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Abstract. Planktic foraminifera are major marine calcifiers in the modern ocean regulating the marine inorganic carbon pump 

and generating marine fossil archives of past climate change. Some planktic foraminifera evolved spine and symbiosis, 

increasing functional trait diversity and expanding their ecological niches. Here we incorporate symbiosis and spine traits into 

the ForamEcoGENIE model, a trait-based model focusing on functional traits rather than individual species, to enable us to 10 

study the importance of foraminifera biodiversity in the palaeoceanographic environment. We calibrated the modelled new 

traits using Latin Hypercube Sampling.  We identified the optimal model parameters from an ensemble of 1200 runs compared 

with observations from global core-tops, sediment traps, and plankton nets. The model successfully captures the global 

distribution and seasonal variation of the 4 major functional groups including dominance of the symbiont-obligate type in 

subtropical gyres and the symbiont-barren type in the productive subpolar oceans. The global annual mean biomass and 15 

foraminifer-derived carbon export rate is correctly predicted, with biomass from 0.001 to 0.010 mmol C m-3 and organic carbon 

export 0.002-0.031 mmol C m-2 d-1. The seasonal peak time of biomass and organic carbon export are also generally captured.  

although the amplitude is not able to be reproduced in productive area. Both the sparseness of observations and the model's 

limitation in upwelling regions likely contributes to the discrepancy.  Our model overcomes the lack of biodiversity in previous 

version and offers the potential to explore foraminifera ecology dynamics and its impact on biogeochemistry in modern, future 20 

and paleogeographic environments. 
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1 Introduction 

Planktic foraminifera are marine calcifying zooplankton that have populated the surface ocean since the mid-Jurassic (~175 

Ma). They produce calcite shells (or "tests"), preserved in vast amounts in sediments, that provide proxy archives (e.g., 13C, 
18O, Mg/Ca) to reconstruct past climate conditions (Tierney et al., 2020), ocean carbonate chemistry (Hönisch et al., 2012) and 

study biotic response to environmental change (Todd et al., 2020). In the modern oceans, foraminifera contribute 23-56% of 45 

the total open-ocean CaCO3 export (Schiebel, 2002) alongside the other major calcifiers, coccolithophores (Daniels et al., 

2018) and pteropods (Buitenhuis et al., 2019). However, understanding the impacts of environmental change on foraminifers 

and their role in the carbon cycle is challenged by their low standing stocks in the surface ocean, a (semi)lunar reproductive 

cycle driving abundances and difficulties in culturing to ground truth physiology (Schiebel and Hemleben, 2017). Modelling 

planktic foraminifera and their ecology, therefore, plays a critical role in increasing and testing our understanding of their 50 

biological and ecological influence on the marine inorganic carbon cycle and their role as a paleo-proxy carrier. 

 

The recent decades have seen significant developments of global foraminifera models due to the increasing data compilations 

of foraminifer flux and community structure (Siccha and Kucera, 2017; Buitenhuis et al., 2013; Sunagawa et al., 2020). But 

they are either empirical based or limited to the extant species. For example, Waterson et al., (2017) built a Maxent species 55 

distribution models based on sediment core data to study the niche variability from Last Glacial Maximum (LGM) to Holocene. 

Žarić et al. (2006) constructed the statistical model that correlated hydrographical factors and sediment trap abundance of 18 

main species. Such correlative models have limitation on predicting future projection because the assumption of constant 

correlation with environmental factors can be violated (Buckley et al., 2010). In addition, niche models also are ignorant in 

biological interactions which have an important role in shaping species distribution. On the other hand, although Fraile et al. 60 

(2008) and Lombard et al. (2011) have built ecophysiology-based mechanistic models PLAFOM and FORAMCLIM which 

successfully reconstructed planktic foraminifer's geographical distribution, seasonal and vertical population dynamics 

(Kretschmer et al., 2018) and held the abilities to simulate in different climatology like the LGM (Fraile et al., 2009) or 

projected high-emission future (Roy et al., 2015), these two models are species-based and therefore cannot be applied in the 

deeper times older than the Miocene with many extinct species and cryptic taxa with novel ecologies (Renaud and Schmidt, 65 

2003). Thus, to fill the model gap of not able to leverage the abundant foraminifer fossil information, a mechanistic model but 

not limited to any species is needed. 

 

Trait-based plankton models as an alternative to species-based models come into vision under such circumstance. This 

approach which focuses on organismal traits including morphological and physiological properties instead of taxonomic 70 

identities provides a mechanistic way to mimic the complex real ocean ecology by defining traits' functional benefits and costs 

(i.e., trade-offs) (Zakharova et al., 2019; Kiørboe et al., 2018). Models adopting trait-based framework have successfully 

resembled the diverse marine community such as cyanobacteria (Follows et al., 2007) and diazotroph (Monteiro et al., 2010). 
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This strategy is also well suitable for planktic foraminifer because functional traits like body size (Schmidt et al., 2004), size 

normalised weight (Todd et al., 2020), and symbiosis (Spero and Parker, 1985) have been widely measured and studied. And 

such functional traits have been consistently evolved in foraminifera across Cenozoic (Ezard et al., 2011). Next we provide 

the brief introduction for spine and symbiosis traits that determine species-level ecological and functional distinguishment and 

also compose of the focus of this model study. 115 

 

Nearly 19 out of 50 modern foraminifer species bear eukaryotic algae such as dinoflagellates, chrysophytes and haptophyte as 

symbionts (Takagi et al., 2019). Compared to non-symbiont species (termed as "symbiont-barren") that live in temperate and 

polar oceans, symbiotic species dwell in the tropical to subtropical regions (see biogeography in Figure 3) where their 

symbionts are facilitated to photosynthesize and providing an extra energy pathway to foraminifera in the nutrient-deficient 120 

environment (LeKieffre et al., 2018; Ortiz et al., 1995; Uhle et al., 1999). The symbiotic group can be further partitioned 

because some foraminifers that cannot live without their symbionts (termed as "symbiont-obligate") (Bé et al., 1982) while 

others are flexible (termed as "symbiont-facultative"). As the symbionts affecting latitudinal distribution of foraminifer, the 

calcareous spine trait shows importance in shaping feeding behaviour. Non-spinose foraminifera rely on rhizopodia to capture 

prey, but spinose foraminifer with spines extruding from the test have larger effective reach range and stronger ability to active 125 

prey, which leads to more prey types and sizes like large copepods (Anderson et al., 1979). Laboratory observations show the 

spinose foraminifera's carnivory preference with the zooplankton/phytoplankton prey protein ratio from 117:1 to 278:1 

(Schiebel and Hemleben, 2017, Section 4.1). And the effective encounter rate of a spinose genus can be three orders of 

magnitude higher than non-spinose foraminifer (Gaskell et al., 2019). Furthermore, roughly half of modern species are spinose, 

therefore this trait is non-negligible. Based on the presence of these two functional traits, the foraminifera can be divided into 130 

four functional types: (1) symbiont-barren non-spinose; (2) symbiont-barren spinose; (3) symbiont-facultative non-spinose; (4) 

and symbiont-obligate spinose (Table 1). 

 

Recently, Grigoratou et al., (2019) developed the first mechanistic and trait-based 0D model for symbiont-barren non-spinose 

foraminifer and coupled it to cGENIE (ForamEcoGENIE 1 hereafter, Grigoratou et al., 2021a), an 3D Earth System Model of 135 

intermediate complexity allowing for fast computational time and widely applied  to past climates: Palaeocene–Eocene 

Thermal Maximum (Ridgwell and Schmidt, 2010), Last Glacial Maximum (Rae et al., 2020) and Cretaceous-Paleogene 

boundary (Henehan et al., 2019). Such computational efficiency and abundant applications make ForamEcoGENIE easily 

applicable to a wide range of geological periods with direct links with seawater carbon chemistry and isotope tracers. In this 

study, we extend ForamEcoGENIE to resolve 3 more critical functional groups of planktic foraminifera by adding the traits of 140 

symbiosis and spines (tested in Grigoratou et al., 2021b). Thereby, we build a model that can explore foraminifer diversity in 

past climates (Ezard et al., 2011). We compare the model with three global observational data compilations (core-top, plankton 

net tow and sediment traps) and test its ability to produce surface biomass, organic carbon and calcite flux, and relative 

abundance distribution. 
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2 cGENIE ocean and atmosphere physics 

ForamEcoGENIE uses cGENIE (carbon-centric Grid-ENabled Integrated Earth system model), a modular Earth system model 

of intermediate complexity (EMIC) as the physical ocean simulation framework. The fast climate and ocean physics of 

cGENIE are based on a coarse-resolution 3D frictional geostrophic ocean model coupled to a 2D energy-moisture-balance 185 

atmosphere model and a dynamic-thermodynamic sea-ice model (Edwards and Marsh, 2005; Marsh et al., 2011). The ocean 

has a 36x36 equal-area horizontal grid (uniform in longitude and sine-uniform in latitude) with 16 logarithmically spaced 

vertical levels as defined in Cao et al., (2009). The physical model is coupled with a model of ocean biogeochemical cycles 

(Ridgwell et al., 2007; van de Velde et al., 2021), sea-floor sedimentary processes (Ridgwell and Hargreaves, 2007) and marine 

ecosystem processes (Ward et al., 2018). The plankton ecosystem is resolved in the surface layer (0-80.8 m) to mimic light 190 

limitation. The model presented in this study is configured with a seasonally forced pre-industrial climate state and a fixed 

atmospheric CO2 concentration restored to 278 ppm. 

 

3 Size-based plankton ecosystem framework EcoGENIE 

3.1 Biogeochemical tracers 195 

The model has three biogeochemical tracers (noted in ir): carbon, phosphorus, iron. The plankton biomass has same tracers 

(i.e., C, P, Fe) with notation ib for each plankton group j. And phytoplankton or symbiotic foraminifera have an extra state 

variable for chlorophyll (Chl hereafter). These elements are marked in different colors in Figure 1. 

 

3.2 Plankton cell size and quota 200 

In EcoGENIE, individual body size determines key physiological processes, including nutrient uptake, photosynthesis, grazing 

gain and predation through allometric scaling (West et al., 1997), because of its role as a master trait among pelagic organisms 

(Andersen et al., 2016). The modelled size-dependent parameters (except for photosynthesis) follow a generic power law: 𝑃 =

	𝑎𝑉! with 𝑃 the size-based parameter, 𝑉 the spheric biovolume, and 𝑎, and	𝑏 the allometric intercept and exponent. 

A fundamental size-based concept of EcoGENIE is the plankton cell quota for various elements. The carbon quota content 205 

(𝑄") follows a power law determining by plankton size (biovolume, V), scaling coefficient a and exponent b (Equation 1). And 

then the variable stoichiometry (Q#!, Eqn. 2) is achieved by the ratio of assimilated nutrients biomass (𝐵$", ib stands for P, Fe, 

or chlorophyll) to carbon biomass (𝐵") (Droop, 1968; Flynn, 2008). This stoichiometry will limit nutrient uptake rate (𝑄𝑖𝑏
stat, 

Eqn. 3) as per Geider et al., (1998), with higher value close to its maximum (Q#"
max), lower the nutrient uptake or chlorophyll 

synthesis rate . The nutrient quota range (Q#!
min

, Q#"
max) is proportional to the carbon quota (𝑄"). 210 

𝑄" = aV! (1) 
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3.3 Plankton biomass dynamics 

The biomass of any plankton group (j) and element (ib), B+,#!, varies due to a combination of potential physiological processes 

that are determined by the type of organism: nutrient uptake, grazing gains, grazing losses, mortality, and respiration losses 250 

(Eqn. 5). Foraminifer-related specific processes will be introduced in following sections. We refer readers to Ward et al. (2018) 

for more detailed description of EcoGENIE model, although some of them might overlap. 

∂B+,#!
∂t = µ+,#! ⋅ B+,-?@@A@@B

./01$2.0	/40562
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12;4$150$=.	<=;;

	 (4)

 

 

3.4 Inorganic nutrient dynamics 255 

The inorganic resource state variables (𝑅$%) varies with nutrient uptake (𝑉@,$%) and dissolved inorganic carbon (DIC) with the 

living organisms’ respiration (𝑟@,"). 

∂𝑅$%
∂𝑡 =

⎩
⎪⎪
⎨

⎪⎪
⎧ E−

A

@8*

𝜇@,$% ⋅ 𝐵@," , 𝑖1 	= 	𝐹𝑒, 𝑃

E−
A

@8*

𝜇@,$% ⋅ 𝐵@," +E𝑟@," , 𝑖1 	= 	𝐶
A

@8*

	
(5) 

Additional sources and sinks of nutrients such as remineralisation of organic matter and air-sea gas exchange are computed in 

the biogeochemical module BIOGEM (Ridgwell et al., 2007). 260 

 

3.4 Organic matter dynamics 

Organic carbon flux (𝐹) comes from and predators’ messy feeding and the mortality loss from all plankton groups (Eqn. 6). 

𝐹 = E T1 − 𝛽@preyV T1 − 𝜆@predV

A

@prey=1,@pred()

𝐺@pred,@prey𝐵@pred

+ E T1 − 𝛽@planktonV𝑚@plankton𝐵@plankton

A

@plankton=1

(6) 
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Metabolic processes in EcoGENIE are temperature dependent, as in 
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𝛽@prey  is the fraction of dissolved organic carbon (DOC) subject to advection by ocean circulation, and the remaining fraction 

is the particulate organic carbon (POC) subject to redistribution through the water column by sinking. Parameter β is defined 

by a size-based sigmoid function depending on maximum and minimum DOC fraction (β>5B , β>$.), and the size β; at which 

DOC/POC ratio equals 1 (Ward and Follows, 2016). The proportion of DOC therefore decreases with plankton cell size. 

β = β>5B −
β>5B − β>$.
1 + β;/𝐸𝑆𝐷 (7) 310 

Messy feeding behaviour is modelled as unassimilated carbon fraction (1 − 𝜆@pred ) of prey which is limited by the size-

independent maximum efficiency coefficient (𝜆>) and the nutrient limitation (Fe or P). 

𝜆 = 𝜆> ⋅ 𝑚𝑖𝑛[𝑄Cstat, 𝑄D2stat] (8) 

 

3.5 Plankton community structure 315 

The EcoGENIE plankton ecosystem model can be defined in flexible size structure. In both ForamECOGENIE 1 and 2, we 

resolve eight size classes of phytoplankton, seven size classes of zooplankton and one size class for each of the four foraminifer 

groups. Phytoplankton and zooplankton size classes include 0.6, 1.9, 6.0, 19.0, 60.0, 190.0, 600.0 and 1900.0 μm. The 

foraminifer cell size is set to an Equivalent Sphere Diameter (ESD) of 190 μm, which is typical for an adult foraminifer 

(Grigoratou et al., 2019). 320 

 

4 ForamEcoGENIE 1 description 

ForamEcoGENIE 1 accounted for the feeding behaviour and calcification of foraminifera (Grigoratou et al., 2019, 2021a). It 

implemented a predator-prey interaction (𝐺@pred,@prey , Eqn. 9) using a Holling type II model (Holling, 1965), where the overall 

grazing rate depends on the total available prey (𝐹@pred), the maximum grazing rate of predators (𝐺412E> ) and the half-saturation 325 

concentration of available food (𝑘@prey), and is regulated by temperature limitation (𝛾F), a prey-switching term	(Φ), and a prey 

refuge protection (1 − 𝑒GD*pred). The calcification trait was included by reducing foraminifera palatability (𝑃4 which influences 

𝐹@pred, Eqn. 10) and mortality rate (m+, Eqn. 5) to account for higher protection against predators and infections to the expense 

of a lower 𝐺H=15>>  (Eqn. 9). To avoid repeating, we also introduce the ForamEcoGENIE 2 parameters (spine effect τ and a 

mixotrophy limitation 𝜆I) here. Readers may assume they equal one, i.e., no functioning in ForamEcoGENIE 1. 330 

𝐺@pred,@prey = 𝛾F ⋅ 𝜆I?AB
limitations

⋅
𝐺412E> 𝐹@pred
𝜏𝑘@prey + 𝐹@pred?@@@A@@@B
overall grazing rate

⋅ Φ@pred,@prey?@@A@@B
Switching

⋅ T1 − 𝑒
GD*pred

V?@@@A@@@B
prey refuge

(9) 

𝐹@pred = 𝑃4 ⋅ 𝐵@prey ⋅ 𝑒xp l
−𝑙𝑛

7
µ@pred,@prey
µopt 8

J

/2𝜎@pred
J

n (10) 
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In the model, the predators select their preys (Eqn. 10) based on the predator-prey size ratio µ@pred,@preyrelative to the optimal 

value µopt, predators' food range 𝜎@pred
J , and the calcification protection 𝑃4. Foraminifera in both ForamEcoGENIE 1 and 2 were 

set as herbivores. 345 

The grazing process like other metabolisms in EcoGENIE are temperature dependent, as in the universal metabolic theory 

(Brown et al., 2004). Ectothermic plankton’s body temperature is determined by the ambient seawater environment (T). 

Temperature regulation  γF acts on metabolic processes including respiration, nutrient uptake, and predation and is modelled 

through an Arrhenius-like function (Eqn. 12), where the parameter A determines temperature sensitivity and reference 

temperature (𝑇ref) is the temperature allowing γF = 1. 350 

γF = 𝑒K(F'Fref) (11) 

The prey-switching term (Φ@pred,@prey) simulates the feeding habitat of zooplankton (Eqn. 9). The exponential s defines the active 

level of zooplankton predators, which capture abundant prey with higher priority when s increases. Foraminifera both in 

ForamEcoGENIE 1 and 2 are assumed to be ambush passive predators with s=1. 

Φ@pred,@prey =
T𝐹@predV

;

∑ T𝐹@predV
;A

@prey8*
(12) 355 

Finally, to further approach the reality, the refuge term (1 − 𝑒GD*pred) in the Eqn. (9) is added to decrease grazing rate when 

prey availability lowers with the protection strength of Λ. 

 

5 ForamEcoGENIE 2: improved calcification and more functional groups 

In ForamEcoGENIE 2, we expand the first version by adding symbiosis and spine traits to the foraminifera group to distinguish 360 

four functional groups of planktic foraminifera (Table 1, Figure 1). We also implement a new calcification trade-off relating 

calcification energetic cost to the respiration term. 

 

Table 1. The four modelled functional groups of planktic foraminifera and their species representative in ForamEcoGENIE 

2.0. 365 

Spine trait Symbiosis trait Species example Species number*  Model implementation 

Spinose Symbiont-obligate Globigerinoides ruber 17 This study 

Spinose Symbiont-barren Globigerina bulloides 2 This study 

Non-spinose Symbiont-facultative Neogloboquadrina 

dutertrei 
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Non-spinose Symbiont-barren Neogloboquadrina 

pachyderma 

23 extended from 

ForamEcoGENIE 1.0 

* Count from Schiebel and Hemleben, (2017) 

 

Figure 1. Schematic diagram of ForamEcoGENIE structure, showing the biogeochemical tracers (C, Fe, PO4) in different 

colors and plankton populations with various size classes. Physiological processes here include nutrient uptake (red arrows), 385 

organic matter production caused by messy feeding and mortality (dashed arrows), and zooplankton grazing (black arrows). 

A. symbiont-barren spinose group; B. Symbiont-facultative non-spinose group; C. symbiont-barren non-spinose group. D. 

symbiont-obligate spinose group. DIC: dissolved inorganic carbon. 

 

 390 

5.1 Calcification trait trade-offs 

5.1.1 Benefit: Mortality protection 
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The mortality loss term in the generic zooplankton scales with a basal rate constant 𝑚! (Eqn. 5). Like in Grigoratou et al. 

(2019, 2021a), 𝑚!  for foraminifera is downscaled by a protection term 𝑃>  where a lower value of 𝑚@  indicates a higher 

protection from the foraminifera test against viral and bacterial infections. 

𝑚@ = 𝑃> ⋅ 𝑚! (13) 

 415 

5.1.2 Benefit: Protection from predators (palatability) 

Like in ForamEcoGENIE 1.0, calcification protects from grazing and is defined by 𝑃4, which reduces the biomass loss from 

predation (Eqn. 10). 

 

5.1.3 Cost: higher metabolic cost 420 

We modified the metabolic cost of calcification defined in Grigoratou et al. (2019, 2021a) by replacing the original reduced 

maximum growth rate (or specifically maximum grazing rate) with a temperature-dependent respiration loss term. We choose 

this new loss term over a reduced growth rate because (1) extra respiration is a more biologically realistic cost and (2) a 

temperature-dependent term helps reconcile the low-latitude biomass as observed. The respiration 𝑟@ present in Eqn. 5 scales 

with carbon biomass and is multiplied by constant 𝑟! and temperature limitation (Eqn. 11). We assumed that the lost carbon 425 

from respiration is instantly recycled back to DIC pool. 

𝑟@ = 𝑟! ⋅ γF (14) 

 

5.2 Spine trait trade-offs 

Spines are foraminifer's taxonomical basis and are made up of calcite. The biological functions of spines are related to stability 430 

in water columns, symbiosis and feeding behaviour (Schiebel and Hemleben, 2017). 

 

5.2.1 Benefit: Enhanced grazing 

Studies show that spinose foraminifera are more efficient in capturing and digesting prey thanks to the spine and rhizopodia 

networks (Anderson and Bé, 1976). Spines widen the prey availability of immotile foraminifer and facilitate capturing larger 435 

preys, while non-spinose species cannot hold active prey and only accept smaller particles of copepods in the laboratory 

observations (Anderson et al., 1979; Hemleben et al., 1989). Grigoratou et al., (2021b) modelled such benefit by reducing the 

half-saturation constant (conventionally noted as k in a Michaelis-Menten model). Here we adopt this approach by reducing 

𝑘@prey  by a scaling parameter 𝜏	(0 < 𝜏 < 1; Eqn. 10). 

 440 

5.2.2 Other trade-offs as calcification: higher metabolic cost and reduced palatability 
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We assume that the metabolic cost and protection from the spines are characterised the same way as for calcification (Eqn. 13-460 

14), with spinose foraminifera having a higher cost and a stronger protection than non-spinoses (Table 2). But there is no 

mortality reduction regarding spine trait. 

 

5.3 Symbiosis trait trade-offs 

Symbiosis is a novel trait in the model, commonly seen in marine organisms including foraminifer. Many planktic foraminifera 465 

harbour algae (e.g., dinoflagellate, diatom) within their cell (Takagi et al., 2019). We represent these symbiotic species in the 

model as a single organism, which combines hetero- and autotrophy, equivalent to a calcifying mixotroph. We use the trait-

based representation of mixotrophy of Ward and Follows, (2016), where any plankton can “naturally” predate and 

photosynthesize, where the alternative strategy for specialist group is turned off (i.e., Vm is 0 for zooplankton and Gm is 0 for 

phytoplankton), and for mixotrophs turned on.   470 

 

5.3.1 Benefit: enabled autotrophy for planktic foraminifer 

The symbiont owns an independent size defined as a symbiont/foraminifera size ratio 𝜓 (Eqn. 16) to characterise the symbiont 

affinity in taking up nutrients and light. Photomicrograph observations showed that foraminifera symbionts are about 1:20 

smaller in size than the host cell (Takagi et al., 2019). 475 

𝑉; = 𝜓N𝑉I (15) 

The generic nutrient uptake of symbionts follows a mixotrophy- (𝜆;), quota- (𝑄$%
stat) and temperature-limited (𝛾F) Michaelis-

Menten function where the variable (R) represents nutrient resources and half-saturation constant is replaced by nutrient 

affinity, a more mechanistic parameter for nutrient uptake 𝛼. Nutrient affinity is often referred as “clearance rate” and regarded 

as a proxy of competitive strength (Fiksen et al., 2013). According to Edwards et al., (2012)' s review on phytoplankton trait 480 

trade-offs, scaled nutrient affinity is negatively related to cell size because of lower surface to volume ratio, while maximum 

uptake rate (Vm) is positively related. 

𝜇$% = λ; ⋅ 𝑄$%
stat ⋅ γF ⋅

𝑉$%
>α$%𝐑

𝑉$%
> + α$%𝐑

(16) 

The symbionts’ photosynthesis growth is modelled following the size-dependent unimodal equation (Geider et al., 1998; 

Moore et al., 2001), which has shown significant explanatory power for eukaryotes phytoplankton cells than power law (Bec 485 

et al., 2008). The maximum photosynthesis rate 𝑃"> is determined by dimensionless parameter 𝑃5, 𝑃!, 𝑃O and the biovolume 

of symbiont 𝑉;, and the mixotrophy cost λ;. 

𝑃"> =
𝜆;(𝑃5 + 𝑙𝑜𝑔*(𝑉;)

𝑃! + 𝑃O𝑙𝑜𝑔*(𝑉; + 𝑙𝑜𝑔*(𝑉;J (17) 

The practical photosynthesis rate is further constrained by nutrient availability (the smallest between 𝛾D2 and 𝛾C), temperature 

(𝛾F), light intensity (𝛾P). 490 

𝑃" = 𝑃"> ⋅min[𝛾C, 𝛾D2] ⋅ 𝛾F ⋅ 𝛾P (18) 
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The nutrient limitation 𝛾$% (𝑖1 is either P or Fe, see the definition in Eqn. 2) takes the minimal value from phosphorus or iron 

limitation term, which follows the quota relationship in Droop (1968). 

𝛾$% =
1 − 𝑄$%

min/𝑄$%
1 − 𝑄$%

min/𝑄$%
max , 𝑖1 = Fe, P (19) 495 

As for the light limitation, it follows Moore et al., (2001) model where I represents light intensity, 𝛼 is initial slope of P-I curve 

limited by Fe content (𝛾D2), and 𝑄Chl is chlorophyll quota. 

γP = 1 − exp
7

−α ⋅ γD2 ⋅ 𝑄Chl ⋅ 𝐼
𝑃"> ⋅ γF ⋅min[γC, γD2]8 (20) 

 

5.3.2 Cost: downgrading autotroph and heterotroph efficiency  500 

The cost of mixotrophy is that both autotrophy and heterotrophy parts (i.e., photosynthesis and grazing rates) are scaled down 

(by multiplying factor 𝜆;  and 𝜆I  with respect to symbionts and hosts, 0 < 𝜆;, 𝜆I < 1, Eqn.9 and 16) compared to the pure 

auto/heterotroph specialist (Ward and Follows, 2016). Despite no direct and sufficient evidence for such a foraminifer 

predation cost, this assumption is common practice in mixotroph models (Castellani et al., 2013; Våge et al., 2013; Ward and 

Follows, 2016). We also distinguish between symbiont-obligate and symbiont-facultative foraminifera using different 𝜆;/𝜆I 505 

parameter values to reflect their different extent of dependency on symbionts (Table 2). 

 

5.4 Approximating foraminifera calcite export 

Planktic foraminifera produce organic carbon in the subsurface water column (Salter et al., 2014) and sequester tests of 

inorganic carbon into the deep oceans (Schiebel, 2002). In the model the organic carbon flux was consistent as section 3.4. 510 

The additional calcite export is approximated by multiplying the foraminifera bulk organic carbon export with a globally 

uniform particle inorganic carbon (PIC) to organic carbon (POC) ratio, based on the empirical first-order average value (0.36) 

(Schiebel and Movellan, 2012). 

 

6 Model experiments and evaluation 515 

6.1 Experiments 

We run an ensemble of 1,200 model experiments, each testing a different combination of parameter values, to explore all 

possible trait values and select the best trait combinations to match the foraminifera observations (section 3.2). The parameter 

sets are generated using Latin Hypercube Sampling (LHS) algorithm, uniformly sampling values of 12 model parameters 

characteristics of foraminifer traits (Table 2; Sarrazin et al., 2016). Each simulation is run for 250 years continuing from a 520 

10,000-year spin-up simulation as ecosystem structure typically reaches equilibrium after ~50 years. The other ecosystem 

parameters are the same as Ward et al. (2018) (Table S3). 
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 670 

Table 2 List of the foraminifer-relevant parameters tested in the global sensitivity analysis (GSA) and identified optimal 

parameter values for each group. 
Related trait(s) Parameter Description Tested 

range† 

Unit Optimal 

values* (bn) 

Optimal 

values* (bs) 

Optimal 

values* (sn) 

Optimal 

values* (ss) 

Calcification/spine 

pm Protection from mortality [0-1]  0.6 0.6 0.6 0.6 

pp Protection from palatability [0-1]  0.8 0.7 0.8 0.7 

r Respiration rate [0-0.02] mmol C d-1 0.04 0.06 0.04 0.06 

Spine τ coefficient of grazing half saturation [0-1]  / 0.9 / 0.9 

Symbiosis 

ψ symbiont to foraminifer size ratio [0-0.05]  / / 0.0015 0.0015 

λs symbiont autotroph efficiency [0-1]  / / 0.2 0.8 

λh foraminifer heterotroph efficiency [0-1]  / / 0.8 0.55 

 

bn, symbiont-barren non-spinose; bs, symbiont-barren spinose; sn, symbiont-facultative non-spinose; ss, symbiont-obligate spinose 

* For any other plankton group without these traits, scaling parameters are set to 1 and cost parameters are set to 0. 675 
† GSA range is set to [0-1] for scaling parameters; respiration terms are as follow Ward et al., (2018); symbiont cell size ratio upper bound 

is calculated from observation (Takagi et al., 2019). 

 

6.2 Comparison to observations 

The model generates biomass, export production for each group, and relative abundance is estimated based on export 680 

production. To validate these model outputs, we compiled 3 global adult foraminifer (>150 μm) datasets: (1) plankton net tows 

mostly taken from the first 100 m, (2) sediment core-top representing the Late Holocene (pre-industrial) and (3) seasonally 

resolved sediment trap time-series. We use the core-top dataset of individual abundance count to validate the spatial patterns 

of the relative abundance of each foraminifer group. The plankton net tow datasets are used to validate the living stocks. And 

the sediment trap data are used to compare with foraminifer-derived carbon export. The core-top data comes from ForCenS 685 

(Siccha and Kucera, 2017), and the plankton tow and sediment trap data from the compilation by Grigoratou, (2019)  with 

additional foraminifera groups and sample sites. The full list of plankton tow and sediment trap data sources is in Tables S1 

and S2. 

For all the datasets, we firstly sum species into functional groups using species traits defined by Schiebel and Hemleben, (2017) 

and Takagi et al., (2019) (Table S4). Next the sediment trap and plankton tow data are taken annual average for spatial 690 

comparison. We also regrid the observations to be consistent to our model, which means that all the observations within a grid 

are averaged. Finally, we use Mielke measure (next section) to quantify the model-data fit. Note (1) this is for spatial 

comparison and therefore we do not take annual average and calculate skill scores for seasonal model-data comparison (2) the 
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Arctic and the Mediterranean Sea are omitted in comparison because of the resolution-derived model's poor ocean physics in 

those regions. 

The units of plankton net tow (“count m-3”) and sediment trap data (“count m-2 d-1”) are converted into “mmol C m-3” and 715 

“mmol C m-2 d-1” using the empirical factor of 0.845 μg count-1 from Schiebel and Movellan (2012). The model generates 

carbon export production in “mmol C m-3 d-1”, so it is transformed to “mmol C m-2 d-1” by multiplying the surface layer depth 

(80.8 m). Note that although the sediment traps were deployed in different depths (averagely 1.96 km) and seasons. we ignore 

the vertical degradation because foraminifer tests are relatively fast-sinking due to large size (Takahashi and Be, 1984) and we 

do not have well-built attenuation profile for foraminifer tests. 720 

We considered species with less than 3% abundance as absent to avoid the uncertainty caused by ocean currents transportation 

(van Sebille et al., 2015). We applied this threshold based on the standard error of fisher’s α diversity index (Fisher et al., 

1943). 

 

6.3 Performance metrics 725 

We use Mielke measure, or M-score (Watterson, 1996; Watterson et al., 2014) to quantify the model-data fitting goodness 

(Eqn. 21). This metric is essentially non-dimensional transformed mean square error, and has been widely used in general 

circulation models (Gregoire et al., 2011, Anon, 2016). This score spans from -1 to 1 with values closer to 1 representing better 

model performance, 0 stands for no predicting skills. And negative M-score indicates negative correlation. 

𝑀 =
2
π𝑎𝑟𝑐𝑠𝑖𝑛 �

∑ (𝑀$ − 𝑂$)J
.
$8* /𝑛

σ>J + σ=J + (𝜇> − 𝜇=)J� (21) 730 

The numerator is mean square error, with 𝑀$ and 𝑂$ the model and observational value in the ith grid, and 𝑛 the total number 

of grids. 𝜎J  and 𝜇 are the variance and mean, with superscripts m and o representing model and observed fields, respectively. 

 

6.4 Global Sensitivity analysis 

We conduct a global sensitivity analysis (GSA) to explore the model robustness of our 1,200 experiments using the PAWN 735 

method (Pianosi and Wagener, 2015). This method measures the sensitivity of model outputs (focusing on M-score here) to 

different values of input parameters. A total M-score is calculated by summing scores of each foraminifer group in biomass, 

POC export, and relative abundance (i.e., the total score ranges from -12 to 12). To further measure the uncertainty and 

robustness of the GSA results, we also apply a bootstrapping method with 1,000 resamples. This method allows us to 

understand the confidence intervals of the sensitivity indices without running more experiments (Wagener and Pianosi, 2019). 740 

We bootstrapped our data using rsample package (Silge et al., 2021) in the R software environment v4.1 (R Core Team, 2021). 

 

7 Results and discussions 

7.1 Model ensemble results 
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Overall, the 1,200 model runs fit generally reproduce POC export (summed M-score: -0.2 ~ 1.0) and relative abundance 

(summed M-score: -0.5 ~ 1.2), with poorer comparison with plankton net data (summed M-score: -0.1 ~ 0.5) (Figure 2). A 

heatmap of M-Scores (Figure 2) shows the experiments cluster into 4 groups with respect to the 3 observation metrics. Most 780 

parameter combinations (cluster C) show low performance in predicting foraminifer metrics. Cluster D shows an inverse 

relative abundance distribution to the observation, while cluster B has only good POC export performance. Cluster A which 

includes our optimal parameters achieves the highest (best) abundance M-score and has good biomass and POC export 

prediction. We notice that this cluster accompanies low foraminifer export production, which indicates that the higher-than-

observation biomass/carbon are the primary constrain for the model to get better scores. The sensitivity analysis result confirms 785 

this. Our model performance is mostly sensitive to the symbiosis efficiency (λs), and the palatability protection (Pp) from both 

spine and calcification which both directly govern the nutrient uptake and loss (Figure 3). Models with low export production 

and higher scores associate with <200 μm foraminifer size and small symbiont size (symbiont/host size ratio <0.02) which 

facilitate dwelling in the tropical regions, realistic shell protections and high respiration cost that do not lead to striking 

biomass/export (Figure S3).  790 

We select the optimal parameter set with the highest total M-score score (Table 3), which also has the highest M-score for the 

relative abundance (group mean = 0.3) and POC export (group mean = 0.16; Figure S1). In this run, all the foraminifera groups 

achieve the highest total M-score (Figure S2). More details about this optimal model is shown in next sections. 
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 835 

Figure 2. M-score heatmap of the model ensemble compared with foraminifera “Biomass” (plankton net data), “POC export” 

(sediment trap data), groups’ “Relative Abundance” (sediment core top data). Each column sums the M-score of four 

foraminifer groups, and the fourth column is the sum of all the left three. The right panel shows the global annual mean export 

production of all foraminifer groups. The ensemble cluster was derived from a complete linkage clustering algorithm (Jarman, 

2020). The higher the M-score value the better the performance, negative value stands for negative correlation. 840 
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 845 

Figure 3. Sensitivity of parameters to overall model performance (as summed M-scores). Bar boundaries indicate the 95-

percent confidence interval with the thick line showing the mean value. Grey line indicates non-influential upper limit of index 

value as control group. sn, symbiont-facultative non-spinose; ss, symbiont-bearing spinose. cal, the abbreviation of 

calcification. τ is the spine effect on grazing rate. 

 850 

Table 3. The distribution of M-scores across foraminiferal groups from the optimal parameter set  

Groups 
Symbiont-barren  

non-spinose 

Symbiont-barren 

spinose 

Symbiont-facultative 

non-spinose 

Symbiont-obligate 

spinose 
Column sum 

Biomass 0.19 0.08 -0.05 -0.05 0.17 

POC Export 0.11 0.07 0.43 0.02 0.63 

Relative Abundance 0.51 0.35 0.02 0.32 1.20 

Row sum 0.81 0.50 0.40 0.29 2.00 

 

 

7.2 Relative abundance distribution of foraminifer groups 

Our model with optimal parameters compares reasonably well with observations of core-top data showing the relative spatial 855 

distribution of the four foraminifera functional groups (Figure 4). The presence/absence pattern is also captured well in 
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sediment trap and plankton net studies (Figure 4,5). The symbiont-obligate spinose group is the most abundant group with a 

global relative abundance of 60.7% (M-score: 0.32, Figure 4g) dominating in the tropical open oceans, while the symbiont-

barren non-spinose (Figure 4a) and spinose groups (Figure 4c) both mainly occupy the high latitudes (M-score = 0.51 and 

0.31, respectively). The symbiont-facultative group (Figure 4e) is underestimated with the visible model-data disparities in the 940 

eastern equatorial pacific where the sediment core shows exclusively high abundance. This may be due to the resistant 

dissolution of some species' test (e.g., N. dutertrei) as suggested in a previous model study (Lombard et al., 2011). Overall, the 

Root Mean Square Error  (RMSE) of relative abundance in this model (12% to 42%, Table S5) is comparable to the species-

based models, like FORAMCLIM (5-23%, Lombard et al., 2011) and PLAFOM (22-25%, Fraile et al., 2009). This indicates 

that symbionts and spines are sufficient to explain the variance of geographic distribution. 945 

While non-symbiotic foraminifer follows the biogeography of prey in high nutrient areas, the symbiont size (0.0015 

symbiont/foraminifer) indicates that the small body size and therefore high nutrient affinity is a key factor for symbiotic 

foraminifer in low-nutrient areas like subtropical gyres. Although this actual symbiont size does not necessarily be around 

0.0015 times foraminifer size, the fact that foraminifer can host up to 3,000 algal cells can explain the high nutrient uptake 

efficiency (Spero and Parker, 1985). The symbiont-barren spinose foraminifer (Figure 4d) displays higher abundance in 950 

Arabian Sea, South China Sea than non-spinose foraminifer (Figure 4b). This might be related to the carnivory feeding (rather 

than enhanced grazing efficiency) of spinose foraminifer that is not included in current model. 
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Figure 4. Relative abundance of the modelled geographical distribution (left column) of the four planktic foraminifer function 

groups, compared to the ForCenS core-top dataset (right column; Siccha and Kucera, 2017). Subplots titles are the M-scores 965 

derived relative to observation and the global mean of relative abundance. 

 

7.3 Annual average biomass of foraminifera groups 

As the plankton tow data, the model reproduces the low biomass of planktic foraminifer (Figure 5). The global annual mean 

of biomass ranges from 0.001 to 0.010 mmol C m-3, or 0.08-0.8 mmol C m-2, with the most contribution from symbiont barren 970 

groups (Figure 7). Globally integrating all foraminifer groups, the model estimates 0.0068 Gt C or 6.83 Tg C biomass (Figure 

7). For comparison, the MAREDAT project estimated the global average biomass of  0.24-0.94 mmol C m-2 which integrates 
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all the depth from 0 to 2,500 m (Schiebel and Movellan, 2012). Schiebel and Movellan (2012) also estimated a total of 

0.94~3.63 Tg C living foraminifer at any time point. Given the similar mean biomass range estimation, the difference of total 

biomass between our model and this data is likely caused by the grid area estimation. Therefore, it is safe to state that the 990 

model produces good estimation compared with the observation. 

The skill score, however, does not capture this good mode-data fit. This is mostly caused by regridding the data points into 

model grid resolution. The plankton net data are spatially concentrated in North Atlantic, Northwestern Pacific, Arabian Sea, 

and Indian sector of Southern Ocean. Under such circumstance, regriding causes sparser data and makes skill score sensitive 

to several outlier grids. Therefore, the insufficient data is the major reason of low scoring in biomass. 995 
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Figure 5. Model outputs of annual average biomass (mmol C m-3) compared with plankton net data (right column) for the four 

main functional groups of planktonic foraminifera. 1015 

 

7.4 Annual average POC and calcite export of foraminifera groups 

The model reproduces consistent geographical distributions and magnitude of POC export compared to sediment trap samples 

for all 4 foraminifer groups (Figure 6, 7). The model estimates 0.002-0.031 mmol C m-2 d-1, compared with 0.001-0.026 shown 

in sediment trap studies. However, the total M-score for the model POC export is 0.63, not reflecting the good matchiness 1020 

between model and observation. This is similarly caused by limited data as previous biomass section.  
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In terms of global estimation, the model suggests the foraminifer-derived organic carbon export of 0.1 Gt C yr-1. Symbiont-

barren non-spinose taxa dominate this carbon export (55%) followed by symbiont-barren spinose, symbiont-facultative and 

symbiont-obligate groups (30%, 3% and 11%, respectively). Integrating all the ecogroups and using an empirically averaged 

PIC:POC ratio of 0.36 (Schiebel and Movellan, 2012), our model estimates a total calcite flux of pelagic foraminifera of 0.033 1050 

Gt PIC yr-1 (Figure 8), which is at least five times smaller to the 0.16–0.39 Gt PIC yr-1 of Schiebel (2002) within the top 100-

m ocean. The reason is likely we calibrate the model with sediment traps deployed in averagely 2 km water, while the high 

flux signal in the top 300 m is not captured. In addition, the high temporal variability in the observation is also not well captured 

by the model. 

 1055 

Deleted: 365.3

Deleted: Tg

Deleted: 141.7 TgC yr-1

Deleted: 93.2

Deleted: 83.11060 
Deleted: 47.3 TgC yr-1,

Deleted: U

Deleted:  converting mass ratio of 1:3 from organic carbon to 
calcium carbonate 

Deleted: 1.1 1065 
Deleted: CaCO3 

Deleted: comparable 

Deleted: 1.3-3.2 

Deleted: The calcite export in the model falls within the low range 
of previous estimates (1.3-3.2 Gt yr-1; Schiebel et al., 2001) and 1070 
contributes 19% to the global marine CaCO3 production (Milliman et 
al., 1999). This estimate is similar to 21% reported in Kiss et al., 
(2021) based on sediment traps at Cape Blanc and to Salmon et al., 
(2015) data from the Sargasso Sea ranging between 0-40 % (but 
mostly < 25%). Regionally higher contributions (32-49%) have been 1075 
reported in the Southern Ocean (Salter et al., 2014) who  included 
deep-dwelling species which are not represented in this model. To 
summarise, our estimation of foraminifer calcite export is generally 
trustable to previous observational studies.

Deleted: ¶1080 



22 
 

Figure 6. Model outputs of annual average POC export (mmol C m-2 d-1) below the euphoric zone (80.8 m) in comparison to 

sediment trap samples (right column). 

 

 1085 

Figure 7. Summary of the modelled annual average biomass and POC export produced by the four foraminifer groups. (a) The 

modelled (red) and observational (blue) biomass (mmol C m-3) and (b) POC export below the euphotic zone (mmol C m-3 d-1). 

Bar height and error bar represents spatial mean value and standard error, respectively. (c) A global estimation of modelling 

globally integrated carbon biomass (Gt C) and (d) export production (EP, Gt C yr-1).  

 1090 
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Figure 8.  Global model estimates of (a) surface foraminiferal calcite flux (at 80.8 m; mmol C m-2 yr-1) and (b) group 

contribution.  1130 

 

7.5 Seasonal variations of foraminifera biomass and POC export 

The model-derived seasonality of foraminifera biomass and POC export are compared with observations in Figure 9 and 10. 

In terms of seasonal amplitudes, the model fails to show the peakiness in upwelling regions such as Arabian Sea and Ross Sea. 

This pattern that observational amplitude is stronger than model is also shown in PLAFOM 2.0 (Kretschmer et al., 2018). 1135 

In contrast, the low export and seasonality in open ocean locations such as the western Atlantic and the Sargasso Sea are better 

captured. For the seasonal pattern (peak time), foraminifer maximum export production in the polar regions (e.g., Subantarctic 

zone) happen in winter and our model agrees with this. In most tropical to temperate oceans, both the model and observation 

show summer/autumn peak time, but offset might exist. For example, the BIOTRAN station see highest biomass in April, 

while the model predicts July. 1140 

 

The sediment trap observations also indicate the group-specific seasonal cycle difference. Jonkers and Kučera, (2015) 

summaries foraminifer into warm group, cool and temperate group, and deep dwelling group according to their seasonal cycle 

patterns. The warm group (i.e., the symbiont-bearing group) shows peak times mostly in September, while cool/temperate 

group's (non-symbiont groups) peak times concentrate in January to April. Similar group-specific difference in the model was 1145 
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shown in Figure 11. In addition, the cool/temperate group's earlier-when-warmer signature is also well reproduced in our 

model from high to low latitude.  However, some detailed patterns like the occasionally two cycle per year is not shown in the 

model.  Overall, the model reproduce the seasonal peak time well for different groups, despite the weaker amplitude than the 

sediment traps suggest. 1165 

 

The foraminifer intra-annual biomass/export variability are driven by the seasonal environmental changes which determine 

how optimal foraminifera are in the ecological niche. Usually, temperature is assumed as the primary driver. However, the 

correlated factors like primary productivity are likely to be the true driver (Jonkers and Kučera, 2015). This might be the reason 

why our model cannot produce as high production as the sediment traps because the upwelling regions in GENIE model are 1170 

relatively poor constrained. In addition to the model, the low spatial and temporal resolution of observed data also limits us to 

have a broader overview of seasonal variation, especially in the term of biomass. We also suggest that more functional trait 

studies regarding temporal variability such as dwelling depth, life history cycle should help resolve this gap in the future.  
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Figure 9. Biomass seasonal comparison between the model (lines) and plankton net tows (dots) (mmol C m-3) in example 

locations (shown in the map with corresponding letter). Sites are selected to according to the number of comparable data points 

and ocean basins. 1215 

 

Figure 10. POC export seasonal comparison between the model (lines) and sediment traps (dots) (mmol C m-2 d-1) in example 

sites (shown in the map with corresponding letter). Sites are selected to according to the number of comparable data points 

and ocean basins.  
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 1230 

 

 

Figure 11. The peak month of modelled biomass annual time series of each foraminifer group. 

 

8 Comparison to prior model iterations 1235 

Compared to the EcoGENIE and ForamEcoGENIE 1, the introduction of more foraminifera groups expands the ecosystem 

mean body size in the tropical and subtropical regions due to their large shell of 190 μm (Fig. 12c). This is mostly caused by 

the symbiont-bearing groups which fit the warm niche. In contrast, the biomass sees a small change to the whole ecosystem 

because foraminifer's low standing stocks. NPP and POC export show decreasing changes in the polar regions. And the trends 

are understandable by adding more grazers. Overall, ForamEcoGENIE 2 slightly magnify the signal of ForamEcoGENIE 1, 1240 

but these changes are small in biomass/POC export/NPP. Therefore, the incorporation of symbiosis and spines into our trait-

based model successfully widens the ability of the model to represent foraminifera community without weakening the overall 

ability of predicting ecosystem and biogeochemical attributes. 

 

Although ForamEcoGENIE 2 development focuses on the marine ecology, it also lays the foundation to future linking to 1245 

biogeochemical cycles. For example, spinose foraminifer has more calcite export than non-spinose foraminifer and spines 
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control the sinking velocity of foraminifer shell (Takahashi and Be, 1984). Symbiotic groups expand the global niche for 1265 

foraminifer. The community compositional change of these groups under different climatology would influence the ocean 

carbon cycles by changing the calcite export and surface alkalinity. So far, no Earth system models have explicit foraminifer 

group participating the inorganic carbon cycle. Therefore, this would be an important direction of our model development in 

the future. 

 1270 

Figure 12. Tuned ForamEcoGENIE 2 (third column, with four foraminifer groups) comparison with ECOGENIE (first column) 

and ForamEcoGENIE 1 (second column, with non-spinose non-symbiont foraminifer only) in terms of ecosystem mean size, 

ecosystem biomass, ecosystem POC export, and Net Primary Production (NPP). The first column displays absolute values, 

whilst the latter two are the ratio relative to the first column. 

 1275 

9 Model limitation 

Our model implementation has limitation due to our current gap in understanding trait. One is the not explicit definition of 

spine and symbiosis. For example, with the definition in Mitra et al., (2016), the current modelling approach falls within 
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constitutive (inherent or innate) mixotroph rather than foraminifer's specialist non-constitutive mixotroph. Such indirect 

photosymbiotic relationships in the model could miss the individual climate sensitivities of symbiont and host. Meanwhile, 1280 

the implicit definition of spines and symbiosis cannot lead to a changeable spine and symbiosis effects with environmental 

changes. And this is because we lack such observational studies. 

 

Some detailed trait interaction and variation are not included as well. The symbiotic spinose foraminifer can use their spines 

to place algal symbionts in the daytime (LeKieffre et al., 2018), which theoretically increases photosynthesis efficiency due to 1285 

an increase in surface area relative to  non-spinose species. And the unclear relationship between body size and spine and 

symbiosis forces the model the fix the foraminifer size at 190 μm and ignore the biomass of juvenile foraminifer. From this 

perspective, our foraminifer model belongs to a functional-type model rather than a strict trait-based model. However, we also 

note this study focuses on solving the gap of modelling past time and resemble the functional biogeography of planktic 

foraminifer. 1290 

 

In addition to model implementation, the spatial or temporal sparseness of plankton net and sediment trap data make model-

data comparison difficult. The M-score cannot reflect the model-data difference properly as there are limited grid points after 

annually averaging and regridding. The parameterisation is therefore highly influenced. The sediment trap data are temporally 

more continuous, but we still lack a vertical profile in different locations as most POC flux studies (Henson et al., 2012). The 1295 

current model parameterisation for export production is compared with vertically averaged values. Therefore, the foraminifera 

surface carbon export should be higher than the model predicts and agree with the high proportion in Scheibel (2002). The 

reason behind observed low biomass and high carbon export is unclear but likely caused by the underestimated sampling. 

Because plankton net is temporally low-resolution and cannot capture the peak production signal.   

 1300 

 

10 Ecosystem model implementation and complexity 

The current coupled Earth system models are mostly NPZD (Nutrient-Plankton-Zooplankton-Detritus) based (Keller et al., 

2012; Watanabe et al., 2011), or PFT (Plankton Functional Type) based (Moore et al., 2001; Aumont et al., 2015). While 

NPZD models focus on the biogeochemical fluxes and have ignored different size classes and types within phytoplankton and 1305 

zooplankton models, PFT models have more explicit functional types (e.g., diatom, coccolithophore) and size classes (e.g., 

picoplankton, nanoplankton, microplankton). This usually helps achieve better model performance in region scale. For 

example, the inclusion of diatom-diazotroph assemblages allows model to predict peak production in oligotrophic areas 

(Tréguer et al., 2018). Trait-based models as another member like Darwin (Follows et al., 2007) and EcoGENIE (Ward et al., 

2018), solve the plankton diversity based on allometric rule. Therefore, the plankton size spectrum can be more continuous 1310 

and physiological parameters can be calculated based on individual size. This is theoretically more robust especially when the 

model is used to simulate past ecology or large-scale pattern. However, these models also classify species into various 
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functional types according to evolutionary similarities. This might be because we cannot distinguish the ocean diversity by 

size trait only. More functional traits beyond size like symbiosis (Suggett et al., 2017) and body extension (Ohman, 2019) also 

play an important role in influencing plankton feeding, metabolism and export efficiency. 

 

There is also a debate on whether higher ecosystem complexity is needed (See introduction in Quéré et al., 2005) because 1335 

more parameters introduce more freedom, longer run time and the ocean physics influence biogeochemistry more than ecology. 

However, recent studies suggested the important role of biodiversity in the ocean biological pumps (Tréguer et al., 2018). The 

presence of functional group like diazotroph can even diverge the response trend to global warming (Bopp et al., 2022). 

Therefore, relative to the simple food web structure in current generation of models, ecosystem implementation is very likely 

the source of uncertainties for modelled ocean carbon storage in the future (Wilson et al., 2022). In addition, the recent model 1340 

advances already included more supports to ecosystem complexities such as more functional types, variable stoichiometry, 

and nutrient co-limitations (Séférian et al., 2020). To our study, the significance of more functional traits also enables us to 

track the foraminifer functional diversity change and provide the likelihood of explicitly linking foraminifer ecology to 

carbonate pump in the future. 

 1345 

11 Summary 

In this study, we extend the trait-based planktic foraminifer model, ForamEcoGENIE, to include symbiosis and spine traits 

and resolve all main foraminifer functional groups. Using Latin Hypercube Sampling, we generated 1,200 parameter samples 

and compared these with three global observational sources: core-top, plankton tow, sediment trap. We assessed the model 

performance of biogeographic distributions, the carbon biomass and foraminifer-derived carbon export. Our global sensitivity 1350 

analysis shows the symbiosis trait and the palatability protection of spine and test strongly influence model performance. Our 

best set of model parameters successfully reproduces the modern biogeographical distribution of the main four foraminifera 

ecogroups and produces a global annual mean biomass (0.001 to 0.010 mmol C m-3) and foraminifer-derived organic carbon 

export (0.002-0.031 mmol C m-2 d-1)  similar to observations. The two symbiont-barren groups account for 85% of standing 

stocks and foraminifer-derived carbon export, while the two symbiotic group contribute the remaining 15%. The model 1355 

accurately reproduces peak time of seasonal time-series observations of foraminiferal biomass and organic carbon flux but 

performs poorly in seasonal amplitudes, particularly in upwelling regions. These results provide confidence in the model’s 

ability to explore foraminifer ecology and diversity in the geological record and to interpret and question the foraminifer 

microfossil records, for example of the last glacial maximum, as well as helping to solve riddles about their ecology in the 

past. The trait-based framework of cGENIE ecosystem also provides potential to extend the model by presenting more traits 1360 

such as life history and differential calcification rates across groups.  
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The source codes and data are archived in https:doi.org/10.5281/zenodo.6808760. Experiment configuration and observational 

dataset can be found in genie-userconfig/MS/yingetal.GMD.2022. More general manual for cGENIE model can be found in 1380 

https://github.com/derpycode/muffindoc. 
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