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Abstract. Planktic foraminifera are major marine calcifiers in the modern ocean regulating the marine inorganic carbon pump 

and generating marine fossil archives of past climate change. Some planktic foraminifera evolved spine and symbiosis, 

increasing functional trait diversity and expanded their ecological niches. Here we incorporate symbiosis and spine traits into 

the ForamEcoGENIE model, a trait-based model focusing on functional trait rather than individual species, to enable us to 10 

study the importance of foraminifera biodiversity in the palaeoceanographic environment. We calibrated the modelled new 

traits using Latin Hypercube Sampling.  We identified the best model run from an ensemble of 1200 runs compared with 

observations from global core-top, sediment trap, and plankton nets. The model successfully captures the global distribution 

and seasonal variation of the 4 major functional groups including dominance of the symbiont-obligate type in subtropical gyres 

and the symbiont-barren type in the productive subpolar oceans. The carbon export rate is correctly predicted for spinose 15 

foraminifera, but the model overestimates the global mean biomass of each group by 8 times and global export rate of non-

spinose foraminifera by 4 times. Both the observational bias and the model's limitation in linking biomass to export production 

likely contributes to the discrepancy. Our model approximates a 3.05 g m-2 yr-1 global mean foraminifer-derived calcite flux 

and 1.1 Gt yr-1 total calcite export, account for 19% of the global pelagic marine calcite budget within the lower range of 

modern calcite estimates. The calcite export is mostly derived from the symbiont-barren non-spinose group (39%) and the 20 

symbiont-obligate spinose group (13%). Our model overcomes the lack of biodiversity in previous version and offers the 

potential to explore foraminifera ecology dynamics and its impact on biogeochemistry in modern, future and paleogeographic 

environments. 
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1 Introduction 25 

Planktic foraminifera are marine calcifying zooplankton that have populated the surface ocean since the mid-Jurassic (~175 

Ma). They produce calcite shells, preserved in vast amounts in sediments, that provide proxy archives (e.g., 13C, 18O, Mg/Ca) 

to reconstruct past climate conditions (Tierney et al., 2020), ocean carbonate chemistry (Hönisch et al., 2012) and study biotic 

response to environmental change (Todd et al., 2020). In the modern oceans, foraminifera contribute 23-56% of the total open-

ocean CaCO3 export (Schiebel, 2002) alongside the other major calcifiers, coccolithophores (Daniels et al., 2018) and 30 

pteropods (Buitenhuis et al., 2019). However, understanding the impacts of environmental change on foraminifers and their 

role in the carbon cycle is challenged by their low standing stocks in the surface ocean, a (semi)lunar reproductive cycle driving 

abundances and difficulties in culturing to ground truth physiology (Schiebel and Hemleben, 2017). Modelling planktic 

foraminifera and their ecology, therefore, plays a critical role in increasing and testing our understanding of their biological 

and ecological influence on the marine inorganic carbon cycle and their role as a paleo-proxy carrier. 35 

 

The recent decades have seen significant developments of global foraminifera models due to the increasing data compilations 

of foraminifer flux and community structure (Siccha and Kucera, 2017; Buitenhuis et al., 2013; Sunagawa et al., 2020). Žarić 

et al. (2006) constructed the first global-scale prediction on foraminifer flux using a statistical technique that correlated 

hydrographical factors and sediment trap abundance of 18 main species. Fraile et al. (2008) and Lombard et al. (2011) built an 40 

ecophysiology based dynamic model PLAFOM and FORAMCLIM based on CESM (Hurrell et al., 2013) and PISCES 

(Aumont et al., 2015), respectively. These two models  reconstructed seasonal production in Last Glacial Maximum (LGM) 

(Fraile et al., 2009), vertical distribution dynamics (Kretschmer et al., 2018) and potential diversity change in response to 

projected high-emission scenarios (Roy et al., 2015). However, the species-based feature of these models causes limitations 

for applications. For example, parameterisation limits the inclusion of additional species, which are less well understood 45 

ecologically. Moreover, while these models are applied to LGM and future oceans, the application to deeper time is severely 

limited by the existence of extinct species and cryptic taxa with novel ecologies (Renaud and Schmidt, 2003) and non-analogue 

situations, i.e., time intervals older than the Miocene with many none extant species, cannot be assessed with confidence. 

 

Trait-based models of plankton ecology can overcome the challenges of species-based models. This approach focuses on 50 

organismal traits including morphological and physiological properties instead of taxonomic identities to reduce model 

complexity, capture ecological interaction (Zakharova et al., 2019) and identify drivers of community assembly under global 

changes (Enquist et al., 2015). Models adopting trait-based framework have successfully resembled the diverse marine 

community such as cyanobacteria (Follows et al., 2007) and diazotroph (Monteiro et al., 2010), usually by defining 

physiological characteristics and relevant trade-offs (e.g., size-class of plankton). Undoubtedly, this strategy provides a simple 55 

but mechanistic way to mimic the complex real ocean ecology (Kiørboe et al., 2018). 
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Understanding of foraminifer traits and their functions is crucial for developing a trait-based model. The foremost trait of 

foraminifer is calcification, with foraminifera building a shell by adding calcite chambers during their development (Caromel 

et al., 2015). In addition, 19 out of ~50 modern foraminifer species bear eukaryotic algae such as dinoflagellates, chrysophytes 60 

and haptophyte as symbionts (Takagi et al., 2019). Spines and symbiosis are crucial functional traits of planktic foraminifers 

and dividing the group in their phylogeny study (Morard et al., 2018). Symbionts assimilate nutrients, which can be 

translocated to the host, providing extra energy in the nutrient-deficient environment to the foraminifer (LeKieffre et al., 2018; 

Ortiz et al., 1995; Uhle et al., 1999). Core-top data (Siccha and Kucera, 2017) show that species with symbionts are mainly 

found in the low latitudes and open oceans, while non-symbiotic foraminifers dominate the temperate to polar regions (Figure 65 

1). Furthermore, symbiont-obligate foraminifers that cannot live without their symbionts prefer the low latitude to the 

symbiont-facultative group which can flexibly bear symbionts and have a wider geography (Figure 1). Another important trait 

is spines extruding from the test, present in roughly half of modern species. These spinose species are mostly symbiotic (except 

symbiont-barren Globigerina bulloides and Hastigerina pelagica) and show a preference for omnivorous feeding (Schiebel 

and Hemleben, 2017).  Therefore, traits affect biogeography and trophic activities and lay the foundation of building a trait-70 

based model. 

 

Recently, Grigoratou et al., (2019) developed the first trait-based model for non-spinose foraminifer and coupled it to cGENIE 

(ForamEcoGENIE, Grigoratou et al., 2021a), an Earth System Model of intermediate complexity allowing for fast 

computational time and widely applied  to past climates: Palaeocene–Eocene Thermal Maximum (Ridgwell and Schmidt, 75 

2010), Last Glacial Maximum (Rae et al., 2020) and Cretaceous-Paleogene boundary (Henehan et al., 2019). Such 

computational efficiency and abundant applications make ForamEcoGENIE easily applicable to a wide range of geological 

periods with direct links with seawater carbon chemistry and isotope tracers.  In this study, we extend ForamEcoGENIE to 

resolve 3 more critical functional groups of planktic foraminifera by adding the traits of symbiosis and spines (tested in 

Grigoratou et al., 2021b). Thereby, we build a model that can explore foraminifer ecogroups in past climates (Ezard et al., 80 

2011). We compare the model with three global observational data compilations (core-top, plankton net tow and sediment 

traps) and test its ability to produce surface biomass, organic carbon and calcite flux rate, and relative abundance distribution. 

https://doi.org/10.5194/gmd-2022-177
Preprint. Discussion started: 22 August 2022
c© Author(s) 2022. CC BY 4.0 License.



4 
 

 
Figure 1: Relative proportion in shell abundance of planktic foraminifer functional groups. Data source: ForCenS core-top 

dataset (Siccha and Kucera, 2017). 85 
 

2 Model description 

2.1 Ocean and atmosphere physics 

ForamEcoGENIE uses cGENIE (carbon-centric Grid-ENabled Integrated Earth system model), a modular Earth system model 

of intermediate complexity (EMIC) as the physical ocean simulation framework. The fast climate and ocean physics of 90 

cGENIE are based on a coarse-resolution 3D frictional geostrophic ocean model coupled to a 2D energy-moisture-balance 

atmosphere model and a dynamic-thermodynamic sea-ice model (Edwards and Marsh, 2005; Marsh et al., 2011). The ocean 

has a 36x36 equal-area horizontal grid (uniform in longitude and sine-uniform in latitude) with 16 logarithmically spaced 

vertical levels as defined in Cao et al., (2009). The physical model is coupled with a model of ocean biogeochemical cycles 

(Ridgwell et al., 2007; van de Velde et al., 2021), and sea-floor sedimentary processes (Ridgwell and Hargreaves, 2007) and 95 

marine ecosystem processes (Ward et al., 2018). The plankton ecosystem is resolved in the surface layer (0-80.8 m) to mimic 

light limitation. The model presented in this study is configured with a seasonally forced pre-industrial climate state and a 

fixed atmospheric CO2 concentration restored to 278 ppm.  

 

 100 
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2.2 Allometric and trait-based plankton ecosystem framework 

We employ the trait-based marine plankton ecosystem model EcoGENIE (Ward et al., 2018) to simulate foraminifera’s 

physiological processes and ecological interactions with other plankton. In this section, we summarise the core concepts 105 

specific to foraminifera modelling and refer the readers to Ward et al. (2018) for the full description of the model. 

In EcoGENIE, individual body size determines key physiological processes, including nutrient uptake, photosynthesis, grazing 

gain and predation through allometric scaling (West et al., 1997), because of its role as a master trait among pelagic organisms 

(Andersen et al., 2016). The modelled size-dependent parameters (except for photosynthesis) follow a generic power law: 𝑃 =

	𝑎𝑉! with 𝑃 the size-based parameter, 𝑉 the spheric biovolume, and 𝑎, and	𝑏 the allometric intercept and exponent. 110 

 

A fundamental size-based concept is the plankton cell quota. The plankton size (biovolume, V) determines the carbon quota 

content (𝑄") following a power law (with scaling coefficient and exponent b, Equation 1). The ratio of other assimilated 

nutrients (𝐵#!, ib stands for the ith population nutrient biomass: P, Fe, or chlorophyll) to carbon biomass (𝐵") represents the 

plankton group’s physiological status with dynamic stoichiometry (Q$", Eqn. 2) (Droop, 1968; Flynn, 2008). Based on this 115 

cell quota status, the limitation term for each nutrient (𝑄#!
stat) is formulated as per Geider et al., (1998), where nutrient uptake 

rate gradually slows down when the internal inorganic nutrient quota is close to its maximum value (Q$!
max, Eqn. 3). The nutrient 

quota range (Q$"
min

, Q$!
max) is proportional to the carbon quota (𝑄"). 

𝑄" = aV! (1) 

𝑄#! =
𝐵#!
𝐵"

, 𝑖! = 𝑃, 𝐹𝑒, 𝐶ℎ𝑙 (2) 120 

𝑄#!
stat = 7

Q$!
max − Q$"

Q$!
max − Q$"

min9
%.'

(3) 

Metabolic processes in EcoGENIE are temperature dependent, as in the universal metabolic theory (Brown et al., 2004). 

Ectothermic plankton’s body temperature is determined by the ambient seawater environment (T). Temperature regulation  γ( 

acts on metabolic processes including respiration, nutrient uptake, and predation and is modelled through an Arrhenius-like 

function (Eqn. 4), where the parameter A determines temperature sensitivity and reference temperature (𝑇ref) is the temperature 125 

allowing γ( = 1. 

γ( = 𝑒)((+(ref) (4) 

The biomass of any plankton group (j) and element (ib), B-,$", varies due to a combination of potential physiological processes 

that are determined by the type of organism: nutrient uptake, grazing gains, grazing losses, mortality, and respiration losses 

(Eqn. 5).  130 

https://doi.org/10.5194/gmd-2022-177
Preprint. Discussion started: 22 August 2022
c© Author(s) 2022. CC BY 4.0 License.



6 
 

∂B-,$"
∂t = V-,$" ⋅ B-,/BCCDCCE

0123#402	162784

+ B-,/ ⋅ λ$" H G-,-prey,$"

9

-prey:'BCCCCCCDCCCCCCE
;37<#0;	;7#0=

−B-pred,/ ⋅ H G-pred,-,$"

9

-pred:'BCCCCCCDCCCCCCE
;37<#0;	>?==4=

− m- ⋅ B-,$"BCDCE
@?327>#2A	>?==

− r-,/ ⋅ B-,$"BCDCE
34=6#372#?0	>?==

	 (5)

 

The inorganic resource state variables (𝑅##) varies with nutrient uptake (𝑉B,##) and DIC with the living organisms’ respiration 

(𝑟B,"). 

∂𝑅##
∂𝑡 =

⎩
⎪⎪
⎨

⎪⎪
⎧ H−

C

B:'

𝑉B,## ⋅ 𝐵B," , 𝑖3 	= 	𝐹𝑒, 𝑃

H−
C

B:'

𝑉B,## ⋅ 𝐵B," +H𝑟B," , 𝑖3 	= 	𝐶
C

B:'

	

(6) 

Additional sources and sinks of nutrients such as remineralisation of organic matter and air-sea gas exchange are computed in 135 

the biogeochemical module BIOGEM (Ridgwell et al., 2007). 

 

2.3 ForamEcoGENIE 1.0 description 

ForamEcoGENIE 1.0 accounted for two foraminifera traits, including the feeding behaviour and calcification (Grigoratou et 

al., 2019, 2021a). It implemented a predator-prey interaction (𝐺Bpred,Bprey , Eqn. 7) using a Holling type II model (Holling, 1965), 140 

where the overall grazing rate depends on the total available prey (𝐹Bpred), the maximum grazing rate of predators (𝐺634D@ ) and 

the half-saturation concentration of available food (𝑘Bprey), and is regulated by temperature limitation (𝛾(), a prey-switching 

term	(Φ), and a prey refuge protection (1 − 𝑒EF$pred). The calcification trait was included by reducing foraminifera palatability 

(𝑃6 which influences 𝐹Bpred , Eqn. 8) and mortality rate (m-, Eqn. 5) to account for higher protection against predators and 

infections to the expense of a lower 𝐺G?37@@  (Eqn. 7). 145 

𝐺Bpred,Bprey = 𝛾( ⋅ 𝜆HBDE
limitations

⋅
𝐺634D@ 𝐹Bpred
𝜖𝑘Bprey + 𝐹BpredBCCCDCCCE
overall grazing rate

⋅ ΦBpred,BpreyBCCDCCE
Switching

⋅ [1 − 𝑒EF$pred\BCCCDCCCE
prey refuge

(7) 

𝐹Bpred = 𝑃6 ⋅ 𝐵Bprey ⋅ 𝑒xp `−𝑙𝑛 7
µBpred,Bprey
µopt

9
I

/2𝜎Bpred
I e (8) 

In the model, the predators select their preys (Eqn. 8) based on the predator-prey size ratio µBpred,Bpreyrelative to the optimal 

value µopt, predators' food range 𝜎Bpred
I , and the calcification protection 𝑃6. The foraminifera in ForamEcoGENIE 1.0 were set 

as herbivores. Additional foraminifera traits defined by a spine effect (𝜖) and a mixotrophy cost (𝜆H ) are introduced in 150 

ForamEcoGENIE 2.0 (see section 2.4) 
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The prey-switching term (ΦBpred,Bprey) simulates the feeding habitat of zooplankton (Eqn. 7). The exponential s defines the active 

level of zooplankton predators, which capture abundant prey with higher priority when s increases. All foraminifera are 

assumed to be ambush passive predators with s=1. 

ΦBpred,Bprey =
[𝐹Bpred\

=

∑ [𝐹Bpred\
=C

Bprey:'

(9) 155 

Finally, to further approach the reality, the refuge term (1 − 𝑒EF$pred) in the Eqn. (7) is added to decrease grazing rate when 

prey availability lowers with the protection strength of Λ. 

 

2.4 ForamEcoGENIE 2.0: improved calcification and more functional groups  

Here, we expand ForamEcoGENIE 1.0 by adding symbiosis and spine traits to the foraminifera group to distinguish four 160 

functional groups of planktic foraminifera (Table 1). We also implement a new calcification trade-off relating calcification 

energetic cost to the respiration term. 

 

Table 1. The four modelled functional groups of planktic foraminifera and their species representative in ForamEcoGENIE 

2.0. 165 

Spine trait Symbiosis trait Species example Species number*  Model implementation 

Spinose Symbiont-obligate Globigerinoides ruber 17 This study 

Spinose Symbiont-barren Globigerina bulloides 2 This study 

Non-spinose Symbiont-facultative Neogloboquadrina 

dutertrei 

5 This study 

Non-spinose Symbiont-barren Neogloboquadrina 

pachyderma 

23 extended from 

ForamEcoGENIE 1.0 

* Count from Schiebel and Hemleben, (2017) 

 

2.4.1 Respiration cost 

We modified the metabolic cost of calcification defined in Grigoratou et al. (2019, 2021a) by replacing the original reduced 

maximum growth rate (or specifically maximum grazing rate) with a temperature-dependent respiration loss term. We choose 170 

this new loss term over a reduced growth rate because (1) extra respiration is a more biologically realistic cost and (2) a 

temperature-dependent term helps reduce the low-latitude biomass as observed. 

Metabolic cost 
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The respiration 𝑟B present in Eqn. 5 scales with carbon biomass and is multiplied by constant 𝑟! and temperature limitation 

(Eqn. 10). We assumed that the lost carbon from respiration is instantly recycled back to DIC pool. 175 

𝑟B = 𝑟! ⋅ γ( (10) 

 

a. Mortality protection 

The mortality loss term in the generic zooplankton scales with a basal rate constant 𝑚! (Eqn. 5). Like in Grigoratou et al. 

(2019, 2021a), 𝑚!  for foraminifera is downscaled by a protection term 𝑃@  where a lower value of 𝑚B  indicates a higher 180 

protection from the foraminifera test against viral and bacterial infections. 

𝑚B = 𝑃@ ⋅ 𝑚! (11) 

b. Protection from predators (palatability) 

Like in ForamEcoGENIE 1.0, calcification protects from grazing and is defined by 𝑃6, which reduces the biomass loss from 

predation (Eqn. 8). 185 

 

2.4.2 Spine trait 

Spines are foraminifer's taxonomical basis and are made up of calcite. The biological functions of spines are related to stability 

in water columns, symbiosis and feeding behaviour (Schiebel and Hemleben, 2017). The link with symbiosis is discussed 

separately in the following section. 190 

 

a. Higher metabolic cost and reduced palatability 

We assume that the metabolic cost and protection from the spines are characterised the same way as for calcification (Eqn. 10-

11), with spinose foraminifera having a higher cost and a stronger protection than non-spinoses (Table 2). 

 195 

b. Enhanced grazing 

Studies show that spinose foraminifera are more efficient in capturing and digesting prey thanks to the spine and rhizopodia 

networks (Anderson and Bé, 1976). Spines widen the prey availability of immotile foraminifer and facilitate capturing larger 

preys, while non-spinose species cannot hold active prey and only accept smaller particles of copepods in the laboratory 

observations (Anderson et al., 1979; Hemleben et al., 1989). Grigoratou et al., (2021b) modelled such benefit by reducing the 200 

half-saturation constant (conventionally noted as k in a Michaelis-Menten model). Here we adopt this approach by reducing 

𝑘Bprey  by a scaling parameter 𝜖 (0 < 𝜖 < 1; Eqn. 7). 

 

2.4.3 Symbiosis trait 

Symbiosis is a novel trait in the model, commonly seen in marine organisms including foraminifer. Many planktic foraminifera 205 

harbour algae (e.g., dinoflagellate, diatom) within their cell (Takagi et al., 2019). We represent these symbiotic species in the 
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model as a single organism, which combines hetero- and autotrophy, equivalent to a calcifying mixotroph. We use the trait-

based representation of mixotrophy of Ward and Follows, (2016), where any plankton can “naturally” predate and 

photosynthesize, where the alternative strategy for specialist group is turned off (i.e., Vm is 0 for zooplankton and Gm is 0 for 

phytoplankton), and for mixotrophs turned on.  The cost of mixotrophy is that both autotrophy and heterotrophy parts (i.e., 210 

photosynthesis and grazing rates) are scaled down (by multiplying factor 𝜆=  and 𝜆H  with respect to symbionts and hosts, 0 < 

𝜆=, 𝜆H < 1) compared to the pure auto/heterotroph specialist (Ward and Follows, 2016). We also distinguish between symbiont-

obligate and symbiont-facultative foraminifera using different 𝜆=/𝜆H  parameter values to reflect their different extent of 

dependency on symbionts (Table 2). 

 215 

a. Symbiont cell size 

We determine the cell size of the symbiont from a defined symbiont/foraminifera size ratio 𝜓 (Eqn. 12) to characterise the 

symbiont affinity in taking up nutrients and light. Photomicrograph observations showed that foraminifera symbionts are about 

1:20 smaller in size than the host cell (Takagi et al., 2019). 

𝑉= = 𝜓J𝑉H (12) 220 

 

b. Symbionts’ inorganic nutrient uptake 

The generic nutrient uptake of symbionts follows a mixotrophy- (𝜆=), quota- (𝑄##
stat) and temperature-limited (𝛾() Michaelis-

Menten function where the variable (R) represents nutrient resources and half-saturation constant is replaced by nutrient 

affinity, a more mechanistic parameter for nutrient uptake 𝛼. Nutrient affinity is often referred as “clearance rate” and regarded 225 

as a proxy of competitive strength (Fiksen et al., 2013). According to Edwards et al., (2012)' s review on phytoplankton trait 

trade-offs, scaled nutrient affinity is negatively related to cell size because of lower surface to volume ratio, while maximum 

uptake rate (Vm) is positively related. 

𝑉## = λ= ⋅ 𝑄##
stat ⋅ γ( ⋅

𝑉##
@α##𝐑

𝑉##
@ + α##𝐑

(13) 

c. Symbionts’ photosynthesis 230 

The symbionts’ photosynthesis growth is modelled following the size-dependent unimodal equation (Geider et al., 1998; 

Moore et al., 2001) ￼, which has shown significant explanatory power for eukaryotes phytoplankton cells than power law 

(Bec et al., 2008). The maximum photosynthesis rate 𝑃"@  is determined by dimensionless parameter 𝑃7 , 𝑃! , 𝑃K  and the 

biovolume of symbiont 𝑉=, and the mixotrophy cost λ=. 

𝑃"@ =
𝜆=(𝑃7 + 𝑙𝑜𝑔'%𝑉=)

𝑃! + 𝑃K𝑙𝑜𝑔'%𝑉= + 𝑙𝑜𝑔'%𝑉=I
(14) 235 

The practical photosynthesis rate is further constrained by nutrient availability (the smallest between 𝛾F4 and 𝛾L), temperature 

(𝛾(), light intensity (𝛾M). 

𝑃" = 𝑃"@ ⋅min[𝛾L, 𝛾F4] ⋅ 𝛾( ⋅ 𝛾M (15) 
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The nutrient limitation 𝛾## (𝑖3 is either P or Fe, see the definition in Eqn. 2) takes the minimal value from phosphorus or iron 

limitation term, which follows the quota relationship in Droop (1968). 240 

𝛾## =
1 − 𝑄##

min/𝑄##
1 − 𝑄##

min/𝑄##
max , 𝑖3 = Fe, P (16) 

As for the light limitation, it follows Moore et al., (2001) model where I represents light intensity, 𝛼 is initial slope of P-I curve 

limited by Fe content (𝛾F4), and 𝑄Chl is chlorophyll quota. 

γM = 1 − exp7
−α ⋅ γF4 ⋅ 𝑄Chl ⋅ 𝐼

𝑃"@ ⋅ γ( ⋅min[γL, γF4]
9 (17) 

 245 

d. Foraminifer predation cost 

As a cost for symbiosis, we assume that having photosynthetic symbionts results in reducing foraminifer grazing rate (λH , Eqn. 

7). Despite no direct and sufficient evidence for such a cost, this assumption is common practice in mixotroph models 

(Castellani et al., 2013; Våge et al., 2013; Ward and Follows, 2016). 

 250 

2.5 Approximating foraminifera carbon production and export 

Planktic foraminifera produce organic carbon in the subsurface water column (Salter et al., 2014) and sequester tests of 

inorganic carbon into the deep oceans (Schiebel, 2002). In the model we estimate organic carbon flux and approximate calcite 

export using an empirical converting factor (Schiebel and Movellan, 2012) as previous model implementations (Grigoratou et 

al., 2021a). 255 

 

2.5.1 Organic Carbon Export 

Foraminifera’s organic carbon flux (𝐹) comes from the mortality loss and predators’ messy feeding (Eqn. 18). 

𝐹 = H u1 − 𝛽Bforamw [1 − 𝜆Bpred\
C

Bforam=1,Bpred'(

𝐺Bpred,Bforam𝐵Bpred

+ H u1 − 𝛽Bforamw𝑚Bforam𝐵Bforam

C

Bforam=1

(18) 

𝛽Bforam  is the fraction of foraminiferal dissolved organic carbon (DOC) subject to advection by ocean circulation, and the 260 

remaining fraction is the particulate organic carbon (POC) subject to redistribution through the water column by sinking. 

Parameter β is defined by a size-based sigmoid function depending on maximum and minimum DOC fraction (β@7N , β@#0), 

and the size β= at which DOC/POC ratio equals 1 (Ward and Follows, 2016). The proportion of DOC therefore decreases with 

plankton cell size. 

β = β@7N −
β@7N − β@#0
1 + β=/𝐸𝑆𝐷

(19) 265 
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Messy feeding behaviour is modelled as unassimilated carbon fraction (1 − 𝜆Bpred ) of prey which is limited by the size-

independent maximum efficiency coefficient (𝜆@) and the nutrient limitation (Fe or P). 

𝜆 = 𝜆@ ⋅ 𝑚𝑖𝑛[𝑄Lstat, 𝑄F4stat] (20) 

 

2.5.2 Calcite export 270 

The model does not explicitly represent foraminifera calcification due to the poorly-understood mechanisms of calcification. 

Instead, we calculate a foraminifera CaCO3 export by multiplying the foraminifera bulk organic carbon export with a rain-

ratio. Here we use a globally uniform rain-ratio, based on the empirical first-order average ratio (0.36) between foraminifera-

derived particle inorganic carbon (PIC) and organic carbon (POC) (Schiebel and Movellan, 2012) to approximate calcite export 

rate. 275 

 

3 Model experiments and evaluation 

3.1 Experiments 

We set up the model plankton ecosystem to resolve eight size classes of phytoplankton, seven size classes of zooplankton and 

one size class for each of the four foraminifer groups. Phytoplankton and zooplankton size classes include 0.6, 1.9, 6.0, 19.0, 280 

60.0, 190.0, 600.0 and 1900.0 μm. The foraminifer cell size is set to an Equivalent Sphere Diameter (ESD) of 190 μm, which 

is typical for an adult foraminifer (Grigoratou et al., 2019).  

We run an ensemble of 1,200 model experiments, each testing a different combination of parameter values, to explore all 

possible trait values and select the best trait combinations to match the foraminifera observations (section 3.2).  

We use a Latin Hypercube Sampling (LHS) algorithm to generate the 1,200 parameter combinations, sampling values of 12 285 

model parameters characteristics of foraminifer traits (Table 2; Sarrazin et al., 2016). Each simulation is run for 250 years 

continuing from a 10,000-year spin-up simulation as ecosystem structure typically reaches equilibrium after ~50 years. The 

other ecosystem parameters are the same as Ward et al. (2018) (Table S3). 

 

Table 2 List of the foraminifer-relevant parameters tested in the global sensitivity analysis (GSA) and identified parameter 290 

values for the best model run. 

Foraminifer 

group* 

Parameter Description GSA range† Unit Best model run 

Symbiont-barren 

non-spinose 

pm Protection from 

mortality 

[0-1]  0.6 
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 pp Protection from 

palatability 

[0-1]  0.8 

 r Respiration rate [0-0.02] mmol C d-1 0.01 

 s feeding 

behaviour 

(1=passive, 

2=active) 

  1 

 σ standard 

deviation of prey 

range 

  2.0 

      

Symbiont-barren 

spinose 

ɛ coefficient of 

grazing half 

saturation 

[0-1]  0.9 

 pp as above [0-1]  0.7 

 r as above [0-0.02] mmol C d-1 0.03 

Symbiont-

facultative  

non-spinose 

ψ symbiont: 

foraminifer size 

ratio 

[0-0.05]  0.0015 

 λs symbiont 

autotroph 

discount 

[0-1]  0.2 

 λh foraminifer 

heterotroph 

discount 

[0-1]  0.8 

Symbiont-

bearing  

spinose 

ψ as above [0-0.05]  0.0015 

 λs as above [0-1]  0.7 

 λh as above [0-1]  0.45 

* For any other plankton group without these traits, scaling parameters are set to 1 and cost parameters are set to 0. 
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† GSA range is set to [0-1] for scaling parameters; respiration terms are as follow Ward et al., (2018); symbiont cell size ratio is calculated 

from observation (Takagi et al., 2019). 

 295 

3.2 Comparison to observations 

To validate the foraminifera model, we compiled three global datasets of adult foraminifer (>150 μm) data: (1) plankton net 

tows mostly taken from the first 100 m, (2) core-top sediment representing the Late Holocene (pre-industrial) and (3) seasonally 

resolved sediment trap time-series. We use the core-top dataset of individual abundance count to validate the spatial patterns 

of the relative proportion of each foraminifer group. We also use the ocean net tow (count m-3) and sediment trap (count m-3 300 

d-1) datasets to validate the living stocks and carbon export of each group, respectively. The core-top data comes from ForCenS 

(Siccha and Kucera, 2017), and the plankton tow and sediment trap data from the compilation by Grigoratou, (2019)  with 

additional foraminifera groups and sample sites. The full list of plankton tow and sediment trap data sources is in Tables S1 

and S2. 

We converted the plankton net tow and sediment trap data from “count m-3” or “count m-3 d-1” into “mmol C m-3” or “mmol 305 

C m-3 d-1” using the empirical factor of 0.845 μg count-1 from Schiebel and Movellan (2012). We considered species with less 

than 3% abundance as absent to avoid the uncertainty caused by ocean currents transportation (van Sebille et al., 2015). We 

applied this threshold based on the standard error of fisher’s α diversity index (Fisher et al., 1943). To further constrain the 

uncertainty of the observational data, we applied median absolute deviation (MAD) measurement to detect the most robust 

and close-to-reality data. Finally, we grouped the species-based data into functional groups (Table 1) using species traits 310 

defined by Schiebel and Hemleben, (2017) and Takagi et al., (2019) (Table S2). 

To compare with the sediment-trap and plankton tow time-series, we select sites with the most data points. For the time slice 

comparison, we re-gridd the observational data by averaging data in each model grid box.   

We also perform basic statistics (mean, standard error, sum) on the model and observational data. We use the standard error 

of the mean to represent the accuracy of the sampling mean, particularly for the observational studies. Finally, we do not 315 

consider model outputs for the Arctic and the Mediterranean Sea because of limitations with ocean physics due to low model 

resolution in that region. 

 

3.3 Performance metrics 

We calculate a M-score (Watterson, 2015) for each model experiment to quantify the model-data fit (Eqn. 19). This score 320 

spans from -1 to 1 with values closer to 1 representing better model performance. 

𝑀 =
2
π𝑎𝑟𝑐𝑠𝑖𝑛 �

∑ (𝑀# − 𝑂#)I0
#:' /𝑛

σ@I + σ?I + (𝜇@ − 𝜇?)I
� (21) 

The numerator is mean square error, with 𝑀# and 𝑂# the model and observational value in the ith grid, and 𝑛 the total number 

of grids. 𝜎I  and 𝜇 are the variance and mean, with superscripts m and o representing model and observed fields, respectively. 

 325 
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3.4 Global Sensitivity analysis 

We conduct a global sensitivity analysis (GSA) to explore the model robustness of our 1,200 experiments using the PAWN 

method (Pianosi and Wagener, 2015). This method measures the sensitivity of model outputs (focusing on M-score here) to 

different values of input parameters. A total M-score is calculated by summing scores of each foraminifer group in biomass, 

POC flux, and relative abundance (i.e., the total score ranges from -12 to 12). To further measure the uncertainty and robustness 330 

of the GSA results, we also apply a bootstrapping method with 1,000 resamples. This method allows us to understand the 

confidence intervals of the sensitivity indices without running more experiments (Wagener and Pianosi, 2019),. We 

bootstrapped our data using rsample package (Silge et al., 2021) in the R software environment v4.1 (R Core Team, 2021). 

 

4 Results and discussions 335 

4.1 Model ensemble results 

Overall, the 1,200 model runs fit generally reproduce POC export (M-score: -0.24 ~ 1.0) and relative abundance (M-score: -

0.4 ~ 1.2), with poorer comparison with plankton net data (M-score: -0.14 ~ 0.14) (Figure 2). A heatmap of M-Scores (Figure 

2) shows the experiments cluster into 5 groups with respect to the 3 observation metrics. Most clusters (A-D) show a trade-off 

between relative abundance and POC export performance, with either higher POC flux score but lower abundance score 340 

(cluster A, D), or vice versa (cluster C). Cluster E (which includes our best run) achieves the highest (best) abundance and 

POC export scores while showing the closest export rate to observations. 

We select the run with the highest total M-score score, which also has the highest M-score for the relative abundance (group 

mean = 0.29) and POC flux (group mean = 0.18; Figure S1). We prioritise a higher score in relative abundance over POC flux 

and biomass because of better data quantity and quality in the top-core dataset. In this run, all the foraminifera groups except 345 

the symbiont-facultative non-spinose have the highest total M-score (Table 3). Compared to the EcoGENIE and 

ForamEcoGENIE 1.0, this set of parameters does not increase the overall ecosystem biomass or POC export, and slightly 

increases the mean cell size by ~0.5 μm (Figure 3c). Therefore, the incorporation of symbiosis and spines into our trait-based 

model successfully widens the ability of the model to represent foraminifers in the surface ocean by incorporating all four 

main foraminiferal ecogroups in the modern ocean without weakening the overall ability of predicting ecosystem body size, 350 

biomass and POC export. 
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Figure 2. M-score heatmap of the model ensemble compared with foraminifera “Biomass” (plankton net data), “POC flux” 355 

(sediment trap data), groups’ relative “Abundance” (sediment core top data). The right panel shows the global export 

production of all foraminifer groups. The ensemble cluster was derived from a complete linkage clustering algorithm (Jarman, 

2020). The higher the M-score value the better the performance. 
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 360 
Figure 3. ForamEcoGENIE 2 best run (third column, with four foraminifer groups) comparison with ECOGENIE (first 

column) and ForamEcoGENIE 1 (second column, with non-spinose non-symbiont foraminifer only) in terms of ecosystem 

mean size, biomass and POC export. The first column displays absolute values, whilst the latter two are the anomaly compared 

with first column.  

 365 

Table 3. Best model run for M-scores for a range of model outputs and the contribution of foraminiferal groups.  

Groups 

Symbiont-

barren  

non-spinose 

Symbiont-

barren 

spinose 

Symbiont-

facultative 

non-spinose 

Symbiont-

obligate 

spinose 

Column mean 

Biomass 0.00 0.00 0.00 0.00 0.00 

POC Export 0.19 0.28 0.09 0.15 0.18 

Relative 

Abundance 
0.42 0.31 0.05 0.38 0.29 

Row Mean 0.20 0.30 0.05 0.18  
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 370 

4.2 Relative abundance distribution of foraminifer groups 

Our best model run compares well with observations of core-top data showing the relative spatial distribution of the four 

foraminifera functional groups (Figure 4). The presence/absence pattern is also captured well in sediment trap and plankton 

net studies (Figure 5,6). The symbiont-obligate spinose group is the most abundant group with a global relative abundance of 

43.2% (M-score: 0.38) dominating in the tropical open oceans, while the symbiont-barren non-spinose and spinose groups 375 

mainly occupy the high latitudes (M-score = 0.42 and 0.31, respectively). The symbiont-facultative group is not well captured 

with model-data disparities in the eastern equatorial pacific where the sediment core shows exclusively high abundance. This 

may be due to the resistant dissolution of some species' test (e.g., N. dutertrei) as suggested in a previous model study (Lombard 

et al., 2011). Overall, the Root Mean Square Error  (RMSE) of relative abundance in this model (12% to 32%, Table S3) is 

comparable to the species-based models, like FORAMCLIM (5-23%, Lombard et al., 2011) and PLAFOM (22-25%, Fraile et 380 

al., 2009). This indicates that symbionts and spines are sufficient to explain the variance of geographic distribution. 
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Figure 4. Relative abundance of the modelled geographical distribution (left column) of the four planktic foraminifer function 

groups, compared to the ForCenS core-top dataset (right column; Siccha and Kucera, 2017). Subplots titles are the M-scores 

derived relative to observation and the global mean of relative abundance. Model relative abundance of each group are 385 

calculated based on POC flux rates. 
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4.3 Living biomass of foraminifera groups 

Although the general distribution pattern of foraminifera living biomass agrees with the observations from plankton nets 

(Figure 4), the corresponding M-scores are close to 0, indicating the model’s inability in reproducing the living biomass 390 

magnitude of plankton net data. Our model overestimates the observed biomass on average by 0.02 mmol C m-3 (Figures 5 

and 7a) or around 8 times. The model estimates a total of 32.3 TgC foraminifer organic carbon biomass, with symbiont-

barren non-spinose taxa contributing the most (32.1%, or 10.3 TgC) (Figure 3c). For comparison, the MAREDAT dataset 

estimated the global mean living biomass of 0.0024 mmol C m-3 and the total of 0.94~3.63 TgC living foraminifer (with all 

groups included), with the production rate of 8.2–32.7 TgC yr−1 (Schiebel and Movellan, 2012). This indicates more 395 

foraminifer biomass are grazed by higher trophic levels than the model predicts because of the generally higher carbon export 

rate particularly for non-spinose foraminifera (Figure 7; see next section). 

 
Figure 5. Model outputs of living biomass (mmol C m-3) in log-10 scale compared with plankton net data (dots) for the four 

main functional groups of planktonic foraminifera. 400 

 

4.4 POC and calcite export of foraminifera groups 

The model reproduces consistent geographical distributions and magnitude of POC fluxes compared to sediment trap samples 

(Figure 6). The modelled mean POC flux rate is close to the collected trap observations for spinose foraminifers (Figure 7) but 

overestimates the POC flux of non-spinose foraminifer ~4 times. The mean M-score for the model POC flux is around 0.2, 405 
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with the symbiont-baren spinose group performing the best (0.28) and the symbiont-facultative group performing the worst. 

The worse performance of non-spinose foraminifer is likely caused by over protection of test from grazing. 

 

In terms of global estimation, the model suggests the organic carbon export of 365.3 TgC yr-1. Symbiont-barren non-spinose 

taxa dominate this carbon export (141.7 TgC yr-1) followed by symbiont-barren spinose, symbiont-facultative and symbiont-410 

obligate groups (93.2, 83.1 and 47.3 TgC yr-1, respectively). Using a converting mass ratio of 1:3 from organic carbon to 

calcium carbonate (Schiebel and Movellan, 2012), our model estimates a total calcite flux of pelagic foraminifera of 1.1 Gt 

CaCO3 yr-1 comparable to the 1.3-3.2 Gt yr-1 of Schiebel (2002) within the top 100-m ocean. The calcite export in the model 

falls within the low range of previous estimates (1.3-3.2 Gt yr-1; Schiebel et al., 2001) and contributes 19% to the global marine 

CaCO3 production (Milliman et al., 1999). This estimate is similar to 21% reported in Kiss et al., (2021) based on sediment 415 

traps at Cape Blanc and to Salmon et al., (2015) data from the Sargasso Sea ranging between 0-40 % (but mostly < 25%). 

Regionally higher contributions (32-49%) have been reported in the Southern Ocean (Salter et al., 2014) who  included deep-

dwelling species which are not represented in this model. To summarise, our estimation of foraminifer calcite export is 

generally trustable to previous observational studies. 

 420 
Figure 6. Model outputs of POC flux (mmol C m-3 d-1) below the euphoric zone (80.8 m) in comparison to sediment trap 

samples (dots). 
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Figure 7. Summary of the modelled living biomass and POC export produced by the four foraminifer groups. (a) The modelled 425 

(red) and observational (blue) biomass (mmol C m-3) and (b) POC flux rate below the euphotic zone (mmol C m-3 d-1). Bar 

height and error bar represents spatial mean value and standard error, respectively. (c) A global estimation of modelling total 

carbon biomass (Tg) and (d) POC export rate (TgC yr-1).  

 
Figure 8.  Global model estimates of (a) surface foraminiferal calcite flux rate (at 80.8 m; g m-2 yr-1) and (b) group contribution.  430 
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4.5 Seasonal variations of foraminifera living biomass and POC export 

The model-derived seasonality of foraminifera biomass and POC export are compared with observations in Figure 9 and 10. 

The model successfully reproduces the first-order seasonal patterns observed by sediment trap data at a basin scale, with low 

export and seasonality in open ocean locations such as the western Atlantic and the Sargasso Sea, summer blooms in the low 

latitudes (NW Pacific, Ocean Papa Station, Bay of Bengal) and spring blooms in high latitude (Subantarctic Zone). These 435 

results are generally consistent with PLAFOM (Fraile et al., 2008) despite species-specific discrepancy. The model does not 

reproduce biomass change in some upwelling and polar regions (e.g., Arabian Sea, Ross Sea) likely due to the low model 

resolution. 

 

An additional source of uncertainty is the data quality, as ideally models should be calibrated against spatially and temporally 440 

abundant and well-constrained data. Therefore, the comparison of our model against plankton tow data was limited by the low 

temporal resolution of the data (Figure 9). The data is not only undersampled in limited regions (North Atlantic Ocean, 

Caribbean, Sea Arabian Sea) but also biased towards specific sampling seasons, generated using different mesh size and water 

depth as discussed in the first application of ForamEcoGENIE (Grigoratou et al., 2021a). 

Parameter sensitivity test 445 

 

We conducted a sensitivity analysis to determine which parameters influence the model performance most. The results show 

that the model performance is mostly sensitive to the symbiosis trait (λs), and the palatability protection (Pp) from both spine 

and calcification (Figure 10), confirming the important role of symbiosis and protection from predators in foraminiferal 

ecology and the possibility that overestimated biomass of non-spinose foraminifer is influenced by the palatability 450 

parameterisation. 
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Figure 9. Biomass seasonal comparison between the model (lines) and observations (dots) (mmol C m-3) in example locations 

(shown in the map with corresponding letter). Sites are selected to according to the number of comparable data points and 455 

ocean basins. 
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Figure 10. POC flux seasonal comparison between the model (lines) and observations (dots) (mmol C m-3 d-1) in example sites 

(shown in the map with corresponding letter). Sites are selected to according to the number of comparable data points and 460 

ocean basins. 
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Figure 11. Sensitivity of parameters to overall model performance (as combined M-scores). Bar boundaries indicate the 95-

percent confidence interval with the thick line showing the mean value. Grey area indicates non-influential range of index 

value as control group. sn, symbiont-facultative non-spinose; ss, symbiont-bearing spinose. 465 

 

5 Model limitation 

The limitations in our current trait understanding still influence our model definition and performance. For example, symbiotic 

spinose foraminifer can use their spines to place algal symbionts in the daytime (LeKieffre et al., 2018), which theoretically 

increases photosynthesis efficiency due to an increase in surface area relative to  non-spinose species. In this model, we do not 470 

explicitly model the photosymbiotic relationships which could be sensitive to individual climate sensitivities of symbiont and 

host. Similarly, spinose foraminifera prefer  large zooplankton prey over phytoplankton as their prey, while non-spinose 

species are often herbivorous (Anderson et al., 1979). Such specialised behaviour is not resolved in the model and might 

explain why the symbiont-barren spinose G. bulloides do not show opportunistic behaviour, i.e., appear earlier than other 

groups in the seasonal succession (Taylor et al., 2018; Schiebel et al., 2001). 475 
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6 Summary 

In this study, we extend the trait-based planktic foraminifer model, ForamEcoGENIE, to include symbiosis and spine traits 480 

and resolve all main foraminifer functional groups. Using Latin Hypercube Sampling, we generated 1,200 parameter samples 

and compared these with three global observational sources: core-top, plankton tow, sediment trap. We assessed the model 

performance of biogeographic distributions, the carbon biomass and carbon export. Our global sensitivity analysis shows the 

symbiosis trait and the palatability protection of spine and test strongly influence model performance. Despite overestimating 

the overall biomass, our best set of model parameters successfully reproduces the modern biogeographical distribution of the 485 

main four foraminifera ecogroups and produces a global mean organic carbon export similar to observations of 365.3 TgC yr-

1. The two symbiont-barren groups account for 64% of standing stocks and carbon export, while the two symbiotic group 

contribute the remaining 36%. The model accurately reproduces seasonal time-series observations of foraminiferal biomass 

and organic carbon flux in large parts of the ocean but performs poorly in upwelling regions, probably due to the low model 

resolution. The model suggests a foraminifera calcite export rate of 1.1 Gt yr-1, equivalent to 19% of the global marine calcium 490 

carbonate budget. The value agrees with the lower end of modern estimates.  These results provide confidence in the model’s 

ability to explore foraminifer ecology and diversity in the geological record and to interpret and question the foraminifer 

microfossil records, for example of the last glacial maximum, as well as helping to solve riddles about their ecology in the 

past. The trait-based framework of cGENIE ecosystem also provides potential to extend the model by presenting more traits 

such as life history and differential calcification rates across groups.  495 
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