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Abstract. Decadal climate predictions, obtained by constraining the initial condition of a 
dynamical model through a truthful estimate of the observed climate state, provide an accurate 
assessment of near-term climate change and a useful tool to inform decision-makers on future 
climate-related risks. 
Here we present results from the CMIP6 DCPP-A decadal hindcasts produced with the 
operational CMCC decadal prediction system (CMCC DPS), based on the fully-coupled 
CMCC-CM2-SR5 dynamical model. A 20-member suite of 10-year retrospective forecasts, 
initialized every year from 1960 to 2020, is performed using a full-field initialization strategy. 
The predictive skill for key variables is assessed and compared with the skill of an ensemble 
of non-initialized historical simulations so as to quantify the added value of initialization. In 
particular, the CMCC DPS is able to skilfully reproduce past-climate surface and subsurface 
temperature fluctuations over large parts of the globe. The North Atlantic Ocean is the region 
that benefits the most from initialization, with the largest skill enhancement occurring over the 
subpolar region compared to historical simulations. On the other hand, the predictive skill over 
the Pacific Ocean rapidly decays with forecast time, especially over the North Pacific. In terms 
of precipitation, the CMCC DPS skill is significantly higher than that of the historical 
simulations over a few specific regions, including Sahel, Northern Eurasia and over the 
Western and Central Europe. 
The Atlantic Multidecadal Variability is also skilfully predicted, and this likely contributes to 
the skill found over remote areas through downstream influence, circulation changes and 
teleconnections. Considering the relatively small ensemble size, a remarkable prediction skill 
is also found for the North Atlantic Oscillation, with maximum correlations obtained in the 1–
9 lead-year range. 
Systematic errors also affect the forecast quality of the CMCC DPS, featuring a prominent cold 
bias over the Northern Hemisphere, which is not found in the historical runs, suggesting that 
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in some areas the adopted full-field initialization strategy likely perturbs the equilibrium state 
of the model climate quite significantly. 
The encouraging results obtained in this study indicate that climate variability over land can be 
predictable over a multi-year range, as well they demonstrate that the CMCC DPS is a valuable 
addition to the current generation of DPSs. This stresses the need to further explore the potential 
of the near-term predictions, further improving future decadal systems and initialization 
methods, in the perspective to provide a reliable tool to inform decision makers on how regional 
climate will evolve in the next decade. 

1 Introduction 

Climate fluctuations are the end result of a number of processes, acting on a multitude of 
timescales. Prior to year 2000, century-scale climate change projections, initialized with a 
physical state of the climate system obtained from a long simulation of the pre-industrial period 
and subject to prescribed anthropogenic and natural forcings, have been the only available 
product to inform decision makers on future climate-related risks. A major limitation of non-
initialized climate projections is their lack of information about the ongoing natural variability 
that may affect climate changes in the near future, which is, at least in part, linked to the current 
state of the Earth’s climate system. Decadal predictions, obtained by constraining the initial 
condition of a dynamical model (Coupled Global Circulation Model / Earth System Model) 
through a realistic estimate of the observed climate state, provide a more accurate assessment 
of climate change in the near-term (decadal) range, where both external and internal drivers 
contribute to the climate evolution (Smith et al., 2007; Kushnir et al., 2019). 
Starting from the 2000s, initialized decadal predictions have been assessed in multiple projects, 
from the first pioneering efforts up to the 5th Coupled Model Intercomparison Project (CMIP5, 
Smith et al., 2007; Keenlyside et al., 2008; Pohlmann et al., 2009; Meehl et al., 2009; Doblas-
Reyes et al., 2011), in which coordinated experiments allowed multi-system comparison to 
reduce single-model uncertainties (Taylor et al., 2012; Bellucci et al., 2015a), contributing to 
the Intergovernmental Panel on Climate Change fifth assessment report (AR5, Chapter 11, 
Kirtman et al., 2013). 
Years of coordinated research and development led to an established experiment protocol that 
has overcome some of the limitations (e.g. limited ensemble size, initialization every 5 years) 
of the decadal prediction simulations produced in the CMIP5 framework. This protocol is 
extensively described in the CMIP6 Decadal Climate Prediction Project (DCPP), a coordinated 
multi-model effort within the World Climate Research Programme (WCRP) which aims to 
investigate climate predictions, predictability and variability from annual to decadal timescales 
(Boer et al., 2016). The DCPP is intended to make skilful forecasts and predictions on these 
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timescales using state-of-the-art climate models and statistical approaches. The core of the 
DCPP is its “component A” that includes a set of retrospective forecasts (hindcasts). This 
framework has laid the groundwork for a number of single-model (Bethke et al., 2021; Bilbao 
et al., 2021; Kataoka et al., 2020; Robson et al., 2018; Sospedra-Alfonso et al., 2021; Xin et 
al., 2019; Yang et al., 2021; Yeager et al., 2018) and multi-model studies (Borchert et al., 
2021a, 2021b; Delgado-Torres et al., 2022). 
Climate anomalies on annual–to–multi-decadal timescales are determined from both the 
internal and the externally forced variability (Boer et al., 2016). External contributions derive 
from solar irradiance variations, volcanic aerosols and anthropogenic activities, including land 
use, aerosols and greenhouse gas emissions, accounting for the global warming trend. On the 
other hand, the oceans and to a lesser degree the land surface, sea ice and stratosphere (Bellucci 
et al., 2015b) and their interaction with the atmosphere are the primary source of internal 
variability within the climate system on decadal timescales. Low-frequency fluctuations of the 
North Atlantic sea surface temperature (SST), known as the Atlantic Multidecadal Variability 
(AMV), affect the global climate through local impacts and remote teleconnections (e.g. Sutton 
and Hodson, 2005; Zhang and Delworth, 2005; Knight et al., 2006; Sun et al., 2015; Nicolì et 
al., 2020; Ehsan et al., 2020; Ruprich-Roberts et al., 2021). The long-term AMV evolution is 
well captured in most state-of-the-art forecast systems and represents one of the primary 
sources of predictability and, possibly, of skill at decadal timescale, generally attributed to the 
initialization of the Atlantic Meridional Overturning Circulation (AMOC, Zhang et al., 2019). 
Other predictability sources arise from the Pacific Ocean. Interestingly, decadal El-Niño 
Southern Oscillation (ENSO) impacts may be modulated by the Interdecadal Pacific 
Oscillation (IPO), which features both the ENSO SST region and extends to other extratropical 
areas (Henley et al., 2015). In addition, the initial state of some land-surface characteristics, 
stratosphere, snow cover and sea-ice may also impact the predictability of the climate system 
(e.g. Bellucci et al., 2015a; Meehl, 2021). The aforementioned initialized components provide 
additional predictability for the atmospheric circulation and, in particular, for the North 
Atlantic Oscillation (NAO) affecting boreal winter climate over Europe (Smith et al., 2019; 
Athanasiadis et al.,2020). 
In this paper we present the Decadal Prediction System (DPS) developed at the Euro-
Mediterranean Center on Climate Change (CMCC) using the CMCC-CM2-SR5 state-of-the-
art climate model (Cherchi et al., 2019) and contributing to the CMIP6 DCPP project. In 
particular, the study aims to assess the skill in predicting the observed anomalies in key 
meteorological variables, testing the ability of the DPS in simulating main climate variations 
from annual to the decadal timescale. 
The article is structured as follows: Section 2 provides details on the model configuration, the 
experimental protocol, the evaluation metrics and the data used to check the benefits of the 
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initialization. Section 3 presents results on the predictions’ skill for key quantities and their 
evolution in time using deterministic and probabilistic approaches and assesses the evolution 
of some relevant model biases. Section 4 focuses on the skill for selected regional climate 
variability indices. Finally, Section 5 summarizes and discusses the main findings of the study, 
also drawing some conclusions. 

2 Data and Methodology 

2.1 Description of the CMCC DPS model 
The CMCC decadal prediction system is based on the CMCC-CM2-SR5 coupled model, 
shortly described below (see Cherchi et al., 2019 for additional details). The atmospheric 
component is the Community Atmosphere Model version 5 (CAM5) with a regular grid of 
0.9°–1.25° and 30 hybrid levels including 17 levels below 200 hPa and extending up to 2 hPa. 
The finite-volume configuration has been chosen for the dynamical core. The ocean model is 
the Nucleus for European Modelling of the Ocean version 3.6 (NEMOv3.6), using a tripolar 
ORCA grid with a horizontal resolution of about 1° (with a varying latitudinal resolution 
ranging from 1/3° near the Equator up to 1° at high latitudes) and 50 levels in the vertical. The 
sea-ice component is the Community Ice CodE in its version 4 (CICE4). The DPS 
configuration of CICE4 uses a single category to characterize the sea-ice thickness, for 
consistency with the respective reanalysis used for the initialization. The Community Land 
Model version 4.5 (CLM4.5) is used for the simulation of the land surface at the same 
horizontal grid used by the atmospheric component. Finally, the River Transport Model (RTM, 
Branstetter 2001) routes liquid and ice runoff from the land surface model to the active ocean 
to simulate a closed hydrological cycle. 
A suite of retrospective forecasts (hindcasts) consisting of 20-member ensembles of 10-year 
long hindcasts, initialized every year from 1960 to 2020 has been completed, following the 
CMIP6 DCPP-A protocol (Boer et al., 2016). As summarized in table T1, all the members are 
initialized on November 1st, starting from direct full-field estimates of the observed state of 
the ocean, sea-ice, land surface and atmosphere, without any couple assimilation runs. For each 
start date, two initial conditions for the atmosphere are obtained from the ERA-40 (1960–1978, 
Uppala et al., 2005) and ERA-Interim (1979–2020, Berrisford et al., 2019) reanalyses, taking 
the atmospheric states of November 1st and 2nd. The ocean, sea-ice and land surface states are 
initialized with an ensemble of global data assimilation products (ocean and sea-ice) and 
analyses constrained with observed fluxes (land surface). Specifically, land surface is 
initialized using two different analyses obtained from a land-only configuration of the CLM4.5 
land model integrated offline with two different atmospheric forcing datasets: CRUNCEP 
version 7 (Viovy, 2016) and GSWP3 (Kim, 2017). These datasets provide the land model with 
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instantaneous 2-meter air temperature and humidity, 10-meter winds and surface pressure 
every six hours, and 3-hourly-accumulated radiation and precipitation. Ocean initial states 
derive from CHOR (for the period 1960–2010, Yang et al. 2016) and CGLORSv7 reanalysis 
(for the period 2011–2020, Storto and Masina, 2016), performed with a three-dimensional 
variational data assimilation system, a surface nudging and a bias correction scheme. It is worth 
noting that the reanalysis is performed with the same ocean model used in the CMCC DPS (i.e. 
NEMO v3.6). An ensemble of 5 ocean initial states is used to initialize the ocean and sea-ice 
components: 3 initial estimates originate from global ocean reanalysis characterized by 
different assimilation strategies of SST and in-situ profiles of temperature and salinity in a 0.5° 
configuration of the NEMO ocean model, while the remaining 2 initial states are derived 
through linear combinations of the former 3 initial states. The ocean initial states provide three-
dimensional fields of temperature, salinity and horizontal currents. The sea-ice model has been 
initialized starting from sea-ice temperature, sea-ice volume, sea-ice area and snow volume. 
Our full-field initialization approach is similar to the ones adopted by other DPSs (e.g. Bilbao 
et al., 2021; Sospedra-Alfonso et al. 2021), in which the a-posteriori correction is applied since 
the simulations deviate to their own model attractors. Other DPSs (e.g. Bethke et al., 2021, 
Kataoka et al. 2020) are initialized using the observed anomalous variability superimposed on 
the model climatology, to avoid the initial shock. Both the techniques are deemed valid in 
CMIP6 DCPP protocols (Boer et al., 2016) and present some drawbacks: bias-correction in the 
former may remove part of the variability signal while the latter has the assumption that the 
model variability is independent from the model mean state. Nevertheless several studies have 
proven that differences in skill are small and localized (Smith et al., 2013; Bellucci et al., 2015a; 
Volpi et al., 2016). 
The time-evolving radiative forcings (including solar radiation, greenhouse gasses 
concentrations, anthropogenic and volcanic aerosols) are prescribed during the historical period 
(1960–2014) and follow the ssp2-4.5 scenario (O’Neil et al., 2016) from 2015 onwards, in 
agreement with the CMIP6 DCPP protocol. 
  



 

 Data Source Number of ICs Procedures 

LAND 

Land-only analyses forced by 2 
different atmospheric datasets: 
CRUNCEPv7 (Viovy, 2016) 

and GSWP3 (Kim, 2017).  
Note: from 2015 onwards, the 
atmospheric fluxes to force the 

land-only analysis are taken 
from NCEP reanalysis (instead 

of CRUNCEPv7) and from 
ECMWF ERA5 (instead of 

GSWP3). 

2 ICs (2 runs forced by 
2 different datasets, 

providing instantaneous 
2-meter air temperature 
and humidity, 10-meter 

winds and surface 
pressure every six hours 

and 3-hourly-
accumulated radiation 

and precipitation) 

Direct interpolation on 
target grid from land restarts 

ATMOSPHERE 

ERA40 (Uppala et al., 2005) 
for 1960–1978 start dates, 

ERA-Interim (Berrisford et al., 
2019) for 1979–2018 start dates 

and ERA5 (Hersbach et al., 
2020) from 2019 onwards.  

2 ICs (derived from 
time-lagging 

perturbations, using the 
1st and 2nd November) 

Direct interpolation on 
target grid from atmospheric 

3D state of temperature, 
specific humidity and 

horizontal wind components 

OCEAN  

CHOR (Yang et al., 2016) for 
1960–2010 start dates and 
CGLORSv7 (Storto and 

Masina, 2016) for 2011–present 
start dates. 

5 ICs (from 3 
realizations of the 

global ocean/sea-ice 
reanalysis + 2 ICs from 
linear combinations of 

the former 3 ICs) 

Direct interpolation on 
target grid from 3D state of 

temperature, salinity and 
horizontal components of 

the ocean currents.  

SEA-ICE 

Direct interpolation on 
target grid of sea-ice 

temperature, sea-ice volume, 
sea-ice area and snow 

volume.  

 
Table 1. List of initial conditions used for the generation of 20-members hindcast ensemble. 

2.2 Verification Data 
Uninitialized historical simulations covering the 1850–2014 period are used to assess the added 
value of realistic model initialization in decadal predictions. We use a 10-member ensemble of 
historical simulations initialized with different states of a multi-century pre-industrial climate 
simulation. Each member of the historical ensemble is extended until 2030 under the ssp2-4.5 



scenario, thus allowing a fair comparison with the decadal forecast ensemble initialized in the 
year 2020. Since only 10 historical members are available, the 20-member hindcast ensemble 
has been scaled down using a random sub-sampling with 100 combinations in order to allow a 
fair comparison to the historical ensemble in the skill assessments. 
The predictive skill for both initialized reforecasts and uninitialized projections is assessed 
against observational products. The temporal coverage of lead year 1 is 1961-2020, since not 
every observational product used in this study covers from 2021 onwards. Lead year 1-5 and 
6-10 considers respectively the periods 1961-2015 and 1966-2020. To verify the skill for SST, 
we rely on the Met Office Hadley Centre Sea Ice and Sea Surface Temperature (HadISST) 
dataset version 1.1 (Rayner et al., 2003 while for 2-meter air temperature (T2m) the CRU TS 
v4.05 dataset (Harris et al., 2021) is used. Precipitation is assessed by means of the GPCC Full 
Data Monthly Product Version 2020 (Schneider et al., 2020), while for mean sea level pressure 
the HadSLP2 dataset (Allan and Ansell, 2006) is used. 

2.2 Verification metrics 
Initializing decadal predictions from estimates of the observed states of the Earth system may 
generate spurious responses, since the climate model used to produce the simulations, after 
initialization, tends to drift towards its own “attractor” (mean climate), deviating from the 
observed climatology, a consequence of the model's systematic error (bias). This issue is 
particularly pronounced in the prediction systems adopting a full-field initialization strategy, 
as in the present case. The spurious drift can be removed a posteriori by subtracting a lead-time 
dependent climatology at each grid point, assuming a constant drift throughout the time record 
(Goddard et al., 2013; Boer et al., 2016). 
To evaluate the skill of the prediction system, both deterministic and probabilistic metrics are 
used. The anomaly correlation coefficient (ACC) and the mean square skill score (MSSS) are 
deterministic metrics, measuring the accuracy of the ensemble mean prediction in reproducing 
the observed variability over the 1961–2020 period targeted by the decadal reforecasts. More 
specifically, the ACC is a dimensionless measure evaluating the phase agreement between 
predicted and observed anomalies, ranging from -1 to 1 (Wilks, 2011). The MSSS, instead, 
quantifies the magnitudes between the predicted and observed anomalies (Goddard et al., 
2013). This metric evaluates the skill of the ensemble mean prediction with respect to a 
reference prediction. 
Specifically, the MSSS is defined as: 

  

𝑀𝑆𝑆𝑆#$% = 1 − (𝑀𝑆𝐸#%/𝑀𝑆𝐸$%),                                                                                           (1) 
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where, MSEHO (MSEPO) is the mean square error evaluated for the initialized (uninitialized) 
ensemble mean against observations. The MSSS takes a maximum value of one (1.0), while it 
does not have a lower limit. Positive MSSS values mean more accurate predictions in the 
initialized runs and one may speculate that the opposite is also true. However, since the MSSS 
is not symmetric around zero, the positive and negative MSSS absolute values do not have the 
same meaning in terms of variance. 
Probabilistic skill scores provide a useful complement to deterministic metrics in assessing the 
quality of a prediction system. In this study, Relative Operating Characteristic (hereafter ROC) 
score maps have been assessed for the hindcasts (Kharin and Zwiers 2003, Wilks 2011). Each 
grid-point in these maps shows the area under the ROC curve, equal to the probability of a 
certain anomaly to exceed a specific threshold. When the ROC score approaches the perfect 
forecast (i.e. equal to one), the DPS is able to discriminate the occurrence of predetermined 
events. On the other hand, no skill emerges when the score is close to 0.5. Here, we have 
considered three equiprobable categories: upper tercile, lower tercile and between lower and 
upper terciles (neutral). Note that the ROC score outcome is not dependent on forecast biases 
(i.e. calibration) (Kharin and Zwiers, 2003). 
The DPS ability to reproduce the dominant climate variability patterns is also tested, focussing 
in particular on the North Atlantic and North Pacific sectors. Decadal variability in the Atlantic 
region is well described by the Atlantic Multidecadal Variability (AMV), estimated as the 
detrended anomalies of SSTs area-weighted over the North Atlantic basin, following the 
definition adopted in Trenberth and Shea (2006). The skill in predicting the NAO index is also 
tested using the definition in Li and Wang, 2003 (Fig. S1). 
We characterize the low-frequency variability in the Pacific basin through the IPO, which is in 
turn expressed in terms of the IPO tripolar index (TPI), accounting for the difference between 
the averaged SST anomalies over the equatorial zone and over the extratropical lobes of the 
IPO (Henley et al., 2015). At shorter timescales, the ENSO prediction is evaluated through the 
NINO 3.4 index, representing the spatially average SST anomaly over the respective region of 
the equatorial Pacific. 
The statistical significance is assessed with a one-tailed Student's T test (Wilks, 2011), 
accounting for auto-correlation in the time series (eq. 30 from Bretherton et al., 1999). The 
anomalies of the observations and the historical simulations are computed with respect to their 
climatologies (reference period 1981–2010). In the initialized runs, the climatology for each 
forecast year is computed considering the highest possible number of initialization years. This 
approach allows to maximize statistical robustness, even if the skill may depend on the targeted 
verification years. 

3 Skill evaluation 
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3.1 Near-surface air temperature 
Skill in predicting the global mean surface temperature (GMST; based on 2-meter air 
temperature over land and SST over the ocean) is assessed against observed anomalies 
combining CRU TS4.05 (Harris et al., 2020) over land and HadISST 1.1 for SSTs (Rayner et 
al., 2003). Figure 1 shows GMST for initialized hindcasts (in red; “Init”, hereafter), non-
initialized historical simulations (in blue; “NoInit”, hereafter) and observations (in black). 
At lead-year 1, the initialized ensemble reproduces quite closely the observed GMST 
anomalies, showing higher correlation (ACC=0.95) compared to NoInit (ACC=0.89), mainly 
explained by the strong impact of the imposed initial state at the beginning of the forecasts. 
Looking at the lead-year range 1–5, the Init still resembles the observed variability (ACC=0.96) 
within a range of 0.05 °C. Even if the NoInit displays relatively high correlation (ACC=0.94), 
its skill is substantially due to the global warming trend driven by external forcings and, in this 
case, the anomaly time series does not reproduce the observed interannual variability. The time 
evolution of the near-surface temperature over the 6–10 lead-year range exhibits comparable 
correlations for both initialized and historical ensembles (ACC=0.96), indicating that the 
radiative forcing has a dominant role at longer lead times. 
The ensemble spread envelope of predicted GMST (denoting maximum and minimum range 
of the members variability, shown in orange) encompasses the observations, especially at lead-
year 1 and 1–5, successfully capturing the multi-year variability, including the cooling effect 
of major volcanic eruptions, such as the El Chichón and Pinatubo eruptions that occurred in 
1982 and 1991, respectively. The initialization contributes to the reduction of the Init ensemble 
spread, which is about half the envelope of the NoInit for lead-year 1, due to the beneficial 
impact of synchronizing observed and model internal climate variability. 

3.2 Deterministic metrics 
Predictive skill at the regional scale is assessed through ACC maps. Figure 2 shows ACC for 
annual surface temperatures evaluated at different lead-year intervals, as well as the 
corresponding differences with respect to NoInit. In order to remove the skill impact on 
different ensemble sizes, we compare the skill of the historical (10 available members) with 
the skill of random subsampling of the initialized run with 10 members out of the 20 available 
members. The MSSS maps provide further details on the skill improvement determined by 
initialization (Fig. 4) assessing the consistency between the magnitudes of the predicted and 
the observed anomalies (see section 2.3 Verification metrics).  
At lead-year 1, significant predictive skill is found over most of the globe, reaching the highest 
values (ACC=0.80) over tropical Indian Ocean, northern and equatorial Africa, north-eastern 
part of South America, subpolar North Atlantic and western tropical Pacific. Lack of skill, 
instead, characterizes western subtropical North Atlantic, Eastern Europe, central part of South 

Deleted: . This is not so unexpected since, when a simulation 
is initialized the observed internal variability is imposed thus 
reducing the uncertainty related to systematic errors (Doblas-
Reyes et al., 2013)



America and part of the western North Pacific and Southern Ocean. The added value of 
initialization (Fig. 2b) is particularly prominent over the tropical and the eastern subpolar North 
Atlantic, as well as over the tropical and the extratropical North Pacific. In addition, Init 
exhibits higher skills (up to 0.5) over the American continent, central Africa and the Indian 
subcontinent. The corresponding MSSS pattern (Fig. 4a) clearly indicates that the Init 
outperforms NoInit in reproducing the magnitude and the sign of the observed anomalies over 
approximately the same areas, showing improved ACC in respect to NoInit (Fig. 2b). 
In the 1–5 lead-year range, skill is generally higher than for lead-year 1, likely due to the effect 
of averaging over a longer interval (5 years) and to the emerging warming trend. In contrast, 
the skill undergoes a clear deterioration over the tropical and northern part of the Pacific Ocean 
when multiyear range of prediction skill is considered (Fig. 2c). Significant skill is found over 
the continental areas of North America, Eurasia, Africa and over the Maritime continent. A 
large fraction of the skill seems to derive from the warming trend that increases predictability, 
at this lead-year range, over land and over the Indian Ocean (Van Oldenborg et al., 2012). Over 
the North Atlantic Ocean the emerging AMV footprint is recognizable with high predictive 
skill associated with the typical horse-shoe pattern emerging from the Init vs NoInit comparison 
(Fig. 2d). This pattern is also noticeable in the relative MSSS map (Fig. 4c) suggesting 
improved predictability for the AMV tropical lobe whilst the extratropical lobe may be affected 
by strong biases as it is characterized by high ACC values and neutral MSSS. Near-term 
prediction skill is improved especially over the eastern Mediterranean and the Arabian 
Peninsula (ACC=0.3), reaching high correlation values (ACC=0.90 in Figure 2c) also reflected 
in the MSSS (Fig. 4c). 
The pattern exhibited in the lead-year range 6–10 is very similar to that shown in lead-year 1–
5, although some regional changes, such those in Eastern Europe and Siberian region, may be 
easily spotted. Areas with non-statistically significant skill cover part of the eastern Pacific 
Ocean (Fig. 2e). The ACC decreases over the Siberian region while increases over Eastern 
Europe by 0.2. The generally higher skill attributable to initialization (Fig. 2f) is substantially 
consistent with the pattern obtained for the lead-year range 1–5, even if it is not reproduced in 
the MSSS analysis (Fig. 4e), suggesting that surface temperature variations are not well 
captured. 
To corroborate the skill analysis of surface temperature at decadal timescales, we assess the 
skill for the ocean heat content integrated over the top 300 meters of the water column 
(hereafter OHC300). The ACC pattern computed for the OHC300 anomalies (Fig. 5) is similar, 
and thus consistent, with the results obtained for the SST (Fig. 2). At lead year 1, significant 
ACC covers most part of the oceans, except for the Eastern Atlantic and Southern ocean. The 
anomalies’ values are also well captured north of 30°N. The OHC300 area exhibiting 
significant skill is reduced when higher lead-time ranges are considered. At lead year 1–5 and 
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6–10, the ACC is significant over the tropical Pacific, excluding the equatorial band due to the 
poor long-term predictability of ENSO, as also found in other DPSs (e.g. Bilbao et al. 2021). 
Positive ACC values also cover part of the Indian Ocean, South and North Atlantic regions. 
The MSSS shows positive values mainly localized over the midlatitudes in the North Atlantic 
(Fig. S6) and is found to be quite consistent with SST MSSS (Fig. 4). The lack of skill over the 
subpolar gyre may be partly due to the erroneous representation of the Atlantic Meridional 
Overturning Circulation (AMOC) in the DPS, altering the local ocean circulation and heat 
content. A complementary analysis reveals that the mean AMOC cell in the DPS is quite well 
reproduced in terms of structure although its maximum is located too far south (below 20°N) 
at lead year 1 (Fig. S3) compared to other AMOC reconstructions based on different oceanic 
reanalyses [e.g. Karspeck et al., 2017]. At lead year 1–5 and 6–10 the maximum moves 
northwards, due to the model adjustment towards its own climatology, resembling the structure 
reported in other studies [e.g. Tsujino et al., 2020]. The initialization shock may lead to the 
AMOC slowdown up to lead year 2 (Fig. S4 and Fig. S5), underestimating the maximum by 
about 2 Sv at 26.5°N in the period covered by RAPID array (Moat et al. 2022). The slightly 
negative trend of the observed AMOC occurring during the last decades is reproduced just at 
lead year 1 in the hindcasts (Fig. S4 and Fig. S5) while the simulated low-frequency variability 
is consistent with the observed one also at longer lead years. 
Compared to surface temperatures, skill in precipitation is generally lower and less spatially 
coherent (Collins, 2002; Doblas-Reyes et al., 2013). At lead-year 1 significant skill is found 
only in limited areas, including the North-Eastern Brazil, South-Western U.S., Southern Africa, 
eastern Australia, Turkey and the Balkan Peninsula, as reflected also by the MSSS values (Fig. 
4b). For the lead-year ranges 1–5 (Fig. 3c) and 6–10 (Fig. 3e), significant ACC values can be 
attributed to the Northern part of the Eurasian continent, the Sahel and Europe, including the 
Iberian Peninsula, the British Isles and central Europe. However, comparing Init with NoInit 
reveals that the skill is largely due to trends in the radiative forcing, with slight improvements 
associated with initialization (Gaetani and Mohino, 2013; Bellucci et al., 2015a). 

3.3 Mean bias assessment 
The full-field strategy is used to initialize the forecasts, providing best estimates of the observed 
state to each model component. It does have an important drawback: it generates spurious, 
transient signals determined by the model's tendency to drift towards its own climatological 
mean state after being initialized from a realistic state around the observed climatology. 
 Following the recommendation of the International CLIVAR Project Office (ICPO 2011), the 
mean bias is defined as the lead-time dependent ensemble mean deviation from the observed 
mean state defined throughout the whole time record (1960–2020). Assessing the mean bias is 
an important part of evaluating decadal predictions. The time-dependent SST bias for decadal 
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hindcasts (lead-years 1, 2–5 and 10) and the bias in the historical simulations are shown in 
Figure 5. 
The SST bias in the Init is very rapidly established during year 1, followed by a slower 
adjustment occurring in the following years, since the Init curves of zonal mean bias for lead-
years 1, 2–5 and 10 remain relatively close to each other (Fig. 5e). Bias patterns featured by 
Init and NoInit substantially differ over the Northern Hemisphere, with the former presenting 
a prominent cold bias, which is not found at all longitudes in NoInit. In the Southern 
Hemisphere, Init and NoInit are much more similar. This lack of agreement between Init and 
NoInit suggests that initialization likely perturbs the equilibrium state of the model climate 
quite significantly. Interestingly, the same kind of departures from the observed state have been 
found also in several other decadal prediction systems, including some contributing to the 
CMIP5 decadal prediction ensemble that adopted a full-field initialization strategy (Bellucci et 
al, 2015a). This fact indicates that the time adjustment period following the initialization shock 
typically exceeds 10 years over the subpolar North Atlantic. 
The Init bias for precipitation is comparable to the NoInit time-mean bias (Figure 6). Major 
departures occur in the tropical Pacific (20ºS–20ºN). Here, precipitation is overly strong in both 
Init and NoInit, especially south of the Equator, where the spurious occurrence of a southern 
ITCZ is a common bias in coupled models (Tian and Dong, 2020; Bellucci et al., 2010). The 
double ITCZ is enhanced by initialization, with a rainfall overestimation at lead-year 1 (Fig. 
6e). This may lead to artificial increase of precipitation over the South-Western U.S. and drier 
conditions over the Mediterranean Sea (Dong et al., 2021), as seems to be the case in both the 
Init and NoInit. Finally, the Init bias for precipitation shows that no strong drift occurs outside 
the tropical zone as the bias remains rather stable in lead time. 

3.4 ROC score 
The Relative Operating Characteristic (ROC) Score is used to assess the probabilistic 
properties of the ensemble Init (see Sect. 2.3 Verification metrics). In this paper, the ROC score 
analysis focuses on near-surface temperature, because of its high predictability, and considers 
the occurrences of tercile categories. 
The Init well reproduces below-tercile and above-tercile anomalies (Fig. 7), featuring patterns 
similar to the ACC ones throughout the lead times (Fig. 2), which might represent an upper 
boundary of the ROC score (Wilks, 2011). Specifically, ROC scores are close to one over land, 
Western Pacific and North Atlantic for multi-year predictions (lead years 1–5 and 6–10), 
confirming anomaly direction within the ensemble spread. Predictions of anomalies falling in 
the middle tercile category exhibit less skill compared to the lower and upper tercile cases. 
Nevertheless some skill emerges over Africa, northern and eastern part of South America, 
North Atlantic and Indian Ocean. Comparing the ROC score for NoInit (Fig. S6), most of the 
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difference occurs over the oceans (e.g. over the North Atlantic), the realm which is most 
sensible to the initialization at decadal timescale. 

4 Assessing the prediction skill for the main climate indices 

Predictability of selected regional climate indices is investigated in this section, since they 
influence climate variability on global and regional scale through the action of teleconnections. 
The Atlantic Multidecadal Variability (AMV) represents the dominant climate variability 
pattern of the multi-decadal SST fluctuations in the North Atlantic basin (Knight et al., 2005; 
Smith et al., 2012; O’Reilly et al., 2019). 
Figure 8a shows the ACC for the AMV index for different lead-time ranges, thus helping to 
identify the lead-year range that exhibits the maximum skill (see Sect. 2.3 Verification metrics). 
The largest ACC values are found for lead-year ranges longer than 4 years (ACC>0.80), in 
agreement with previous works (Van Oldenborgh et al., 2012; Garcia-Serrano et al., 2012), 
reaching a peak for the lead-year range 4–10 (ACC=0.91). At this lead-year range, the AMV 
index in Init reproduces well the observed low-frequency variability of the North Atlantic SST, 
including the ’80s negative phase, the sharp increase during the ‘90s, the peak occurring in the 
2000s and the subsequent decline (Fig. 8b), in opposition to the NoInit. The AMV spatial 
pattern is also well captured by the DPS, as depicted in ACC of linearly detrended near-surface 
temperature (Fig. S2). ACC patterns in the North Atlantic reveal the AMV footprint, with 
correlations ranging from 0.50 (in the subtropics) to 0.91 (at high latitudes). It is worth noting 
that large ACC values of surface temperature are also found over regions linked to the AMV 
through remote teleconnections: the Eastern Mediterranean region (Mariotti and Dell’Aquila, 
2012; Bellucci et al., 2017), Arabian Peninsula (Van Oldenborgh et al., 2012; Ehsan et al., 
2020), Southern Eurasia (Li et al., 2021) and the Western Tropical Pacific (Kucharski et al., 
2016; Sun et al., 2017), suggesting that the skillful AMV prediction has also non-local impacts 
in regions affected by the AMV teleconnection pattern. 
The predictive skill for the NAO is also analyzed focussing on the boreal winter season (see 
Sect. 2.3 Verification metrics). Significant skill is primarily found for lead-year ranges, longer 
than 5 years (Fig. 8c), although lead-year 1 (coinciding with the first winter season after 
initialization, essentially a seasonal forecast) also features significant skill (ACC=0.42). The 
NAO predictive skill is maximum for the lead-year range 1–9 (ACC=0.58). At this lead-year 
range, the observed NAO phases are well reproduced in Init (Fig. 8d) and in particular, starting 
from the satellite era, decadal hindcasts realistically simulate the growing trend of the ‘80s and 
the following decline that occurred after 1995. The Init well captures the NAO variability 
despite the limited ensemble size (ACC=0.80 applying an 8-year running mean to the model 
index) while NoInit does not reproduce the right amplitude. The Ratio of Predictable 
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Component shows a rather low value (RPC=2.15, estimated following Scaife and Smith, 2018), 
comparing to NAO predictions by other state-of-the-art decadal prediction systems [Smith et 
al., 2020; Athanasiadis et al., 2020], suggesting that in the CMCC DPS the signal-to-noise ratio 
problem is somehow less impactful (Scaife and Smith, 2018). 
In the Pacific sector, the TPI is considered a proxy of decadal variability (Power et al., 1999; 
Henley et al., 2015) accounting for both the equatorial and extratropical SST fluctuations (see 
Sect. 2.3 Verification metrics). Figure 9a displays the Init ACC for TPI with significant skill 
peaking at lead-years 4–10 (ACC=0.56). As one may expect, Init is not able to reproduce most 
of the variance in the Pacific Ocean due to the lack of skill over that domain, also inferable by 
the ACC and MSSS maps (Fig. 2 and Fig. 4, respectively). In fact, the TPI evolution for lead 
years 4–10 shows that the respective predicted and observed anomalies are broadly consistent 
until the late ‘80s but significantly diverge afterwards (Fig. 9b), similar to the NoInit one. The 
emerging skill at higher lead years is probably due to the inclusion of off-equatorial SST, linked 
to the predictability of the Pacific Decadal Variability (Henley et al., 2015). 
Decadal variability in the equatorial Pacific still remains widely unpredictable (Doblas-Reyes 
et al., 2013) with very limited predictability beyond lead-year 2. We quantify the DJF Nino 3.4 
index prediction skill in Figure 9c,d. As mentioned, the respective maximum occurs during the 
first winter season after initialization (ACC=0.95, Fig. 9d), although there is some 
predictability up to lead-year 3 (Fig. 9c). 

5 Summary and conclusions 

In this paper we analyzed the predictive capabilities of the CMCC DPS, using a set of 20-
member hindcasts, initialized every year from 1960 to 2020, performed with the CMCC-CM2-
SR5 coupled model and a full-field initialization strategy.  
The study has highlighted the following main findings: 

- the DPS skilfully reproduces the observed variability of surface temperature (T2M over 
land and SST over the oceans) and upper-ocean heat content (Fig. 2 and Fig. 5, 
respectively), with a large fraction of the total skill stemming from long-term trends 
associated to changes in the external forcings (Van Oldenborg et al., 2012). The North 
Atlantic Ocean is the region that benefits the most from initialization (ACC difference 
up to 0.80 in Fig. 2.b,d,f and MSSS close to 0.6 in Fig. 4), with the largest skill 
enhancement (compared to historical simulations) over the subpolar gyre region. As 
still typical in decadal predictions, a lack of skill characterizes the whole Pacific Ocean, 
over which significant ACC values are bound to lead year 1. The DPS correctly 
discriminates the occurrences of below-tercile and above-tercile surface temperature 
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anomalies throughout different lead-year intervals, with ROC scores close to one over 
land (Fig. 7). 

- Some climate variability patterns in the North Atlantic sector feature significant 
predictability. In particular, the observed AMV signal is skillfully predicted 
(ACC=0.91, Fig. 8a), and this likely contributes to obtaining significant skill also in 
remote areas through downstream influence, circulation changes and teleconnections. 
Over the tropical Pacific Ocean, ENSO variability exhibits some predictability up to 
year 3, with highest values of ACC bound to the first winter after initialization 
(ACC=0.95). Moreover, the TPI shows higher predictive skill on longer timescales 
despite the low skill that the DPS exhibits over most of the Pacific Ocean. 

- Considering its relatively small ensemble size, the CMCC DPS exhibits an 
exceptionally high skill for the NAO (ACC=0.58 with 20 members). This is 
accompanied by a rather low Ratio of Predictable Component (RPC=2.15, estimated 
following Scaife and Smith, 2018), comparing to NAO predictions by other state-of-
the-art decadal prediction systems (Smith et al., 2020; Athanasiadis et al., 2020). This 
result suggests that in the CMCC DPS, despite certain obstinate systematic biases, the 
signal-to-noise ratio problem (Scaife and Smith, 2018) is somehow less severe. 

- Regarding precipitation, the CMCC DPS shows limited skill, with statistically 
significant correlations only over specific areas, a feature shared with other state-of-
the-art decadal prediction systems. Indeed, significant skill is only found over Sahelian 
Africa, Northern Eurasia and over the Western and Central Europe, with ACC values 
up to 0.50 (Fig. 3). This spatially confined skill may derive from the AMV, which is 
known to be a source of predictability for these regions, influencing rainfall variability 
on annual-to-decadal timescales (Doblas-Reyes et al., 2013; Ehsan et al., 2020; 
Ruggieri et al., 2020). On the other hand, no significant skill for precipitation is found 
over the rest of the globe, probably also due to the relatively small size of our ensemble 
(Yeager et al., 2018) and to the very high spatial variability (Goddard et al., 2013) and 
absence of a strong trend in precipitation (Gaetani and Mohino 2013; Bellucci et al., 
2015a). Improvements compared to the historical simulations are bound to some 
regional features, suggesting no substantial benefits from initialization in terms of 
precipitation skill. 

Systematic errors also affect the forecast quality. The strong cold bias occurring over the 
Northern Hemisphere tends to produce an initialization shock and a subsequent drift, typical of 
the full-field initialization (He et al., 2017) approach used in the CMCC DPS. Admittedly, 
AMOC is particularly affected by the initialization strategy (Fig. S3), with the full-field 
approach inducing a long-term adjustment due to the bias in the representation of the large-
scale ocean circulation (Polkova et al., 2014). In this context, another sensitive region is the 
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Equatorial Pacific in which full-field initialization seems to give the strongest benefit in skill 
compared to anomalous initialization (Bellucci et al., 2015). From another perspective, model 
errors may be mitigated by enhancing spatial resolution (both horizontal and vertical) in the 
oceanic and atmospheric model components, since coarse resolution limits a realistic 
representation of key physical processes (e.g. realistic SST front in the Gulf Stream region), 
impacting the atmospheric circulation downstream (Athanasiadis et al., 2022; Paolini et al., 
2022). For instance, an eddy-permitting ocean model (i.e. 0.25° horizontal resolution) in a 
fully-coupled system led to improved decadal predictions over the whole equatorial zone 
(Shaffrey et al., 2017). Moreover, increasing the ensemble size is expected to further increase 
the skill by allowing the predictable signal to emerge more clearly from the chaotic variability 
(Athanasiadis et al., 2020). 
Interestingly, the results obtained from the CMCC DPS are broadly consistent with similar 
assessments from other CMIP6 decadal prediction systems (Bethke et al., 2021; Bilbao et al., 
2021; Kataoka et al., 2020; Robson et al., 2018; Sospedra-Alfonso et al., 2021; Xin et al., 2019; 
Yang et al., 2021; Yeager et al., 2018) and multi-model studies (Borchert et al., 2021a, 2021b; 
Delgado-Torres et al., 2022). In particular, most of the DPSs feature high predictive skill over 
the Atlantic Ocean, the Indian Ocean and continental areas, where a large fraction of 
predictability stems from the external forcings. The added value of initialization is most noted 
over the subpolar gyre and the subtropical Atlantic (in most of the DPSs), confirming these 
areas as those in which decadal predictions benefit the most from realistic initialization. The 
non-significant skill found over the Southern Ocean is considered to be, at least in part, due to 
the lack of oceanic observations in that region that prevents the accurate estimate of the initial 
state of the ocean. The predictive skill of the Pacific Ocean rapidly decays with forecast time, 
especially over the North Pacific, arguably due to the limited predictability of ENSO beyond 
the first forecast year and the consequent strong influence over the North Pacific (unpredictable 
ENSO-driven variability). 
We remind that the CMCC DPS provides decadal forecasts (operationally since 2021) for the 
annual release of the WMO (World Meteorological Organization) Global Annual-to-Decadal 
Climate Update, a multi-model assessment of the near-term climate for societal applications 
(Hermanson et al., 2022). At the same time, the CMCC DPS makes a significant contribution 
to the grand ensemble CMIP6 DCPP-A hindcasts. 
The encouraging results obtained in this study indicate that climate variability over land can be 
predictable over a multi-year range, as well they demonstrate that the CMCC DPS is a valuable 
addition to the current generation of DPSs. This stresses the need to further explore the potential 
of the near-term predictions, further improving future decadal systems and initialization 
methods, in the perspective to provide a reliable tool to inform decision makers on how regional 
climate will evolve in the next decade. 
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Code and Data availability 

The code relative to the CMCC-CM2-SR5 climate model used for DPS is available on the 
Zenodo repository (Cherchi et al. 2019, https://doi.org/10.5281/zenodo.6810749). The Init and 
NoInit data are available on ESGF data portal (https://esgf-node.llnl.gov/projects/cmip6/). 
HadISST was downloaded from https://www.metoffice.gov.uk/hadobs/hadisst/ (last access: 30 
May 2022, Rayner et al., 2003). CRU TS4.05 was downloaded from 
https://catalogue.ceda.ac.uk/uuid/c26a65020a5e4b80b20018f148556681 (last access: 30 May 
2022, Harris et al. 2021). GPCC Full Data Monthly Product version 2020 at 1° for horizontal 
resolution was downloaded from 
https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-
monthly_v2020_doi_download.html (last access: 30 May 2022, Schneider et al., 2020). 
HadSLP2 was downloaded from https://www.metoffice.gov.uk/hadobs/hadslp2/ (last access: 
30 May 2022, Allan and Ansell, 2006). ERA40 was downloaded from 
https://apps.ecmwf.int/datasets/data/era40-moda/levtype=sfc/ (last access: 30 May 2022, 
Uppala et al., 2005). CRUNCEP version 7 was downloaded from 
https://rda.ucar.edu/datasets/ds314.3/#!description (last access: 30 May 2022, Viovy 2016). 
GSWP3 was downloaded from https://svn-ccsm-
inputdata.cgd.ucar.edu/trunk/inputdata/atm/datm7/atm_forcing.datm7.GSWP3.0.5d.v1.c1705
16/ (last access: 30 May 2022, Kim 2017). Oceanic and sea-ice initial conditions from NEMO 
CHOR (Yang et al. 2016) and CGLORSv7 (Storto and Masina, 2016) analysis are available on 
Zenodo repository (doi: https://doi.org/10.5281/zenodo.6866295). 
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