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The model evaluation paper of Naz et al. describes a version of the established ParFlow-CLM 
model applied over Europe and evaluated its hydrological components. 
 
ParFlow-CLM is an established modeling tool, and a publication of a model evaluation paper 
that builds a foundation for future scientific use is certainly something I would like to support. 
Unfortunately, in the current stage, the manuscript does not deliver on this goal and seems to 
purposely hide model shortcomings. In the current version, I can only suggest significant 
revisions. 
We would like to thank the anonymous reviewer for his/her comments and constructive 
suggestions, which we believe resulted in an improved manuscript. We replied to your 
comments in the blue text below. Revisions in the revised manuscript are indicated with the 
bold and italic text. 
 
We certainly wrote the manuscript with that purpose in mind - to provide a foundation for 
future scientific use, particularly for use in: 
1. Studies on the impact of climate change on water resources 
2. Coupled Earth system model simulations 
 
Both cases above require large scale integrated hydrology to capture macro scale groundwater 
dynamics, groundwater-surface water interactions (Condon et al., 2021). Therefore we have 
strengthened the Introduction section to emphasize the need for large scale hydrological 
modeling in these use cases and what the trade offs could be when comparing catchment scale 
versus continental scale model implementations.  
 
Parflow-CLM (i.e., ParFlow hydrologic model coupled here to the Common Land Model) is 
an established modeling tool, however continental scale modeling at high resolution (<5km) 
is challenging both computationally (3D finite volume implementation) and also in terms of 
data sparsity in regions (e.g. geological information, soil classes). There are few studies which 
have implemented a high resolution, fully three dimensional coupled land surface - 
groundwater model continentally, most notably there have been similar approaches over the 
CONUS domain (Maxwell et al., 2015). We have strengthened this point in the Introduction 
and Discussion sections.   
 
I would like to focus on two aspects that are currently flawed. Firstly, the paper's motivation 
could be much clearer from the beginning. In the light of the many publications that already 
exist on ParFlow and CLM, what is the added value of this model evaluation paper? What is 
the model's purpose within the range of continental and global models? What questions can it 
help to answer? Outlining this much more clearly from the beginning will be helpful for the 
scientific community in making this publication a helpful reference for future research. 
We appreciate your constructive suggestions. In the revised manuscript, we have made the 
objectives and research goals clear by expanding the Introduction and Discussion sections to 
emphasize and clarify the following points: 
 

1. The aim of this study is to implement and evaluate the performance of ParFlow-CLM 
model, which is a physically-based integrated hydrological model that simultaneously 
solves surface and subsurface processes with lateral-groundwater flow. The lateral 
groundwater flow is a key model feature - many modeling systems implemented at 
continental or global scales are one dimensional and contain a parameterised version 
of groundwater flow (Felfelani et al., 2020; Wada et al., 2016; Zeng et al., 2018; de 



Graaf et al., 2015). We have strengthened this point in the Introduction and Discussion 
sections. At finer resolution (< 5 km), physically-based integrated hydrological 
models can better represent groundwater-surface water interactions, and 
heterogeneities in the representation of the water and energy cycles, because of the  
higher resolution surface data used. In addition, owing to ParFlow’s 3D flow 
implementation, this model setup provides a more accurate representation of lateral 
transport of surface and subsurface water movements driven by topographic slopes 
(Bierkens et al., 2015). While we agree that several studies exist on ParFlow-CLM, 
they mostly concentrate on the CONUS region. As the CONUS domain consists of a 
single country, the CONUS region has reasonable coverage in terms of observational 
network and geological information. Unfortunately given the European (EU) model 
domain consists of many individual countries, observations across regions are not all 
of the same quality or coverage. We have emphasized this point in the discussion, and 
highlighted that this could be a contributing factor for poor model performance in 
some regions of the EU domain.   
The novelty of this study lies in the fact that it is the first study to implement ParFlow-
CLM over the EU-CORDEX domain at high resolution with lateral surface and 
groundwater flow representation. In addition, a comprehensive model evaluation is 
given for multiple variables using both in-situ and remote sensing observations, in 
comparison to similar European studies such as Bouaziz et al., (2021);Rakovec et al., 
(2016); Zink et al., (2017). Implementation of this model outside CONUS is a step 
forward towards “Hyperresolution global land surface modeling” which is considered 
a “grand challenge in hydrology” as described by Wood et al., (2011) and Bierkens et 
al., (2015). We have strengthened this point in the Introduction. 
 

2. Explicitly incorporating hydrological processes that are not included in the existing 
land surface models (LSMs) can also benefit the land surface modeling community for 
more improved representation of hydrological processes (Clark et al., 2015) such as 
the lateral transport of surface and subsurface processes across landscapes that are 
often ignored or represented in LSMs in a simplified way. Many recent studies 
showed the importance of representing the lateral transport of subsurface water and/or 
interaction of groundwater with land-atmosphere water fluxes (e.g. Maxwell and 
Kollet, 2008; Miguez-Macho et al., 2007; Xie et al., 2012; Zeng et al., 2018). These 
studies suggested that explicitly simulating these processes can have a significant 
effect on the energy fluxes and flux partitioning (Maxwell and Condon, 2016). It can 
also affect the spatial redistribution of soil moisture through infiltration during lateral 
movement of water (Ji et al., 2017). Despite this important work, the effect of these 
important processes on water and energy states and fluxes is still not fully understood, 
especially over continental scales and comparison across different landscapes is 
needed. While representations of these important processes continue to improve in 
continental to global scale hydrological models, implementation and rigorous 
evaluation of these models over large areas is an important step and can be used to 
guide future modeling efforts at larger spatial scales and higher resolutions. 

 
Following changes have been added at lines# 45 - 60 in the revised manuscript as follows: 
“A physics-based integrated hydrological model, on the other hand, which can 
simultaneously solve surface and subsurface systems with lateral-groundwater flow may 
provide better prediction of both local and global water resources (Beven and Cloke, 2012). 
Many recent studies have shown the impor- tance of representing the lateral transport of 
subsurface water and/or interaction of groundwater with land-atmosphere water fluxes 
(e.g. Barlage et al., 2021; Keune et al., 2016; Maxwell and Kollet, 2008; Miguez-Macho 



and Fan, 2012; Miguez-Macho et al., 2007; Xie et al., 2012; Zeng et al., 2018). These 
studies suggested that explicitly simulating these processes can have a significant effect on 
the accuracy of surface energy fluxes (Keune et al., 2016) and flux partitioning (Maxwell 
and Condon, 2016). It can also affect the accuracy of the spatial redistribution of soil 
moisture through infiltration during lateral movement of water (Ji et al., 2017). In addition, 
processes-based integrated hydrologic models can better characterize spatial heterogeneity 
in water and energy states and fluxes when run at high spatial resolution (< 5 km) due to 
the higher resolved surface properties that help in providing a more accurate 
representation of the lateral transports of surface and subsurface water movements driven 
by topographic slopes (Ji et al., 2017; Shrestha et al., 2014; Barlage et al., 2021). Despite 
this important work, the effect of these important processes on water and energy states and 
fluxes is still not fully understood, especially over continental scales and a more 
comprehensive assessment of model performance across different hydroclimates and 
hydrological characteristics is needed.” 
 
and at line # 94   
 
“In this study, we implement ParFlow-CLM model (Kollet and Maxwell, 2008; Kuffour et 
al., 2020), which is a physically-based integrated hydrological model that simultaneously 
solves surface and subsurface processes with lateral-groundwater flow, and assess its 
performance for multiple variables hydroclimates and hydrological characteristics over 
pan-European domain, in order to perform a holistic model evaluation.” 
 
and at line #  100 - 110 
 
“Previously, the ParFlow-CLM model has been employed over the pan-European domain 
at 12 km resolution for the year 2003 within the frame- work of fully integrated soil–
vegetation–atmosphere model (e.g. Keune et al., 2016, 2019; Furusho-Percot et al., 2019; 
Hartick et al., 2021), however, the model performance was not rigorously evaluated for all 
water balance components, given the coarser resolution and the focus on atmosphere-land 
surface-groundwater feedback. Similarly, Parflow-CLM has been implemented over the 
continental US (CONUS) at 1 km resolution (Maxwell et al., 2015; Condon and Maxwell, 
2015, 2017; Maxwell and Condon, 2016), where most recently, O’Neill et al. (2021) 
provided a comprehensive multi-variable evaluation of CONUS implementation across a 
simulation timeframe of 4 years of Parflow-CLM and highlighted the importance of 
evaluating the continental-scale water balance as a whole for a process-based 
understanding of model performance and bias. Implementation of this model outside 
CONUS is a step forward towards “Hyperresolution global land surface modeling” which 
is considered a “grand challenge in hydrology” as described by Wood et al. (2011), 
Bierkens et al. (2015) and Condon et al. (2021).” 
 
 
Secondly, I cannot accept the current evaluation of the groundwater component. The authors 
use groundwater in the title and motivate the model's usefulness with the argument of an 
active groundwater component but provide a not convincing evaluation. I do not expect the 
model to be able to perfectly represent the water table. Still, I think we can only progress if 
we are open about our models' shortcomings and clearly communicate uncertainties. Poor 
model performance is not a reason for not publishing something as long as there is a proper 
discussion on the causes. Currently, the paper is not doing that and uses oversimplified 
evaluation methods to obfuscate the actual model behavior. Furthermore, existing literature 
and models are omitted as well. 



We have addressed reviewer’s concerns by conducting additional analysis of WTD evaluation 
with in-situ observations, including absolute value comparison of WTD using R and PBAIS 
and RMSE statistical metrics. Additionally, we have evaluated total water storage (TWS) with 
GRACE satellite data. Please see more details in response to your comments below. 
 
To strengthen our model evaluation as a whole, we included detailed comparison of our 
results with the PfCONUSv1 implementation described by O'Neill et al. (2021) and discussed 
our results in comparison to other global scale models. Please see more details in response to 
your comments below.  
 
Additional notes: 
 
* While I know that it is difficult to find a repository to host a large amount of data, I employ 
the authors to think about if selected model outputs could be made available in the spirit of 
OpenScience principles! 
 
We agree with your comment and selected model outputs are now available on our public 
repository of t https://datapub.fz-juelich.de/slts/cordex_parflow_clm_3km/. 
 
* Is it really necessary to use the overcomplicated PF-CLM-EU3km as a name? Why not stick 
with ParFlow-CLM in the paper? If it is a very different model, why is that not the name used 
in the title? 
We agree with the reviewer's suggestion. We now replaced “PF-CLM-EU3km” with 
ParFlow-CLM throughout the manuscript. 
 
L. 1: How are these large-scale models useful for water resource management? I see how they 
are helpful for large-scale policy and fostering scientific understanding but are they really 
useful for management? Please also define what high-resolution means in brackets - people 
have very different interpretations about that, and it is changing fast. 
 
Thanks for this comment. We have clarified this point in the manuscript. While we agree that 
catchment scale would be most relevant for the purpose of water management, catchment 
scale models only capture processes contained within the catchment boundary, whereas large-
scale simulation at high-resolution (< 5 km) is necessary to understand changes to water 
resources from macro-scale processes such as high evapotranspiration rates leading to soil 
moisture deficits, resulting, e.g., in mega droughts over large area (for example, the 2018 to 
2020 European drought; Rakovec et., 2022), water storage deficits and flow regime shifts 
(hydrological droughts; Hanel et al., 2018), and widespread flooding (e.g. Western Europe 
floods in 2021; He et al., 2022).  In addition, the influence of  climate variability and climate 
non-stationarity can not be modeled at a catchment scale (Massei et al., 2020).  
 
In the revised manuscript at line # 25 - 35, we reformulated the text to avoid confusion.  
 
“Continental-scale, high-resolution (< 5 km) hydrologic modelling is important to 
understand and predict not only water cycle changes over large scales (Döll et al., 2003), 
but can also offer a better understanding of the spatial distribution of land- atmosphere 
moisture and energy fluxes (Maxwell et al., 2015), including their spatiotemporal 
variability (Schwingshackl et al., 2017). Understanding and predicting changes in water 
cycle processes over larger scales is also necessary to understand changes to water 
resources from macro-scale processes such as high evapotranspiration rates leading to soil 
moisture deficits, resulting, e.g., in mega droughts over large areas (for example, the 2018 



to 2020 European drought; Rakovec et al., 2022), water storage deficits and flow regime 
shifts (hydrological droughts; Hanel et al. (2018)), and at the other end of the spectrum, 
climate change causing an increase in heavy rainfall events, resulting in soil moisture 
surpluses and widespread flooding (e.g. Western Europe floods in 2021; He et al., 2022).” 
 
3: How is the coarse spatial resolution linked to the lateral fluxes and groundwater 
components - isn't that mixing up things? What small scale processes specifically? 
We argue that the issue of model resolution and accurate representation of the surface and 
subsurface processes are interlinked which has been discussed extensively in the literature 
(Beven et al., 2015; Bierkens et al., 2015; Melsen et al., 2016; Wood et al., 2011; Fan, 2015).   
Land surface models often ignore lateral surface and subsurface water movements, also 
because these fine scale processes cannot be resolved realistically at coarse resolution (e.g. 
Clark et al., 2015) - we have made this point in the manuscript. On the other hand, processes-
based integrated hydrologic models can better represent heterogeneity in the representation of 
water and energy states and fluxes when run at high spatial resolution because due to the 
higher resolved surface properties that help in providing a more accurate representation of the 
lateral transports of surface and subsurface water movements driven by topographic slopes (Ji 
et al., 2017; Shrestha et al., 2015) - we have clarified this point in the revised manuscript at 
lines# 45 - 60 as follows: 
 
“A physics-based integrated hydrological model, on the other hand, which can 
simultaneously solve surface and subsurface systems with lateral-groundwater flow may 
provide better prediction of both local and global water resources (Beven and Cloke, 2012). 
Many recent studies have shown the impor- tance of representing the lateral transport of 
subsurface water and/or interaction of groundwater with land-atmosphere water fluxes 
(e.g. Barlage et al., 2021; Keune et al., 2016; Maxwell and Kollet, 2008; Miguez-Macho 
and Fan, 2012; Miguez-Macho et al., 2007; Xie et al., 2012; Zeng et al., 2018). These 
studies suggested that explicitly simulating these processes can have a significant effect on 
the accuracy of surface energy fluxes (Keune et al., 2016) and flux partitioning (Maxwell 
and Condon, 2016). It can also affect the accuracy of the spatial redistribution of soil 
moisture through infiltration during lateral movement of water (Ji et al., 2017). In addition, 
processes-based integrated hydrologic models can better characterize spatial heterogeneity 
in water and energy states and fluxes when run at high spatial resolution (< 5 km) due to 
the higher resolved surface properties that help in providing a more accurate 
representation of the lateral transports of surface and subsurface water movements driven 
by topographic slopes (Ji et al., 2017; Shrestha et al., 2014; Barlage et al., 2021). Despite 
this important work, the effect of these important processes on water and energy states and 
fluxes is still not fully understood, especially over continental scales and a more 
comprehensive assessment of model performance across different hydroclimates and 
hydrological characteristics is needed.” 
 
 
4: what does more complex refer to? Complex in what regard? 
Here complex refers to more complex models such as the integrated land surface hydrological 
models such as Parflow-CLM (e.g., as defined in Kuffour et al. (2020)) that solve three-
dimensional Richard's equation to simulate three-dimensional movement of subsurface water 
in a continuum approach with two-dimensional overland flow whereas most LSMs are one 
dimensional and therefore only solve subsurface water movement vertically and ignore 
surface routing. This is clarified in the revised manuscript at line # 3 as: 
 



“However, many of the existing global to continental scale hydrological models are applied 
at coarse resolution and neglect more complex processes such as lateral surface and 
groundwater flow, thereby not capturing smaller scale hydrologic processes. ” 
  
11: what is PF-CLM-EU3km? It has not been introduced; quantify good agreement 
We now replaced “PF-CLM-EU3km” with ParFlow-CLM throughout the manuscript. 
Originally we tried to distinguish our specific implementation from others, such as 
PfCONUSv1.  
 
17: this is the first-time heterogeneities are mentioned. Is it implied that this is a result of the 
higher spatial resolution? This should be explained 
Thanks for this comment - we overlooked this explanation. We have now explained this in the 
revised manuscript.  
 
Fig. 1 c) WTD in log scale without indicating what red is. Is that deeper than 100 m? How 
deep is it? Why is the WTD so deep near larger rivers? Why so shallow in mountainous 
regions? What is the reasoning here why this is plausible? Is it plausible in the light of the 
performance of other large-scale models? 
Thanks for pointing this out. Red color indicates deeper water table with maximum of 51 m 
depth. The deeper WT near the large rivers is probably due to the fact that large rivers were 
burned into the digital elevation model data in order to hydrologically correct the topographic 
slopes and ensure European river network connectivity. Burning of rivers appears to make the 
valleys more steep, resulting in a deeper WTD near the rivers. We have made this point in the 
manuscript, describing that this was a limitation of the current model setup implementation, 
that owing to the coarse resolution of the digital elevation model (DEM) (3km), topographic 
highs were smoothed and in order to get accurate river connectivity we needed to “burn” or 
imprint the rivers or rather river corridors into the DEM. This limitation is acknowledged in 
the discussion section along with recommendations for improvement. 
Following text has been added to the revised manuscript at lines # 315 - 320: 
 
“For example, we found deeper water table near the large rivers which are probably due to 
the fact that large rivers were burned into the digital elevation model data in order to 
hydrologically correct the topographic slopes and ensure European river network 
connectivity. Burning of rivers appears to make the valleys more steep, resulting in a 
deeper WTD near the rivers. This is a limitation of the current model setup implementation 
which can be improved using more advanced approach for topographic processing for 
integrated hydrologic models (e.g. Conden and Maxwell, 2019). ”  
 
415: I get the problem of inconsistent WTD elevation data. Still, this should be solvable for at 
least some regions in Europe. I feel that the authors feared that the model performance would 
be judged too harshly. Whatever the reason, the solution shown here is not acceptable.  
Furthermore, you can't simply select only the cells that simulate WTD < 10!! This is the range 
almost all models do a good job. This is not advancing our science. This is far from ok. 
 
Thanks for your comment. This has prompted us to further clarifications in our revised 
manuscript. Reported water table depth data across Europe is only poorly quality controlled, 
and inconsistent methods and standards are used for the calculation of the depth (Fan et al., 
2013). Because of these inconsistencies in reporting water table depth data, we compare the 
anomalies. For example, groundwater levels (meter above sea level) data was provided for 
most groundwater monitoring wells (i.e., 2018 grid cells out of 2738 located mostly in 
Germany) but no reference surface elevation information was given. This makes it difficult to 



convert groundwater levels to WTD or to calculate modeled groundwater levels for direct 
comparison of absolute values. We complied however with the reviewer’s suggestion, to 
extend our analysis to show the difference in WTD absolute values for the remaining 720 grid 
cells where WTD data was provided. See our detailed response below.  
We did not deliberately set out to obfuscate the model’s shortcomings. Please note that we 
showed an example of ParFlow-CLM performance in the supplementary material (Figure S11 
and S12) with highest and lowest correlation (R) values across different regions to highlight 
model limitations in different regions.  
To address the reviewer's concern about not including all the data, we conducted our analysis 
using all the available data without any filtering for quality control. However, this has resulted 
in no significant differences, compared to previous results as shown in the updated Fig. 8 in 
the revised manuscript. 

  
Figure 8: (a) Correlation map between in-situ water table depth (WTD) anomalies and 
ParFlow-CLM model using all available data (2738 grid cells). (b) Cumulative 
distribution function (CDF) of correlation coefficient of ParFlow-CLM with observed 
WTD anomalies. The inset in (a) shows a zoom of the Mid-Europe (ME) region. 
 
We would like to acknowledge that the reviewer's suggestions have led to a more 
comprehensive analysis and as a result, has strengthened the revised manuscript. 
 
Please show how much the model deviates from observations. You motivate your paper with 
the statement that representation of groundwater is essential and then skip a proper evaluation 
of your model. 
 
I suspect it will not perform perfectly - no large-scale model currently can, and you are 
providing some reasonable answers by referring to Gleeson et al., 2021, which is good but not 
enough. Please provide a more extensive discussion on how the performance differs from 
other existing research. 



 
To address this comment, we extended our analysis to make a direct comparison between 
model and observations for all those locations (720) where WTD data is provided. In the 
revised manuscript we have added a new Fig. 9, as shown below and following text at line # 
525 - 535:  
“To further evaluate model performance in terms of absolute error in the WTD, we make a 
direct comparison between model and observations for only those grid cells (720) where 
WTD data is provided and excluded all the other locations (i.e. 2018 grid cells) where 
groundwater levels (meter above sea level) data was only provided but no reference surface 
elevation information was given. WTD bias for the 720 locations is shown in Fig. 9. For 
these locations, we found a good agreement between the ParFlow-CLM and observed WTD 
with mean difference of -3.60 m, RMSE of 4.25 m and R value of 0.41. The 25th, 50th and 
75th quantile for simulated minus observed WTD are -2.6 m, -1.37 m and -0.84 m, 
respectively. Negative values in WTD difference indicates more shallower WTD simulated 
by ParFlow-CLM (i.e. positive bias). However, despite this positive bias, the model is able to 
capture the temporal dynamics well with R > 0.5 for more than 50% of locations. Studies by 
O’Neill et al. (2021) and Maxwell and Condon (2016) over CONUS domain also found a 
positive bias in simulated WTD for most well loca- tions, which they found to coincide with 
aquifers which experienced depletion in groundwater through extractions. In Europe, few 
studies also suggest groundwater declining in past two decades partly related to 
groundwater abstractions for agriculture and domestic use, particularly in the western and 
southern European countries (e.g. Xanke and Liesch, 2022), however, in the current study, 
it is difficult to directly attribute the shallow WTD bias to aquifer depletion because of the 
sparse observations.” 
 

 
Figure 9: (a) Difference in observed and ParFlow-simulated WTD at filtered locations (N = 
720), and (b) RMSE values at filtered locations, (c) Spearman correlation (R) values at 
selected locations. Histogram plots show the distribution of (d) simulated minus observed 



WTD and (e) RMSE values. (f) Cumulative distribution function (CDF) of Spearman 
correlation of ParFlow-CLM with observed WTD monthly data. 
 
In addition to this analysis, we included comparison of total water storage (TWS) simulated 
by ParFlow-CLM with GRACE satellite data for the time period of 2003–2006. In the revised 
manuscript, following analysis has been added at line # 490 – 500:  
 
“ To assess model performance in simulating terrestrial water storage variations, we, first, 
compare ParFlow-CLM total water storage (TWS) anomalies against GRACE monthly 
storage anomalies. For the comparison, the total water storage (TWS) anomalies over all 
storage components (i.e. sum of all surface, subsurface, canopy and snow water stores) 
from ParFlow-CLM was first calculated for each pixel and then aggregated over 
PRUDENCE regions. Figure 7 shows the monthly variations in TWS anomaly from both 
model and GRACE dataset over eight PRUDENCE regions. Overall, model represent TWS 
anomaly adequately well and a good agreement is achieved for most regions with 
correlation values ranging from 0.76 - 0.91, with higher values are observed in dry regions 
(i.e. R value of 0.87,0.85 and 0.91 for IP, FR and MD, respectively). A relatively lower R 
can be observed in the northern European regions (i.e. R value of 0.74 and 0.76 for BI and 
SC, respectively). This mismatch could be result of bias in other simulated variables. For 
example, ParFlow-CLM underestimates SM anomaly and overestimates ET in the dry 
regions but overestimates SWE in the snow dominated regions as discussed previously. The 
mismatch in TWS anomalies relative to GRACE data can also be partly attributed to 
uncertainties and errors associated with postprocessing and filtering of coarse resolution 
GRACE dataset. Nevertheless, the model performance for TWS over Europe is consistent 
with findings of other continental-scale hydrologic model studies (e.g., Rakovec et al., 
2016; O’Neill et al., 2021).” 
 

 
Figure 7: Comparison of monthly time series of total water storage anomalies simulated 
by ParFlow-CLM with GRACE dataset over PRUDENCE regions. 
 
To provide more discussion on how our model differs from other existing implementations of 
ParFlow-CLM, we compare our results with the CONUS implementation of ParFlow-CLM 
model (O'Neill et al., 2021) as shown in Table S2 below which is included in the supporting 



materials. As stated previously, the CONUS domain does not suffer the same data sparsity 
issues and because of different domains, resolution and climatic conditions, a direct 
quantitative comparison is not possible. We, however, concluded from this comparison the 
following points which are added in the revised manuscript throughout Section 3 (Results and 
Discussion) and in Section 4 (Conclusions and Summary).  
 
Lines 570 - 595 
“Our results are consistent with a comparable continental-scale study by O’Neill et al. 
(2021) which evaluated water balance components over CONUS domian using ParFlow-
CLM (PfCONUSv1). While a direct quantitative comparison is not possible due to different 
domains, resolution and climatic conditions, we found striking similarities for many 
variables assessed here. For example, for ET, both model implementations showed overall 
good agreement against observations, but overpredicted ET in the dry regions (e.g., south 
west region in CONUS and IP region in Europe) but underpredicted ET in more wetter and 
snow dominated regions (i.e. in the northern and eastern part of the CONUS domain; and 
SC region in Europe). In addition, both model implementations show an underestimation 
of ET in mountainous regions, regardless of which product is used for validation. 
Similarly, For surface soil moisture, both EU-CORDEX and PfCONUSv1 models show 
similar performance with spearman correlation (R) values between 0.17–0.77 and 0.25–
0.77, respectively across different regions. Interestingly, overall both model 
implementations show an underestimation of surface SM in the arid to semi-arid and 
overestimation in the wetter regions. In terms of storage, both models show good agreement 
for seasonal TWS anomalies relative to GRACE satellite data, but underpredicted water 
storage in most regions. For WTD comparison, both model implementations simulated 
shallower water table depths when compared with groundwater wells data, which could be 
attributed to the fact that ParFlow-CLM model does not account for deeper aquifer storage 
(i.e. > 51m) and anthropogenic impacts such as groundwater withdrawals which may lead 
to overprediction of water table depth in the regions experienced aquifer depletion (Condon 
and Maxwell, 2019). It should be noted that CONUS domain consists of a single country 
and has reasonable coverage in terms of observational network and geological information. 
Given the European model domain consists of many individual countries, observations 
across regions are not all of the same quality or coverage, which could be a contributing 
factor for poor model performance in some regions of the EU-CORDEX domain. 
Nevertheless, the rigorous evaluation of the ParFlow-CLM model over both and CONUS 
domains paves the way towards a global application of fully distributed physically-based 
hydrologic models. The protocol of evaluation metrics and methods presented in this study 
and in O’Neill et al. (2021) can be used as a framework to benchmark future ParFlow-
CLM model implementations to further improve model simulations in the areas that have 
been identified or to explore the impacts of groundwater on simulated hydrological states 
and fluxes by comparing with other exist- ing global land surface model applications.” 
 
 
 
 
 
 
 
 
 
 



Table S2:  Summary of ParFlow-CLM model performance for different variables and its 
comparison with CONUS implementation described by O'Neill et al. (2021). 
 

  This study (EU-CORDEX) O'Neill el al 2021 (CONUS) Comparison 

    

Variable 
Datasets 
used R  pbias (%)  

Datasets 
used  R  pbias (%)   

Streamflow 

GRDC 
gauge 
stations 
(monthly)  0.77 

-16 % (50th 
percentile) 

USGS gauge 
stations 
(daily) 

0.65 (50th 
percentile) 

41.3 % 
(50th 
percentile) 

PFCONUSv1: higher positive bias, 
EU-CORDEX: higher negative bias 

ET 

eddy 
covarianc
e towers 
from 
FLUXNET 
dataset 
(daily) 

0.94   

eddy 
covariance 
towers from 
FLUXNET 
dataset 
(daily) 

0.72 (50th 
percentile) 

37.9% 
(50th 
percentile) 

PFCONUSv1: positive bias         
EU-CORDEX: positive bias 

RS-based 
GLEAM 
and GLASS 
datasets 
(monthly) 

0.91, 
0.91 
(50th 
percentil
e) 

-9.9% and -
18.2% 
(50th 
percentile) 

RS MODIS 
dataset 
(MOD16A2) 
and SSEBop 
(monthly) 

0.85 and 
0.91 (50th 
percentile) 

14.2% and 
13.2% 
(50th 
percentile) 

PFCONUSv1: Underpredicts ET in 
the north/east (wet/snow 
regions) and overpredicts in the 
south (dry regions). 
Underpredicts ET in the 
mountainous regions.                   
EU-CORDEX: Underpredict ET in 
the wet/snow regions, small 
overpredications in the south 
(dry regions). Underpredicts ET in 
the mountainous regions. 

Soil 
Moisture 

ESA-CCI 
(monthly) 

0.70 
(50th 
percentil
e) 

  ESA-CCI 0.69 (50th 
percentile)   

PFCONUSv1: shows overall lower 
amplitude in the west (dry) and 
higher amplitude in the east 
(wet) relative to the CCI product;           
EU-CORDEX: overall wet bias, dry 
bias in southern Europe 

TWS 
GRACE 
dataset 
(monthly) 

ranging  
from 
0.76 and 
0.91 for 
major 
regions 

  

GRACE 
dataset 
(monthly) 
 

ranging 
from 0.43 
to 0.94 for 
major 
basins 

  

Both model setups show stronger 
dry anomalies and overpredict 
wet anomalies relative to the 
GRACE data. 

WTD 

groundwa
ter 
monitorin
g wells  

0.50 
(50th 
percentil
e) 

  
groundwater 
monitoring 
wells  

0.46 (50th 
percentile) 

  
PFCONUSv1: a shallow WTD bias, 
EU-CORDEX: a shallow WTD bias 

 
 
417: ?? = Fig. 7 
It has been corrected in the revised manuscript. 
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Anonymous Referee #2, 03 Aug 2022 
 
This manuscript is an implementation of the ParFlow-CLM at high resolution (3 km) focused 
upon the European domain.  The validation of the model performance is a wide-ranging 
analysis based upon remotely sensed soil moisture, and  ET, as well as ground-based data 
products of soil moisture,  SWE, ET, groundwater depth, and streamflow.  It is generally well 
written, although there is a lack of focus in the key findings.  The authors attributed deviations 
from observed site level behavior (e.g. positive SM and ET bias) primarily to uncertainties 
with the incoming atmospheric forcing.  However, it seems likely that uncalibrated 
parameters could have just as easily led to these biases. 
 
We would like to thank the anonymous reviewer for his/her comments and constructive 
suggestions, which we believe resulted in an improved manuscript. We replied to your 
comments in the blue text below. Revisions in the revised manuscript are indicated with the 
bold and italic text. 
 
We agree with your comment that biases in our results could be due to errors in the model 
inputs or/and due to the fact that the model was not calibrated. To better characterize these 
uncertainties, we now compared our results with other global studies and provided a more 
detailed comparison with the CONUS implementation of ParFlow-CLM (O’Neill et al., 
2021). In the revised manuscript, these discussion points are included in Section 3 (Results 
and Discussion), which also puts more emphasis on the key findings. Please see our detail 
response below.  
 
The authors motivate the analysis by claiming high spatial resolution combined with a 
representation of lateral groundwater flow is necessary for improved region wide prediction 
of hydrological variables.   However, this reviewer did not find compelling evidence to 
demonstrate these assertions from this analysis alone,  partly because the model skill was not 
put in context of other simulations.  For example, implementing a coarse version of ParFlow 
CLM, or a version without lateral ground-flow could have better demonstrated these points.  
 
We agree with the reviewer’s comments that a multi-model comparison for uncertainty 
assessment is important in order to better quantify whether biases stem from either model 
structural errors or from the model resolution, particularly for models with a lateral 
groundwater flow representation. However, the aim of this study is to implement and evaluate 
the ParFlow-CLM model performance in space and time relative to observations, which we 
believe is also helpful to identify biases in water balance components and problem areas that 
could be improved in future studies. The novelty of the model implementation lies in a fully 
3D represented subsurface flow, integrated with 2D overland flow at a high km-scale 
resolution for a continental model domain. In order to use this implementation in a wide range 
of scientific applications where an accurate representation of groundwater and surface water 
interactions is critical (e.g. climate non-stationarity, coupled ESMs, water resources 
assessments) we think a comparison to observations is sufficient to evaluate the model’s 
performance and that a sensitivity analysis with multiple model resolutions is beyond the 
scope of the manuscript. We value your suggestions to include a comparison with a coarser-
resolution implementation of ParFlow-CLM, or a version without lateral flow; we have now 
discussed this as possible avenues for further tuning and future work. We believe that results 
from this study can be used as a baseline for future ParFlow-CLM implementations over 
Europe and will be used to guide future model development. 
 



This manuscript is, in fact, complementary to a similar implementation of ParFlow-CLM for 
the CONUS domain (O’Neill et al).  Yet, the author’s do not fully address this point until late 
in the conclusions,  and miss an opportunity to provide a more rigorous comparison between 
the CONUS and European domain performance with ParFlow-CLM.  
 
We appreciate your suggestion and believe this will strengthen our manuscript. We now 
provide a detailed and extensive comparison of our results with the CONUS implementation 
of ParFlow-CLM (O’Neill et al., 2021). Please see our detail response and the revised 
changes below.  
 
It is challenging to evaluate this manuscript because in one sense the methods behind the 
model implementation and evaluation are useful to the LSM or hydrology community.   This 
validation approach (use of statistics based on comparison to RS and site-based observations) 
could be used as a template for benchmarking other models.  Furthermore,  this ‘evaluation of 
a previously published model’ does fulfill one of the criteria for publication in GMD.  On the 
other hand, the comparison between the model simulation and remotely-sensed and ground 
based observations lacked a clear focus.  Detailed comments are below. 
Thanks for the positive response. We have revised the manuscript based on your constructive 
comments and suggestions. We agree that in some areas the focus could be strengthened, we 
have taken this on board and have revised the manuscript accordingly. 
   
Line 21:  It is a bit confusing what the authors mean by high resolution hydrological 
modeling, and large-scale hydrologic processes.  Better quantification? 
 
Thank you for your suggestion. We now clarify these terms by referring to high resolution 
hydrological modeling (< 5 km) and modify text “large-scale hydrological processes” to 
large-scale spatial patterns of hydrological processes ( i.e. streamflow, evapotranspiration, soil 
moisture and total water storage).  
 
Line 30:   LSM’s are also used commonly for carbon and nitrogen cycling research.  Both 
LSM’s and GHMs solve water balance equations. 
 
Thanks for the comment. We revised the text at line # 37 - 40 as: 
 “Numerical models that attempt to simulate large-scale hydrology and associated processes 
are usually categorized as land surface models (LSMs) or global hydrological models 
(GHMs), which have been developed for simulating the land surface water, energy and 
momentum exchange (Sellers et al., 1988) to provide water balance estimates at global to 
continental-scale.” 
 
Lines 40-50:    The author seems to be conflating two things: issues of spatial resolution, or 
issues related to physical processes.     It is true a coarse scale model will not capture fine 
scale hillslope topography which could be important for watershed scale studies,  but is this 
necessary for global scale climate models? 
Thanks for your comment. To address this comment, we revised the text (Line 35 – Line 60) 
as:  
“Numerical models that attempt to simulate large-scale hydrology and associated processes 
are usually categorized as land surface models (LSMs) or global hydrological models 
(GHMs), which have been developed for simulating  the land surface water, energy and 
momentum exchange (Sellers et al., 1988) to provide water balance estimates at global to 
continental-scale. Despite the extensive work in large-scale hydrology modeling (e.g. Clark 
et al., 2015), many of the existing large-scale hydrological models (both LSMs and GHMs), 



especially those intended for continental- to global-scale simulations are single-column 
models (e.g., Döll et al., 2003; Hunger and Döll, 2008; Gudmundsson et al., 2012; 
Haddeland et al., 2011), for which most hydrological processes are implemented 
empirically and at a coarse spatial resolution (typically 25 km to 100 km). As a result, many 
of the important hydrological processes are simplified, including groundwater and surface 
water dynamics, soil moisture re-distribution and evapotranspiration (Clark et al., 2017). 
In most large-scale continental or global models, the representation of the groundwater 
dynamics is either not included or over- simplified, which may lead to errors in the 
prediction of hydrologic states and fluxes (Martínez-de la Torre and Miguez-Macho, 2019) 
or an underestimation of total water storage trends (Scanlon et al., 2018).  A physics-based 
integrated hydrological model, on the other hand, which can simultaneously solve surface 
and subsurface systems with lateral-groundwater flow may provide better prediction of both 
local and global water resources (Beven and Cloke, 2012). Many recent studies have shown 
the importance of representing the lateral transport of subsurface water and/or interaction 
of groundwater with land-atmosphere water fluxes (e.g. Barlage et al., 2021; Keune et al., 
2016; Maxwell and Kollet, 2008; Miguez-Macho and Fan, 2012; Miguez-Macho et al., 
2007; Xie et al., 2012; Zeng et al., 2018). These studies suggested that explicitly simulating 
these processes can have a significant effect on the accuracy of surface energy fluxes 
(Keune et al., 2016) and flux partitioning (Maxwell and Condon, 2016). It can also affect 
the accuracy of the spatial redistribution of soil moisture through infiltration during lateral 
movement of water (Ji et al., 2017). In addition, processes-based integrated hydrologic 
models can better characterize spatial heterogeneity in water and energy states and fluxes 
when run at high spatial resolution (< 5 km) due to the higher resolved surface properties 
that help in providing a more accurate representation of the lateral transports of surface 
and subsurface water movements driven by topographic slopes (Ji et al., 2017; Shrestha et 
al., 2014; Barlage et al., 2021). Despite this important work, the effect of these important 
processes on water and energy states and fluxes is still not fully understood, especially over 
continental scales and a more comprehensive assessment of model performance across 
different hydroclimates and hydrological characteristics is needed.” 
  
Line 77:   You need to spell out remote-sensing (RS) the first time you use it. 
 
It has been modified in the revised manuscript. 
 
Line 90:  What is the difference between Parflow-CLM, PF-CLM and PF-CLM-EU3km?   
 
We replaced the PF-CLM-EU3km to ParFlow-CLM throughout the manuscript. 
 
Line 97:  Renaming a model to PF-CLM-EU3km usually means you have changed the model 
equation/structures/parameterizations.   I don’ think the author’s do that here – it is simply the 
PF-CLM or Parflow-CLM model run at a certain spatial domain (Europe) and at 3 km 
resolution.  A ‘new’ model hasn’t been designed or developed….. 
 
We replaced the “PF-CLM-EU3km” to “ParFlow-CLM” throughout the manuscript. 
 
Section 2.0.2     It is completely unclear what is novel about your implementation of ParFlow-
CLM other than the domain and resolution.   This seems like a model application and not 
novel development. 
 
The focus of our study is the assessment of the model performance and for this reason we 
submit this manuscript as a “model evaluation” type to GMD. To make our objectives and 



research goals clearer, we expanded the Introduction and Discussion sections to emphasize 
and clarify the following points: 
 

1. The aim of this study is to implement and evaluate the performance of ParFlow-CLM 
model which is a physically-based integrated hydrological model and simultaneously 
solve surface and subsurface systems with lateral-groundwater flow. The lateral 
groundwater flow is key - many modeling systems implemented at continental or 
global scales are one dimensional and contain a parameterized version of groundwater 
flow (Felfelani et al., 2020; Wada et al., 2016; Zeng et al., 2018; de Graaf et al., 2015). 
We have strengthened this point in the Introduction and Discussion sections. At finer 
resolution, a physically-based integrated hydrological model can better represent 
groundwater surface water interactions, and heterogeneities in the representation of 
states and fluxes of the water and energy cycles when run at high spatial resolution (< 
5 km) due to the higher resolved surface properties. In addition, owing to ParFlow’s 
3D flow implementation and run in a continuum approach with 2D overland flow, this 
model setup provides a more accurate representation of lateral transport of surface and 
subsurface water movements driven by topographic slopes (Shrestha et al., 2015).   
 

2. The novelty of this study lies in the fact that it is the first study to implement ParFlow-
CLM over the EU-CORDEX domain at high (km-scale) resolution, which allows fully 
three dimensional flow. In addition, a comprehensive model evaluation is given for 
multiple variables using both in-situ and remote sensing observations, in comparison 
to similar European studies such as Bouaziz et al. (2021); Rakovec et al. (2016); Zink 
et al. (2017). Several studies exist on ParFlow-CLM, but mostly concentrating over 
the CONUS region, therefore we believe that implementation of this model outside 
CONUS is a step forward towards “Hyperresolution global land surface modeling” 
which is considered a “grand challenge in hydrology” as described by Wood et al., 
(2011) and Bierkens et al., (2015), also in the context of coupled km-scale regional 
climate system models. We have strengthened this point in the Introduction. 

 
3. Explicitly incorporating hydrological processes that are not included in the existing 

land surface models (LSMs) can also benefit the land surface or regional climate 
modeling community for a more improved representation of hydrological processes 
(Clark et al., 2015) such as the lateral transport of surface and subsurface processes 
across landscapes that are often ignored or crudely represented in LSMs. Many recent 
studies showed the importance of representing the lateral transport of subsurface water 
and/or interaction of groundwater with land-atmosphere water fluxes (e.g., Barlage et 
al., 2021; Keune et al., 2016; Maxwell and Kollet, 2008; Miguez-Macho and Fan, 
2012; Miguez-Macho et al., 2007; Xie et al., 2012; Zeng et al., 2018). These studies 
suggested that explicitly simulating these processes can have a significant effect on the 
surface energy fluxes and flux partitioning (Maxwell and Condon, 2016). It can also 
affect the spatial redistribution of soil moisture through infiltration during lateral 
movement of water (Ji et al., 2017). Despite this important work, the effect of these 
important processes on water and energy states and fluxes is still not fully understood, 
especially over continental scales and comparison across different landscapes is 
needed. While representations of these important processes continue to improve in 
continental to global scale hydrological models, implementation and rigorous 
evaluation of these models over large areas is an important step and can be used to 
guide future modeling efforts at larger spatial scales and higher resolutions. 

 
Following changes have been added at lines# 45 - 60 in the revised manuscript as follows: 



“A physics-based integrated hydrological model, on the other hand, which can 
simultaneously solve surface and subsurface systems with lateral-groundwater flow may 
provide better prediction of both local and global water resources (Beven and Cloke, 2012). 
Many recent studies have shown the impor- tance of representing the lateral transport of 
subsurface water and/or interaction of groundwater with land-atmosphere water fluxes 
(e.g. Barlage et al., 2021; Keune et al., 2016; Maxwell and Kollet, 2008; Miguez-Macho 
and Fan, 2012; Miguez-Macho et al., 2007; Xie et al., 2012; Zeng et al., 2018). These 
studies suggested that explicitly simulating these processes can have a significant effect on 
the accuracy of surface energy fluxes (Keune et al., 2016) and flux partitioning (Maxwell 
and Condon, 2016). It can also affect the accuracy of the spatial redistribution of soil 
moisture through infiltration during lateral movement of water (Ji et al., 2017). In addition, 
processes-based integrated hydrologic models can better characterize spatial heterogeneity 
in water and energy states and fluxes when run at high spatial resolution (< 5 km) due to 
the higher resolved surface properties that help in providing a more accurate 
representation of the lateral transports of surface and subsurface water movements driven 
by topographic slopes (Ji et al., 2017; Shrestha et al., 2014; Barlage et al., 2021). Despite 
this important work, the effect of these important processes on water and energy states and 
fluxes is still not fully understood, especially over continental scales and a more 
comprehensive assessment of model performance across different hydroclimates and 
hydrological characteristics is needed.” 
 
and at line # 94   
 
“In this study, we implement ParFlow-CLM model (Kollet and Maxwell, 2008; Kuffour et 
al., 2020), which is a physically-based integrated hydrological model that simultaneously 
solves surface and subsurface processes with lateral-groundwater flow, and assess its 
performance for multiple variables hydroclimates and hydrological characteristics over 
pan-European domain, in order to perform a holistic model evaluation.” 
 
and at line #  100 - 110 
 
“Previously, the ParFlow-CLM model has been employed over the pan-European domain 
at 12 km resolution for the year 2003 within the frame- work of fully integrated soil–
vegetation–atmosphere model (e.g. Keune et al., 2016, 2019; Furusho-Percot et al., 2019; 
Hartick et al., 2021), however, the model performance was not rigorously evaluated for all 
water balance components, given the coarser resolution and the focus on atmosphere-land 
surface-groundwater feedback. Similarly, Parflow-CLM has been implemented over the 
continental US (CONUS) at 1 km resolution (Maxwell et al., 2015; Condon and Maxwell, 
2015, 2017; Maxwell and Condon, 2016), where most recently, O’Neill et al. (2021) 
provided a comprehensive multi-variable evaluation of CONUS implementation across a 
simulation timeframe of 4 years of Parflow-CLM and highlighted the importance of 
evaluating the continental-scale water balance as a whole for a process-based 
understanding of model performance and bias. Implementation of this model outside 
CONUS is a step forward towards “Hyperresolution global land surface modeling” which 
is considered a “grand challenge in hydrology” as described by Wood et al. (2011), 
Bierkens et al. (2015) and Condon et al. (2021).” 
 
 
Line 134:  Not clear what  ‘inscribing’ into the Eur-11 grid means. 



The model domain is inscribed into the official Coordinated Regional Downscaling 
Experiment (CORDEX) EUR-11 model grid (about 12 km). This has been clarified in the 
revised manuscript. 
 
Line 144: CLM3.5 is from the Community Land Model, different than the Common Land 
Model (CLM) described here within ParFlow-CLM. 
Correct. In the revised manuscript, we defined Community Land Model (v3.5) as CLM3.5 
and Common Land Model as CLM.  
 
Section 2.0.4    It seems unlikely that nine years of spinup would be enough to reach 
equilibrium between prescribing vegetation conditions and subsurface soil moisture state.  
Did the author’s check that the hydrological variables approached an equilibrium.  It is also 
typically not normal to spinup with a single year (1997),  you would want to spinup up overall 
several years (decade if possible) to capture variation in met forcing. 
 
We have clarified this point in the revised manuscript at lines # 193 - 199.  
“ We followed a similar approach as used by other studies to spin up the ParFlow-CLM 
model (Maxwell and Condon, 2016; O’Neill et al., 2021; Shrestha et al., 2015, 2018). Most 
land surface and water balance models need to spinup over several years owing to the 
absence of lateral flow and the parameterization and simplification of physical processes in 
their model structure. Due to the physics-based model structure of ParFlow-CLM, spin up 
of the model over a period of one year, which is run multiple times in a closed loop, is 
deemed sufficient to reach equilibrium and has been shown to be sufficient in the previous 
studies mentioned. We ran the model continuously until the total water storage change was 
less than 2% from the previous years, following the methodology in previous published 
studies. The steady-state initial conditions were then used for model simulations over the 
period from 1997 to 2006.” 
 
 
Line 269:    “Because of the explicit lateral groundwater and surface flow representation, we 
show that the PF-CLM270 EU3km model is able to resolve multi-scale spatial variability in 
hydrological states and fluxes such as simulated river flow, SM, ET and WTD distributions 
which are strongly correlated with the river network and topography as shown in Fig. 1.” 
 
I am not sure I found any evidence of this causal relationship. 
We revised Fig. 1 in the manuscript to include topography information as shown below. 



 

 
Figure 1: (a) Maps of EURO-CORDEX domain at 3km resolution (1544 x 1592 grid cells) 
showing the spatially average distribution of (a) elevation, (b) discharge, (c) surface soil 
moisture, (d) water table depth, and (e) evapotranspiration (1997–2006) and close-up of Po 
river basin in Alpine (AL) region simulated by ParFlow-CLM model. Red color in (d) 
indicates deeper water table with maximum of 51 m depth. The black boxes in (a) 
correspond to PRUDENCE regions with their common abbreviations indicating names of 
the regions (FR: France, ME: Mid-Europe, SC: Scandinavia, EA: Eastern Europe, MD: 
Mediterranean, IP: Iberian Peninsula, BI: the British Isles, AL: Alpine). 
 
In addition, we added the following text in the revised manuscript at lines # 311 – 315: 
“An example of some of the useful downstream model outputs such as those used for water 
resource management are shown in Fig. 1. The top panels, show domain extent 
hydroclimate regions plus elevation, and the spatial distribution of mean annual simulated 
river flow, SM, ET and WTD. In addition, Fig. 1, bottom panels, show a close-up for Po 
river basin in Alpine region for elevation and the aforementioned variables, demonstrating 
that the model is able to resolve small-scale spatial variability in these variables associated 
with the river network and topography (Fig.1) 
 
Also, we compared as an example the spatial variability in surface soil moisture simulated by 
ParFlow-CLM for January and August months, 2000 for two regions (Alpine and Mid-
Europe) with ESSMRA dataset (Naz et al., 2020) which is the assimilated soil moisture 
simulated by CLM3.5 to highlight the differences in spatial variability between the two 
models and added two new figures in the supporting materials. 
 
Following text has been added in the revised manuscript at lines # 417 - 426: 
“Further, we compared the spatial variability in surface soil moisture simulated by 
ParFlow-CLM to highlight the differences in spatial variability between the two models. We 
found that the spatial structure simulated by the two models are starkly different. CLM3.5 
shows much larger spatial patterns of SM which are mostly related to the soil properties 
(e.g. soil texture information), while in ParFlow-CLM simulates more spatial variability, 
which can be attributed to the effects of 3D flows in river networks and across topography. 
Note that both models used identical surface information (topography, soil and vegetation) 
and forcing datasets indicating that these differences are explained by the fine-scale 
processes (such as surface and subsurface lateral transport of water movements and the 
shallow groundwater system) simulated only by ParFlow-CLM. An example is shown in the 



supplementary material for January and 425 August months, 2000 for two regions (Alpine 
and Mid-Europe) with ESSMRA dataset (Naz et al., 2020) (See supplementary 
figures Fig. S4 and Fig. S5).” 
 

 
 
Figure S4. Spatial variability of surface soil moisture simulated by ParFlow-CLM and 
CLM3.5 at the surface soil layer for January and August months of year 2000 over the Alpine 
region. Note that glacier areas were not simulated by ParFlow-CLM and soil moisture values 
are zero at those grid cells. 



  
 
Figure S5. Spatial variability of surface soil moisture simulated by ParFlow-CLM and 
CLM3.5 at the surface soil layer for January and August months of year 2000 over the Mid-
Europe region. Note that glacier areas were not simulated by ParFlow-CLM and soil moisture 
was set to zero. 
 
Line 339:  “The difference is explained  by the shallow groundwater system simulated only 
by PF-CLM-EU3km, which contributes to the saturation of the deeper soil layers leading to 
higher soil water content, whereas the standalone CLM3.5 model applies a simple approach to 
simulate groundwater recharge and discharge processes in a single column and neglects 
explicit lateral groundwater flow.” 
 
It appears here that the authors are attempting a comparison against CLM3.5 (the Community 
Land Model) which was used as the LSM to develop the ESSMRA product, and comparing 
against the PF-CLM-EU3km.   Claiming the differences in SM can be accounted for by 
differences in the accounting of lateral groundwater flow.    This is a complicated comparison 
for many reasons, one of them being that the ESSMRA product includes observations of the 
ESA-CCI ‘observations’.  The PF-CLM-Eu3km does not.   It is not a controlled comparison 
to claim lateral groundwater flow is the cause for the differences….. 
 



We agree that it is not a controlled comparison due to the fact that the ESSMRA product also 
includes CCI observation. However, ParFlow-CLM also shows higher soil moisture when 
comparing to the CLM3.5 simulated soil moisture with no assimilation of ESA CCI (not 
shown here) which indicates that the difference between the surface SM could be attributed to 
the shallow groundwater system simulated only be ParFlow-CLM.  We clarified this point in 
the revised manuscript at lines # 396-399 as: 
 
“We used ESSMRA dataset to compare with ParFlow-CLM because both models use 
identical surface information (topography, soil and vegetation) and forcing datasets and 
any differences in SM are results of different treatment of groundwater processes or 
through data assimilation.” 
 
Line # 401: 
“Our comparison of SM simulated by ParFlow-CLM with the CLM3.5 simulated SM 
without any assimilation of ESA CCI (not shown here) also show positive bias over humid 
regions.” 
 
It's also extremely confusing that CLM3.5 (Community Land Model) is not the same as the 
“CLM” (Common Land Model) in PF-CLM-EU3km.   
Sorry for the confusion. In the revised manuscript, we defined Community Land Model (v3.5) 
as CLM3.5 and Common Land Model as CLM.  
 
Figure 4:  Not clear what we can hope to learn by comparing 3 separate SM products against 
each other.   Would it not be more helpful to compare the performance of the SM products 
against in-situ site ISMN observations?  I see that this comparison is pushed to the 
supplement. 
 
We agree that it would be helpful to compare the model performance of the SM against in-situ 
data (as we have shown in the Figure S5 - S8 in the Supplementary materials). However, as 
we have indicated previously, there is observational data sparsity across Europe and for the 
time period of 1997–2006, data for only 20 grid cells are available which are useful to 
evaluate model performance at those point locations but unfortunately useless to evaluate 
spatial variability in SM over large domains. Therefore, to evaluate the model performance at 
large spatial scale, we compared with other gridded products of surface SM which provide far 
greater coverage and helps to evaluate model performance for spatial signature over different 
regions influenced by different climatic characteristics.  
 
Line 387:  “Previous studies of PF-CLM-EU3km also indicate……” 
 
Apparently this exact implementation of this configuration of the CLM ParFlow has been 
done before?   Still failing to see the novelty of the study? 
 
The novelty of this study lies in the fact that it is the first study to implement ParFlow-CLM 
over the EU-CORDEX domain at high (km-scale) resolution, which allows fully three 
dimensional flow. In addition, a comprehensive model evaluation is given for multiple 
variables using both in-situ and remote sensing observations, in comparison to similar 
European studies such as Bouaziz et al. (2021); Rakovec et al. (2016); Zink et al. (2017). 
Several studies exist on ParFlow-CLM, but mostly concentrating over the CONUS region, 
therefore we believe that implementation of this model outside CONUS is a step forward 
towards “Hyperresolution global land surface modeling” which is considered a “grand 
challenge in hydrology” as described by Wood et al., (2011) and Bierkens et al., (2015), also 



in the context of coupled km-scale regional climate system models. We have strengthened this 
point in the Introduction and added following text in the revised manuscript at lines # 94 – 
110  
 
“In this study, we implement ParFlow-CLM model (Kollet and Maxwell, 2008; Kuffour et 
al., 2020), which is a physically-based integrated hydrological model that simultaneously 
solves surface and subsurface processes with lateral-groundwater flow, and assess its 
performance for multiple variables hydroclimates and hydrological characteristics over 
pan-European domain, in order to perform a holistic model evaluation. Previously, the 
ParFlow-CLM model has been employed over the pan-European domain at 12 km 
resolution for the year 2003 within the frame- work of fully integrated soil–vegetation–
atmosphere model (e.g. Keune et al., 2016, 2019; Furusho-Percot et al., 2019; Hartick et 
al., 2021), however, the model performance was not rigorously evaluated for all water 
balance components, given the coarser resolution and the focus on atmosphere-land 
surface-groundwater feedback. Similarly, Parflow-CLM has been implemented over the 
continental US (CONUS) at 1 km resolution (Maxwell et al., 2015; Condon and Maxwell, 
2015, 2017; Maxwell and Condon, 2016), where most recently, O’Neill et al. (2021) 
provided a comprehensive multi-variable evaluation of CONUS implementation across a 
simulation timeframe of 4 years of Parflow-CLM and highlighted the importance of 
evaluating the continental-scale water balance as a whole for a process-based 
understanding of model performance and bias. Implementation of this model outside 
CONUS is a step forward towards “Hyperresolution global land surface modeling” which 
is considered a “grand challenge in hydrology” as described by Wood et al. (2011), 
Bierkens et al. (2015) and Condon et al. (2021).” 
 
 
Figure 5:  It would be more compelling to show mean seasonal cycles for a sampling of sites 
(model vs. flux tower ET) across a variety of biomes.  Seasonal correlations (as shown) 
should be strong, just based on phenology of vegetation, as well as increase/decreases in SW 
radiation.  You show regional plots in Figure 6, but running at high resolution grid (3 km) 
should allow you to make direct comparison to flux tower ET data.   It is less compelling to 
show seasonal variation with GLEAM and GLASS given these are data products. 
Comparison with the eddy covariance sites from FLUXNET datasets has already been shown 
in the manuscript and in the supplementary materials as shown in Fig. 5 and Fig. S9. 
As mentioned in the previous comment, the point source based sites provide hugely deficient 
coverage and therefore comparing with other satellite-based gridded ET products allows us to 
evaluate model performance over large spatial scales to better understand both seasonal and 
spatial variability for different regions influenced by different climatic conditions. 
  
Line 417:   “Figure ??”   typos show up a few times in this manuscript. 
Corrected. 
 
Line 469:  “Our comparison of simulated SWE with observed SWE reveals an overprediction 
of SWE in the Eastern regions which is more likely to be related to the uncertainties in 
precipitation.” 
 
 I don’t follow how the authors came to this conclusion.  Could not biases in SWE be a result 
of uncertainties in temperature, or from issues with the snow/energy balance model which 
simulates accumulation and depletion of snowpack?   If some sort of evaluation against in-situ 
site atmospheric observations was performed that could provide more credibility. 
 



We agree with the reviewer that biases in SWE could be caused by many sources of 
uncertainties, as discussed in Section 3.1. In the discussion section we now revised this 
sentence at line # 605 as: 
 
“Our comparison of simulated SWE with observed SWE reveals an overprediction of SWE 
in the Eastern regions which is more likely to be related to the uncertainties in forcing 
datasets or model structure errors in simulating the snow/energy balance.” 
 
Line 481:   “The rigorous evaluation of the PF-CLM-EU3km model over Europe together 
with the recent study by O’Neill et al. (2021) which evaluated model performance over 
CONUS paves the way towards a global application of fully distributed physically-based 
hydrologic models.” 
 
This is the first time, at the end of the manuscript, where the authors mention this serves as a 
companion paper to the CONUS implementation of the same model.   This manuscript would 
have been  much more compelling if comparison in performance were discussed between the 
CONUS and EU implementations throughout.   Or to quantify the benefit of high resolution 
implementation of this model, with subsurface, later flow against other LSM’s at coarse 
resolution, or lacking later, subsurface flow. 
Thank you for your comment. To provide more discussion on how our model differs from 
other existing implementations of ParFlow-CLM, we compare our results with the CONUS 
implementation of ParFlow-CLM model (O'Neill et al., 2021) as shown in Table S2 below 
which is included in the supporting materials. As stated previously, the CONUS domain does 
not suffer the same data sparsity issues and because of different domains, resolution and 
climatic conditions, a direct quantitative comparison is not possible. We, however, concluded 
from this comparison the following points which are added in the revised manuscript 
throughout Section 3 (Results and Discussion) and in Section 4 (Conclusions and Summary).  
 
Lines 570 - 595 
“Our results are consistent with a comparable continental-scale study by O’Neill et al. 
(2021) which evaluated water balance components over CONUS domian using ParFlow-
CLM (PfCONUSv1). While a direct quantitative comparison is not possible due to different 
domains, resolution and climatic conditions, we found striking similarities for many 
variables assessed here. For example, for ET, both model implementations showed overall 
good agreement against observations, but overpredicted ET in the dry regions (e.g., south 
west region in CONUS and IP region in Europe) but underpredicted ET in more wetter and 
snow dominated regions (i.e. in the northern and eastern part of the CONUS domain; and 
SC region in Europe). In addition, both model implementations show an underestimation 
of ET in mountainous regions, regardless of which product is used for validation. 
Similarly, For surface soil moisture, both EU-CORDEX and PfCONUSv1 models show 
similar performance with spearman correlation (R) values between 0.17–0.77 and 0.25–
0.77, respectively across different regions. Interestingly, overall both model 
implementations show an underestimation of surface SM in the arid to semi-arid and 
overestimation in the wetter regions. In terms of storage, both models show good agreement 
for seasonal TWS anomalies relative to GRACE satellite data, but underpredicted water 
storage in most regions. For WTD comparison, both model implementations simulated 
shallower water table depths when compared with groundwater wells data, which could be 
attributed to the fact that ParFlow-CLM model does not account for deeper aquifer storage 
(i.e. > 51m) and anthropogenic impacts such as groundwater withdrawals which may lead 
to overprediction of water table depth in the regions experienced aquifer depletion (Condon 
and Maxwell, 2019). It should be noted that CONUS domain consists of a single country 



and has reasonable coverage in terms of observational network and geological information. 
Given the European model domain consists of many individual countries, observations 
across regions are not all of the same quality or coverage, which could be a contributing 
factor for poor model performance in some regions of the EU-CORDEX domain. 
Nevertheless, the rigorous evaluation of the ParFlow-CLM model over both and CONUS 
domains paves the way towards a global application of fully distributed physically-based 
hydrologic models. The protocol of evaluation metrics and methods presented in this study 
and in O’Neill et al. (2021) can be used as a framework to benchmark future ParFlow-
CLM model implementations to further improve model simulations in the areas that have 
been identified or to explore the impacts of groundwater on simulated hydrological states 
and fluxes by comparing with other exist- ing global land surface model applications.” 
 
 
 
Table S2:  Summary of ParFlow-CLM model performance for different variables and its 
comparison with CONUS implementation described by O'Neill et al. (2021). 
 

  This study (EU-CORDEX) O'Neill el al 2021 (CONUS) Comparison 

    

Variable 
Datasets 
used R  pbias (%)  

Datasets 
used  R  pbias (%)   

Streamflow 

GRDC 
gauge 
stations 
(monthly)  0.77 

-16 % (50th 
percentile) 

USGS gauge 
stations 
(daily) 

0.65 (50th 
percentile) 

41.3 % 
(50th 
percentile) 

PFCONUSv1: higher positive bias, 
EU-CORDEX: higher negative bias 

ET 

eddy 
covariance 
towers 
from 
FLUXNET 
dataset 
(daily) 

0.94   

eddy 
covariance 
towers from 
FLUXNET 
dataset 
(daily) 

0.72 (50th 
percentile) 

37.9% 
(50th 
percentile) 

PFCONUSv1: positive bias,            
EU-CORDEX: positive bias 

RS-based 
GLEAM 
and GLASS 
datasets 
(monthly) 

0.91, 
0.91 
(50th 
percentil
e) 

-9.9% and -
18.2% 
(50th 
percentile) 

RS MODIS 
dataset 
(MOD16A2) 
and SSEBop 
(monthly) 

0.85 and 
0.91 (50th 
percentile) 

14.2% and 
13.2% 
(50th 
percentile) 

PFCONUSv1: Underpredicts ET in 
the north/east (wet/snow 
regions) and overpredicts in the 
south (dry regions). 
Underpredicts ET in the 
mountainous regions.                   
EU-CORDEX: underpredict ET in 
the wet/snow regions, small 
overpredications in the south (dry 
regions). Underpredicts ET in the 
mountainous regions. 

Soil 
Moisture 

ESA-CCI 
(monthly) 

0.70 
(50th 
percentil
e) 

  ESA-CCI 
0.69 (50th 
percentile)   

PFCONUSv1: shows overall lower 
amplitude in the west (dry) and 
higher amplitude in the east 
(wet) relative to the CCI product;           
EU-CORDEX: overall wet bias, dry 
bias in southern Europe 

TWS 
GRACE 
dataset 
(monthly) 

ranging  
from 
0.76 and 
0.91 for 
major 
regions 

  

GRACE 
dataset 
(monthly) 
 

ranging 
from 0.43 
to 0.94 for 
major 
basins 

  

Both model setups show stronger 
dry anomalies and overpredict 
wet anomalies relative to the 
GRACE data. 

WTD 

groundwat
er 
monitorin
g wells  

0.50 
(50th 
percentil
e) 

  
groundwater 
monitoring 
wells  

0.46 (50th 
percentile) 

  
PFCONUSv1: a shallow WTD bias, 
EU-CORDEX: a shallow WTD bias 

 
 



 
 Line 483: “The protocol of evaluation metrics and methods presented in this study and in 
O’Neill et al. (2021) can be used as a framework to benchmark future PF-CLM-EU3km 
model implementations to further improve model simulations in the areas that have been 
identified or to explore the impacts of groundwater on 485 simulated hydrological states and 
fluxes by comparing with other existing global land surface model applications.” 
 
Again, it would be more compelling if this manuscript performed a direct comparison of 
performance against the CONUS implementation or existing global land surface model 
applications to demonstrate improved utility/skill. 
 
Thank you for your comment. To provide more discussion on how our model differs from 
other existing implementations of ParFlow-CLM, we compared our results with the CONUS 
implementation of ParFlow-CLM model (O'Neill et al., 2021). Please see our response to the 
previous comment. 
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Anonymous Referee #3, 05 Aug 2022 
In their manuscript Naz et al. evaluate a pan-European, high-resolution (0.0275°) simulation 
with the coupled land surface groundwater model ParFlow-CLM, using observations and re-
analysis data for streamflow, near-surface soil moisture, evapotranspiration, water table depth 
and snow water equivalent. In general, the manuscript is well written, the metrics for 
evaluation seem to be appropriate and the authors go into great detail discussing the potential 
sources for some of the biases – with respect to possible shortcomings of the model but also 
of the observational data. 
We would like to thank the anonymous reviewer for his/her comments and constructive 
suggestions, which we believe resulted in an improved manuscript. We replied to your 
comments in the blue text below. Revisions in the revised manuscript are indicated with the 
bold and italic text. 
 
Having said that, there was one aspect of the evaluation that did not fully convince me, 
namely the evaluation of the simulated water table depths, where only the anomalies were 
being investigated. I understand that it may not be easy to define the reference elevation, but 
with the sophisticated ground water fluxes being the key component of the model that sets 
ParFlow-CLM apart from most LSMs, the authors should really think about discussing a 
comparison of the absolute values – maybe indicating the uncertainty due to the reference 
surface elevation. Also I did not understand, why the authors limited their comparison to 
those points with simulated WTD < 10m ?    
 
This concern was also raised by one of the other reviewers which has prompted us to further 
clarifications in our revised manuscript. Reported water table depth data across Europe is only 
poorly quality controlled, and inconsistent methods and standards are used for the calculation 
of the depth (Fan et al., 2013). Because of these inconsistencies in reporting water table depth 
data, we compare the anomalies. For example, groundwater levels (meter above sea level) 
data was provided for most groundwater monitoring wells (i.e., 2018 grid cells out of 2738 
located mostly in Germany) but no reference surface elevation information was given. This 
makes it difficult to convert groundwater levels to WTD or to calculate modeled groundwater 
levels for direct comparison of absolute values. We complied however with the reviewer’s 
suggestion, to extend our analysis to show the difference in WTD absolute values for the 
remaining 720 grid cells where WTD data was provided. See our detailed response below.  
We did not deliberately set out to obfuscate the model’s shortcomings. Please note that we 
showed an example of ParFlow-CLM performance in the supplementary material (Figure S11 
and S12) with highest and lowest correlation (R) values across different regions to highlight 
model limitations in different regions.  
To address the reviewer's concern about not including all the data, we conducted our analysis 
using all the available data without any filtering for quality control. However, this has resulted 
in no significant differences, compared to previous results as shown in the updated Fig. 8 in 
the revised manuscript. 
 
To address this comment, we extended our analysis to make a direct comparison between 
model and observations for all those locations (720) where WTD data is provided. In the 
revised manuscript we have added a new Fig. 9, as shown below and following text at lines # 
525 - 535:  
“To further evaluate model performance in terms of absolute error in the WTD, we make a 
direct comparison between model and observations for only those grid cells (720) where 
WTD data is provided and excluded all the other locations (i.e. 2018 grid cells) where 
groundwater levels (meter above sea level) data was only provided but no reference surface 
elevation information was given. WTD bias for the 720 locations is shown in Fig. 9. For 



these locations, we found a good agreement between the ParFlow-CLM and observed WTD 
with mean difference of -3.60 m, RMSE of 4.25 m and R value of 0.41. The 25th, 50th and 
75th quantile for simulated minus observed WTD are -2.6 m, -1.37 m and -0.84 m, 
respectively. Negative values in WTD difference indicates more shallower WTD simulated 
by ParFlow-CLM (i.e. positive bias). However, despite this positive bias, the model is able to 
capture the temporal dynamics well with R > 0.5 for more than 50% of locations. Studies by 
O’Neill et al. (2021) and Maxwell and Condon (2016) over CONUS domain also found a 
positive bias in simulated WTD for most well loca- tions, which they found to coincide with 
aquifers which experienced depletion in groundwater through extractions. In Europe, few 
studies also suggest groundwater declining in past two decades partly related to 
groundwater abstractions for agriculture and domestic use, particularly in the western and 
southern European countries (e.g. Xanke and Liesch, 2022), however, in the current study, 
it is difficult to directly attribute the shallow WTD bias to aquifer depletion because of the 
sparse observations.” 
 
 
 

 
 
Figure 9: (a) Difference in observed and ParFlow-simulated WTD at filtered locations (N = 
720), and (b) RMSE values at filtered locations, (c) Spearman correlation (R) values at 
selected locations. Histogram plots show the distribution of (d) simulated minus observed 
WTD and (e) RMSE values. (f) Cumulative distribution function (CDF) of Spearman 
correlation of ParFlow-CLM with observed WTD monthly data. 
 
In addition to this analysis, we included comparison of total water storage (TWS) simulated 
by ParFlow-CLM with GRACE satellite data for the time period of 2003–2006. In the revised 
manuscript, following analysis has been added at line # 490 – 500:  
 



“ To assess model performance in simulating terrestrial water storage variations, we, first, 
compare ParFlow-CLM total water storage (TWS) anomalies against GRACE monthly 
storage anomalies. For the comparison, the total water storage (TWS) anomalies over all 
storage components (i.e. sum of all surface, subsurface, canopy and snow water stores) 
from ParFlow-CLM was first calculated for each pixel and then aggregated over 
PRUDENCE regions. Figure 7 shows the monthly variations in TWS anomaly from both 
model and GRACE dataset over eight PRUDENCE regions. Overall, model represent TWS 
anomaly adequately well and a good agreement is achieved for most regions with 
correlation values ranging from 0.76 - 0.91, with higher values are observed in dry regions 
(i.e. R value of 0.87,0.85 and 0.91 for IP, FR and MD, respectively). A relatively lower R 
can be observed in the northern European regions (i.e. R value of 0.74 and 0.76 for BI and 
SC, respectively). This mismatch could be result of bias in other simulated variables. For 
example, ParFlow-CLM underestimates SM anomaly and overestimates ET in the dry 
regions but overestimates SWE in the snow dominated regions as discussed previously. The 
mismatch in TWS anomalies relative to GRACE data can also be partly attributed to 
uncertainties and errors associated with postprocessing and filtering of coarse resolution 
GRACE dataset. Nevertheless, the model performance for TWS over Europe is consistent 
with findings of other continental-scale hydrologic model studies (e.g., Rakovec et al., 
2016; O’Neill et al., 2021).”

 
Figure 7: Comparison of monthly time series of total water storage anomalies simulated 
by ParFlow-CLM with GRACE dataset over PRUDENCE regions. 
 
However, my main concern is that I found it somewhat difficult to connect the results to the 
motivation outlined in the (very well written) introduction of the paper. A large part of the 
latter is focused on the shortcomings of LSMs and GHMs and their -- admittedly extremely 
simple – representation of (subsurface) processes. So I would have welcomed a comparison 
between ParFlow-CLM and a CLM version without ParFlow – possibly the one that is part of 
ParFlow-CLM  -- or with a LSM that includes some simple parametrization of ground water 
flow (e.g. CLM5 [Felfelani et al., 2021]). Furthermore, the authors indicate that the resolution 
of the model is important, which I am very willing to believe. Yet they do not show how this 
affects the simulations in case of their model. Here, a convincing case may have been made 
by comparing their simulation to the 12km runs in Shastra et al. (2021). If the authors do not 



want to include an inter-model/-resolution comparison maybe they could think about a 
different approach to the paper: E.g. as an alternative, the authors could have referred to the 
study of O’Neil et al. (2021) from the beginning and then set up the paper as a comparison of 
ParFlow-CLM simulations of Europe and of the CONUS region? 
 
We agree with the reviewer’s comments that a multi-model comparison for uncertainty 
assessment is important in order to better quantify whether biases stem from either model 
structural errors or from the model resolution, particularly for models with a lateral 
groundwater flow representation. However, the aim of this study is to implement and evaluate 
the ParFlow-CLM model performance in space and time relative to observations, which we 
believe is also helpful to identify biases in water balance components and problem areas that 
could be improved in future studies. The novelty of the model implementation lies in a fully 
3D represented subsurface flow, integrated with 2D overland flow at a high km-scale 
resolution for a continental model domain. In order to use this implementation in a wide range 
of scientific applications where an accurate representation of groundwater and surface water 
interactions is critical (e.g. climate non-stationarity, coupled ESMs, water resources 
assessments) we think a comparison to observations is sufficient to evaluate the model’s 
performance and that a sensitivity analysis with multiple model resolutions is beyond the 
scope of the manuscript.  In addition, previously published 12 km version of ParFlow-CLM 
(e.g. Keune et al., 2016; Keune et al.,2018; Furusho-Percot et al., 2019; Hartick et al., 2021) 
which has been employed over the European CORDEX domain within the framework of fully 
integrated soil–vegetation–atmosphere model, where the focus was to investigate the impact 
of extreme events on the water and energy fluxes through feedback mechanism, however, the 
model performance was not rigorously evaluated for all water balance components. In the 
current study, we employed the ParFlow-CLM model at 3 km resolution over the same 
domain driven with offline forcings from COSMO-REA6 dataset. Because of two different 
European modeling setups (i.e. 3 km stand alone ParFlow-CLM and 12 km fully-coupled 
COSMO-CLM-ParFlow), it is difficult to identify sources of uncertainties that are only 
caused by model resolution.  
 
As suggested by the reviewer, we summarized the comparison between the European model 
setup in the current study with CONUS implementations by O'Neill et al. (2021) in the Table 
1 as shown below and discussed the main differences in performance between the two models 
throughout the revised manuscript.  
 
Finally, it is not always easy to estimate whether the model really captures a given variable 
well or not. E.g the authors state that the model “appropriately captures the seasonal cycles” 
of the WTD (l. 419). However, with only 20% of the investigated cells exhibiting an R > 0.5, 
it is debatable whether or not this is appropriate. Again, it would have been much more 
straightforward if the simulation had been compared to a different model / resolution and the 
question would have simply been about better or worse than XYZ. Without such a 
comparison, I am not sure that all of the claims made by the authors – e.g. “the added value of 
capturing heterogeneities for improved water and energy flux simulations in physically-based 
fully distributed hydrologic models over very large model domains” (l. 16 ff) – are 
substantiated by their results. 
 
We appreciate your constructive suggestions. As we explained above, we extended the WTD 
analysis by comparing with absolute values of WTD and compared our results extensively 
with the CONUS implementation of ParFlow-CLM model (O'Neill et al., 2021) as shown in 
Table S2 below which is included in the supporting materials.  While a direct quantitative 
comparison is not possible because of different domains, resolution and climatic conditions in 



the two studies, we concluded from this comparison the following points which are added in 
the revised manuscript throughout Section 3 (Results and Discussion) and in Section 4 
(Conclusions and Summary).  
 
Lines 570 - 595 
“Our results are consistent with a comparable continental-scale study by O’Neill et al. 
(2021) which evaluated water balance components over CONUS domian using ParFlow-
CLM (PfCONUSv1). While a direct quantitative comparison is not possible due to different 
domains, resolution and climatic conditions, we found striking similarities for many 
variables assessed here. For example, for ET, both model implementations showed overall 
good agreement against observations, but overpredicted ET in the dry regions (e.g., south 
west region in CONUS and IP region in Europe) but underpredicted ET in more wetter and 
snow dominated regions (i.e. in the northern and eastern part of the CONUS domain; and 
SC region in Europe). In addition, both model implementations show an underestimation 
of ET in mountainous regions, regardless of which product is used for validation. 
Similarly, For surface soil moisture, both EU-CORDEX and PfCONUSv1 models show 
similar performance with spearman correlation (R) values between 0.17–0.77 and 0.25–
0.77, respectively across different regions. Interestingly, overall both model 
implementations show an underestimation of surface SM in the arid to semi-arid and 
overestimation in the wetter regions. In terms of storage, both models show good agreement 
for seasonal TWS anomalies relative to GRACE satellite data, but underpredicted water 
storage in most regions. For WTD comparison, both model implementations simulated 
shallower water table depths when compared with groundwater wells data, which could be 
attributed to the fact that ParFlow-CLM model does not account for deeper aquifer storage 
(i.e. > 51m) and anthropogenic impacts such as groundwater withdrawals which may lead 
to overprediction of water table depth in the regions experienced aquifer depletion (Condon 
and Maxwell, 2019). It should be noted that CONUS domain consists of a single country 
and has reasonable coverage in terms of observational network and geological information. 
Given the European model domain consists of many individual countries, observations 
across regions are not all of the same quality or coverage, which could be a contributing 
factor for poor model performance in some regions of the EU-CORDEX domain. 
Nevertheless, the rigorous evaluation of the ParFlow-CLM model over both and CONUS 
domains paves the way towards a global application of fully distributed physically-based 
hydrologic models. The protocol of evaluation metrics and methods presented in this study 
and in O’Neill et al. (2021) can be used as a framework to benchmark future ParFlow-
CLM model implementations to further improve model simulations in the areas that have 
been identified or to explore the impacts of groundwater on simulated hydrological states 
and fluxes by comparing with other exist- ing global land surface model applications.” 
 
 
 
 
 
 
 
 
 
 
 
 



Table S2:  Summary of ParFlow-CLM model performance for different variables and its 
comparison with CONUS implementation described by O'Neill et al. (2021). 
 

  This study (EU-CORDEX) O'Neill el al 2021 (CONUS) Comparison 

    

Variable 
Datasets 
used R  PBIAS (%)  

Datasets 
used  R  PBIAS (%)   

Streamflow 

GRDC 
gauge 
stations 
(monthly)  0.77 

-16 % (50th 
percentile) 

USGS gauge 
stations 
(daily) 

0.65 (50th 
percentile) 

41.3 % 
(50th 
percentile) 

PFCONUSv1: higher positive bias, 
EU-CORDEX: higher negative bias 

ET 

eddy 
covarianc
e towers 
from 
FLUXNET 
dataset 
(daily) 

0.94   

eddy 
covariance 
towers from 
FLUXNET 
dataset 
(daily) 

0.72 (50th 
percentile) 

37.9% 
(50th 
percentile) 

PFCONUSv1: positive bias,            
EU-CORDEX: positive bias 

RS-based 
GLEAM 
and GLASS 
datasets 
(monthly) 

0.91, 
0.91 
(50th 
percentil
e) 

-9.9% and -
18.2% 
(50th 
percentile) 

RS MODIS 
dataset 
(MOD16A2) 
and SSEBop 
(monthly) 

0.85 and 
0.91 (50th 
percentile) 

14.2% and 
13.2% 
(50th 
percentile) 

PFCONUSv1: Underpredicts ET in 
the north/east (wet/snow 
regions) and overpredicts in the 
south (dry regions). 
Underpredicts ET in the 
mountainous regions.                   
EU-CORDEX: underpredict ET in 
the wet/snow regions, small 
overpredications in the south 
(dry regions). Underpredicts ET in 
the mountainous regions. 

Soil 
Moisture 

ESA-CCI 
(monthly) 

0.70 
(50th 
percentil
e) 

  ESA-CCI 0.69 (50th 
percentile)   

PFCONUSv1: shows overall lower 
amplitude in the west (dry) and 
higher amplitude in the east 
(wet) relative to the CCI product;           
EU-CORDEX: overall wet bias, dry 
bias in southern Europe 

TWS 
GRACE 
dataset 
(monthly) 

ranging  
from 
0.76 and 
0.91 for 
major 
regions 

  

GRACE 
dataset 
(monthly) 
 

ranging 
from 0.43 
to 0.94 for 
major 
basins 

  

Both model setups show stronger 
dry anomalies and overpredict 
wet anomalies relative to the 
GRACE data. 

WTD 

groundwa
ter 
monitorin
g wells  

0.50 
(50th 
percentil
e) 

  
groundwater 
monitoring 
wells  

0.46 (50th 
percentile) 

  
PFCONUSv1: a shallow WTD bias, 
EU-CORDEX: a shallow WTD bias 

 
 
 
Additional comments: 
 
l. 144) (Annoying detail, but) I think that here CLM refers to Community Land Model, while 
CLM was defined in l. 121 for the predecessor Common Land Model. 
Sorry for the confusion. In the revised manuscript, we defined Community Land Model (v3.5) 
as CLM3.5 and Common Land Model as CLM.  
l. 171) Why do you loop a single year to force the model? Doesn’t that include the risk of 
running the model to a non-representative equilibrium state? Also, how did you decide that a 
9-year spin-up is enough and how were the states initialized, that a 9-year spin-up is 
sufficient?  
 
We have clarified this point in the revised manuscript at lines # 193 - 199.  



“ We followed a similar approach as used by other studies to spin up the ParFlow-CLM 
model (Maxwell and Condon, 2016; O’Neill et al., 2021; Shrestha et al., 2015, 2018). Most 
land surface and water balance models need to spinup over several years owing to the 
absence of lateral flow and the parameterization and simplification of physical processes in 
their model structure. Due to the physics-based model structure of ParFlow-CLM, spin up 
of the model over a period of one year, which is run multiple times in a closed loop, is 
deemed sufficient to reach equilibrium and has been shown to be sufficient in the previous 
studies mentioned. We ran the model continuously until the total water storage change was 
less than 2% from the previous years, following the methodology in previous published 
studies. The steady-state initial conditions were then used for model simulations over the 
period from 1997 to 2006.” 
 
 
l. 218) What specific data was assimilated? 
The daily SM data at 0.25° resolution from the European Space Agency Climate Change 
Initiative (ESACCI) were assimilated into CLM3.5 model using an ensemble Kalman filter 
(EnKF) data assimilation method to produce the 3 km European SSM reanalysis (ESSMRA) 
dataset. More details on the data assimilation are given in Naz et al., 2019, 2020. In the 
current simulations, data assimilation was not used. 
 
l. 226) I think it could also be really interesting to compare SM profiles at the stations in 
addition to the top layer SM. 
We agree with the reviewer's comment, however, for the simulation time period (1997 – 
2006), soil moisture data were only available for a limited number of stations (19 grids cells). 
For most stations, the data is available after 2007. More details about the data used in this 
paper can be found in Naz et al., (2020). Therefore, we refrained from the suggested 
comparison. 
 
l. 269 ff & Fig1) As you indicate a strong dependency on topography, could you maybe 
include a plot of the topography in Fig. 1. Also, why is the SWC so low and the WTD so high 
right next to the river? 
 
We revised Fig. 1 in the manuscript to include topography information as shown below. 
 

 
Figure 1: (a) Maps of EURO-CORDEX domain at 3km resolution (1544 x 1592 grid cells) 
showing the spatially average distribution of (a) elevation, (b) discharge, (c) surface soil 



moisture, (d) water table depth, and (e) evapotranspiration (1997–2006) and close-up of Po 
river basin in Alpine (AL) region simulated by ParFlow-CLM model. Red color in (d) 
indicates deeper water table with maximum of 51 m depth. The black boxes in (a) 
correspond to PRUDENCE regions with their common abbreviations indicating names of 
the regions (FR: France, ME: Mid-Europe, SC: Scandinavia, EA: Eastern Europe, MD: 
Mediterranean, IP: Iberian Peninsula, BI: the British Isles, AL: Alpine). 
 
The deeper WT near the large rivers is probably due to the fact that large rivers were burned 
into the digital elevation model data in order to hydrologically correct the topographic slopes 
and ensure European river network connectivity. Burning of rivers appears to make the 
valleys steeper, resulting in a deeper WTD near the rivers. We have made this point in the 
manuscript, describing that this was a limitation of the current model setup implementation, 
that owing to the coarse resolution of the digital elevation model (DEM) (3km), topographic 
highs were smoothed and in order to get accurate river connectivity we needed to “burn” or 
imprint the rivers or rather river corridors into the DEM. This limitation is acknowledged in 
the discussion section along with recommendations for improvement. 
 
Following text has been added to the revised manuscript at lines # 315 - 320: 
 
“For example, we found deeper water table near the large rivers which are probably due to 
the fact that large rivers were burned into the digital elevation model data in order to 
hydrologically correct the topographic slopes and ensure European river network 
connectivity. Burning of rivers appears to make the valleys more steep, resulting in a 
deeper WTD near the rivers. This is a limitation of the current model setup implementation 
which can be improved using more advanced approach for topographic processing for 
integrated hydrologic models (e.g. Conden and Maxwell, 2019). ” 
 
l. 289 f.) In case of the Rhine (gauges 2-5) the model appears to underestimate the discharge 
quite a bit, would this still be explainable by human impacts? Or could it not point to an 
underestimation of  P-ET? 
 
As explained in the manuscript, the underprediction might be related to a (still too) coarse 
river channel resolution in the model, human impacts on discharge regimes – particularly for 
highly regulated rivers through reservoir regulations, and power generation or groundwater 
extraction (e.g., in the case of the Rhine, Elbe and Danube rivers). A 3 km grid cell size might 
still be too coarse to represent realistic stream networks of smaller rivers and convergence 
zones along river corridors. In addition, ParFlow-CLM allows for a two-way overland flow 
routing potentially causing more water losses under dry conditions from channels to 
groundwater or overbank flow. This may lead to a complete drying of some rivers during 
summer, further exacerbated by the (comparatively) coarse resolution of the model. 
 
l. 290) I am not sure that everyone is so familiar with the KGE as to immediately know what 
the range of values indicates. Could you maybe add a very brief explanation here?  
This has been explained in the revised manuscript. 
Fig2.) I found it a bit hard to identify the gauges in subplot a, do you think it would be 
possible to zoom in over the center of the first subplot? 
We appreciate the suggestions. In the revised manuscript, Fig. 2 has been modified to zoom in 
over the center of the map. 
l. 298) I think something went wrong referencing the figure.  
It has been corrected in the revised manuscript. 
Fig3) Could you clarify that the color-code in panel c is the same as in b? 



It has been clarified in the revised manuscript. 
 
l. 339 ff) How can you be sure that the differences are a result of the different treatment of the 
lateral groundwater flow? I thought that between CLM3.0 and 3.5 there were also major 
changes in the terrestrial hydrology – e.g. a TOPMODEL approach to runoff generation and 
changes to the evaporation calculation? 
CLM3.5 applies a simple approach to simulate groundwater recharge and discharge processes 
via the connection of bottom soil layer and an unconfined aquifer as described by Oleson et 
al., 2008 and Niu et al., 2007, without accounting for lateral groundwater flow. On the other 
hand, ParFlow-CLM is an integrated coupled surface water-groundwater model which solves 
the three-dimensional Richards equation to account for variably saturated soil and lateral 
surface and subsurface flow movements.  
To best address this comment, we compared as an example the spatial variability in surface 
soil moisture simulated by ParFlow-CLM for January and August months, 2000 for two 
regions (Alpine and Mid-Europe) with ESSMRA dataset (Naz et al., 2020) which is the 
assimilated soil moisture simulated by CLM3.5 to highlight the differences in spatial 
variability between the two models and added two new figures in the supporting materials. 
 
Following text has been added in the revised manuscript at lines # 417 - 426: 
“Further, we compared the spatial variability in surface soil moisture simulated by 
ParFlow-CLM to highlight the differences in spatial variability between the two models. We 
found that the spatial structure simulated by the two models are starkly different. CLM3.5 
shows much larger spatial patterns of SM which are mostly related to the soil properties 
(e.g. soil texture information), while in ParFlow-CLM simulates more spatial variability, 
which can be attributed to the effects of 3D flows in river networks and across topography. 
Note that both models used identical surface information (topography, soil and vegetation) 
and forcing datasets indicating that these differences are explained by the fine-scale 
processes (such as surface and subsurface lateral transport of water movements and the 
shallow groundwater system) simulated only by ParFlow-CLM. An example is shown in the 
supplementary material for January and 425 August months, 2000 for two regions (Alpine 
and Mid-Europe) with ESSMRA dataset (Naz et al., 2020) (See supplementary 
figures Fig. S4 and Fig. S5).” 
 
 
 



 
 
Figure S4. Spatial variability of the surface soil water content (SWC) simulated by ParFlow-
CLM and CLM3.5 at the surface soil layer for January and August months of year 2000 over 
the Alpine region. Note that glacier areas were not simulated by ParFlow-CLM and soil 
moisture values are zero at those grid cells. 



  
 
Figure S5. Spatial variability of the soil moisture simulated by ParFlow-CLM and CLM3.5 at 
the surface soil layer for January and August months of year 2000 over the Mid-Europe 
region. Note that glacier areas were not simulated by ParFlow-CLM and soil moisture was set 
to zero. 
 
l. 352) Not Fig. 4c? 
It has been corrected in the revised manuscript. 
 
l. 353) The R values in subplot 4c go beyond this range. 
We appreciate the reviewer's comment. It has been corrected in the revised manuscript. 
 
Fig 4.) When comparing ESACCI and ESSMRA in subplot b, these seem to agree much 
better than ParFlow-CLM agrees with any of the two datasets. As ESSMRA is the closest to a 
second model that is shown in the study, one could come to the conclusion that the added 
complexity of the explicit treatment of groundwater fluxes in PArFlow-CLM does very little 
to improve the near surface soil moisture. Thus, it would be very helpful if the authors could 
describe in more detail what was assimilated in ESSMRA, because if it was soil moisture 
directly then the good agreement between ESACCI and ESSMRA is not very surprising.  
Otherwise it would be very interesting to understand why the ESSMRA appears to be so 
much closer to ESACCI. 



Thanks for pointing this out. Surface soil moisture from the ESA CCI dataset was assimilated 
into the CLM3.5 model to generate the ESSMRA dataset as described in detail by Naz et al., 
2020 which is why both ESSMRA and ESACCI are very similar. We used ESSMRA dataset 
to compare with ParFlow-CLM because both models use identical surface information 
(topography, soil and vegetation) and forcing datasets and any differences in SM are results of 
different treatment of groundwater processes. As explained in the previous comment, that 
despite the assimilation of CCI, CLM3.5 simulates much larger spatial patterns of SM which 
are mostly related to the soil properties (e.g. soil texture information), while ParFlow-CLM 
simulates more spatial variability which can be attributed to the effects of river network and 
topography. 
 
l. 387) Could this overestimation of ET also be a reason for the underestimation of streamflow 
in the Rhine? 
As mentioned above to your earlier comment, and explained in the manuscript we think that 
the underprediction of streamflow might be related to the following: a (still too) coarse river 
channel resolution in the model, human impacts on discharge regimes – particularly for highly 
regulated rivers through reservoir regulations, and power generation or groundwater 
extraction (e.g., in the case of the Rhine, Elbe and Danube rivers).  
 
l. 417) I think something went wrong referencing the figure. 
Thanks for pointing this out. It has been corrected in the revised manuscript. 
l. 419) Here I was a bit surprised at the comparatively low R values. Given that precipitation 
is prescribed based on observations and that both streamflow and ET show a much better 
correlation with the observations, does this indicate that the model is missing something 
important in the representation of the groundwater dynamics? 
We believe that low values of R for WTD evaluation might be related to uncertainties in 
aquifer parameterization used in the ParFlow-CLM or the limitations in model resolution such 
that local aquifers in areas with complex topography cannot be captured. Additionally, model 
evaluation can be hampered by the challenges associated with groundwater monitoring. For 
example, the observations might be biased if they are located towards rivers, in low 
elevations, in areas with confined or perched aquifer systems or in coastal areas. In addition, 
the comparison of the resolved simulated pressure head, averaged across 3 km, with the point 
scale observation pressure head, which is highly governed by local surface elevation, can 
bring about misleading results and amplify inaccuracies. Water table depth observations can 
also be impacted by pumping which may not be known for many locations.  
From the comparison of the absolute WTD, we found a positive bias (i.e. shallower WTD 
simulated by ParFlow-CLM), which was also found by O’Neill et al. (2021) over CONUS 
domain. They attributed this positive bias to the aquifers experienced depletion in 
groundwater through extractions but not accounted for in ParFlow-CLM model version used 
in this study. We clarified this point in the revised manuscript at lines # 531- 536 as:   
 
“Studies by O’Neill et al. (2021) and Maxwell and Condon (2016) over CONUS domain 
also found a positive bias in simulated WTD for most well locations, which they found to be 
widely coincide with aquifers experienced depletion in groundwater through extractions. In 
Europe, 505 few studies also suggest groundwater declining in past two decades partly 
related to groundwater abstractions for agriculture and domestic use, particularly in the 
western and southern European countries (e.g. Xanke and Liesch, 2022), however, in the 
current study, it is difficult to directly attribute the shallow WTD bias to aquifer depletion 
because of the fewer observations.” 
 



In the revised manuscript, we included the comparison of total water storage (TWS) 
anomalies simulated by ParFlow to the GRACE satellite data as shown in Fig. 7 of the revised 
manuscript (shown in response to earlier comment) which shows a good agreement with 
GRACE data with R values ranging from 0.76 and 0.91 for major regions.  
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Stefano Ferraris, 23 Aug 2022 
 
The paper address a urgent need, the modeling of spatial and temporal water balance at the 
continental scale. Continental droughts like the one is occurring now make this need even 
more urgent. I fully agree that only streamflow fitting is not meaningful, and we need also 
hydrologic states and fluxes with available observations such as SM, evapotranspiration (ET), 
water table depth (WTD), snow water equivalent (SWE) and total water storage, 
 
 The paper is very detailed and well written, but some part of the process modeling make it 
necessary to be better explained. 
 
We thank Stefano Ferraris for his positive comments on our manuscript. We have revised the 
manuscript based on your constructive comments and suggestions. We replied to your 
comments in the blue text below. Revisions in the revised manuscript are indicated with the 
bold and italic text. 
 
One first problem is overland flow: 
 
I wonder about the sense of overland flow modeling with kinematic wave at 3 km spatial 
scale. It is also mentioned a “two-way overland flow routing” what is it? 
In ParFlow-CLM, overland flow, which is generated by saturation or infiltration excess, is 
implemented as a two-dimensional kinematic wave equation approximation of the shallow 
water equations. The overland flow direction is determined through the D-4 flow routing 
approach. We revised the text in the manuscript for clarity. 
 
Are Manning’s coefficient or hydraulic conductivity you mention possible to be defined at the 
3km scale? 
As stated in the manuscript, in the current modeling setup, distributed parameters describing 
the soil properties, saturated hydraulic conductivity, van Genuchten parameters, and porosity 
were assigned to each hydrofacies and soil classes and were estimated based on the 
pedotransfer functions.  
 
Vegetation is almost absent in the text. It is modeled with a single layer, but no more is 
detailed. 
We appreciate your comment. As stated in the manuscript, land cover classes were based on 
the MODIS dataset (Friedl et al., 2002) and each class has unique parameters such as leaf area 
index, roughness length and reflectance. We provided more details about the vegetation 
representation in ParFlow-CLM at lines 141 - 144 of the revised manuscript as: 
 
“Evapotranspiration calculations include bare-ground evaporation which depends on 
specific humidity, air density, atmospheric and soil resistance terms, where transpiration, 
which only occurs on the dray fraction of the canopy, is computed as a function of leaf and 
stem area index, air density and boundary layer resistance term (Jefferson et al., 2017).” 
 
I have seen that an area intensively irrigated in summer shows quite low ET fluxes. Only the 
rice part of it have high fluxes, therefore I wonder if irrigation is taken into account in ET 
fluxes. 
Irrigation is not taken into account in this model setup; hence also the ET fluxes are 
unaffected. 
 



Snow has a very detailed coding, with up to 5 layers, how can be given such a description at 
the continental scale? 
Detailed description of snow model in ParFlow-CLM model is given in Ryken et al., 2020. In 
the revised manuscript we now briefly described the main processes in the revised manuscript 
at lines # 144 - 146 as: 
“ParFlow-CLM simulates snow water equivalent using thermal, vegetation, canopy and 
snow age processes which determine the amount of precipitation falling as snow. Changes 
in snow through time is simulated through albedo decay, snow compaction, sublimation, 
and melt processes. Snow layer is initialized when snow is present on the ground and can 
be divided up to 5 snow layers based on prescribed thickness and the amount of snow 
present on the ground.” 
 
The paper speaks in more details of soil moisture, but the first 3 centimeters say nothing about 
subsurface water flow. Field data are “from 19 stations from four networks and In case that 
more than 1 station is located within one 3 km grid cell, the average of those stations was 
used for comparison”. Does it mean that less than 19 pixel in all Europe has a SM ground 
validation? 
Thanks for pointing this out. For the time period of 1997–2006, we only have data available 
for 41 stations (please see Table 3 of Naz et al., 2020), however, for some pixels if there is 
more than 1 station located within the gridcell then the average of those stations were used 
resulting in 19 grid cells over Europe. We modified the text for clarity in the revised 
manuscript.  
 
You mention “consistently higher mean SM”: I think that are much more important the 
dynamics of SM. I agree to perform a montly average anomalies comparison, but the 
dynamics is partly lost. 
We agree with the reviewer’s comment. However, because of the data limitation (e.g. sparse 
in-situ data and only surface information can be compared with remote sensing observations), 
makes it difficult to perform more detailed comparison of SM dynamics at the deeper soil 
layers.    
 Also, I know that having information abut soil structure is impossible at the continental scale, 
but it has to be remarked that only texture cannot give enough information. 
In the revised manuscript, we provided more information about the soil data limitations over 
larger scales.   
 
Less important, a figure has no number, but only ?? at line 417. 
It has been corrected in the revised manuscript. 
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