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Abstract. With the increasing lake monitoring data, data-driven machine learning (ML) models might be able to 10 

capture the complex algal bloom dynamics that cannot be completely described in process-based (PB) models. 11 

We applied two ML models, Gradient Boost Regressor (GBR) and Long Short-Term Memory (LSTM) network, 12 

to predict algal blooms and seasonal changes in algal chlorophyll concentrations (Chl) in a mesotrophic lake. 13 

Three predictive workflows were tested, one based solely on available measurements, and the others applying a 14 

two-step approach, first estimating lake nutrients that have limited observations, and then predicting Chl using 15 

observed and pre-generated environmental factors. The third workflow was developed by using hydrodynamic 16 

data derived from a PB model as additional training features in the two-step ML approach. The performance of 17 

the ML models was superior to a PB model in predicting nutrients and Chl. The hybrid model further improved 18 

the prediction of the timing and magnitude of algal blooms. A data sparsity test based on shuffling the order of 19 

training and testing years showed the accuracy of ML models decreased with increasing sample interval, and 20 

model performance varied with training/testing year combinations.  21 

1 Introduction 22 

Harmful algal blooms, which are a serious threat to natural water systems, have been increasing throughout the 23 

world (Burford et al., 2020; Watson et al., 2016), primarily as a consequence of both climate change and increased 24 

nutrient loading from anthropogenic activities (Brookes and Carey, 2011; Paerl and Huisman, 2008). Moreover, 25 

as indicated by Carey et al. (2012) and Huisman et al. (2018), more intense and longer periods of thermal 26 

stratification could potentially specifically favour blooms of toxic cyanobacteria. To better manage and mitigate 27 

the effects of algal blooms, methods to forecast their timing and magnitude are needed. However, the factors 28 
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regulating algal blooms are complex, variable and site-specific, often involving high-order interactions of 29 

environmental factors and biogeochemical processes (Reichwaldt and Ghadouani, 2012; Richardson et al., 2018).  30 

Process Based (PB) models encode our understanding of biogeochemical processes into a framework of numerical 31 

formulations, but these are inevitable simplifications that lead to an incomplete description of complex 32 

biogeochemical interactions (Elliott, 2012).  33 

With the proliferation of lake monitoring data (Marcé et al., 2016), data-driven machine learning (ML) approaches 34 

have been applied, as an alternative to PB models for bloom prediction (Rousso et al., 2020). Previously applied 35 

ML models, including Random Forest (Recknagel et al., 1998), Support Vector Machine (Jimeno-Sáez et al., 36 

2020), and Artificial Neural Network (Xiao et al., 2017; Nelson et al., 2018; Wei et al., 2001), can improve 37 

predictions of the timing and seasonality of algal Chl pattern, apparently by accounting for complexity that is 38 

difficult to encode within the framework of a PB model. However, a downside of data-driven ML models is that 39 

they lack the interpretability and generalization found in the explicit structure of the PB model. In recent years, 40 

process-guided-deep learning (PGDL) model emerged and was applied to water temperature (Jia et al., 2019; 41 

Read et al., 2019) and water quality (Hanson et al., 2020) simulations, which explicitly combine well-defined 42 

physical theories into the training of ML models, enhancing their interpretability. While this approach has 43 

achieved promising results, it is difficult to apply it to phytoplankton dynamics due to numerous nonlinear 44 

interactions within the biogeochemical cycles and the difficulty in defining a measurable processes or mass 45 

balances that can be used as a physical constraint on knowledge-guided decisions. Also, the sparsity of lake water 46 

quality (e.g., nutrients, Chlorophyll concentration) observations can limit the application of ML models in algal 47 

bloom modelling (Rousso et al., 2020). 48 

In this study, we propose a two-step ML approach for predicting algal dynamics that: first estimates lake nutrient 49 

concentrations which often have limited observations and secondly predicts variations in algal Chl using these 50 

pre-generated nutrient concentrations combined with other observed environmental factors that are collected at 51 

higher frequency. We also test a simple hybrid model architecture that by adding hydrodynamic features derived 52 

from the PB model into the training features of the two-step ML approach, allowing us to include additional 53 

information describing physical lake processes expected to affect variations in algal growth and succession in the 54 

machine learning prediction.  55 

We applied the above workflows to predict changing Chl concentration, as a proxy for the occurrence of algal 56 

blooms, via Gradient Boost Regressor (GBR) and Long Short-term Memory network (LSTM). Two shuffling 57 

year tests were conducted. One assessed the uncertainty of ML models in predicting Chl during the same two-58 
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year period and the other evaluated the sensitivity of ML accuracy to various training/testing year combinations 59 

and lake nutrient sampling intervals. Model performance and potential applications in algal bloom forecasting are 60 

discussed.  61 

2 Methods 62 

2.1 Study site 63 

The study site, Lake Erken, is a mesotrophic lake located in east-central Sweden, that has a surface area of 24 64 

km2, a maximum depth of 21 m and an average retention time of 7 years. The lake is dimictic with seasonal 65 

stratification commonly beginning in May-June and ending in August-September. The onset of ice cover usually 66 

begins in December-February and the loss of ice occurs in Mar-April (Persson and Jones, 2008). Located near the 67 

Baltic coast, Lake Erken is wind exposed, and susceptible to periodic wind-induced turbulent mixing. 68 

Changes in algal Chl in Lake Erken have a typical seasonal pattern, with spring and summer peaks in concentration 69 

(Pettersson et al., 2003). Spring blooms are dominated by dinoflagellates and diatoms (Pettersson, 1985), and 70 

initiated by overwinter species from the last autumn (Yang et al., 2016). Cyanobacteria dominate summer peaks 71 

in Chl, given that they can optimize their vertical position in regarding to nutrients and light (Paerl, 1988; Pierson 72 

et al., 1992). 73 

 74 

Figure 1. Map of Lake Erken. The locations of the monitoring systems are shown. 75 

2.2 Data 76 

Lake Erken has a long running automated monitoring program that provides hourly meteorological data, water 77 

temperature profiles between 0.5 and 15 m at 0.5 m intervals and the flow from the inflow and outflow (Fig.1). A 78 

manual sampling program collects samples during ice-free time at 5-7 days intervals for all major nutrient 79 

concentrations (e.g., NOX, NH4, PO4, Total P, Si, etc.), dissolved oxygen (O2), and Chl concentration. The timing 80 

of the onset and loss of ice cover are also monitored yearly by the lab. More detailed information on the sampling 81 

program is in Supporting Information (See Text S1) and Moras et al. (2019). 82 
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2.3 Modelling Methods 83 

2.3.1 Process-based (PB) lake model 84 

In this study, a PB hydrodynamic lake model, GOTM (General Ocean Turbulence Model) (Burchard et al., 1999), 85 

was used to generate water temperature profiles, and other hydrodynamic metrics. GOTM also served as the 86 

foundation of water quality simulations made with the SELMAPROTBAS model (Mesman et al., 2022) that is 87 

coupled to GOTM through the Framework for Aquatic Biogeochemical Models FABM (Bruggeman and Bolding, 88 

2014).  89 

2.3.2 Data-driven machine learning (ML) models 90 

Tree models have been widely applied in modelling phytoplankton dynamics in freshwater systems (Harris and 91 

Graham, 2017; Fornarelli et al., 2013; Rousso et al., 2020). Gradient Boosting Regressor (GBR) is one of these 92 

tree models, iteratively generating an ensemble of estimator trees with each tree improving upon the performance 93 

of the previous. The details about GBR model can be found in Friedman (2001). The hyperparameters in GBR 94 

are optimized via RandomizedSearchCV function within Scikit-Learn library. The loss function of model is chosen 95 

as ‘huber’, which is a combination of the squared error and absolute error of regression. Since the target variable 96 

in our research Chl concentration has peak values during algal blooms which could be regarded as outliers, the 97 

‘huber’ loss function is more robust and gives greater weight to peak values than the mean squared error function.  98 

Long short-term memory (LSTM) network is part of a class of deep learning architectures, called recurrent neural 99 

network (RNN), built for sequential and timeseries modelling (Hochreiter and Schmidhuber, 1997). The core 100 

concepts of LSTM are the cell and hidden states, and its three gates (input gate, forget gate, and output gate; See 101 

Fig. S2). Essentially, the LSTM model defines a transition relationship for a hidden representation through a 102 

LSTM cell which combines the input features at each time step with the inherited information from previous time 103 

steps. This architecture is suitable for extracting information from sequential data (Rahmani et al., 2020; Read et 104 

al., 2019). The hyperparameter settings in both ML models can be found in Supporting Information (See Text 105 

S2). 106 

Both ML models are built in Python using the Scikit-Learn (https://scikit-learn.org/stable/, last access: September, 107 

2022) and TensorFlow (https://www.tensorflow.org/, last access: September, 2022) libraries.  108 

2.4 Design of predictive workflows and shuffling year data sparsity tests 109 

In this study, we tested three workflows using a dataset split for training (years 2004-2016) and testing (years 110 

2017-2020). In all three workflows, a 5-fold cross-validation using the training dataset was used to optimize the 111 

https://scikit-learn.org/stable/
https://www.tensorflow.org/
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hyperparameters in the ML models. Workflow 1 directly predicts Chl concentration based on available 112 

environmental observations (Table 1). The training and testing datasets were limited by the frequency of lake 113 

nutrient observations which resulted in 5-7 day gaps between data points. The time step of LSTM was set to 1, 114 

that is, the environmental factors on the target date and previous observation date, which may be 5-7 days ago, 115 

were used to train the model and make predictions.  116 

In workflow 2 and 3, a two-step approach was applied (Table 1). Daily measurements of physical factors were 117 

used to pre-generate daily variations in lake nutrients via separate ML models, and the ML models were trained 118 

at a daily time step using the measured environmental factors and pre-generated nutrient concentrations. The time 119 

step of LSTM was then set to 7 days. 120 

In workflow 3, three hydrodynamic features, i.e., mixing layer depth (ze), Wedderburn number (Wn), and the 121 

seasonal thermocline depth (thermD), derived from the GOTM model were regarded as daily training features in 122 

the two-step ML approach. The definitions and calculations of these features are explained in SI (2.5 Feature 123 

selection and processing for ML models, Text S3)  124 

Following the two-step approach and using workflow 3, we set up two tests. (1) To assess the uncertainty induced 125 

by variations in the data used to train the ML models, we shuffled the training years, randomly taking 13 years 126 

out of 2004-2018 dataset 30 times, and tested the model predictions of Chl during 2019-2020. And, (2) to test if 127 

the workflow could be used for other water systems which may have less frequent lake nutrient monitoring data, 128 

we conducted a data sparsity test that evaluated the sensitivity of models to the lake nutrient and Chl sampling 129 

interval. For this test the lake nutrient and Chl concentration observations in training dataset was down-sampled 130 

to a 7-day, 14-day, 21- day, 28-day, and 35-day sampling interval. Then for each sampling interval using the 2004-131 

2020 dataset, Chl was predicted for different consecutive 4-year periods when the ML models were trained by the 132 

remaining 13 years of data. Data shuffling was conducted 13 times so that every 4-year period in our dataset was 133 

tested. 134 

Table 1 List of training features and target variables in each workflow. Blue indicates training features, red 135 

indicates target variables, purple indicates the variables are the target variables in step 1 used to produce daily a 136 

training feature for use in step 2. The order of nutrient model sequence is from the top to bottom based on its 137 

position in the table (NOx to Si). 138 

variables Sample interval workflow 

1 

workflow 2 workflow 3 

Step 1 Step 2 Step 1 Step 2 

Inflow Daily      

Meteorological data (Air 

temperature, wind speed, 

shortwave radiation, precipitation, 

humidity, cloud cover) 

Daily      

∆T Daily      
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Ice duration Daily      

Days from ice-off date Daily      

ze Daily      

Wn Daily      

thermD Daily      

NOx 1-2 weeks      

O2 1-2 weeks      

PO4 1-2 weeks      

Total P 1-2 weeks      

NH4 1-2 weeks      

Si 1-2 weeks      

Chl 1-2 weeks      

 139 

2.5 Feature selection and processing for ML models 140 

The feature selection process is based on some a priori knowledge of the underlying phenomena related to algal 141 

blooms. All workflows made use of the daily automated monitoring data. In addition, the temperature difference 142 

(∆T) between surface water (averaged over the upper 3 m) and bottom water (15 m) was also used to represent 143 

the thermal structure of the lake., and the duration of ice cover in the previous winter, and the number of days 144 

from ice-off date were used.  145 

In workflow 2 and 3 nutrients are predicted sequentially, with each pre-generated nutrient predictions included in 146 

the training data of the next nutrient prediction (Table 1). Workflow 3 added ze, computed using the GOTM 147 

simulated vertical eddy diffusivity (Kz) profiles, thermD, estimated using Lake Analyzer (Read et al., 2011) based 148 

on GOTM simulated temperature profile, and Wn, a dimensionless parameter measuring the balance between wind 149 

stress and the pressure gradient resulting from the slope of the interface (See Text S3, SI), as additional daily 150 

training features. 151 

2.6 Evaluating metrics 152 

Model performance was evaluated by comparing the simulated and measured Chl concentrations, and by 153 

calculating the mean absolute error (MAE), root means square error (RMSE), and correlation coefficient (R2). To 154 

evaluate the accuracy of the model in detecting the onset of an algal bloom, we calculated a confusion matrix in 155 

workflows 2 and 3, where the observations were linearly interpolated to daily values, and predicted daily Chl 156 

concentration were smoothed with a 7-day rolling mean. Using these data, the onset of a bloom was categorized 157 

as occurring when the daily change of Chl (ΔChl) exceeded a threshold, 0.35 mg m-3 day-1. This works well in 158 

Lake Erken where Chl concentrations are frequently monitored (near weekly), and the linear interpolation can be 159 

expected to be reasonably representative of the Chl concentrations between measured samples. Considering the 160 

randomization in the ML models, we also add a 3-day window on the bloom onset prediction, that is, we 161 
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considered the prediction of a bloom valid if the measured data suggested a bloom the day before or after the 162 

simulated onset. We used the True Positive Rate (TPR), False Positive Rate (FPR), and modified accuracy (Kappa) 163 

which considers the possibility of the agreement occurring by chance (McHugh, 2012), to identify the potential 164 

of ML models to correctly capture the algal bloom onset (See Table S1, SI). A model with 100% TPR, 0% FPR, 165 

and 100% Kappa would constitute a perfect fit.  166 

3 Results 167 

3.1 Workflow 1: Direct prediction based on observations  168 

In workflow 1, both GBR and LSTM clearly reproduced spring and summer blooms (Fig. 2a) but underestimated 169 

the intensity of blooms (Fig. 2a, b). Neither ML model captured the extraordinarily high Chl (~15-30 mg m-3) in 170 

the summer of 2019. Although the abnormal summer bloom in 2019 could contribute to the higher RMSE and 171 

MAE in the testing dataset than the mean values in the training dataset, the cross-validation on the training dataset 172 

(See Table S2, SI) shows what appears possibly to be overfitting issue in both models. The achieved accuracy of 173 

models is attributed to the daily availability of physical inputs, and the fact that in Lake Erken water samples are 174 

collected frequently at 5-7 days intervals. Workflow 1 may be most valuable in reconstructing previous variations 175 

in algal Chl, filling the gaps between measured Chl observations and feature importance ranking (See Fig. S4, 176 

SI). But when using this workflow, future forecasts will be limited by the absence of future nutrient data. 177 
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 178 

Figure 2. Timeseries of observed and predicted Chl from GBR and LSTM models in (a) workflow 1 and (c) 179 

workflow 3, and the corresponding scatter plots of observations vs ML predictions of Chl in workflow 1 and 180 

workflow 3 are shown in panels (b) and (d), with the black and blue dots/lines representing the predictions from 181 

GBR and LSTM, respectively. Panel (e) shows the observed and predicted algal bloom onsets in 2017-2020 using 182 

the same color coding as the previous panels. Results from the PB model simulation in Mesman et al. (2022) are 183 

also shown in (c) and (e). 184 

3.2 Workflow 2: Two-step ML models based on pre-generated daily nutrients and observed physical 185 

factors 186 

As in workflow 1, both ML models in workflow 2 had poor fit in the summer of 2019 and suffered from overfitting 187 

leading to higher MAE, RMSE, and lower R2 in testing datasets than training datasets (See SI, Table S2).  188 

Overall, both GBR and LSTM showed slightly higher MAE (4.22 mg m-3 vs. 3.87 mg m-3) and RMSE (6.27 mg 189 

m-3 vs. 6.00 mg m-3) when compared to workflow 1 (Table 2). But they also showed improved performance in 190 

terms of capturing the peak values of Chl during spring blooms (Fig. 2, Fig. S5, SI). Both workflows outperformed 191 

the SELMAPROTBAS PB model in simulating concentrations of lake nutrients (See Fig. S6, SI). The ML models 192 

were more accurate in predicting the low values of NOX and peak values of PO4 and Total P. However, both ML 193 
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models and the PB model failed in predicting the extremely high values of measured lake nutrients, such as the 194 

autumn peak of NH4 in 2017 (Fig. S6e) and the spring peak of O2 in 2018 (Fig. S6c), Thus, higher workflow 2 195 

MAE and RMSE (Table 2) are presumably due to the inaccuracies in the pre-generated nutrient training data, but 196 

the improved daily predictions that better capture the bloom events, overshadow these flaws. 197 

Table 2 Comparisons of model performance during the testing period based on RMSE, MAE, and R2. The unit of 198 

Chl is mg m-3. In bold are the best fits of each statistical metric.  199 

Model PB ML-workflow 1 ML-workflow 2 ML-workflow 3 

GBR LSTM GBR LSTM GBR LSTM 

RMSE 7.18 5.77 5.64 6.27 6.00 5.94 5.81 

MAE 4.77 3.55 3.58 4.22 3.87 3.99 3.71 

R2 -0.25 0.13 0.20 0.05 0.13 0.14 0.18 

 200 

3.3 Workflow 3: based on workflow 2, and including hydrodynamic training features derived from the 201 

GOTM model. 202 

Including hydrodynamic training information in workflow 3 did not significantly improve in lake nutrient 203 

predictions compared to workflow 2 (See Fig. S6), and when using workflow 3 both ML models showed 204 

comparable performance in Chl predictions compared to workflow 1. However, the predictions of the spring 205 

bloom in all years improved compared to workflows 1 and 2, in terms of the magnitude and timing of the spring 206 

bloom (Fig. 2e). This was the case in 2019-2020 (Fig. 2a) which was an abnormally warm winter with only 5 days 207 

ice cover, and had an unusually early spring algal bloom. Both workflow 2 and 3 did not capture the extremely 208 

intensive bloom (with peak values close to 30 mg m-3) in summer of 2019, and neither did the PB model.  209 

Furthermore, adding hydrodynamic features derived from PB model improved predictions of the onset of algal 210 

blooms (Fig. 2e and 4), with the overall TPR increasing by 15 % and 5 %, FPR increasing around 5% and 3 % in 211 

GBR and LSTM models, respectively. Compared with the PB model which showed lower TPR (15%) and FPR 212 

(6%), ML models are more likely to predict algal bloom at the correct time. However, the concomitant higher 213 

FPRs indicating an incorrect warning of algal bloom is also more likely to occur in the ML models, since the PB 214 

model is more like to miss the bloom entirely. The Kappa values of both ML models and the PB model are close 215 

to 80%, showing that all models simulated the entire period (blooms and the periods between blooms) to a 216 

moderate-strong level (McHugh, 2012).  217 
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 218 

Figure 3. TPR, FPR, Kappa of GBR and LSTM models in workflow 2, 3 and the PB model. 219 

3.4 Effects of shuffling training years on 2019-2020 predictions 220 

The results presented so far are based on a typical strategy of training ML models for a historical period in this 221 

case 2004-2016 and then accessing model performance in a second period between 2017-2020. The accuracies of 222 

the model predictions were to some extent related to the range and variability in the training data. To evaluate the 223 

importance of this we randomly removed two years from a 2004-2018 training dataset, and made 30 different 224 

predictions of Chl during 2019-2020 when the models had difficulties predicting spring and summer blooms (Fig 225 

5). When trained with the various shuffled combinations, both ML models were capable of reproducing the 226 
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seasonal variations in algal Chl with a 4.5 % and 5.8 % coefficient of variation (CV) in MAE, and a 24.0 % and 227 

16.4 % CV in TPR of GBR and LSTM, respectively (See Table S3, SI). This provides an indication of the 228 

uncertainty that may arise as a consequence of differences in the training datasets used for in our workflows. And, 229 

it also shows that even a relatively long training period of 13 years can not totally capture the system behaviour 230 

in such a way as to lead to nearly similar bloom predictions. 231 

Although none of the model runs captured the intensive summer bloom in 2019, the spring bloom in both years 232 

was well represented, especially by LSTM, in terms of timing and magnitude.  233 

 234 

Figure 4. (a) Timeseries of observed (red stars) and predicted Chl from GBR (black) and LSTM (blue) models in 235 

the shuffling training year test. The shades represent the range between minimum and maximum prediction, and 236 

the solid lines represent the median prediction. (b) shows the boxplot of TPR, FRP, and Kappa, and (c) shows 237 

boxplot of MAE and RMSE of both models in the shuffling training year test.   238 

 239 

Despite comparable RMSE and MAE in LSTM and GBR (Fig. 4c), both higher TPRs (with median of 60%) and 240 

FRPs (with median of 18%) in LSTM indicate that the LSTM was more aggressive in making algal bloom 241 

predictions. The GBR model’s apparent advantage in FPRs (with median 10%) is largely the result of it making 242 

a lower number of bloom predictions since the low concentrations between spring and summer blooms in 2020 243 

was not well represented (Fig. 4b).  244 

3.5 Shuffling years data sparsity test  245 

To examine the possible use of workflow 3 when data are less frequently available, lake nutrient and Chl data 246 

were down-sampled so that the effects of sampling frequency on model predictions could be evaluated. Each 247 

down-sampled dataset was also rearranged into 13 different 13-year training periods and 4-year testing periods. 248 

The variability in predictions provided a measure of model performance and uncertainty. Fig. 5 shows the 249 

uncertainty in model predictions as a consequence of the chosen sampling intervals.  250 
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The MAEs and RMSEs of both GBR and LSTM models tended to increase with the longer sample intervals. The 251 

median MAE was always slightly higher for the LSTM model except when trained with original dataset (Fig. 5a). 252 

While our initial evaluation of TPR using 2017-2020 as the testing period and 2004-2016 as the training period 253 

suggested the LSTM model was more accurate in turns of detection of algal bloom onsets (Fig. 3), Fig. 5c showed 254 

the median TPR of GBR model calculated by the shuffling year test was over 50%, higher than that found when 255 

using the original testing and training periods. This can be explained by the fact that the 2017-2020 testing  period 256 

as in Fig. 3 and shown as large points in Fig. 5 was unusually difficult for GBR to simulate. Consequently, even 257 

though the GBR model usually performs better in the shuffled data test in Fig. 5,  Fig. 3, which shows the results 258 

of 2017-2020 testing period, presented the opposite result. This illustrates the importance of the sequence of 259 

training and testing years for evaluating model performance.  260 

For the first three sampling intervals the GBR model clearly had better TPR values than the LSTM model. The 261 

median TPRs of GBR model started to drop below 30% once the sample interval reached 21 days. For LSTM, 262 

medium TPRs remained lower than 30%, for all sampling intervals but also showed a much wider range of 263 

variability (Table S4) dependent on the training and tested datasets used. In general, both models preformed best 264 

at the original and 7-day sampling interval, but then showed slightly worse performance that was consistent up to 265 

a sample interval of 21 days. In terms of the errors evaluated over the entire 4-year testing period (Fig. 5a, b) the 266 

GBR model had lower errors and therefore, better predicted the seasonal variations of Chl concentration. The 267 

timeseries comparison of observed and predicted Chl from this shuffling year data sparsity test can be found in SI 268 

(Fig. S7-9). 269 
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 270 

Figure 5. Comparisons of (a) MAE, (b) RMSE, and (c) TPR between GBR and LSTM during the testing period 271 

created under various sample intervals. Circles along the box show the result from the testing period of all shuffled 272 

training/testing year combinations and the bigger circles represent 2004-2016 training and 2017-2020 testing years 273 

combination as was used in Fig. 2.  274 

4 Discussion 275 

4.1 Performance of ML models 276 

In three workflows, the ML models successfully reproduced the Chl seasonal patterns, capturing the spring and 277 

summer bloom events, with lower averaged RMSEs and MAEs than a PB model simulation that was previously 278 

calibrated for Lake Erken. Workflow 1 which predicted Chl based on all available environmental factors including 279 

lake nutrient observations showed that both ML models can reproduce the seasonal dynamics of algal Chl with 280 
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promising accuracy (MAE = 3.55 and 3.58 mg m-3, RMSE = 5.77 and 5.64 mg m-3 and R2 = 0.13 and 0.20, for 281 

GBR and LSTM, respectively) via the direct input of available environmental observations. These ML models 282 

can be applied to reconstruct past patterns of algal Chl, fill the gaps between measured Chl observations, and 283 

interpret the mechanisms that drive phytoplankton dynamics. Workflows 2 and 3 adopted a two-step approach, 284 

first using separate ML models to estimating daily changes in lake nutrient concentration, and in Workflow 3 also 285 

including PB model derived physical factors as training features of the algal ML model. These two workflows 286 

allowed daily predictions of changes in algal Chl concentration using both observations and pre-generated lake 287 

nutrient concentrations at a consistent daily time step, and at only a minor decrease in performance compared to 288 

workflow 1, workflow 2 and 3 demonstrated a wider potential range of applications (e.g., interpolation, reconstruct 289 

historical data, algal bloom forecast) via making daily forecasts with less-than-daily measured nutrient 290 

observations. 291 

The one clear failure of both the ML and PB based model predictions was during July-August 2019, Chl 292 

concentrations in integrated samples collected between the surface and 6-12 m exceeded 20 mg m-3 over a 5-week 293 

period. Neither the PB model nor ML models captured this unusually persistent bloom (Fig. 2, Fig. S3, SI). At 294 

this time the phytoplankton were dominated by the cyanobacteria Gloeotrichia and Anabaena, that form a resting 295 

akinete life stage at the end of their yearly bloom, which can initiate the following year’s bloom as they are 296 

transformed to vegetative cells that migrate from the sediment to the upper water column. We hypothesize that 297 

the large summer bloom in 2019 was the result of unusually large recruitment of akinetes in this year. (Karlsson-298 

Elfgren et al., 2005; Karlsson-Elfgren et al., 2004). The life cycle of cyanobacteria is not a process included in the 299 

PB model (but see Hense and Beckmann (2006) and Jöhnk et al. (2011)), so increased recruitment of akinetes 300 

could explain the underestimation of the 2019 summer bloom. Even the LSTM algorithms could not account for 301 

previous conditions so far back in time as to affect the formation and deposition of cyanobacteria akinetes (This 302 

may require the memory of last ice-free season). The consequent poor fit of summer bloom in 2019 partially lead 303 

to the higher MAE and RMSE in the testing dataset compared to the training dataset in all three workflows, in both 304 

GBR and LSTM models. 305 

Warm winters can initiate a chain of events, i.e., shortening the ice cover duration, extending spring circulation, 306 

affected nutrients availability, and an earlier spring bloom (Adrian et al., 2006; Yang et al., 2016). According to 307 

the ice record in Lake Erken (See Fig. S1, SI), in 2020, the lake was covered by very thin ice for only 5 days, 308 

which is the shortest duration since observations were first recorded in 1954. The spring bloom in 2020 did occur 309 
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earlier than other years (See Fig. S3, SI), and both ML models which considered the timing of lake ice show fairly 310 

good performance in predicting the timing and magnitude of this abnormally early spring bloom (Fig. 2, 5)  311 

4.1.1 Performance of Hybrid PB ML models 312 

One dimensional PB hydrodynamic models can accurately simulate both water temperature profiles, and other 313 

hydrodynamic features in Lake Erken using the same forcing data that are commonly input to ML models. The 314 

hybrid model structure tested here provides a richer set of input data leading to more accurate ML predictions of 315 

algal Chl at little additional computational cost or data requirements. Using data from the hydrothermal PB model 316 

allowed the seasonal deepening of the thermocline, variations in the surface mixing layer depth, and upwelling 317 

events, represented by Wn, to be encoded into the ML algorithms. These factors can affect the underwater light 318 

climate, the internal loading of phosphorus and the transport of resting cyanobacteria colonies from the 319 

hypolimnion into the epilimnion favouring summer blooms of cyanobacteria (Pierson et al., 1992; Pettersson, 320 

1998). The inclusion of these factors did increase the accuracy of the ML models, especially in the case of unusual 321 

environmental conditions (e.g. spring of 2020, Fig. 2, 5) that did not frequently occur in the remaining 322 

meteorological, hydrological and biogeochemical training data.  323 

4.1.2 Prediction of bloom timing 324 

For the purposes of water management, it may be most important to first predict the potential occurrence of a 325 

bloom, and then once underway improve predictions of its magnitude. The best model performance in predicting 326 

the timing of algal blooms, was obtained after adding hydrodynamic features derived from a PB model in 327 

workflow 3, with TPR above 45% in detecting the onset of algal bloom during 2017-2020 and a modified accuracy 328 

(Kappa) around 80 % indicated a moderate – strong level of prediction.  329 

Based on our shuffling year tests of bloom timing, the GBR model showed relatively higher median TPRs than 330 

LSTM model for sample intervals less than one month. However, in some training and testing year combinations, 331 

TPRs are close to 0 % (Fig. 5), and CVs of the TPRs are highly variable, even at the original sample interval, 332 

being over 30% for GBR and over 60% for LSTM, indicating that the correct detection of algal blooms in both 333 

models are highly dependent on the years used to train the models. Thus, while the ML models can be better than 334 

the PB models at predicting the onset of algal blooms, they still may not be good enough for operational 335 

forecasting. The resulting variability provided a more accurate estimate of the model performance at each down-336 

sampled data interval and showed that increasing sample interval led to reduced performance for both ML models, 337 

in terms of MAE, RMSE, and the CV of TPR. These tests also highlighted that the performance of both ML models, 338 

especially LSTM, varied with the sampled history of events in the training period for evaluating a specific pattern 339 
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of change in the testing period. We suggest that testing strategies similar to the shuffle methods used in this study 340 

are needed to accurately evaluate the expected accuracy of ML models when applied to any given site. The 341 

estimated uncertainty in shuffling training year tests (Fig. 4) and shuffling training/testing year tests (Fig. 5) can 342 

be used to better represent the uncertainty of ML derived forecasts.  343 

4.2 Future applications in short-term forecasts and water management  344 

To reach the goal of incorporating ML models into operational forecasts either for short-term management support 345 

or longer-term evaluation and planning, two steps must occur. First the ML model must be developed, trained and 346 

evaluated on the water body of interest due to the unique physical characteristics and water quality dynamics in 347 

different systems. Secondly, future forcing data for the model must be obtained and integrated into a workflow 348 

that makes the future predications. In regards to the second point, a lack of frequent water monitoring (Stanley et 349 

al., 2019) is a major deterrence to applying ML models to many lakes. The data sparsity test (Fig. 5) showed that, 350 

at least for Lake Erken, the ML models can still detect the seasonal algal dynamics even for sample intervals 351 

approaching one month (Fig. S7-9). If this result holds for other lakes, the use of the two-step ML workflow could 352 

offer a method of forecasting seasonal variations in algal Chl even in lakes with relatively infrequent nutrient 353 

monitoring but higher frequency meteorological and hydrological data.  354 

The hybrid PB/ML models have the potential to provide reasonably accurate and timely short-term algal bloom 355 

forecasts, working as part of an early-warning systems for the water resource management (Baracchini et al., 356 

2020), and clearly have the ability to predict border seasonal variations in algal Chl concentration. However, since 357 

a large amount of water temperature and water quality samples are required for ML training, and since our results 358 

apply to only one well-studied lake, obtaining more datasets to test and evaluate the workflows developed here 359 

are needed. Monitoring networks (e.g., Global Lake Ecological Observatory Network [GLEON, 360 

https://gleon.org/]), could provide the data to allow more extensive testing and application of hybrid PB/ML 361 

models, and we are presently working in the GLEON network to test the methods developed in this paper on many 362 

other lakes. 363 

5 Code availability 364 

Model version 1.0 has been archived in Zenodo under DOI:10.5281/zenodo.7149563, and is available at 365 

https://github.com/Shuqi-Lin/Erken_Algal_Bloom_Machine_Learning_Model.git. 366 

https://gleon.org/
https://zenodo.org/record/7149563
https://github.com/Shuqi-Lin/Erken_Algal_Bloom_Machine_Learning_Model.git
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6 Data availability 367 

All data from this study have been archived with the code are also archived in Zenodo under same 368 

DOI:10.5281/zenodo.7149563  in the ‘training data’ folder. Here we also provide the model forcing data in the 369 

format used in the machine learning models. Data collected by the Erken laboratory, in the archived format used 370 

by the Swedish Infrastructure for Ecosystem Science (SITES) is available from the SITES data archive 371 

https://data.fieldsites.se/portal/ 372 
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