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Abstract. Decadal climate predictions, obtained by constraining the initial condition of a dynamical model through a truthful 10 

estimate of the observed climate state, provide an accurate assessment of near–term climate change and a useful tool to inform 

decision–makers on future climate–related risks. 

Here we present results from the CMIP6 DCPP–A decadal hindcasts produced with the operational CMCC decadal prediction 

system (CMCC DPS), based on the fully–coupled CMCC–CM2–SR5 dynamical model. A 20–member suite of 10–year 

retrospective forecasts, initialized every year from 1960 to 2020, is performed using a full–field initialization strategy. 15 

The predictive skill for key variables is assessed and compared with the skill of an ensemble of non–initialized historical 

simulations so as to quantify the added value of initialization. In particular, the CMCC DPS is able to skilfully reproduce past–

climate surface and subsurface temperature fluctuations over large parts of the globe. The North Atlantic Ocean is the region 

that benefits the most from initialization, with the largest skill enhancement occurring over the subpolar region compared to 

historical simulations. On the other hand, the predictive skill over the Pacific Ocean rapidly decays with forecast time, 20 

especially over the North Pacific. In terms of precipitation, the CMCC DPS skill is significantly higher than that of the 

historical simulations over a few specific regions, including Sahel, Northern Eurasia and over the Western and Central Europe. 

The Atlantic Multidecadal Variability is also skilfully predicted, and this likely contributes to the skill found over remote areas 

through downstream influence, circulation changes and teleconnections. Considering the relatively small ensemble size, a 

remarkable prediction skill is also found for the North Atlantic Oscillation, with maximum correlations obtained in the 1–9 25 

lead–year range. 

Systematic errors also affect the forecast quality of the CMCC DPS, featuring a prominent cold bias over the Northern 

Hemisphere, which is not found in the historical runs, suggesting that in some areas the adopted full–field initialization strategy 

likely perturbs the equilibrium state of the model climate quite significantly. 

The encouraging results obtained in this study indicate that climate variability over land can be predictable over a multi–year 30 

range, as well they demonstrate that the CMCC DPS is a valuable addition to the current generation of DPSs. This stresses the 

need to further explore the potential of the near–term predictions, further improving future decadal systems and initialization 

methods, in the perspective to provide a reliable tool to inform decision makers on how regional climate will evolve in the 

next decade. 
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1 Introduction 

Climate fluctuations are the end result of a number of processes, acting on a multitude of timescales. Prior to year 2000, 

century–scale climate change projections, initialized with a physical state of the climate system obtained from a long simulation 

of the pre–industrial period and subject to prescribed anthropogenic and natural forcings, have been the only available product 

to inform decision makers on future climate–related risks. A major limitation of non–initialized climate projections is their 40 

lack of information about the ongoing natural variability that may affect climate changes in the near future, which is, at least 

in part, linked to the current state of the Earth’s climate system. Decadal predictions, obtained by constraining the initial 

condition of a dynamical model (Coupled Global Circulation Model / Earth System Model) through a realistic estimate of the 

observed climate state, provide a more accurate assessment of climate change in the near–term (decadal) range, where both 

external and internal drivers contribute to the climate evolution (Smith et al., 2007; Kushnir et al., 2019). 45 

Starting from the 2000s, initialized decadal predictions have been assessed in multiple projects, from the first pioneering efforts 

up to the 5th Coupled Model Intercomparison Project (CMIP5, Smith et al., 2007; Keenlyside et al., 2008; Pohlmann et al., 

2009; Meehl et al., 2009; Doblas–Reyes et al., 2011), in which coordinated experiments allowed multi–system comparison to 

reduce single–model uncertainties (Taylor et al., 2012; Bellucci et al., 2015a), contributing to the Intergovernmental Panel on 

Climate Change fifth assessment report (AR5, Chapter 11, Kirtman et al., 2013). 50 

Years of coordinated research and development led to an established experiment protocol that has overcome some of the 

limitations (e.g. limited ensemble size, initialization every 5 years) of the decadal prediction simulations produced in the 

CMIP5 framework. This protocol is extensively described in the CMIP6 Decadal Climate Prediction Project (DCPP), a 

coordinated multi–model effort within the World Climate Research Programme (WCRP) which aims to investigate climate 

predictions, predictability and variability from annual to decadal timescales (Boer et al., 2016). The DCPP is intended to make 55 

skilful forecasts and predictions on these timescales using state–of–the–art climate models and statistical approaches. The core 

of the DCPP is its “component A” that includes a set of retrospective forecasts (hindcasts). This framework has laid the 

groundwork for a number of single–model (Bethke et al., 2021; Bilbao et al., 2021; Kataoka et al., 2020; Robson et al., 2018; 

Sospedra–Alfonso et al., 2021; Xin et al., 2019; Yang et al., 2021; Yeager et al., 2018) and multi–model studies (Borchert et 

al., 2021a, 2021b; Delgado–Torres et al., 2022). 60 

Climate anomalies on annual–to–multi–decadal timescales are determined from both the internal and the externally forced 

variability (Boer et al., 2016). External contributions derive from solar irradiance variations, volcanic aerosols and 

anthropogenic activities, including land use, aerosols and greenhouse gas emissions, accounting for the global warming trend. 

On the other hand, the oceans and to a lesser degree the land surface, sea ice and stratosphere (Bellucci et al., 2015b) and their 

interaction with the atmosphere are the primary source of internal variability within the climate system on decadal timescales. 65 

Low–frequency fluctuations of the North Atlantic sea surface temperature (SST), known as the Atlantic Multidecadal 

Variability (AMV), affect the global climate through local impacts and remote teleconnections (e.g. Sutton and Hodson, 2005; 

Zhang and Delworth, 2005; Knight et al., 2006; Sun et al., 2015; Nicolì et al., 2020; Ehsan et al., 2020; Ruprich–Roberts et 
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al., 2021). The long–term AMV evolution is well captured in most state–of–the–art forecast systems and represents one of the 

primary sources of predictability and, possibly, of skill at decadal timescale, generally attributed to the initialization of the 70 

Atlantic Meridional Overturning Circulation (AMOC, Zhang et al., 2019). Other predictability sources arise from the Pacific 

Ocean. Interestingly, decadal El–Niño Southern Oscillation (ENSO) impacts may be modulated by the Interdecadal Pacific 

Oscillation (IPO), which features both the ENSO SST region and extends to other extratropical areas (Henley et al., 2015). In 

addition, the initial state of some land–surface characteristics, stratosphere, snow cover and sea–ice may also impact the 

predictability of the climate system (e.g. Bellucci et al., 2015a; Meehl, 2021). The aforementioned initialized components 75 

provide additional predictability for the atmospheric circulation and, in particular, for the North Atlantic Oscillation (NAO) 

affecting boreal winter climate over Europe (Smith et al., 2019; Athanasiadis et al., 2020). 

In this paper we present the Decadal Prediction System (DPS) developed at the Euro–Mediterranean Center on Climate Change 

(CMCC) using the CMCC–CM2–SR5 state–of–the–art climate model (Cherchi et al., 2019) and contributing to the CMIP6 

DCPP project. In particular, the study aims to assess the skill in predicting the observed anomalies in key meteorological 80 

variables, testing the ability of the DPS in simulating main climate variations from annual to the decadal timescale. 

The article is structured as follows: Section 2 provides details on the model configuration, the experimental protocol, the 

evaluation metrics and the data used to check the benefits of the initialization. Section 3 presents results on the predictions’ 

skill for key quantities and their evolution in time using deterministic and probabilistic approaches and assesses the evolution 

of some relevant model biases. Section 4 focuses on the skill for selected regional climate variability indices. Finally, Section 85 

5 summarizes and discusses the main findings of the study, also drawing some conclusions. 

 

2 Data and Methodology 

2.1 Description of the CMCC DPS model 
The CMCC decadal prediction system is based on the CMCC–CM2–SR5 coupled model, shortly described below (see Cherchi 90 

et al., 2019 for additional details). The atmospheric component is the Community Atmosphere Model version 5 (CAM5) with 

a regular grid of 0.9°–1.25° and 30 hybrid levels including 17 levels below 200 hPa and extending up to 2 hPa. The finite–

volume configuration has been chosen for the dynamical core. The ocean model is the Nucleus for European Modelling of the 

Ocean version 3.6 (NEMOv3.6), using a tripolar ORCA grid with a horizontal resolution of about 1° (with a varying latitudinal 

resolution ranging from 1/3° near the Equator up to 1° at high latitudes) and 50 levels in the vertical. The sea–ice component 95 

is the Community Ice CodE in its version 4 (CICE4). The DPS configuration of CICE4 uses a single category to characterize 

the sea–ice thickness, for consistency with the respective reanalysis used for the initialization. The Community Land Model 

version 4.5 (CLM4.5) is used for the simulation of the land surface at the same horizontal grid used by the atmospheric 

component. Finally, the River Transport Model (RTM, Branstetter 2001) routes liquid and ice runoff from the land surface 

model to the active ocean to simulate a closed hydrological cycle. 100 

A suite of retrospective forecasts (hindcasts) consisting of 20–member ensembles of 10–year long hindcasts, initialized every 

year from 1960 to 2020 has been completed, following the CMIP6 DCPP–A protocol (Boer et al., 2016). As summarized in 
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table T1, all the members are initialized on November 1st, starting from direct full–field estimates of the observed state of the 

ocean, sea–ice, land surface and atmosphere, without any coupled assimilation runs. For each start date, two initial conditions 

for the atmosphere are obtained from the ERA–40 (1960–1978, Uppala et al., 2005), ERA–Interim (1979–2018, Berrisford et 105 

al., 2019) and ERA5 (2019 onwards, Hersbach et al., 2020) reanalyses, taking the atmospheric states of November 1st and 

2nd. The ocean, sea–ice and land surface states are initialized with an ensemble of global data assimilation products (ocean 

and sea–ice) and analyses constrained with observed fluxes (land surface). Specifically, land surface is initialized using two 

different analyses obtained from a land–only configuration of the CLM4.5 land model integrated offline with two different 

atmospheric forcing datasets: CRUNCEP version 7 (Viovy, 2016) and GSWP3 (Kim, 2017). These datasets provide the land 110 

model with instantaneous 2–meter air temperature and humidity, 10–meter winds and surface pressure every six hours, and 3–

hourly–accumulated radiation and precipitation. Ocean initial states derive from CHOR (for the period 1960–2010, Yang et 

al., 2016) and CGLORSv7 reanalysis (for the period 2011–2020, Storto and Masina, 2016), performed with a three–

dimensional variational data assimilation system, a surface nudging and a bias correction scheme. It is worth noting that the 

reanalysis is performed with the same ocean model used in the CMCC DPS (i.e. NEMO v3.6). An ensemble of 5 ocean initial 115 

states is used to initialize the ocean and sea–ice components: 3 initial estimates originate from global ocean reanalysis 

characterized by different assimilation strategies of SST and in–situ profiles of temperature and salinity in a 0.5° configuration 

of the NEMO ocean model, while the remaining 2 initial states are derived through linear combinations of the former 3 initial 

states. The ocean initial states provide three–dimensional fields of temperature, salinity and horizontal currents. The sea–ice 

model has been initialized starting from sea–ice temperature, sea–ice volume, sea–ice area and snow volume. Our full–field 120 

initialization approach is similar to the ones adopted by other DPSs (e.g. Bilbao et al., 2021; Sospedra–Alfonso et al., 2021), 

in which the a–posteriori correction is applied since the simulations deviate to their own model attractors. Other DPSs (e.g. 

Bethke et al., 2021; Brune and Baehr, 2020; Kataoka et al., 2020) are initialized using the observed anomalous variability 

superimposed on the model climatology, to avoid the initial shock. Both the techniques are deemed valid in CMIP6 DCPP 

protocols (Boer et al., 2016) and present some drawbacks: bias–correction in the former may remove part of the variability 125 

signal while the latter has the assumption that the model variability is independent from the model mean state. Nevertheless 

several studies have proven that differences in skill are small and localized (Smith et al., 2013; Bellucci et al., 2015a; Volpi et 

al., 2016). 

The time–evolving radiative forcings (including solar radiation, greenhouse gasses concentrations, anthropogenic and volcanic 

aerosols) are prescribed during the historical period (1960–2014) and follow the ssp2–4.5 scenario (O’Neil et al., 2016) from 130 

2015 onwards, in agreement with the CMIP6 DCPP protocol. 

 

 

 

 135 
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Table T1. List of initial conditions used for the generation of 20–members hindcast ensemble. 

 

 Data Source Number of ICs Procedures 

LAND 

Land–only analyses forced by 2 

different atmospheric datasets: 

CRUNCEPv7 (Viovy, 2016) and 

GSWP3 (Kim, 2017).  

Note: from 2015 onwards, the 

atmospheric fluxes to force the land–

only analysis are taken from NCEP 

reanalysis (instead of CRUNCEPv7) 

and from ECMWF ERA5 (instead of 

GSWP3). 

2 ICs (2 runs forced by 2 

different datasets, providing 

instantaneous 2–meter air 

temperature and humidity, 

10–meter winds and surface 

pressure every six hours and 

3–hourly–accumulated 

radiation and precipitation) 

Direct interpolation on target grid 

from land restarts 

ATMOSPHERE 

ERA40 (Uppala et al., 2005) for 1960–

1978 start dates, ERA–Interim 

(Berrisford et al., 2019) for 1979–2018 

start dates and ERA5 (Hersbach et al., 

2020) from 2019 onwards.  

2 ICs (derived from time–

lagging perturbations, using 

the 1st and 2nd November) 

Direct interpolation on target grid 

from atmospheric 3D state of 

temperature, specific humidity and 

horizontal wind components 

OCEAN  
CHOR (Yang et al., 2016) for 1960–

2010 start dates and CGLORSv7 

(Storto and Masina, 2016) for 2011–

present start dates. 

5 ICs (from 3 realizations of 

the global ocean/sea–ice 

reanalysis + 2 ICs from linear 

combinations of the former 3 

ICs) 

Direct interpolation on target grid 

from 3D state of temperature, 

salinity and horizontal components 

of the ocean currents.  

SEA–ICE 

Direct interpolation on target grid 

of sea–ice temperature, sea–ice 

volume, sea–ice area and snow 

volume.  

 140 
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2.2 Verification Data 

Uninitialized historical simulations covering the 1850–2014 period are used to assess the added value of realistic model 

initialization in decadal predictions. We use a 10–member ensemble of historical simulations initialized with different states 

of a multi–century pre–industrial climate simulation. Each member of the historical ensemble is extended until 2030 under the 145 

ssp2–4.5 scenario, thus allowing a fair comparison with the decadal forecast ensemble initialized in the year 2020. Since only 

10 historical members are available, the 20–member hindcast ensemble has been scaled down using a random sub–sampling 

with 100 combinations in order to allow a fair comparison to the historical ensemble in the skill assessments. 

The predictive skill for both initialized reforecasts and uninitialized projections is assessed against observational products. The 

temporal coverage of lead year 1 is 1961–2020, since not every observational product used in this study covers from 2021 150 

onwards. Lead year 1–5 and 6–10 considers respectively the periods 1961–2015 and 1966–2020. To verify the skill for SST, 

we rely on the Met Office Hadley Centre Sea Ice and Sea Surface Temperature (HadISST) dataset version 1.1 (Rayner et al., 

2003 while for 2–meter air temperature (T2m) the CRU TS v4.05 dataset (Harris et al., 2021) is used. Precipitation is assessed 

by means of the GPCC Full Data Monthly Product Version 2020 (Schneider et al., 2020), while for mean sea level pressure 

the HadSLP2 dataset (Allan and Ansell, 2006) is used. 155 

 

2.2 Verification metrics 

Initializing decadal predictions from estimates of the observed states of the Earth system may generate spurious responses, 

since the climate model used to produce the simulations, after initialization, tends to drift towards its own “attractor” (mean 

climate), deviating from the observed climatology, a consequence of the model's systematic error (bias). This issue is 160 

particularly pronounced in the prediction systems adopting a full–field initialization strategy, as in the present case. The 

spurious drift can be removed a posteriori by subtracting a lead–time dependent climatology at each grid point, assuming a 

constant drift throughout the time record (Goddard et al., 2013; Boer et al., 2016). 

To evaluate the skill of the prediction system, both deterministic and probabilistic metrics are used. The anomaly correlation 

coefficient (ACC) and the mean square skill score (MSSS) are deterministic metrics, measuring the accuracy of the ensemble 165 

mean prediction in reproducing the observed variability over the 1961–2020 period targeted by the decadal reforecasts. More 

specifically, the ACC is a dimensionless measure evaluating the phase agreement between predicted and observed anomalies, 

ranging from –1 to 1 (Wilks, 2011). The MSSS, additionally, quantifies the magnitudes between the predicted and observed 

anomalies (Goddard et al., 2013). This metric evaluates the skill of the ensemble mean prediction with respect to a reference 

prediction. 170 

Specifically, the MSSS is defined as: 

  

𝑀𝑆𝑆𝑆#$% = 1 − (𝑀𝑆𝐸#%/𝑀𝑆𝐸$%),                                                                                           (1) 
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where, MSEHO (MSEPO) is the mean square error evaluated for the initialized (uninitialized) ensemble mean against 175 

observations. The MSSS takes a maximum value of one (1.0), while it does not have a lower limit. Positive MSSS values mean 

more accurate predictions in the initialized runs and one may speculate that the opposite is also true. However, since the MSSS 

is not symmetric around zero, the positive and negative MSSS absolute values do not have the same meaning in terms of 

variance. 

Probabilistic skill scores provide a useful complement to deterministic metrics in assessing the quality of a prediction system. 180 

In this study, Relative Operating Characteristic (hereafter ROC) score maps have been assessed for the hindcasts (Kharin and 

Zwiers 2003, Wilks 2011). Each grid–point in these maps shows the area under the ROC curve, equal to the probability of a 

certain anomaly to exceed a specific threshold. When the ROC score approaches the perfect forecast (i.e. equal to one), the 

DPS is able to discriminate the occurrence of predetermined events. On the other hand, no skill emerges when the score is 

close to 0.5. Here, we have considered three equiprobable categories: upper tercile, lower tercile and between lower and upper 185 

terciles (neutral). Note that the ROC score outcome is not dependent on forecast biases (i.e. calibration) (Kharin and Zwiers, 

2003). 

The DPS ability to reproduce the dominant climate variability patterns is also tested, focussing in particular on the North 

Atlantic and North Pacific sectors. Decadal variability in the Atlantic region is well described by the Atlantic Multidecadal 

Variability (AMV), estimated as the detrended anomalies of SSTs area–weighted over the North Atlantic basin, following the 190 

definition adopted in Trenberth and Shea (2006). The skill in predicting the NAO index is also tested using the definition in 

Li and Wang, 2003 (Fig. S1). 

We characterize the low–frequency variability in the Pacific basin through the IPO, which is in turn expressed in terms of the 

IPO tripolar index (TPI), accounting for the difference between the averaged SST anomalies over the equatorial zone and over 

the extratropical lobes of the IPO (Henley et al., 2015). At shorter timescales, the ENSO prediction is evaluated through the 195 

NINO 3.4 index, representing the spatially average SST anomaly over the respective region of the equatorial Pacific. 

The statistical significance is assessed with a one–tailed Student's T test (Wilks, 2011), accounting for auto–correlation in the 

time series (eq. 30 from Bretherton et al., 1999). The anomalies of the observations and the historical simulations are computed 

with respect to their climatologies (reference period 1981–2010). In the initialized runs, the climatology for each forecast year 

is computed considering the highest possible number of initialization years. This approach allows to maximize statistical 200 

robustness, even if the skill may depend on the targeted verification years. 

 

3 Skill evaluation 

3.1 Near–surface air temperature 

Skill in predicting the global mean surface temperature (GMST; based on 2–meter air temperature over land and SST over the 205 

ocean) is assessed against observed anomalies combining CRU TS4.05 (Harris et al., 2020) over land and HadISST 1.1 for 

SSTs (Rayner et al., 2003). Figure 1 shows GMST for initialized hindcasts (in red; “Init”, hereafter), non–initialized historical 

simulations (in blue; “NoInit”, hereafter) and observations (in black). 
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At lead–year 1, the initialized ensemble reproduces quite closely the observed GMST anomalies, showing higher correlation 

(ACC=0.95) compared to NoInit (ACC=0.89), mainly explained by the strong impact of the imposed initial state at the 210 

beginning of the forecasts. Looking at the lead–year range 1–5, the Init still resembles the observed variability (ACC=0.96) 

within a range of 0.05 °C. Even if the NoInit displays relatively high correlation (ACC=0.94), its skill is substantially due to 

the global warming trend driven by external forcings and, in this case, the anomaly time series does not reproduce the observed 

interannual variability. The time evolution of the near–surface temperature over the 6–10 lead–year range exhibits comparable 

correlations for both initialized and historical ensembles (ACC=0.96), indicating that the radiative forcing has a dominant role 215 

at longer lead times. 

The ensemble spread envelope of predicted GMST (denoting maximum and minimum range of the members variability, shown 

in orange) encompasses the observations, especially at lead–year 1 and 1–5, successfully capturing the multi–year variability, 

including the cooling effect of major volcanic eruptions, such as the El Chichón and Pinatubo eruptions that occurred in 1982 

and 1991, respectively. The initialization contributes to the reduction of the Init ensemble spread, which is about half the 220 

envelope of the NoInit for lead–year 1, due to the beneficial impact of synchronizing observed and model internal climate 

variability. 

 

3.2 Deterministic metrics 

Predictive skill at the regional scale is assessed through ACC maps. Figure 2 shows ACC for annual surface temperatures 225 

evaluated at different lead–year intervals, as well as the corresponding differences with respect to NoInit. In order to remove 

the skill impact on different ensemble sizes, we compare the skill of the historical (10 available members) with the skill of 

random subsampling of the initialized run with 10 members out of the 20 available members. The MSSS maps provide further 

details on the skill improvement determined by initialization (Fig. 3) assessing the consistency between the magnitudes of the 

predicted and the observed anomalies (see section 2.3 Verification metrics).  230 

At lead–year 1, significant predictive skill is found over most of the globe, reaching the highest values (ACC=0.80) over 

tropical Indian Ocean, northern and equatorial Africa, north–eastern part of South America, subpolar North Atlantic and 

western tropical Pacific. Lack of skill, instead, characterizes western subtropical North Atlantic, Eastern Europe, central part 

of South America and part of the western North Pacific and Southern Ocean. The added value of initialization (Fig. 2b) is 

particularly prominent over the tropical and the eastern subpolar North Atlantic, as well as over the tropical and the 235 

extratropical North Pacific. In addition, Init exhibits higher skills (up to 0.5) over the American continent, central Africa and 

the Indian subcontinent. The corresponding MSSS pattern (Fig. 3a) clearly indicates that the Init outperforms NoInit in 

reproducing the magnitude and the sign of the observed anomalies over approximately the same areas, showing improved 

ACC in respect to NoInit (Fig. 2b). 

In the 1–5 lead–year range, skill is generally higher than for lead–year 1, likely due to the effect of averaging over a longer 240 

interval (5 years) and to the emerging warming trend. In contrast, the skill undergoes a clear deterioration over the tropical and 

northern part of the Pacific Ocean when multiyear range of prediction skill is considered (Fig. 2c). Significant skill is found 
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over the continental areas of North America, Eurasia, Africa and over the Maritime Continent. A large fraction of the skill 

seems to derive from the warming trend that increases predictability, at this lead–year range, over land and over the Indian 

Ocean (Van Oldenborg et al., 2012). Over the North Atlantic Ocean the emerging AMV footprint is recognizable with high 245 

predictive skill associated with the typical horse–shoe pattern emerging from the Init vs NoInit comparison (Fig. 2d). This 

pattern is also noticeable in the relative MSSS map (Fig. 3c) suggesting improved predictability for the AMV tropical lobe 

whilst the extratropical lobe may be affected by strong biases as it is characterized by high ACC values and neutral MSSS. 

Near–term prediction skill is improved especially over the eastern Mediterranean and the Arabian Peninsula (ACC=0.3), 

reaching high correlation values (ACC=0.90 in Figure 2c) also reflected in the MSSS (Fig. 3c). 250 

The pattern exhibited in the lead–year range 6–10 is very similar to that shown in lead–year 1–5, although some regional 

changes, such as those in Eastern Europe and Siberian region, may be easily spotted. Areas with non–statistically significant 

skill cover part of the eastern Pacific Ocean (Fig. 2e). The generally higher skill attributable to initialization (Fig. 2f) is 

substantially consistent with the pattern obtained for the lead–year range 1–5, even if it is not reproduced in the MSSS analysis 

(Fig. 3e), suggesting that surface temperature variations are not well captured. 255 

To corroborate the skill analysis of surface temperature at decadal timescales, we assess the skill for the ocean heat content 

integrated over the top 300 meters of the water column (hereafter OHC300). The ACC pattern computed for the OHC300 

anomalies (Fig. 4) is similar, and thus consistent, with the results obtained for the SST (Fig. 2). At lead year 1, significant ACC 

covers most part of the oceans, except for the Eastern Atlantic and Southern ocean. The anomalies’ values are also well 

captured north of 30°N. The OHC300 area exhibiting significant skill is reduced when higher lead–time ranges are considered. 260 

At lead year 1–5 and 6–10, the ACC is significant over the tropical Pacific, excluding the equatorial band due to the poor long–

term predictability of ENSO, as also found in other DPSs (e.g. Bilbao et al., 2021). Positive ACC values also cover part of the 

Indian Ocean, South and North Atlantic regions. The MSSS shows positive values mainly localized over the midlatitudes in 

the North Atlantic (Fig. S6) and is found to be quite consistent with SST MSSS (Fig. 3). The lack of skill over the subpolar 

gyre may be partly due to the erroneous representation of the Atlantic Meridional Overturning Circulation (AMOC) in the 265 

DPS, altering the local ocean circulation and heat content. A complementary analysis reveals that the mean AMOC cell in the 

DPS is quite well reproduced in terms of structure although its maximum is located too far south (below 20°N) at lead year 1 

(Fig. S3) compared to other AMOC reconstructions based on different oceanic reanalyses [e.g. Karspeck et al., 2017]. At lead 

year 1–5 and 6–10 the maximum moves northwards, due to the model adjustment towards its own climatology, resembling the 

structure reported in other studies [e.g. Tsujino et al., 2020]. The initialization shock may lead to the AMOC slowdown up to 270 

lead year 2 (Fig. S4 and Fig. S5), underestimating the maximum by about 2 Sv at 26.5°N in the period covered by RAPID 

array (Moat et al., 2022). The slightly negative trend of the observed AMOC occurring during the last decades is reproduced 

just at lead year 1 in the hindcasts (Fig. S4 and Fig. S5) while the simulated low–frequency variability is consistent with the 

observed one also at longer lead years. 

Compared to surface temperatures, skill in precipitation is generally lower and less spatially coherent (Collins, 2002; Doblas–275 

Reyes et al., 2013). At lead–year 1 significant skill is found only in limited areas (Fig. 5a), including the North–Eastern Brazil, 
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South–Western U.S., Southern Africa, eastern Australia, Turkey and the Balkan Peninsula, as reflected also by the MSSS 

values (Fig. 3b). For the lead–year ranges 1–5 (Fig. 5c) and 6–10 (Fig. 5e), significant ACC values can be attributed to the 

Northern part of the Eurasian continent, the Sahel and Europe, including the Iberian Peninsula, the British Isles and central 

Europe. However, comparing Init with NoInit reveals that the skill is largely due to trends in the radiative forcing, with slight 280 

improvements associated with initialization (Gaetani and Mohino, 2013; Bellucci et al., 2015a). 

 

3.3 Mean bias assessment 

The full–field strategy is used to initialize the forecasts, providing best estimates of the observed state to each model 

component. It does have an important drawback: it generates spurious, transient signals determined by the model's tendency 285 

to drift towards its own climatological mean state after being initialized from a realistic state around the observed climatology. 

Following the recommendation of the International CLIVAR Project Office (ICPO 2011), the mean bias is defined as the lead–

time dependent ensemble mean deviation from the observed mean state defined throughout the whole time record (1960–

2020). Assessing the mean bias is an important part of evaluating decadal predictions. The time–dependent SST bias for 

decadal hindcasts (lead–years 1, 2–5 and 10) and the bias in the historical simulations are shown in Figure 6. 290 

The SST bias in the Init is very rapidly established during year 1, followed by a slower adjustment occurring in the following 

years, since the Init curves of zonal mean bias for lead–years 1, 2–5 and 10 remain relatively close to each other (Fig. 6e). Bias 

patterns featured by Init and NoInit substantially differ over the Northern Hemisphere, with the former presenting a prominent 

cold bias, which is not found at all longitudes in NoInit. In the Southern Hemisphere, Init and NoInit are much more similar. 

This lack of agreement between Init and NoInit suggests that initialization likely perturbs the equilibrium state of the model 295 

climate quite significantly. Interestingly, the same kind of departures from the observed state have been found also in several 

other decadal prediction systems, including some contributing to the CMIP5 decadal prediction ensemble that adopted a full–

field initialization strategy (Bellucci et al, 2015a). This fact indicates that the time adjustment period following the initialization 

shock typically exceeds 10 years over the subpolar North Atlantic. 

The Init bias for precipitation is comparable to the NoInit time–mean bias (Fig. 7). Major departures occur in the tropical 300 

Pacific (20ºS–20ºN). Here, precipitation is overly strong in both Init and NoInit, especially south of the Equator, where the 

spurious occurrence of a southern ITCZ is a common bias in coupled models (Tian and Dong, 2020; Bellucci et al., 2010). The 

double ITCZ is enhanced by initialization, with a rainfall overestimation at lead–year 1 (Fig. 7e). This may lead to artificial 

increase of precipitation over the South–Western U.S. and drier conditions over the Mediterranean Sea (Dong et al., 2021), as 

seems to be the case in both the Init and NoInit. Finally, the Init bias for precipitation shows that no strong drift occurs outside 305 

the tropical zone as the bias remains rather stable in lead time. 

 

3.4 ROC score 
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The Relative Operating Characteristic (ROC) Score is used to assess the probabilistic properties of the ensemble Init (see Sect. 

2.3 Verification metrics). In this paper, the ROC score analysis focuses on near–surface temperature, because of its high 310 

predictability, and considers the occurrences of tercile categories. 

The Init well reproduces below–tercile and above–tercile anomalies (Fig. 8), featuring patterns similar to the ACC ones 

throughout the lead times (Fig. 2), which might represent an upper boundary of the ROC score (Wilks, 2011). Specifically, 

ROC scores are close to one over land, Western Pacific and North Atlantic for multi–year predictions (lead years 1–5 and 6–

10), confirming anomaly direction within the ensemble spread. Predictions of anomalies falling in the middle tercile category 315 

exhibit less skill compared to the lower and upper tercile cases. Nevertheless some skill emerges over Africa, northern and 

eastern part of South America, North Atlantic and Indian Ocean. Comparing the ROC score for NoInit (Fig. S7), most of the 

difference occurs over the oceans (e.g. over the North Atlantic), the realm which is most sensible to the initialization at decadal 

timescale. 

 320 

4 Assessing the prediction skill for the main climate indices 
Predictability of selected regional climate indices is investigated in this section, since they influence climate variability on 

global and regional scale through the action of teleconnections. The Atlantic Multidecadal Variability (AMV) represents the 

dominant climate variability pattern of the multi–decadal SST fluctuations in the North Atlantic basin (Knight et al., 2005; 

Smith et al., 2012; O’Reilly et al., 2019). 325 

Figure 9a shows the ACC for the AMV index for different lead–time ranges, thus helping to identify the lead–year range that 

exhibits the maximum skill (see Sect. 2.3 Verification metrics). The largest ACC values are found for lead–year ranges longer 

than 4 years (ACC>0.80), in agreement with previous works (Van Oldenborgh et al., 2012; Garcia–Serrano et al., 2012), 

reaching a peak for the lead–year range 4–10 (ACC=0.91). At this lead–year range, the AMV index in Init reproduces well the 

observed low–frequency variability of the North Atlantic SST, including the ’80s negative phase, the sharp increase during the 330 

‘90s, the peak occurring in the 2000s and the subsequent decline (Fig. 9b), in opposition to the NoInit. The AMV spatial pattern 

is also well captured by the DPS, as depicted in ACC of linearly detrended near–surface temperature (Fig. S2). ACC patterns 

in the North Atlantic reveal the AMV footprint, with correlations ranging from 0.50 (in the subtropics) to 0.91 (at high 

latitudes). It is worth noting that large ACC values of surface temperature are also found over regions linked to the AMV 

through remote teleconnections: the Eastern Mediterranean region (Mariotti and Dell’Aquila, 2012; Bellucci et al., 2017), 335 

Arabian Peninsula (Van Oldenborgh et al., 2012; Ehsan et al., 2020), Southern Eurasia (Li et al., 2021) and the Western 

Tropical Pacific (Kucharski et al., 2016; Sun et al., 2017), suggesting that the skillful AMV prediction has also non–local 

impacts in regions affected by the AMV teleconnection pattern. 

The predictive skill for the NAO is also analyzed focussing on the boreal winter season (see Sect. 2.3 Verification metrics). 

Significant skill is primarily found for lead–year ranges, longer than 5 years (Fig. 9c), although lead–year 1 (coinciding with 340 

the first winter season after initialization, essentially a seasonal forecast) also features significant skill (ACC=0.42). The NAO 

predictive skill is maximum for the lead–year range 1–9 (ACC=0.58). At this lead–year range, the observed NAO phases are 



12 
 

well reproduced in Init (Fig. 9d) and in particular, starting from the satellite era, decadal hindcasts realistically simulate the 

growing trend of the ‘80s and the following decline that occurred after 1995. The Init well captures the NAO variability despite 

the limited ensemble size (ACC=0.80 applying an 8–year running mean to the model index) while NoInit does not reproduce 345 

the right amplitude. The Ratio of Predictable Component shows a rather low value (RPC=2.15, estimated following Scaife and 

Smith, 2018), comparing to NAO predictions by other state–of–the–art decadal prediction systems (Smith et al., 2020; 

Athanasiadis et al., 2020), suggesting that in the CMCC DPS the signal–to–noise ratio problem is somehow less impactful 

(Scaife and Smith, 2018). 

In the Pacific sector, the TPI is considered a proxy of decadal variability (Power et al., 1999; Henley et al., 2015) accounting 350 

for both the equatorial and extratropical SST fluctuations (see Sect. 2.3 Verification metrics). Figure 10a displays the Init ACC 

for TPI with significant skill peaking at lead–years 4–10 (ACC=0.56). As one may expect, Init is not able to reproduce most 

of the variance in the Pacific Ocean due to the lack of skill over that domain, also inferable by the ACC and MSSS maps (Fig. 

2 and Fig. 3, respectively). In fact, the TPI evolution for lead years 4–10 shows that the respective predicted and observed 

anomalies are broadly consistent until the late ‘80s but significantly diverge afterwards (Fig. 10b), similar to the NoInit one. 355 

The emerging skill at higher lead years is probably due to the inclusion of off–equatorial SST, linked to the predictability of 

the Pacific Decadal Variability (Henley et al., 2015). 

Decadal variability in the equatorial Pacific still remains widely unpredictable (Doblas–Reyes et al., 2013) with very limited 

predictability beyond lead–year 2. We quantify the DJF Nino 3.4 index prediction skill in Figure 10c,d. As mentioned, the 

respective maximum occurs during the first winter season after initialization (ACC=0.95, Fig. 10d), although there is some 360 

predictability up to lead–year 3 (Fig. 10c). 

 

5 Summary and conclusions 
In this paper we analyzed the predictive capabilities of the CMCC DPS, using a set of 20–member hindcasts, initialized every 

year from 1960 to 2020, performed with the CMCC–CM2–SR5 coupled model and a full–field initialization strategy.  365 

The study has highlighted the following main findings: 

- the DPS skilfully reproduces the observed variability of surface temperature (T2M over land and SST over the oceans) 

and upper–ocean heat content (Fig. 2 and Fig. 4, respectively), with a large fraction of the total skill stemming from 

long–term trends associated to changes in the external forcings (Van Oldenborg et al., 2012). The North Atlantic 

Ocean is the region that benefits the most from initialization (ACC difference up to 0.80 in Fig. 2.b,d,f and MSSS 370 

close to 0.6 in Fig. 3), with the largest skill enhancement (compared to historical simulations) over the subpolar gyre 

region. As still typical in decadal predictions, a lack of skill characterizes the whole Pacific Ocean, over which 

significant ACC values are bound to lead year 1. The DPS correctly discriminates the occurrences of below–tercile 

and above–tercile surface temperature anomalies throughout different lead–year intervals, with ROC scores close to 

one over land (Fig. 8). 375 
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- Some climate variability patterns in the North Atlantic sector feature significant predictability. In particular, the 

observed AMV signal is skillfully predicted (ACC=0.91, Fig. 9a), and this likely contributes to obtaining significant 

skill also in remote areas through downstream influence, circulation changes and teleconnections. Over the tropical 

Pacific Ocean, ENSO variability exhibits high values of ACC bound to the first winter after initialization (ACC=0.95). 

Moreover, the TPI shows higher predictive skill on longer timescales despite the low skill that the DPS exhibits over 380 

most of the Pacific Ocean. 

- Considering its relatively small ensemble size, the CMCC DPS exhibits an exceptionally high skill for the winter 

NAO on multiyear–to–decadal (ACC_LY1–9=0.58 with 20 members). This is accompanied by a rather low Ratio of 

Predictable Component (RPC=2.15, estimated following Scaife and Smith, 2018), comparing to NAO predictions by 

other state–of–the–art decadal prediction systems (Smith et al., 2020; Athanasiadis et al., 2020). This result suggests 385 

that in the CMCC DPS, despite certain obstinate systematic biases, the signal–to–noise ratio problem (Scaife and 

Smith, 2018) is somehow less severe. 

- Regarding precipitation, the CMCC DPS shows limited skill, with statistically significant correlations only over 

specific areas, a feature shared with other state–of–the–art decadal prediction systems. Indeed, significant skill is only 

found over Sahelian Africa, Northern Eurasia and over the Western and Central Europe, with ACC values up to 0.50 390 

(Fig. 5). This spatially confined skill may derive from the AMV, which is known to be a source of predictability for 

these regions, influencing rainfall variability on annual–to–decadal timescales (Doblas–Reyes et al., 2013; Ehsan et 

al., 2020; Ruggieri et al., 2020). On the other hand, no significant skill for precipitation is found over the rest of the 

globe, probably also due to the relatively small size of our ensemble (Yeager et al., 2018) and to the very high spatial 

variability (Goddard et al., 2013) and absence of a strong trend in precipitation (Gaetani and Mohino 2013; Bellucci 395 

et al., 2015a). Improvements compared to the historical simulations are bound to some regional features, suggesting 

no substantial benefits from initialization in terms of precipitation skill. 

Systematic errors also affect the forecast quality. The strong cold bias occurring over the Northern Hemisphere tends to produce 

an initialization shock and a subsequent drift, typical of the full–field initialization (He et al., 2017) approach used in the 

CMCC DPS. Admittedly, AMOC is particularly affected by the initialization strategy (Fig. S3), with the full–field approach 400 

inducing a long–term adjustment due to the bias in the representation of the large–scale ocean circulation (Polkova et al., 

2014). In this context, another sensitive region is the Equatorial Pacific in which full–field initialization seems to give the 

strongest benefit in skill compared to anomalous initialization (Bellucci et al., 2015). From another perspective, model errors 

may be mitigated by enhancing spatial resolution (both horizontal and vertical) in the oceanic and atmospheric model 

components, since coarse resolution limits a realistic representation of key physical processes (e.g. realistic SST front in the 405 

Gulf Stream region), impacting the atmospheric circulation downstream (Athanasiadis et al., 2022; Paolini et al., 2022). For 

instance, an eddy–permitting ocean model (i.e. 0.25° horizontal resolution) in a fully–coupled system led to improved decadal 

predictions over the whole equatorial zone (Shaffrey et al., 2017). Moreover, increasing the ensemble size is expected to further 
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increase the skill by allowing the predictable signal to emerge more clearly from the chaotic variability (Athanasiadis et al., 

2020). 410 

Interestingly, the results obtained from the CMCC DPS are broadly consistent with similar assessments from other CMIP6 

decadal prediction systems (Bethke et al., 2021; Bilbao et al., 2021; Kataoka et al., 2020; Robson et al., 2018; Sospedra–

Alfonso et al., 2021; Xin et al., 2019; Yang et al., 2021; Yeager et al., 2018) and multi–model studies (Borchert et al., 2021a, 

2021b; Delgado–Torres et al., 2022). In particular, most of the DPSs feature high predictive skill over the Atlantic Ocean, the 

Indian Ocean and continental areas, where a large fraction of predictability stems from the external forcings. The added value 415 

of initialization is most noted over the subpolar gyre and the subtropical Atlantic (in most of the DPSs), confirming these areas 

as those in which decadal predictions benefit the most from realistic initialization. The non–significant skill found over the 

Southern Ocean is considered to be, at least in part, due to the lack of oceanic observations in that region that prevents the 

accurate estimate of the initial state of the ocean. The predictive skill of the Pacific Ocean rapidly decays with forecast time, 

especially over the North Pacific, arguably due to the limited predictability of ENSO beyond the first forecast year and the 420 

consequent strong influence over the North Pacific (unpredictable ENSO–driven variability). 

We remind that the CMCC DPS provides decadal forecasts (operationally since 2021) for the annual release of the WMO 

(World Meteorological Organization) Global Annual–to–Decadal Climate Update, a multi–model assessment of the near–term 

climate for societal applications (Hermanson et al., 2022). At the same time, the CMCC DPS makes a significant contribution 

to the grand ensemble CMIP6 DCPP–A hindcasts. 425 

In conclusion, this study has corroborated the idea that the climate system has a significant degree of multi–year predictability 

over land and, in this context, the CMCC DPS represents a valid element in the fleet of the state–of–the–art DPSs. The potential 

of near–term predictions deserves to be further investigated, as well as the development of future decadal systems and improved 

initialization methods, in the perspective to provide a useful tool able to inform decision makers on the evolution of the next–

decade climate. 430 
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 760 

Figure 1: Global mean near–surface temperature (T2m+SST) annual average anomaly time series [K] for the hindcast (Init, in red), 
historical+ssp2 scenario (NoInit, in blue) and CRU ts4.05 and HadISST1.1 (in black) for (a) forecast years 1, (b) 1–5 and (c) 6–10. 
Orange (cyan) colored envelope denotes intra–ensemble spread for Init (NoInit). The time series are centered at the lead–year 
interval (e.g.: 1963 corresponds to 1961–1965 mean in panel (b). 
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Figure 2: Near surface temperature (T2m+SST) Anomaly Correlation Coefficient (ACC) of the hindcast ensemble (“Init”, left 
column) and its difference with the NoInit ensemble (“Init – NoInit”, right column) for lead years 1 (top panels), 1–5 (middle panels) 
and 6–10 (bottom panels). Stippling denotes points where 95% statistical significance is not reached, according to a one–tailed t test. 
Effective degrees of freedom have been computed following Eq. 30 of Bretherton et al., 1999. 770 
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Figure 3: Near–surface temperature (T2m+SST, left column) and precipitation (right column) mean squared skill score (MSSS) of 
the hindcasts using NoInit runs as the reference forecast to beat. Note that the colorbar is not symmetric around zero. Stippling is 775 
used to indicate points where 95% statistical significance is not reached, according to a one–tailed t test. Effective degrees of freedom 
have been computed following Eq. 30 of Bretherton et al., 1999. 
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Figure 4: Same of Figure 2, but for the Ocean Heat Content integrated over top 300 meters depth. 780 
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Figure 5: Same as Figure 2, but for precipitation field. 
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Figure 6: Mean SST Bias for (a) year 1, (b) year 2–5, (c) year 10, (d) NoInit runs and (e) their zonal mean (scaled with the cosine of 
the latitude) with respect to the 1960–2020 period from HadISST1.1 dataset (Rayner etal., 2003). Unit is °C. 785 

 
 
Figure 7: Mean Precipitation Bias for (a) year 1, (b) year 2–5, (c) year 10, (d) NoInit runs and (e) their zonal mean (scaled with the 
cosine of the latitude) with respect to the 1960–2020 period from GPCC dataset (Schneider et al., 2020). Unit is mm/d. 
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 790 
 
Figure 8: Relative Operating Characteristic (ROC) for near–surface temperatures (SST/TAS) for lead years 1, 1–5 and 6–10, 
considering three tercile categories: lower tercile (left column), middle tercile (central column) and upper tercile (right column). 

Figure 7: Relative Operating Characteristic (ROC) for near-surface temperatures (SST/TAS) for lead years 1, 1–5 and 6–
10, considering three tercile categories: lower tercile (left column), middle tercile (central column) and upper tercile (right 

column).
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 795 
Figure 9: (a) ACC for AMV index. The colorbar ranges from 0.5 to 1. The cyan markers indicate not statistically significant 
correlations. White cross denotes the maximum value (ACC=0.91). (b) Observed and predicted AMV index for lead year 4–10 (in 
which ACC is maximum). (c) same of (a) but for DJFM NAO index. The colorbar ranges from 0 to 0.6 (maximum ACC=0.58). (d) 
Observed and predicted NAO index for lead year 1–9 (in which ACC is maximum). 
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Figure 10: (a) ACC for TPI index. The colorbar ranges from 0 to 0.6. The cyan markers indicate not statistically significant 
correlations. White cross denotes the maximum value (ACC=0.56). (b) Observed and predicted TPI index for lead years 4–10 (in 
which ACC is maximum). (c) same of (a) but for DJF ENSO3.4 index. The colorbar ranges from 0 to 1 (maximum ACC=0.95). (d) 
Observed and predicted ENSO 3.4 index for lead year 1 (in which ACC is maximum). 805 
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