
Anonymous Referee #3, 05 Aug 2022 
In their manuscript Naz et al. evaluate a pan-European, high-resolution (0.0275°) simulation 
with the coupled land surface groundwater model ParFlow-CLM, using observations and re-
analysis data for streamflow, near-surface soil moisture, evapotranspiration, water table depth 
and snow water equivalent. In general, the manuscript is well written, the metrics for 
evaluation seem to be appropriate and the authors go into great detail discussing the potential 
sources for some of the biases – with respect to possible shortcomings of the model but also 
of the observational data. 
We would like to thank the anonymous reviewer for his/her comments and constructive 
suggestions, which we believe resulted in an improved manuscript. We replied to your 
comments in the blue text below. 
 
Having said that, there was one aspect of the evaluation that did not fully convince me, 
namely the evaluation of the simulated water table depths, where only the anomalies were 
being investigated. I understand that it may not be easy to define the reference elevation, but 
with the sophisticated ground water fluxes being the key component of the model that sets 
ParFlow-CLM apart from most LSMs, the authors should really think about discussing a 
comparison of the absolute values – maybe indicating the uncertainty due to the reference 
surface elevation. Also I did not understand, why the authors limited their comparison to 
those points with simulated WTD < 10m ?    
 
This concern was also raised by one of the other reviewers which has prompted us to further 
clarifications in our revised manuscript. Reported water table depth data across Europe is only 
poorly quality controlled, and inconsistent methods and standards are used for the calculation 
of the depth (Fan et al., 2013). Because of these inconsistencies in reporting water table depth 
data, we compare the anomalies. For example, groundwater levels (meter above sea level) 
data was provided for most groundwater monitoring wells (i.e., 2018 grid cells out of 2738 
located mostly in Germany) but no reference surface elevation information was given. This 
makes it difficult to convert groundwater levels to WTD or to calculate modeled groundwater 
levels for direct comparison of absolute values. We complied however with the reviewer’s 
suggestion, to extend our analysis to show the difference in WTD absolute values for the 
remaining 720 grid cells where WTD data was provided. For these locations, the difference in 
the observed and simulated WTD is shown in Fig. 1. For these grid cells, we found a good 
agreement between the ParFlow-CLM and observed WTD with mean difference of -3.60 m, 
RMSE of 4.25 m and 25th, 50th and 75th quantile for simulated minus observed WTD are -
2.6 m, -1.37 m and -0.84 m, respectively. Negative values in WTD difference indicates 
shallower WTD simulated by ParFlow-CLM. Despite this wet bias, the model is able to 
capture the temporal dynamics well with R > 0.5 for more than 50% of locations.  



 
 
Figure 1: (a) Difference in observed and ParFlow-simulated WTD at filtered locations (N = 
720), and (c) RMSE values at filtered locations, (c) Spearman correlation (R) values at 
selected locations. Histogram plots show the distribution of (d) simulated minus observed 
WTD and (e) RMSE values. (f) Cumulative distribution function (CDF) of Spearman 
correlation of ParFlow-CLM with observed WTD monthly data. 
 
In addition to this analysis, we included comparison of total water storage (TWS) simulated 
by ParFlow-CLM with GRACE satellite data for the time period of 2003-2006 as shown in 
the following Fig. 2.  
 



 
Figure 2: Time series of total water storage anomalies simulated by ParFlow-CLM and its 
comparison with GRACE products across major regions in the EU-CORDEX domain. 
 
However, my main concern is that I found it somewhat difficult to connect the results to the 
motivation outlined in the (very well written) introduction of the paper. A large part of the 
latter is focused on the shortcomings of LSMs and GHMs and their -- admittedly extremely 
simple – representation of (subsurface) processes. So I would have welcomed a comparison 
between ParFlow-CLM and a CLM version without ParFlow – possibly the one that is part of 
ParFlow-CLM  -- or with a LSM that includes some simple parametrization of ground water 
flow (e.g. CLM5 [Felfelani et al., 2021]). Furthermore, the authors indicate that the resolution 
of the model is important, which I am very willing to believe. Yet they do not show how this 
affects the simulations in case of their model. Here, a convincing case may have been made 
by comparing their simulation to the 12km runs in Shastra et al. (2021). If the authors do not 
want to include an inter-model/-resolution comparison maybe they could think about a 
different approach to the paper: E.g. as an alternative, the authors could have referred to the 
study of O’Neil et al. (2021) from the beginning and then set up the paper as a comparison of 
ParFlow-CLM simulations of Europe and of the CONUS region? 
 
We agree with the reviewer’s comments that a multi-model comparison for uncertainty 
assessment is important in order to better quantify whether biases stem from either model 
structural errors or from the model resolution, particularly for models with a lateral 
groundwater flow representation. However, the aim of this study is to implement and evaluate 
the ParFlow-CLM model performance in space and time relative to observations, which we 
believe is also helpful to identify biases in water balance components and problem areas that 
could be improved in future studies. The novelty of the model implementation lies in a fully 
3D represented subsurface flow, integrated with 2D overland flow at a high km-scale 
resolution for a continental model domain. In order to use this implementation in a wide range 
of scientific applications where an accurate representation of groundwater and surface water 
interactions is critical (e.g. climate non-stationarity, coupled ESMs, water resources 
assessments) we think a comparison to observations is sufficient to evaluate the model’s 
performance and that a sensitivity analysis with multiple model resolutions is beyond the 
scope of the manuscript.  In addition, previously published 12 km version of ParFlow-CLM 



(e.g. Keune et al., 2016; Keune et al.,2018; Furusho-Percot et al., 2019; Hartick et al., 2021) 
which has been employed over the European CORDEX domain within the framework of fully 
integrated soil–vegetation–atmosphere model, where the focus was to investigate the impact 
of extreme events on the water and energy fluxes through feedback mechanism, however, the 
model performance was not rigorously evaluated for all water balance components. In the 
current study, we employed the ParFlow-CLM model at 3 km resolution over the same 
domain driven with offline forcings from COSMO-REA6 dataset. Because of two different 
European modeling setups (i.e. 3 km stand alone ParFlow-CLM and 12 km fully-coupled 
COSMO-CLM-ParFlow), it is difficult to identify sources of uncertainties that are only 
caused by model resolution.  
 
As suggested by the reviewer, we summarized the comparison between the European model 
setup in the current study with CONUS implementations by O'Neill et al. (2021) in the Table 
1 as shown below and discussed the main differences in performance between the two 
models. throughout the manuscript.  
 
Finally, it is not always easy to estimate whether the model really captures a given variable 
well or not. E.g the authors state that the model “appropriately captures the seasonal cycles” 
of the WTD (l. 419). However, with only 20% of the investigated cells exhibiting an R > 0.5, 
it is debatable whether or not this is appropriate. Again, it would have been much more 
straightforward if the simulation had been compared to a different model / resolution and the 
question would have simply been about better or worse than XYZ. Without such a 
comparison, I am not sure that all of the claims made by the authors – e.g. “the added value of 
capturing heterogeneities for improved water and energy flux simulations in physically-based 
fully distributed hydrologic models over very large model domains” (l. 16 ff) – are 
substantiated by their results. 
We appreciate your constructive suggestions. As we explained above, we extended the WTD 
analysis by comparing with absolute values of WTD and compared our results extensively 
with the CONUS implementation of ParFlow-CLM model (O'Neill et al., 2021) as shown in 
Table 1 below. Please note that the CONUS domain does not suffer the same data sparsity 
issues as the European domain and because of different domains, resolution and climatic 
conditions, a direct quantitative comparison is not possible. We concluded from this 
comparison the following points:  
  
Streamflow: Both modeling setups show good agreement with observation from gauge 
stations in terms of temporal dynamics. However, the EU-CORDEX model shows negative 
biases for the majority of the stations, whereas, the CONUS model simulates higher positive 
biases for many gauge locations.  
 
ET: A comparison to the FLUXNET sites shows that both model implementations show 
overall high correlations for all sites but overpredict ET for most sites. In regard to the remote 
sensing (RS) comparisons, CONUS implementation overpredicted ET in the dry regions (e.g., 
south west) but underpredicted ET in more wetter and snow dominated regions (i.e., in the 
northern and eastern part of the domain) relative to the MODIS ET data. We see a similar 
behavior of the EU-CORDEX model when compared with the GLEAM dataset, which 
showed a slight underprediction in the north eastern part of Europe (more snow dominated) 
and a small overpredication in the southern part (relatively dry regions). However, in 
comparison to the GLASS ET dataset, which is a MODIS based product, ParFlow-CLM 
underestimated ET. In addition, both model implementations show an underestimation of ET 
in mountainous regions, regardless of which product is used for validation. 
 



Soil moisture: For surface soil moisture comparison, both EU-CORDEX and PfCONUSv1 
models show similar performance with correlation (R) values between 0.17–0.77 and 0.25–
0.77, respectively across different regions. Interestingly, overall both model implementations 
show an underestimation of surface SM in the dry regions and overestimation in the wetter 
regions. Similarly, both implementations show lower correlation values for regions with 
dense vegetation, complex topography, snow cover and frozen soil (i.e. upper Colorado in the 
CONUS domain and Scandinavia in the EU-CORDEX domain), which might be due to the 
large uncertainties in the ESA CCI data for areas with such conditions.  
 
WTD: We find a good agreement between the ParFlow-CLM and observed WTD with a 
mean difference of -3.60 m, RMSE of 4.25 m and 25th, 50th and 75th quantile for simulated 
minus observed WTD are -2.6 m, -1.37 m and -0.84 m, respectively. Negative values in WTD 
difference indicates shallower WTD simulated by ParFlow-CLM. Despite this wet bias, the 
model is able to capture the temporal dynamics well with R > 0.5 for more than 50% of 
locations. For the CONUS implementation, O'Neill et al. (2021) showed similar wet bias for 
most locations which they found to be aquifer-dependent with greatest wet biases occurring 
for aquifers experiencing the highest rate of depletion in the past. 
 
TWS: Both models show good agreement for TWS anomalies relative to GRACE satellite 
data in terms of temporal dynamics. EU-CORDEX setup simulated much stronger dry 
anomalies in the dry regions (MD and IP regions) and overpredicted wet anomalies for snow 
dominated regions (e.g. Scandinavian region).  
 
The summary Table 1 shows a similar performance among the EU-CORDEX domain setup 
and the CONUS domain setup, giving additional confidence that the EU-CORDEX model 
implementation is performing adequately. 
 
Table 1:  Summary of ParFlow-CLM model performance for different variables and its 
comparison with CONUS implementation described by O'Neill et al. (2021). 
 

  This study (EU-CORDEX) O'Neill el al 2021 (CONUS) Comparison 

    

Variable 
Datasets 
used R  PBIAS (%)  

Datasets 
used  R  PBIAS (%)   

Streamflow 

GRDC 
gauge 
stations 
(monthly)  0.77 

-16 % (50th 
percentile) 

USGS gauge 
stations 
(daily) 

0.65 (50th 
percentile) 

41.3 % 
(50th 
percentile) 

PFCONUSv1: higher positive bias, 
EU-CORDEX: higher negative bias 

ET 

eddy 
covarianc
e towers 
from 
FLUXNET 
dataset 
(daily) 

0.94   

eddy 
covariance 
towers from 
FLUXNET 
dataset 
(daily) 

0.72 (50th 
percentile) 

37.9% 
(50th 
percentile) 

PFCONUSv1: positive bias,            
EU-CORDEX: positive bias 

RS-based 
GLEAM 
and GLASS 
datasets 
(monthly) 

0.91, 
0.91 
(50th 
percentil
e) 

-9.9% and -
18.2% 
(50th 
percentile) 

RS MODIS 
dataset 
(MOD16A2) 
and SSEBop 
(monthly) 

0.85 and 
0.91 (50th 
percentile) 

14.2% and 
13.2% 
(50th 
percentile) 

PFCONUSv1: Underpredicts ET in 
the north/east (wet/snow 
regions) and overpredicts in the 
south (dry regions). 
Underpredicts ET in the 
mountainous regions.                   
EU-CORDEX: underpredict ET in 
the wet/snow regions, small 
overpredications in the south 
(dry regions). Underpredicts ET in 
the mountainous regions. 



Soil 
Moisture 

ESA-CCI 
(monthly) 

0.70 
(50th 
percentil
e) 

  ESA-CCI 
0.69 (50th 
percentile)   

PFCONUSv1: shows overall lower 
amplitude in the west (dry) and 
higher amplitude in the east 
(wet) relative to the CCI product;           
EU-CORDEX: overall wet bias, dry 
bias in southern Europe 

TWS 
GRACE 
dataset 
(monthly) 

ranging  
from 
0.76 and 
0.91 for 
major 
regions 

  

GRACE 
dataset 
(monthly) 
 

ranging 
from 0.43 
to 0.94 for 
major 
basins 

  

Both model setups show stronger 
dry anomalies and overpredict 
wet anomalies relative to the 
GRACE data. 

WTD 

groundwa
ter 
monitorin
g wells  

0.50 
(50th 
percentil
e) 

  
groundwater 
monitoring 
wells  

0.46 (50th 
percentile) 

  
PFCONUSv1: a shallow WTD bias, 
EU-CORDEX: a shallow WTD bias 

 
 
 
Additional comments: 
 
l. 144) (Annoying detail, but) I think that here CLM refers to Community Land Model, while 
CLM was defined in l. 121 for the predecessor Common Land Model. 
Sorry for the confusion. In the revised manuscript, we defined Community Land Model (v3.5) 
as CLM3.5 and Common Land Model as CLM.  
l. 171) Why do you loop a single year to force the model? Doesn’t that include the risk of 
running the model to a non-representative equilibrium state? Also, how did you decide that a 
9-year spin-up is enough and how were the states initialized, that a 9-year spin-up is 
sufficient?  
We followed a similar approach as used by other studies to spin up the ParFlow-CLM model 
(Maxwell and Condon, 2016; O’Neill et al., 2021; Shrestha et al., 2015; Shrestha et al., 2018). 
Most land surface models and water balance models need to spin up over several years owing 
to the absence of lateral flow and parameterisation of physical processes in their model 
structure. Due to the physics based model structure of ParFlow-CLM, spin up of the model 
over a period of year is deemed sufficient to reach equilibrium and has been shown to be 
sufficient in the previous studies mentioned. We ran the model continuously until the total 
water storage change was less than 2 % from the previous years, as per the methodology in 
the published studies. We have clarified this point in the revised manuscript. 
 
l. 218) What specific data was assimilated? 
The daily SM data at 0.25° resolution from the European Space Agency Climate Change 
Initiative (ESACCI) were assimilated into CLM3.5 model using an ensemble Kalman filter 
(EnKF) data assimilation method to produce the 3 km European SSM reanalysis (ESSMRA) 
dataset. More details on the data assimilation are given in Naz et al., 2019, 2020. In the 
current simulations, data assimilation was not used. 
 
l. 226) I think it could also be really interesting to compare SM profiles at the stations in 
addition to the top layer SM. 
We agree with the reviewer's comment, however, for the simulation time period (1997 – 
2006), soil moisture data were only available for a limited number of stations (19 grids cells). 
For most stations, the data is available after 2007. More details about the data used in this 
paper can be found in Naz et al., (2020). Therefore, we refrained from the suggested 
comparison. 
 



l. 269 ff & Fig1) As you indicate a strong dependency on topography, could you maybe 
include a plot of the topography in Fig. 1. Also, why is the SWC so low and the WTD so high 
right next to the river? 
 
We revised Fig. 1 in the manuscript to include topography information as shown below. 
 

 
Figure 1: (a) Maps of the EU-CORDEX domain at 3 km resolution (1544 x 1592 grid cells) 
showing the spatially average distribution of (a) Elevation (b) discharge, (c) surface soil 
moisture, (d) water table depth, and (e) evapotranspiration (1997–2006) and close-up of Po 
river basin in Alpine (AL) region simulated by ParFlow-CLM model. 
 
The deeper WT near the large rivers is probably due to the fact that large rivers were burned 
into the digital elevation model data in order to hydrologically correct the topographic slopes 
and ensure European river network connectivity. Burning of rivers appears to make the 
valleys steeper, resulting in a deeper WTD near the rivers. We have made this point in the 
manuscript, describing that this was a limitation of the current model setup implementation, 
that owing to the coarse resolution of the digital elevation model (DEM) (3km), topographic 
highs were smoothed and in order to get accurate river connectivity we needed to “burn” or 
imprint the rivers or rather river corridors into the DEM. This limitation is acknowledged in 
the discussion section along with recommendations for improvement. 
 
 
l. 289 f.) In case of the Rhine (gauges 2-5) the model appears to underestimate the discharge 
quite a bit, would this still be explainable by human impacts? Or could it not point to an 
underestimation of  P-ET? 
 
As explained in the manuscript, the underprediction might be related to a (still too) coarse 
river channel resolution in the model, human impacts on discharge regimes – particularly for 
highly regulated rivers through reservoir regulations, and power generation or groundwater 
extraction (e.g., in the case of the Rhine, Elbe and Danube rivers). A 3 km grid cell size might 
still be too coarse to represent realistic stream networks of smaller rivers and convergence 
zones along river corridors. In addition, ParFlow-CLM allows for a two-way overland flow 
routing potentially causing more water losses under dry conditions from channels to 
groundwater or overbank flow. This may lead to a complete drying of some rivers during 
summer, further exacerbated by the (comparatively) coarse resolution of the model. 
 



l. 290) I am not sure that everyone is so familiar with the KGE as to immediately know what 
the range of values indicates. Could you maybe add a very brief explanation here?  
This has been explained in the revised manuscript. 
Fig2.) I found it a bit hard to identify the gauges in subplot a, do you think it would be 
possible to zoom in over the center of the first subplot? 
We appreciate the suggestions. In the revised manuscript, the figure has been modified to 
zoom in over the center of the map. 
l. 298) I think something went wrong referencing the figure.  
It has been corrected in the revised manuscript. 
Fig3) Could you clarify that the color-code in panel c is the same as in b? 
It has been clarified in the revised manuscript. 
 
l. 339 ff) How can you be sure that the differences are a result of the different treatment of the 
lateral groundwater flow? I thought that between CLM3.0 and 3.5 there were also major 
changes in the terrestrial hydrology – e.g. a TOPMODEL approach to runoff generation and 
changes to the evaporation calculation? 
CLM3.5 applies a simple approach to simulate groundwater recharge and discharge processes 
via the connection of bottom soil layer and an unconfined aquifer as described by Oleson et 
al., 2008 and Niu et al., 2007, without accounting for lateral groundwater flow. On the other 
hand, ParFlow-CLM is an integrated coupled surface water-groundwater model which solves 
the three-dimensional Richards equation to account for variably saturated soil and lateral 
surface and subsurface flow movements.  
To best address this comment, we compared, as an example, the spatial variability of surface 
soil moisture simulated by ParFlow-CLM for January and August months, 2000 for two 
regions (Alpine and Mid-Europe) with the ESSMRA dataset (Naz et al., 2020), which is the 
assimilated soil moisture simulated by CLM3.5, in order to highlight the differences in spatial 
variability between the two models as shown below in Fig. S1 and Fig. S2. As shown in these 
figures, spatial structure simulated by the two models differs remarkably. CLM3.5 shows 
much larger spatial patterns of SM which are mostly related to the soil properties (e.g. soil 
texture information), while in ParFlow-CLM simulates more spatial variability which can be 
attributed to the effects of the evolving river network and topography. Please note that both 
models use identical surface information (topography, soil, and vegetation) and atmospheric 
forcing datasets, indicating that these differences are explained by the fine-scale processes 
(such as surface and subsurface lateral transport of water movements and the shallow 
groundwater system) simulated only by ParFlow-CLM. 



 
 
Figure S1. Spatial variability of the surface soil water content (SWC) simulated by ParFlow-
CLM and CLM3.5 at the surface soil layer for January and August months of year 2000 over 
the Alpine region. Please note that glacier areas were not simulated by ParFlow-CLM and soil 
moisture values are zero at those grid cells. 



  
 
Figure S2. Spatial variability of the soil moisture simulated by ParFlow-CLM and CLM3.5 at 
the surface soil layer for January and August months of year 2000 over the Mid-Europe 
region. Please note that glacier areas were not simulated by ParFlow-CLM and soil moisture 
was set to zero. 
 
l. 352) Not Fig. 4c? 
It has been corrected in the revised manuscript. 
 
l. 353) The R values in subplot 4c go beyond this range. 
We appreciate the reviewer's comment. It has been corrected in the revised manuscript. 
Fig 4.) When comparing ESACCI and ESSMRA in subplot b, these seem to agree much 
better than ParFlow-CLM agrees with any of the two datasets. As ESSMRA is the closest to a 
second model that is shown in the study, one could come to the conclusion that the added 
complexity of the explicit treatment of groundwater fluxes in PArFlow-CLM does very little 
to improve the near surface soil moisture. Thus, it would be very helpful if the authors could 
describe in more detail what was assimilated in ESSMRA, because if it was soil moisture 
directly then the good agreement between ESACCI and ESSMRA is not very surprising.  
Otherwise it would be very interesting to understand why the ESSMRA appears to be so 
much closer to ESACCI. 



Thanks for pointing this out. Surface soil moisture from the ESA CCI dataset was assimilated 
into the CLM3.5 model to generate the ESSMRA dataset as described in details by Naz et al., 
2020 which is why both ESSMRA and ESACCI are very similar. We used ESSMRA dataset 
to compare with ParFlow-CLM because both models use identical surface information 
(topography, soil and vegetation) and forcing datasets and any differences in SM are results of 
different treatment of groundwater processes. As explained in the previous comment, that 
despite the assimilation of CCI, CLM3.5 simulates much larger spatial patterns of SM which 
are mostly related to the soil properties (e.g. soil texture information), while ParFlow-CLM 
simulates more spatial variability which can be attributed to the effects of river network and 
topography. 
 
l. 387) Could this overestimation of ET also be a reason for the underestimation of streamflow 
in the Rhine? 
As mentioned above to your earlier comment, and explained in the manuscript we think that 
the underprediction of streamflow might be related to the following: a (still too) coarse river 
channel resolution in the model, human impacts on discharge regimes – particularly for highly 
regulated rivers through reservoir regulations, and power generation or groundwater 
extraction (e.g., in the case of the Rhine, Elbe and Danube rivers).  
 
l. 417) I think something went wrong referencing the figure. 
Thanks for pointing this out. It has been corrected in the revised manuscript. 
l. 419) Here I was a bit surprised at the comparatively low R values. Given that precipitation 
is prescribed based on observations and that both streamflow and ET show a much better 
correlation with the observations, does this indicate that the model is missing something 
important in the representation of the groundwater dynamics? 
We believe that low values of R for WTD evaluation might be related to uncertainties in 
aquifer parameterization used in the ParFlow-CLM or the limitations in model resolution such 
that local aquifers in areas with complex topography cannot be captured. Additionally, model 
evaluation can be hampered by the challenges associated with groundwater monitoring. For 
example, the observations might be biased if they are located towards rivers, in low 
elevations, in areas with confined or perched aquifer systems or in coastal areas. In addition, 
the comparison of the resolved simulated pressure head, averaged across 3 km, with the point 
scale observation pressure head, which is highly governed by local surface elevation, can 
bring about misleading results and amplify inaccuracies. Water table depth observations can 
also be impacted by pumping which may not be known for many locations. 
 
However, to address the reviewer's concern, we now compared the total water storage (TWS) 
anomalies simulated by ParFlow with GRACE satellite data as shown in Fig. 3 (shown in 
response to earlier comment) which shows a good agreement with GRACE data with R values 
ranging from 0.76 and 0.91 for major regions.  
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