A.5) and was coded up in 90 lines of code, with an additional 59 lines of code to configure the problem. All solutions 160 

make use of the Thomas Algorithm to solve the tridiagonal linear system arising from the implicit method.  

 

2.2 Adaptive time-stepping solution 

 

One major benefit of using a standard ODE solver to integrate RE is that the code is concise and easy to read and understand. 165 

Our objective is to write a function that will evaluate the right-hand side of Eq. (9) and feed this to the ODE solver. Within 

this function, the problem can be treated as instantaneous in time so that we only need to consider the spatial differences in 

our finite difference solution scheme. We will use a block-centered grid in space; i.e., state variables are stored at nodes located 

at the center of grid cells, while fluxes are defined at the block boundaries, as shown schematically in Figure 1. For simplicity 

here, we consider a uniform grid (constant Δ𝑧), but it is straightforward to adapt these solutions to non-uniform grids. We 170 

introduce two spatial indices (Figure 1): 𝑖 represents the nodal values, and 𝑗 represents the block boundaries, both of which 

have an initial value of zero (because Python uses zero-based indexing). Hence 𝑗 = 𝑖 + 1/2.	 We will start with the 𝜓 form of 

RE, for which the governing equation is given in the form 

 
𝜕𝜓
𝜕𝑡 I-

	= −
1

𝐶(𝜓-)
	
𝜕𝑞
𝜕𝑧I-

 
(10) 

and  175 

𝜕𝑞
𝜕𝑧I-

	=
𝑞
-+./

− 𝑞
-0./

Δ𝑧 =
𝑞1+. − 𝑞1

Δ𝑧  
(11) 
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Figure 1. Schematic representation of the block centered finite difference grid, for a soil column of depth 𝐿, showing the 

zero-based Python indices of the states (𝜓-) and fluxes (𝑞1) on the left and depths of the nodes on the right, assuming a 180 

regular grid. There are 𝑁 states and 𝑁 + 1 fluxes. The upper and lower boundary conditions are 𝑞12$ and 𝑞1# respectively. 

 

Here, the fluxes are given by  

 

𝑞
-+./

= 𝑞1+. = −
𝐾(𝜓-+.) + 𝐾(𝜓-)	

2 5
𝜓-+. −𝜓- 	

Δ𝑧 − 17 

𝑞
-0./

= 𝑞1 = −
𝐾(𝜓-) + 𝐾(𝜓-0.)	

2 5
𝜓- −𝜓-0.	

Δ𝑧 − 17 
(12) 

 185 

In Eq (12), we are using the arithmetic mean of 𝐾 at the nodal points to estimate 𝐾 at the block boundaries, but other options 

are possible (see, e.g., Bear and Cheng, 2010, p. 535). It is possible to combine Eqs. (10)-(12), but keeping them separate keeps 

the code modular and simple.  

 

There are three commonly used boundary conditions for this problem, namely: i) a specified flux, 𝑞3 (L T-1) (type II boundary) 190 

is often used at the upper boundary to represent infiltration, where  
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𝑞12$ = 𝑞3 (13) 

 

ii) a free drainage boundary is often used at the lower boundary, where 

 195 

𝑞124 = 𝐾(𝜓-240.) (14) 

 

iii) a fixed 𝜓 (type I) boundary maybe used at the upper boundary, 𝜓3 (L), typically to indicate a ponding depth, or at the 

lower boundary, 𝜓5 (L), typically to represent a fixed water table, where 

 

𝑞12$ = −
𝐾(𝜓3) + 𝐾(𝜓-2$)	

2 5
𝜓3 −𝜓-2$	
Δ𝑧/2 − 17 

𝑞124 = −
𝐾(𝜓-240.) + 𝐾(𝜓5)	

2 5
𝜓-240. −𝜓5	

Δ𝑧/2 − 17 

 

(15) 

 200 

Box 1 provides Python-based pseudo code that implements this solution (Eqs. 10 – 14) in a function for 𝑑𝜓/𝑑𝑡 with a type II 

boundary at the upper boundary and a free drainage boundary at the lower boundary and contains just 7 lines of code. This 

function can be called by the ODE solver. 

 

  205 
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# Function inputs: psi,pars,dz,n,qT,psi_old 
# psi is an array containing the dependent variable 
# pars is a dictionary containing the soil parameters 
# dz is the space step 
# n is the number of spatial nodes 
# qT is the upper boundary flux 
# psi_old is psi at the previous time step (needed for  
# the mixed-form of RE) 

# Function outputs: dpsidt 
# dpsidt is an array containing the derivative dpsi/dt 

# Python based pseudo code: 
# Kfun function that returns the hydraulic conductivity 
# Cfun function that returns the specific storage 
 
# Calculate K and C at each node 
K=Kfun(psi,pars) 
C=Cfun(psi,pars,psi_old) 
 
# Initialize the flux array for grid boundaries: 
q=zeros[n+1] 
# Upper boundary condition: 
q[0]=qT 
# Fluxes for internal nodes: 
q[1:-1]=-(K[1:]+K[:-1])/2*((psi[1:]-psi[:-1])/dz-1) 
# Lower boundary condition: 
q[-1]=K[-1] 
# Continuity equation: 
dpsidt=-(1/C)*(q[1:]-q[:-1])/dz 

Box 1. Python-based pseudo code implementation of RE with a block centered finite difference approach in a function to be 

called by an ODE solver. Arrays are zero-indexed; q[0] and q[-1] refer to the first and last item in the q array, 

respectively, and K[1:] and K[:-1] refer to a slice of the array K from the 2nd to the last node and from the 1st to the 2nd to 

last node, respectively. 210 
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2.3  Mass balance closure  

 215 

When RE is solved over some time interval, 𝑡 = 𝑡$ → 𝑡6 (where 𝑡6 − 𝑡$ typically corresponds to multiple years in practical 

application) for a soil profile 0 ≤ 𝑧 ≤ 𝐿, the cumulative inflow minus outflow should equal the change in storage in the profile 

over the same interval; i.e., 𝜖5 (mm), the bias error, defined in Eq. 16, should be zero. 

 

𝜖5 	= O P𝑞(𝑡, 0) − 𝑞(𝑡, 𝑧4)Q𝑑𝑡
*$

*2*%
−O P𝜃(𝑡6 , 𝑧) − 𝜃(𝑡$, 𝑧)Q𝑑𝑧	

7

!2$
 

(16) 

 220 

The bias error can be treated as a mass balance performance metric for the model, but this metric may underestimate the true 

errors in the water balance that occur within the time period simulated, which may cancel out over the entire run. The metric 

used by Celia et al., (1990), Rathfelder and Abriola (1994), and Tocci et al. (1997) has the same problem. A more rigorous 

mass balance performance metric is the root mean squared error of the daily (or some other time increment) cumulative net 

flux minus the change in storage, 𝜖8 (mm), where 225 

 

𝜖8 = RS8O P𝑞(𝑡, 0) − 𝑞(𝑡, 𝑧4)Q𝑑𝑡
*&'(

*2*&
−O T𝜃P𝑡1+., 𝑧Q − 𝜃P𝑡1 , 𝑧QU 𝑑𝑧	

7

!2$
9
/

/𝑀
6

12.

 

(17) 

 

where 𝑗 is an index in time, and 𝑀 is the number of timesteps considered. Reporting both metrics is informative – a high 𝜖8 

with a low 𝜖5 indicates that daily errors are occurring but cancelling one another out; a high 𝜖5 with a low 𝜖8 indicates that 

small daily errors are systematic in one direction and hence accumulate to give a high bias. 230 

 

The fluxes in the mass balance calculation depend on the boundary conditions. For type I (specified 𝜓) and free drainage type 

boundary conditions, the boundary flux depends on the simulated 𝜓 value at the node closest to the boundary. Over a time 

increment 𝑡1 to 𝑡1+., 𝜓 values will change continuously and hence so will the boundary flux. Due to the non-linearity of the 

𝐾(𝜓) relationship, the flux will change in a non-linear manner. The cumulative flux over the time increment, 𝑄1→1+. (mm), is 235 

given by 

 

𝑄1→1+. = O 𝑞(𝑡)𝑑𝑡
*&'(

*2*&
 

(18) 
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𝑄1→1+. is estimated from discrete values of 𝑞 (which in turn are approximated from discrete values of 𝜓, using either a forward 

difference approximation, where 𝑄1→1+. ≈ 𝑞1Δ𝑡 , a backward difference approximation (as in Celia et al., 1990), where 240 

𝑄1→1+. ≈ 𝑞1+.Δ𝑡, or a central difference approximation (as in trapezoidal integration), where 𝑄1→1+. ≈ P𝑞1 + 𝑞1+.QΔ𝑡/2. 

These discrete approximations for 𝑄1→1+. can be poor if the time step is large – or more precisely, if the changes in 𝑞 over a 

time step are large and non-linear. 

 

This leads to an important limitation with Celia’s mixed form solution to RE (and other equivalent iterative solutions). This 245 

solution has excellent mass balance closure, but because it uses a fixed-step iterative solution procedure with a backward 

difference approximation for 𝑄1→1+., the simulated boundary fluxes can be shown to be sensitive to the time step (see Section 

3.2). Hence, even though for larger D𝑡 the water balance is still perfectly closed, the actual terms within the water balance have 

changed, so there is less inflow and less change in storage.  

 250 

ATS solvers can provide a practical solution to solving RE with good mass balance performance and boundary fluxes that do 

not depend on the user specified timestep. The basic idea behind ATS solvers is that when there are large changes in 𝜓 in the 

model, small steps can be taken to capture the shape of 𝐶(𝜓) and 𝑄1→1+. and minimize the integration errors over a timestep. 

When the changes in 𝜓 are small, larger steps can be taken to maximize efficiency. We will refer to these adaptive time steps 

as calculation steps. The user specifies the time steps at which they wish the results to be saved, which we will refer to as the 255 

reporting time steps. In typical practical applications, the reporting step would be the resolution of the driving data (e.g., hourly 

or daily). The solver may take many calculation steps of varying lengths between the reporting steps, saving the outcomes 

internally each time that the error tolerance is satisfied, and a successful step is taken.  

 

To accurately calculate the boundary fluxes, it is necessary to use the 𝜓 information from the calculation time steps because 260 

𝜓 may have evolved non-linearly over the reporting time step. However, this is not trivial. Two possible ways to do this (which 

are equivalent to one another) are to i) enable dense output from the ODE solver (if this feature is supported by the ODE 

solver); or ii) force the ODE solver to make the reporting steps equal to the calculation steps. However, both of these 

approaches are more computationally demanding in terms of memory and runtime – a significant disadvantage. We propose 

here a third method for calculating the boundary fluxes that can be used with any ODE solver. At an instance in time, the 265 

cumulative boundary flux, 𝑄 is related to the instantaneous flux, 𝑞 by 

 
𝑑𝑄
𝑑𝑡 = 𝑞 (19) 
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We can therefore use the ODE solver to integrate this expression and solve for 𝑄. To do this, we add to the system of ODEs 

defined by Eq. 9 two new ODE expressions that represent the cumulative boundary fluxes. The dependent variable vector that 270 

is sent to the ODE solver now is 𝑭, defined 

 

𝑭 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑄3:*%→*
𝜓$
𝜓.
⋮

𝜓40/
𝜓40.
𝑄5:*%→*⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (20) 

 

where 𝑄3:*%→* and 𝑄5:*%→* are the cumulative boundary fluxes at the current time, 𝑡, since the start of the simulation, 𝑡$. The 

ODE solver will integrate the equation  275 

 
𝑑𝑭
𝑑𝑡 = 𝑓(𝑭, 𝑡, 𝒛) 

 
(21) 

to solve for 𝑭. The function that is called by the ODE solver will evaluate the vector 

 

𝑑𝑭
𝑑𝑡 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑑𝑄3:*%→*&

𝑑𝑡
𝑑𝜓$
𝑑𝑡
𝑑𝜓.
𝑑𝑡
⋮

𝑑𝜓40/
𝑑𝑡

𝑑𝜓40.
𝑑𝑡

𝑑𝑄5:*%→*&
𝑑𝑡 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑞3	

−
1

𝐶(𝜓$)
	
𝜕𝑞
𝜕𝑧I$

−
1

𝐶(𝜓.)
	
𝜕𝑞
𝜕𝑧I.

⋮

−
1

𝐶(𝜓40/)
	
𝜕𝑞
𝜕𝑧I40/

−
1

𝐶(𝜓40.)
	
𝜕𝑞
𝜕𝑧I40.

𝑞5 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

(22) 

 

We note that each term in Eq. (22) is expressed at a single instant in time, 𝑡, and subscripts 0, 1, … ,𝑁 − 2,𝑁 − 1 refer to the 280 

indices of the finite difference discretization points, and we use zero-based indexing to be consistent with the Python language 

and Figure 1. After solving for 𝑭, the first and last rows of 𝑭 correspond to the cumulative boundary fluxes, which at time 𝑡 

are 𝑄3:*%→* and 𝑄5:*%→*. The cumulative fluxes over each time step are obtained from 
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𝑄3:*&→*&'( = 𝑄3:*%→*&'( − 𝑄3:*%→*& 

𝑄5:*&→*&'( = 𝑄5:*%→*&'( − 𝑄5:*%→*&  
(23) 

 285 

Solving systems of ODEs in this way is straightforward – requiring the user to pack and unpack the dependent variable vector. 

Python based pseudo code showing how this can be implemented is given in Box 2. Note, here we multiply the fluxes by 1000 

within the solver (equivalent to converting the fluxes from m/d to mm/d), so that the magnitude of the fluxes is comparable 

with the magnitude of the changes in 𝜓 (typically in m), which can improve the water balance estimate. Any arbitrary scaling 

factor can be applied here, as long as the output fluxes are re-scaled to the correct units. We shall refer to this method for 290 

calculating the boundary fluxes as the Solver Flux Output Method (SFOM). 
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# ODE function inputs: tSpan,F,args 
# tSpan array with the start and end date for the integration 
# F array with the dependent variable 
# args list of other variables (see Box 1) 

# ODE function outputs: dFdt 
# dFdt array with the time derivative of the dependent variable  

# Python based pseudo code for the ODE function: 
# Unpack the dependent variable: 
QT=F[0]/1000.      # Cumulative flux at the upper boundary 
QB=F[-1]/1000.     # Cumulative flux at the lower boundary 
psi=F[1:-1].       # matric potential at each node 

# Insert here the contents of the function in Box 1, which  
# calculates dpsidt, q[0] and q[-1] 

# Pack up the dependent variable in a single column array:  
dFdt=hstack([q[0]*1000.,dpsidt,q[-1]*1000.]) 

# Pseudo code to call the ODE solver: 
# Initialize the 2D array (t,z) for the dependent variable 
F=zeros(nt,nz) 

# Pack up the initial condition: 
F[0,0]=0.    # Cumulative flux at the upper boundary 
F[0,1:-1]=psiI 
F[0,-1]=0.   # Cumulative flux at the lower boundary 

# Solve using a time loop: 
for j in 1 to M-1: 

F[j+1,:]=CallODE(ODEfunction,tSpan=[0,dt],F[j,:],args) 
 
# Unpack dependent variable: 
QT=hstack([0,F[1:,0]-F[:-1,0]])/1000. 
psi=F[:,1:-1] 
QB=hstack([0,F[1:,-1]-F[:-1,-1]])/1000. 

Box 2. Python-based pseudo code implementation of an ODE solver solution. The ODE function returns the time derivative 

of the dependent variable array, given in Eq. 19. Note, F[:,1:-1] is a slice through the array F that takes all the items in 295 

the first (time) dimension and the 2nd to 2nd to last items in the second dimension. 
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2.4 Improving efficiency  

 

Here, we provide details of two techniques that can be used to improve the computational runtime of the model. These methods 300 

have no impact on the accuracy of the solution, so are optional, but combined, they can result in better than a factor of 10 

reduction in the runtime at the cost of only a few additional lines of code. In Appendix A, we investigate the impact of a range 

of different possible model decisions/assumptions on the accuracy, mass balance, efficiency, and simplicity of the model. 

 

2.4.1 Defining the Jacobian Pattern 305 

 

For the form of RE given by Eq. 10, the Jacobian matrix, 𝐽, is an 𝑛 × 𝑛 matrix, where the cell in each row, 𝑖, and column, 𝑗, is 

defined by the derivative 

 

𝐽-,1 =
𝑑
𝑑𝜓1

5
𝑑𝜓
𝑑𝑡 I-

7 =
𝑑
𝑑𝜓1

5−
1

𝐶(𝜓-)
	
𝜕𝑞
𝜕𝑧I-

7 
(24) 

 310 

Each entry in 𝐽-,1 can be evaluated in a function that is passed to the ODE solver (assuming that the particular ODE solver 

being used has this functionality), in order to speed up the solution process. For the spatial discretization scheme described 

above, all the terms of the Jacobian are zero, except for where 𝑗 = 𝑖 − 1, 𝑗 = 𝑖, and 𝑗 = 𝑖 + 1 (ignoring when 𝑖 − 1 < 1 and 

𝑖 + 1 > 𝑛, which would be zero terms anyway, for any boundary condition). A simpler alternative to defining the full Jacobian 

matrix is to define the Jacobian Pattern. The Jacobian Pattern is a matrix of ones and zeros that defines the location of the 315 

structurally non-zero elements of the Jacobian – that is, where the terms are not identically zero. For the spatially discretized 

RE as given in Eq. 10, the Jacobian Pattern is a simple tridiagonal matrix, with ones on the three main diagonals and zeros 

everywhere else. To implement this requires an ODE solver capable of using the Jacobian Pattern (also referred to as the 

Jacobian sparsity matrix). The scipy ODE solvers ode and solve_ivp have the ability to define a banded Jacobian pattern: setting 

uband and lband arguments to 1 tells the ODE solver that the Jacobian is a tri-diagonal matrix. The scipy ODE solver solve_ivp 320 

can also handle a general 𝑛 × 𝑛 Jacobian pattern, which is more adaptable for multi-dependent variable coupled problems 

(e.g., Goudarzi et al., 2016). The MATLAB ODE solvers can read the Jacobian sparsity pattern matrix from the JPattern 

argument. We report on the relative performance/complexity of each of these methods in Appendix A.4. 

 

 325 

 

 

2.4.2 Just-in-time compilation 
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In this paper, we are providing guidance for the use of interpreted programming languages (e.g., Python or MATLAB) to solve 330 

RE. Interpreted languages have a number of advantages over compiled languages (such as FORTRAN, C and C++), including 

that: they are, at least in our opinion, easier to learn, with excellent teaching resources widely and freely available; they tend 

to have higher level abstractions, so that the same task can be completed in fewer lines of code; and they are cross platform 

and typically easier to install. Interpreted languages are compiled on the fly, meaning every individual line of code is compiled 

at run-time. By contrast, compiled languages are more efficient because the compilation and running of the code are separated, 335 

and you typically only have to compile the code once before it can be run many times. A nice compromise between the 

simplicity of interpreted languages and efficiency of compiled languages is to use a just-in-time compiler. In Python, the 

numba library is such a just-in-time compiler (Lam et al., 2015). Numba compiles all the lines of the Python code once at the 

start of the runtime, and then all subsequent calls to the code run much faster. We find that using numba in conjunction with 

our preferred ODE solver solution described above, results in up to 10x faster code execution (see Appendix A.5). The 340 

drawback to using numba is that some re-factoring of the code may be necessary to make a script that previously ran without 

numba work using numba – in particular, there are complications around how variables are allocated into numpy arrays. We 

include code in Ireson (2022, https://github.com/amireson/openRE) that demonstrates how to successfully implement numba. 

 

3. Benchmarking the model performance 345 

 

In this section, we run our RE solver, openRE, on a number of benchmark problems, comparing the different solution 

procedures and assessing the performance of all solutions against the five success criteria identified in the introduction, namely: 

i) accuracy of 𝜃(𝑡, 𝑧) and 𝜓(𝑡, 𝑧); ii) mass balance performance; iii) consistent boundary fluxes with Δ𝑡; iv) computational 

efficiency (i.e., runtime); and v) simplicity of the code. 350 

 

3.1 Published model benchmarks 

 

3.1.1 Celia’s problem 

Celia’s test case (Celia et al., 1990) is used to compare our ATS solution with the different solutions schemes previously 355 

proposed by Celia et al. (1990). The test problem uses a 40 cm deep vertical soil profile (𝑧4 = 40) with a uniform 1 cm space 

step (𝑑𝑧 = 1), a 360 second duration (𝑡$ = 0;	𝑡6 = 360) with a 1 second time step (Δ𝑡 = 1), and the following initial and 

type I boundary conditions: 

 

𝜓(𝑡 = 𝑡$, 0 ≤ 𝑧 ≤ 𝑧4) = −61.5	cm 

𝜓(𝑡$ ≤ 𝑡 ≤ 𝑡6 , 𝑧 = 0) = −20.7	cm 

𝜓(𝑡$ ≤ 𝑡 ≤ 𝑡6 , 𝑧 = 𝑧4) = −61.5	cm 

 

(25) 

 360 
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The soil hydraulic properties are given by 

 

𝜃 =
𝛼(𝜃; − 𝜃<)
𝛼 + |𝜓|= + 𝜃< 

𝐾 = 𝐾;
𝐴

𝐴 + |𝜓|> 

 

(26) 

 

where the parameter values are 𝛼 = 1.611 × 10? , 𝜃; = 0.287, 𝜃< = 0.075, 𝛽 = 3.96, 𝐾; = 0.00944 cm/s, 𝐴 = 1.175 ×

10?, and 𝛾 = 4.74. Celia et al. (1990) presented three solution schemes: the “No iteration scheme” uses the 𝜓 form of RE and 365 

solves the problem with a single backward implicit step and no iteration (which we achieved using the Thomas Algorithm); 

the “Picard Iteration scheme” also solves the 𝜓 form of RE but uses the Picard iteration method to improve the solution, with 

errors in 𝜓 used as a convergence criterion; finally the “Modified Picard Iteration Method” (MPM) uses the mixed-form of 

RE and uses errors in 𝜃 as a convergence criterion. The MPM is mass conservative because the iteration ensures that the 

cumulative change in fluxes (the right-hand-side of RE) balance the changes in storage (the left-hand-side of the mixed form 370 

of RE). Celia’s three solutions were reproduced in Python scripts (https://github.com/amireson/openRE) and compared with 

our ATS/SFOM solution. Results from all three solutions are shown in Figure 2. All methods are consistent for very small 

timesteps. The fixed-step method with no iteration performs poorly, with delayed breakthrough of the wetting front when the 

time step is large. The solution is improved by using Picard iteration, but there are still some delays. The MPM has a much 

better performance but, as with all implicit Euler time-stepping schemes, is still subject to some numerical dispersion for larger 375 

timesteps (van Genuchten et al., 1978). The ATS solution reproduces the 𝜓 breakthrough curve but with no dispersion and no 

differences associated with the timestep. We note that the time steps for plotting the ATS solution only represent the reporting 

time step - the underlying calculation time steps are likely much smaller (Section 2.2).  

 

 380 
Figure 2. Reproduction of Celia’s model benchmark: the 𝜓 breakthrough curve using a backward difference implicit Euler 

solution with no iteration scheme; backward difference implicit Euler with Picard iteration; Celia’s modified Picard iteration 
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Method (MPM); and the ODE solver with adaptive time stepping. The ODE solver produces consistent 𝜓(𝑡, 𝑧) results 

independently of the mass balance calculation procedure. The time steps reported are calculation time steps for Celia’s 

solutions but are reporting timesteps for the ODE solver, which uses an adaptive time step for calculation steps. 385 

 

In Figure 3, we show the cumulative inflow simulated by each of these models for Celia’s benchmark problem, along with the 

mass balance bias error, for different reporting timesteps. The fixed-step solution with no iteration and the Picard Iteration 

solution both have poor mass balance performance unless the time step is very small – on this basis, we do not consider these 

solutions further. We see that the MPM method is perfectly mass conservative for any Δ𝑡 used in the model, as we should 390 

expect. However, we can see that the cumulative inflow is sensitive to Δ𝑡. Hence, even though for larger Δ𝑡 the water balance 

is still perfectly closed, the actual terms within the water balance have changed, so there is less inflow and less change in 

storage. This is perhaps an under-appreciated limitation of Celia’s MPM solution, and solutions to the mixed form of RE 

generally – which is that mass balance is a necessary but insufficient criterion for model performance assessment, and 

truncation errors can still be present in the fluxes even with perfect water balance closure.  395 

 

In Figure 3, we also show the water balance performance of our ATS solution, using either reporting time step information for 

the water balance calculation or using calculation time step information (i.e., using the SFOM described in Section 2.3). Using 

reporting timestep information is the easiest and most intuitive approach to take – you numerically integrate (1) discrete 𝜃 

values over depth to get storage and (2) discrete 𝑞  values during reporting timesteps to get 𝑄  (e.g., using trapezoidal 400 

integration). However, this approach fails to capture non-linear changes in 𝑞 over a reporting timestep and results in large 

water balance errors and errors in the cumulative fluxes, as is clear in Figure 3. Using the SFOM, we see that the water balance 

is almost exactly closed, and the boundary fluxes are independent of the reporting timestep. It is also important to note that the 

discrete 𝜓(𝑡, 𝑧) values simulated by both ATS solution procedures here are identical (see Figure 2) – the only difference is 

how the boundary fluxes are calculated. 405 
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Figure 3. Mass balance of Celia’s three models and our adaptive time-stepping model. The upper plot shows a reproduction 

of Celia’s mass balance calculation. The lower plot shows the cumulative inflow that is simulated. 

 410 

 

3.1.2 Miller’s saturated infiltration pulse problem 

 

Miller et al. (1998) investigated solutions to RE that aimed to address numerical convergence problems associated with 

challenging boundary conditions, and they specifically looked at the problem of infiltration from a ponded upper boundary 415 

into a hydrostatic soil profile with a fixed water table at the lower boundary. This is a good benchmark because it requires the 

model to deal with perched saturated conditions over unsaturated conditions and involves highly non-linear changes in 

properties over short distances and time steps. The problem uses van Genuchten (1980) hydraulic properties, given by 

𝑆@ = (1 + (𝛼𝜓)A)0B (27) 

𝜃 = 𝜃< + (𝜃; − 𝜃<)𝑆@ (28) 

𝑑𝜃
𝑑𝜓 =

−𝛼𝑚(𝜃; − 𝜃<)
1 −𝑚 𝑆@

./B		P1 − 𝑆@
./BQ

B
 

(29) 
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𝐾 = 𝐾;𝑆@
.// T1 − P1 − 𝑆@

./BQ
B
U (30) 

 

where 𝑆@ (-) is the effective saturation, 𝛼 (L-1), 𝑛 (-) and 𝑚 (-) are parameters that determine the shape of the 𝜃(𝜓) curve, 𝜃< 420 

(-) and 𝜃; (-) are the residual and saturated volumetric water contents and 𝐾; (L T-1) is the saturated hydraulic conductivity. 

Miller’s problem uses the parameters in Table 1 for three different soil types.  

 

Parameter Sand Loam Clay Loam 

𝜃< 0.093 0.078 0.095 

𝜃; 0.301 0.430 0.410 

𝛼 (1/m) 5.470 3.600 1.900 

𝑛 4.264 1.560 1.310 

𝐾; (m/d) 5.040 0.250 0.062 

𝑆; (1/m) 10-6 10-6 10-6 

Table 1. Soil hydraulic properties used the Miller et al. (1998) problem 

 425 

A hydrostatic initial condition is used, with a fixed water table at depth of 10, 5, and 2 m below ground surface for sand, loam, 

and clay loam, respectively. At the upper boundary, 0.1 m of ponding is applied throughout the simulation run time of 0.18, 

2.25, and 1.0 days for sand, loam, and clay loam, respectively. We simulated this problem with our ATS solution and with 

Celia’s MPM model for comparison purposes. Both models faced challenges with this problem. For Celia’s MPM, we had to 

use a small timestep to get the solver to produce accurate 𝜓(𝑧) profiles (Figure 4). For the ATS solutions using the default 430 

ODE solver settings, the models failed to propagate the wetting front into the soil correctly. It was necessary to increase the 

maximum number of calculation steps allowed per reporting time step (we increased this from the default 500 to 10,000) so 

that very small timesteps could be taken (Table 2). It was also necessary (for loam and clayloam) or beneficial (for sand) to 

reduce the solver error tolerances – see values in Figure 4 and Table 2. The results from these simulations are shown in Figure 

4 and are consistent with those reported in Figure 1 of Miller et al. (1998), showing that both models are able to successfully 435 

reproduce this benchmark. The runtimes and water balance for each solution are tabulated in Table 2. Celia’s MPM has 

consistently better water balance performance, though we think the water balance errors in both models are acceptably low. 

The ATS solution is slower for sand, faster for loam, and about the same for clayloam. We note that the runtimes and water 

balances of the ATS solution are sensitive to the reporting timestep Δ𝑡 and the solver settings nsteps, atol, and rtol – an 

improved solution might be attainable by optimizing these settings. On the other hand, for Celia’s MPM solution, we only 440 

needed to optimize Δ𝑡. 
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Figure 4. Reproduction of the Miller infiltration pulse result, using Celia’s MPM model and our ATS SFOM solution. Both 

models are satisfactorily consistent with the output reported by Miller et al. (1998), in their Figure 1. 

 445 

 

 

 

 

 450 
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Solution Soil Solver settings runtime (s) MB bias (mm) 
MB RMSE 

(mm) 

Celia MPM Sand 𝑑𝑡 = 0.001 d 4.4 -4.2E-06 4.5E-06 
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Loam 𝑑𝑡 = 0.001 d 31.7 -1.6E-03 5.3E-06 

Clay loam 𝑑𝑡 = 0.001 d 32.6 -8.0E-02 2.5E-04 

ATS SFOM  

Sand 

atol/rtol = 10-6 

nsteps = 10,000 

𝑑𝑡 = 0.01 

11.7 -1.5E-02 8.8E-04 

Loam 

atol/rtol = 10-6 

nsteps = 10,000 

𝑑𝑡 = 0.01 

16.7 -8.8E-02 2.0E-03 

Clay loam 

atol/rtol = 10-5 

nsteps = 10,000 

𝑑𝑡 = 0.001 

30.8 -3.2E-01 1.3E-03 

Table 2. Runtime and water balance performance for the Celia MPM and ATS SFOM solutions, applied to the problem in 

Miller et al., (1988). We also show here the solver settings. For the ATS solutions, we had to reduce the relative and absolute 

tolerances (atol/rtol) of the integrator from the default settings and increase the maximum number of calculations steps 

allowed within a reporting step (nsteps). Note, timesteps (𝑑𝑡) in ATS solutions are reporting timesteps. 

 460 

3.1.3 Mathias’ solution for horizontal infiltration 

 

Mathias and Sander (2021) developed a pseudospectral similarity solution for horizontal infiltration (i.e., solving RE without 

gravity) that is fast and accurate. This solution assumes a semi-infinite horizontal soil column (0 ≤ 𝑥 < ∞) with a uniform 

initial condition (𝜓(𝑡 = 0) = 𝜓$) and a type 1 boundary condition on the left boundary (𝜓(𝑥 = 0) = 𝜓7). The model was run 465 

for 100 minutes (0 ≤ 𝑡 ≤ 100 min). The solution can resolve very large gradients in saturation and 𝜓 at the boundary that 

propagate into the soil rapidly – and as such this is another challenging problem for a numerical RE model to reproduce. We 

solved this problem for three soil types, namely, Hygiene sandstone, silt loam G.E.3, and Beit Netofa Clay, with properties 

from van Genuchten (1980) as listed in Table 3. 𝑆; was set to 0, consistent with Mathias’ solution. To configure our model for 

horizontal flow, it is necessary to remove the gravity term from the flux calculations (i.e. Eq. 12). We solved this problem for 470 

a left-hand boundary effective saturation of 0.99 and an initial saturation of 0.01. The grid is configured such that the wetting 

pulse does not reach the right-hand boundary over the simulation runtime. 

 

Parameter Sand Loam Clay Loam 



 

23 
 

𝜃< 0.153 0.131 0. 

𝜃; 0.250 0.396 0.446 

𝛼 (1/cm) 0.0079 0.00423 0.00152 

𝑛 10.4 2.06 1.17 

𝐾; (cm/d) 108. 4.96 0.082 

𝑆; (1/m) 0. 0. 0. 

𝑑𝑡 (min) 0.1 0.01 0.01 

𝑑𝑥 (cm) 0.25 0.05 0.0025 

Table 3. Soil hydraulic properties used the Miller et al. (1998) problem 

 475 

We solved this problem with our ATS solution, with Celia’s MPM solution, and with the pseudospectral similarity solution 

(Mathias and Sander, 2021, implemented in MATLAB). The results in Figure 5 shows that both the ATS solution and the 

Celia solution do an excellent job of reproducing this solution for 𝜃(𝑡, 𝑥) (where 𝑥, m, is horizontal distance). The runtimes 

and water balance for each solution are tabulated in Table 4. Here, we see that the ATS and Celia solutions have the same 

performance in terms of the water balance and the cumulative fluxes simulated. Runtimes vary between models: both are the 480 

same for sandstone, Celia’s solution is faster for silt loam, whereas the ATS solution is faster for clay. 
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Figure 5. Comparison of our ATS solver flux output model for horizontal infiltration with the Mathias and Sander (2021) 485 

pseudospectral similarity solution (denoted analytical in the legend).  

 

 

 

 490 
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Solution Soil runtime (s) MB bias (mm) 
MB RMSE 

(mm) 

Cumulative 

infiltration 

(mm) 

Celia MPM 

Sandstone 2.4 4.0E-03 6.5E-06 63.2 

Silt loam 12.8 2.2E-02 3.8E-06 34.2 

Clay 69.4 2.2E-03 4.1E-07 3.4 

ATS SFOM  

Sandstone 2.3 -1.1E-03 4.8E-06 63.3 

Silt loam 18.8 1.9E-02 3.9E-06 34.2 

Clay 32.1 2.2E-03 3.9E-07 3.4 

Table 4. Runtime and water balance performance for the Celia MPM and ATS SFOM solutions, applied to the problem 

described by Mathias and Sander (2021). 495 

 

 

3.2 Comparison with Hydrus 1D 

 

Hydrus 1D (Šimůnek et al., 2005, 2016) is a widely used one-dimensional RE solver. The calculations within Hydrus are 500 

undertaken using openly available FORTRAN source code, and the software runs through a (closed-source) graphical user 

interface on Microsoft Windows. The FORTRAN code can be compiled using gfortran on the MacOS operating system and 

run from the command line, which we did here, so that the runtime comparisons with our model are fair. Within HYDRUS, 

the user interface provides somewhat limited control over the error tolerances. We were unable to modify any settings to 

improve the water balance, and so we present here model runs that use the default iteration criteria (maximum number of 505 

iterations = 100; water content tolerance = 0.001; pressure head tolerance = 10 mm; lower/upper optimal iteration range = 

0.7/1.3; lower/upper timestep multiplication factor = 1.3/0.7; lower/upper limit of tension interval = 10-6/103 cm). 

 

We configured Hydrus 1D, our ATS solution, and our implementation of Celia’s MPM solution for a simple numerical 

experiment, where we simulate the infiltration of a ten-year timeseries of daily precipitation into a 1.5 m deep soil column, 510 

with a free drainage lower boundary condition. The minimum, mean, and maximum annual precipitation was 265, 484, and 

680 mm/yr, and the maximum daily precipitation was 55 mm/d. We used Silt Loam G.E. 3 soil hydraulic properties from van 

Genuchten (1980), where 𝜃< = 0.131,	𝜃; = 0.396, 𝛼 = 0.423 m-1, 𝐾; = 0.0496 m/d, 𝑛 = 2.06. We set 𝑆; = 100? m-1 and 

used a uniform 𝜓 initial condition of -3.59 m. The results of the simulations with each model are given in Table 5, showing 
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the runtime and water balance performance, Figure 6, showing the detailed water balance performance, and Figure 7, showing 515 

the simulated storage and drainage. 

 

In our ATS solution, we can trade-off between water balance error and the runtime by modifying the rtol argument for the 

ODE solver. We found that the default rtol of 10-6 had the fastest runtime, but the water balance performance, whilst good 

enough for all practical purposes, was the worst overall (Table 5, Figure 6). Therefore, we reduced rtol to 10-7, which improved 520 

the water balance performance but increased the runtime. Even though the water balance errors reported here are all very small, 

it is still interesting to look closely at how these compare for the different models, as shown in Figure 6. The first thing to note 

is that the Celia MPM solution has water balance errors of essentially zero, which we expect, because this solution enforces 

water balance closure. Celia’s solution did have the longest runtime – approximately 40% slower than the other solutions. In 

the ATS solutions, on a daily basis, the water balance errors are much smaller than in Hydrus. However, in Hydrus, the water 525 

balance errors appear random, with a mean of zero, and hence when looking at the cumulative errors in Hydrus, there is no 

systematic accumulation in the errors. In the ATS solutions, in the lower right plot of Figure 6, we can see that the water 

balance errors are strongly correlated to the infiltration flux at the upper boundary – larger fluxes result in larger errors. Hence 

for the ATS solution with rtol=10-6, we see that the errors accumulate, and after 4 years, the cumulative errors in the ATS 

solution exceed those in Hydrus. For the ATS solution with rtol=10-7, the errors do not accumulate monotonically, and the 530 

long-term cumulative errors tend to oscillate about zero. The water balance performance of the ATS solution with rtol=10-7 is 

therefore better than the performance in Hydrus (Table 5, Figure 6), while the runtimes of these models are essentially the 

same (Hydrus is slightly faster, with a runtime of 2.21 vs 2.30 seconds, Table 5).  

 

Looking at the simulated storage and discharge in Figure 7, the two ATS solutions are visually indistinguishable and are both 535 

broadly consistent with the Hydrus 1D model outputs. The Celia MPM solution has non-negligible differences with all other 

solutions. This is because the MPM solution applies an iterative solution procedure to solve the model at a daily timestep, and 

the boundary fluxes are therefore subject to errors, as discussed above. The solution scheme imposes mass balance on the 

problem but does not track the truncation errors in the fluxes. The avoidance of this issue represents a significant advantage of 

adaptive time stepping solutions. 540 

Model runtime (s) MB bias (mm) MB RMSE (mm) 

ATS solution, rtol=10-6 1.71 -0.018 8.06E-05 

ATS solution, rtol=10-7 2.30 0.0003 6.92E-05 

Celia MPM solution 3.2 0.0 2.3E-10 

Hydrus 2.21 -0.0021 4.05E-03 

Table 5. Comparison of model runtimes and mass balance performance. 
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Figure 6. Comparison of water balance performance from Hydrus 1D, the ATS solution, and our implementation of Celia’s 

MPM solution. The water balance error is 𝑞3 − 𝑞5 − Δ𝑆, and we show the balance for each time step (top) and cumulative 545 

balances since the start of the simulation (bottom).  
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Figure 7. Simulated storage and discharge using Hydrus 1D, the ATS solution and our implementation of Celia’s MPM 550 

solution.  

 

4. Summary and recommendations 

 

We developed a simple adaptive time-stepping scheme (ATS) for RE using the interpreted language Python and making use 555 

of the scipy ODE solver ode. We also developed a new solver flux output method (SFOM) whereby cumulative boundary 

fluxes can be included within the dependent variable vector, allowing the determination of highly accurate integrated fluxes 

over designated time periods.  The SFOM is particularly useful for providing reliable assessment of mass balance closure. In 

principle, SFOM can be implemented in any ODE solver because it does not require any special output (such as dense output) 

to be available). Our model was coded up in Python and released with the name openRE (Ireson, 2022). Our model performed 560 

well against our five success criteria, namely: i) we successfully reproduced benchmark solutions for 𝜓(𝑡, 𝑧) and 𝜃(𝑡, 𝑧) from 

Celia et al., (1990), Miller et al. (1998) and Mathias and Sander (2021); ii) we report negligibly low mass balance errors; iii) 
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we simulate boundary fluxes that are independent of the reporting time step (unlike Celia’s solution, as demonstrated in Figure 

7); iv) we have low runtimes (as good as Hydrus 1D), and v) our code is very simple, concise (92 lines of code for the solver 

plus 68 lines of code for model configuration for the numerical experiment in Section 3.2), and easily adaptable to new 565 

problems. Our solution had the best balance of efficiency, accuracy, and simplicity as compared to alternative established 

solution procedures. 

 

Appendix A: Navigating pitfalls in ODE solver solutions 

 570 

There are several subtle decisions that must be made when solving RE using a generic ODE solver. Here, we test a number of 

alternative model configurations and report the impact of these decisions using the following metrics: for model accuracy 

(criteria i), we report the RMSE of 	𝜓 at all grid points in 𝑡 and 𝑧 between the current model run and a reference model run; 

for the mass balance (criteria ii), we report both the bias error (Eq. 16) and the more rigorous daily water balance RMSE (Eq. 

17); for the model efficiency (criteria iv), we simply report the runtime, where all runs were undertaken on the same laptop 575 

computer. For these numerical experiments, we used the ten-year infiltration numerical experiment described in Section 3.2. 

 

The best model configuration, against which all other model configurations are compared, was as follows: use the scipy ODE 

solver “ode” with the method “BDF” (backward differentiation formulas, Brown et al., 1989); use our SFOM solution (Section 

2.3/Appendix A.2); use the analytical expression for 𝐶(𝜓) ; use a banded Jacobian sparsity pattern matrix (Section 580 

2.4.1/Appendix A.4); and use the numba JIT compiler (Section 2.4.2/Appendix A.5). The water balance performance of this 

model, showing the cumulative change in storage against cumulative inflow (as infiltration at the surface) minus outflow (as 

drainage at the base) is plotted in Figure A1. 

 

 585 
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Figure A1. Water balance performance plot for 10-year infiltration experiment, with the best model configuration, showing 

the cumulative change in storage in the profile, and the cumulative inflow minus outflow. The water balance bias was -0.018 

mm, and the RMSE of the daily water balance errors was 8.06x10-5 mm. 590 

 

A.1 Alternative scipy ODE solvers 

 

Here, we compare the alternative ODE solvers that were available in scipy at the time of writing, which includes ode, odeint, 

and solve_ivp. These functions are alternative wrappers to classic ODE solvers written in Fortran, of which we consider here 595 

VODE with the method BDF (Brown et al., 1989, available within “ode” and “solve_ivp”), and LSODA (available with all 

three functions, Petzold, 1983). Note that for all solutions reported here we used the banded Jacobian sparsity pattern, with the 

exception of solve_ivp-BDF, which only allows for the full Jacobian sparsity pattern to be defined and which we found slowed 

the solution down – hence the results for the solve_ivp-BDF model do not use any information about the Jacobian matrix. 

ODE solver Method runtime (s) 𝝍 RMSE (m) MB bias (mm) 
MB RMSE 

(mm) 

ode BDF 1.71 0.000* -0.018 8.06E-05 

ode LSODA 1.96 0.000 0.001 7.11E-05 

odeint LSODA 2.69 0.000 0.000 7.04E-05 

solve_ivp BDF 7.45 0.001 -0.594 3.33E-03 

solve_ivp LSODA 2.44 0.000 0.059 6.12E-04 



 

31 
 

Table A1. Model performance for the different ODE solvers/methods available in scipy. 600 

 

We see that solve_ivp underperforms in accuracy, water balance, and efficiency. The odeint solver has the best performance 

in terms of accuracy and water balance but is slower by a non-negligible amount. The ode-BDF method is the most efficient 

but has slightly worse water balance performance – however, the water balance performance of all methods is extremely good, 

and errors are negligible for practical purposes. We therefore chose ode-BDF as our preferred solution – but ode-LSODA is 605 

also a good option. It is also possible to increase the error tolerances in the ODE solver, reduce the maximum number of 

timesteps and increase the minimum timestep – all of which could result in a faster runtime at the cost of lower accuracy/water 

balance closure. 

 

A.2 Alternative boundary flux calculation methods 610 

 

As detailed in Section 2.3, there are alternative ways to calculate the boundary fluxes for use in the water balance calculation. 

In Section 3.3, we developed a novel approach to calculating the boundary fluxes – the SFOM. In addition to this method, we 

consider methods that calculate the boundary fluxes based on the output model states at either reporting step or calculation 

step information. We also consider using forward, backward, or central difference approximations to integrate the flux over a 615 

timestep (Eq. 18). The results of this analysis are provided in Table A2. 

 

Method runtime (s) 𝝍 RMSE (m) MB bias (mm) 
MB RMSE 

(mm) 

SFOM 1.71 0.000 -0.018 8.06E-05 

Reporting step central 1.66 0.000 0.119 2.64E+00 

Reporting step forward 1.66 0.000 0.119 5.29E+00 

Reporting step backward 1.66 0.000 0.119 5.92E-02 

Calculation step central 5.24 0.000 0.046 1.13E-04 

Calculation step forward 5.24 0.000 0.046 3.24E-03 

Calculation step backward 5.24 0.000 0.046 3.14E-03 

Table A2. Model performance using different calculation methods for the boundary fluxes. 

 

Model state variables are unaffected by the different boundary flux calculation methods. The SFOM has the best water balance 620 

performance, both in terms of bias and RMSE. Using calculation step level information results in good water balance closure, 
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with the central difference approximation giving the lowest errors. However, the efficiency of this is poor, with runtimes 

increased by more than a factor of three. This is because many additional calculations need to be performed outside the ODE 

solver for each calculation time step. By default, the ODE solver allows up to 500 calculation time steps for every reporting 

timestep – so this is very inefficient. Calculating the boundary fluxes using reporting timestep information is very efficient, 625 

slightly faster than our method, but the water balance errors are significantly larger. These reporting step errors will increase 

with an increased reporting time step, as is shown in Figure 3. Overall then, the SFOM provides the performance of using 

calculation step information without the loss of computational efficiency. 

 

The key take home point here is that the easiest and most obvious approach to calculating the boundary fluxes is to use reporting 630 

step information. This is a bad idea – the mass balance errors are large, and if this is combined with other bad decisions (such 

as using discrete approximations for 𝐶(𝜓) as discussed in the next section), the results can be catastrophic (water balance 

errors > 100 mm). 

 

A.3 Alternative estimation methods for 𝒅𝜽/𝒅𝝍 635 

 

When we use a parametric expression for 𝜃(𝜓), such as the van Genuchten equations (Eqs. 27-30), we can obtain an analytical 

expression for 𝑑𝜃/𝑑𝜓, as in Eq. 29, and this can be used to calculate 𝐶(𝜓) as implemented in RE in Eq. 5. However, depending 

on the numerical solution procedure that is adopted, this can lead to errors with mass conservation, and it is recommended by 

some researchers (Rathfelder & Abriola, 1994, Clark et al., 2021) that a discrete approximation is used for 𝑑𝜃/𝑑𝜓, whereby 640 

 
𝑑𝜃
𝑑𝜓 =

𝜃A − 𝜃A0.
𝜓A −𝜓A0.

 
(31) 

 

where here 𝑛 is a time index. This approach could be seen as equivalent to solving the mixed form of RE and can minimize 

water balance errors in the model that arise because the changes in 𝑑𝜃/𝑑𝜓 over a time step are non-linear, as shown by Celia 

et al., (1990). However, it is necessary to apply this very carefully in the context of ATS methods. The values of 𝜃A0. and 645 

𝜓A0. must be available from the previous calculation time step and not the previous reporting time step. If reporting timestep 

information is used, the model will fail badly because as the calculation steps move forward in time over a reporting step, 

𝐶(𝜓) is constantly referenced back to the beginning of the reporting step. This is clearly an erroneous approach, resulting in 

mass balance errors of more than 100 mm for our problem. For the solver flux output method of calculating the boundary 

fluxes, it is necessary to output states at reporting steps, and therefore it is not possible to use the discrete approximation for 650 

𝐶(𝜓). The results in Table A3 all use calculation step information. A more subtle issue is the order of the temporal integrator 

used by the ODE solver, which can be specified by the user. Here, we use either first order or (variable) higher order (as 
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determined by the ODE solver) temporal integration methods. For the solver flux output method, we use higher order temporal 

integration. The results are given in Table A3. 

 655 

Method runtime (s) 𝝍 RMSE (m) MB bias (mm) 
MB RMSE 

(mm) 

Analytical 𝐶(𝜓) 
Solver flux output 

method 
1.71 0.000 -0.018 8.06E-05 

Analytical 𝐶(𝜓) 1st Order 36.25 0.000 -0.49 4.97E-04 

Analytical 𝐶(𝜓) High Order 5.17 0.000 0.046 3.14E-03 

Discrete 𝐶(𝜓) 1st Order 44.62 0.000 0.317 1.92E-07 

Discrete 𝐶(𝜓) High Order 7.2 0.003 11.939 9.72E-03 

Table A3. Model performance using different approaches to calculate 𝐶(𝜓). 

 

We see in Table 3 that the discrete 𝐶(𝜓) approach works quite well for first order integration methods but is very slow. When 

higher order integration methods are used, the model is faster, but the mass balance is chronically degraded. We think that this 

happens because with higher order methods the model states evolve in a more complex manner (i.e., non-linear manner) over 660 

a calculation timestep, so the linear approximation in Eq. 28 is not good. It is noteworthy that the modelled 𝜓 values were 

slightly modified using the discrete high order approach. For comparison purposes, we looked at using analytical 

representations of 𝐶(𝜓) with first order and higher order methods, and this time the higher order methods performed better. 

Overall, we recommend against using discrete 𝐶(𝜓) approximations, unless using a tailor-made ODE solver (such as Kavetski 

2001, 2002a, 2002b). 665 

 

A.4 Alternative approaches to defining the Jacobian 

 

As described in Section 4.1, providing the ODE solver with information about the Jacobian matrix is reported to improve the 

solution efficiency. Here we compare three approaches: no information provided about the Jacobian; defining the Jacobian 670 

pattern; and defining the full Jacobian matrix. For the last case, this was complex to define for our method, and therefore it 

was implemented for the high order reporting step solution procedure described in 4.3.2. The results are reported in Table A4. 

 

 

 675 
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Method runtime (s) 𝝍 RMSE (m) MB bias (mm) 
MB RMSE 

(mm) 

Solver flux output 

method  

Jacobian pattern 1.71 0 -0.018 8.06E-05 

no Jacobian 2.17 0 -0.015 7.53E-05 

Reporting step flux 

calculation method 

no Jacobian 2.16 0 0.119 5.92E-02 

Jacobian pattern 1.63 0 0.119 5.92E-02 

full Jacobian 1.58 0 0.123 5.92E-02 

Table A4. Model performance using different approaches to define the Jacobian matrix. 

 

We see that for both model configurations, defining the banded Jacobian sparsity pattern matrix led to improvements in 680 

performance of around 20%. This is modest, but because it is trivial to define the banded matrix, this is worthwhile. For the 

reporting step model, when we defined the full Jacobian matrix, this led to a very slight improvement in performance over the 

banded solution (1.58 seconds vs 1.63 seconds). Defining the full Jacobian is challenging and requires an additional 

function/function call in the code – we therefore recommend against using the full Jacobian matrix and recommend instead 

defining the banded matrix.  685 

 

A.5 Running the model with and without numba JIT compilation 

 

The best model configuration was also run with and without 𝑛𝑢𝑚𝑏𝑎 JIT compiler, and the result is shown in Table A5. It can 

be seen that 𝑛𝑢𝑚𝑏𝑎	has no impact on the model output (accuracy and mass balance are identical for each run) as expected, 690 

but using numba improves the runtime by a factor of ~15. All other model runs reported in this paper use numba. 

 

Configuration runtime (s) 𝝍 RMSE (m) MB bias (mm) MB RMSE (mm) 

With numba 1.71 0.00 -0.018 8.06E-05 

Without numba 26.07 0.00 -0.018 8.06E-05 

Table A5. Model performance with and without numba JIT compliation. 

 

 695 

 

Code and/or data availability 
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All of the scripts developed in this study are available from https://github.com/amireson/openRE, release v1.0.0, DOI: 

10.5281/zenodo.6939855 (Ireson, 2022). The code is written in Python and MATLAB, and run using Makefiles, which 

reproduce Figures 2 – 7.  700 
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