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The model evaluation paper of Naz et al. describes a version of the established ParFlow-CLM 
model applied over Europe and evaluated its hydrological components. 
 
ParFlow-CLM is an established modeling tool, and a publication of a model evaluation paper 
that builds a foundation for future scientific use is certainly something I would like to support. 
Unfortunately, in the current stage, the manuscript does not deliver on this goal and seems to 
purposely hide model shortcomings. In the current version, I can only suggest significant 
revisions. 
We would like to thank the anonymous reviewer for his/her comments and constructive 
suggestions, which we believe resulted in an improved manuscript. We replied to your 
comments in the blue text below.  
 
We certainly wrote the manuscript with that purpose in mind - to provide a foundation for 
future scientific use, particularly for use in: 
1. Studies on the impact of climate change on water resources 
2. Coupled Earth system model simulations 
 
Both cases above require large scale integrated hydrology to capture macro scale groundwater 
dynamics, groundwater-surface water interactions (Condon et al., 2021). Therefore we have 
strengthened the Introduction section to emphasize the need for large scale hydrological 
modeling in these use cases and what the trade offs could be when comparing catchment scale 
versus continental scale model implementations.  
 
Parflow-CLM (i.e., ParFlow hydrologic model coupled here to the Common Land Model) is 
an established modeling tool, however continental scale modeling at high resolution (<5km) 
is challenging both computationally (3D finite volume implementation) and also in terms of 
data sparsity in regions (e.g. geological information, soil classes). There are few studies which 
have implemented a high resolution, fully three dimensional coupled land surface - 
groundwater model continentally, most notably there have been similar approaches over the 
CONUS domain (Maxwell et al., 2015). We have strengthened this point in the Introduction 
and Discussion sections.   
 
I would like to focus on two aspects that are currently flawed. Firstly, the paper's motivation 
could be much clearer from the beginning. In the light of the many publications that already 
exist on ParFlow and CLM, what is the added value of this model evaluation paper? What is 
the model's purpose within the range of continental and global models? What questions can it 
help to answer? Outlining this much more clearly from the beginning will be helpful for the 
scientific community in making this publication a helpful reference for future research. 
We appreciate your constructive suggestions. In the revised manuscript, we have made the 
objectives and research goals clear by expanding the Introduction and Discussion sections to 
emphasize and clarify the following points: 
 

1. The aim of this study is to implement and evaluate the performance of ParFlow-CLM 
model, which is a physically-based integrated hydrological model that simultaneously 
solves surface and subsurface processes with lateral-groundwater flow. The lateral 
groundwater flow is a key model feature - many modeling systems implemented at 
continental or global scales are one dimensional and contain a parameterised version 
of groundwater flow (Felfelani et al., 2020; Wada et al., 2016; Zeng et al., 2018; de 
Graaf et al., 2015). We have strengthened this point in the Introduction and Discussion 



sections. At finer resolution (< 5 km), physically-based integrated hydrological 
models can better represent groundwater-surface water interactions, and 
heterogeneities in the representation of the water and energy cycles, because of the  
higher resolution surface data used. In addition, owing to ParFlow’s 3D flow 
implementation, this model setup provides a more accurate representation of lateral 
transport of surface and subsurface water movements driven by topographic slopes 
(Bierkens et al., 2015). While we agree that several studies exist on ParFlow-CLM, 
they mostly concentrate on the CONUS region. As the CONUS domain consists of a 
single country, the CONUS region has reasonable coverage in terms of observational 
network and geological information. Unfortunately given the European (EU) model 
domain consists of many individual countries, observations across regions are not all 
of the same quality or coverage. We have emphasized this point in the discussion, and 
highlighted that this could be a contributing factor for poor model performance in 
some regions of the EU domain.   
The novelty of this study lies in the fact that it is the first study to implement ParFlow-
CLM over the EU-CORDEX domain at high resolution with lateral surface and 
groundwater flow representation. In addition, a comprehensive model evaluation is 
given for multiple variables using both in-situ and remote sensing observations, in 
comparison to similar European studies such as Bouaziz et al., (2021);Rakovec et al., 
(2016); Zink et al., (2017). Implementation of this model outside CONUS is a step 
forward towards “Hyperresolution global land surface modeling” which is considered 
a “grand challenge in hydrology” as described by Wood et al., (2011) and Bierkens et 
al., (2015). We have strengthened this point in the Introduction. 
 

2. Explicitly incorporating hydrological processes that are not included in the existing 
land surface models (LSMs) can also benefit the land surface modeling community for 
more improved representation of hydrological processes (Clark et al., 2015) such as 
the lateral transport of surface and subsurface processes across landscapes that are 
often ignored or represented in LSMs in a simplified way. Many recent studies 
showed the importance of representing the lateral transport of subsurface water and/or 
interaction of groundwater with land-atmosphere water fluxes (e.g. Maxwell and 
Kollet, 2008; Miguez-Macho et al., 2007; Xie et al., 2012; Zeng et al., 2018). These 
studies suggested that explicitly simulating these processes can have a significant 
effect on the energy fluxes and flux partitioning (Maxwell and Condon, 2016). It can 
also affect the spatial redistribution of soil moisture through infiltration during lateral 
movement of water (Ji et al., 2017). Despite this important work, the effect of these 
important processes on water and energy states and fluxes is still not fully understood, 
especially over continental scales and comparison across different landscapes is 
needed. While representations of these important processes continue to improve in 
continental to global scale hydrological models, implementation and rigorous 
evaluation of these models over large areas is an important step and can be used to 
guide future modeling efforts at larger spatial scales and higher resolutions. 
 

Secondly, I cannot accept the current evaluation of the groundwater component. The authors 
use groundwater in the title and motivate the model's usefulness with the argument of an 
active groundwater component but provide a not convincing evaluation. I do not expect the 
model to be able to perfectly represent the water table. Still, I think we can only progress if 
we are open about our models' shortcomings and clearly communicate uncertainties. Poor 
model performance is not a reason for not publishing something as long as there is a proper 
discussion on the causes. Currently, the paper is not doing that and uses oversimplified 



evaluation methods to obfuscate the actual model behavior. Furthermore, existing literature 
and models are omitted as well. 
We have addressed reviewer’s concerns by conducting additional analysis of WTD evaluation 
with in-situ observations, including absolute value comparison of WTD using R and PBAIS 
and RMSE statistical metrics. Additionally, we have evaluated total water storage (TWS) with 
GRACE satellite data.  
 
To strengthen our model evaluation as a whole, we included detailed comparison of our 
results with the PfCONUSv1 implementation described by O'Neill et al. (2021) and discussed 
our results in comparison to other global scale models. Please see more details in response to 
your comments below.  
 
Additional notes: 
 
* While I know that it is difficult to find a repository to host a large amount of data, I employ 
the authors to think about if selected model outputs could be made available in the spirit of 
OpenScience principles! 
 
We agree with your comment and selected model outputs will be made available on our 
public repository of https://datapub.fz-juelich.de/, including a dataset DOI. 
 
* Is it really necessary to use the overcomplicated PF-CLM-EU3km as a name? Why not stick 
with ParFlow-CLM in the paper? If it is a very different model, why is that not the name used 
in the title? 
We agree with the reviewer's suggestion. We now replaced “PF-CLM-EU3km” with 
ParFlow-CLM throughout the manuscript. 
 
L. 1: How are these large-scale models useful for water resource management? I see how they 
are helpful for large-scale policy and fostering scientific understanding but are they really 
useful for management? Please also define what high-resolution means in brackets - people 
have very different interpretations about that, and it is changing fast. 
 
Thanks for this comment. We have clarified this point in the manuscript. While we agree that 
catchment scale would be most relevant for the purpose of water management, catchment 
scale models only capture processes contained within the catchment boundary, whereas large-
scale simulation at high-resolution (< 5 km) is necessary to understand changes to water 
resources from macro-scale processes such as high evapotranspiration rates leading to soil 
moisture deficits, resulting, e.g., in mega droughts over large area (for example, the 2018 to 
2020 European drought; Rakovec et., 2022), water storage deficits and flow regime shifts 
(hydrological droughts; Hanel et al., 2018), and widespread flooding (e.g. Western Europe 
floods in 2021; He et al., 2022).   
 
In addition, the influence of  climate variability and climate non-stationarity can not be 
modeled at a catchment scale (Massei et al., 2020). In the revised manuscript, we 
reformulated the text to avoid confusion.  
 
3: How is the coarse spatial resolution linked to the lateral fluxes and groundwater 
components - isn't that mixing up things? What small scale processes specifically? 
We argue that the issue of model resolution and accurate representation of the surface and 
subsurface processes are interlinked which has been discussed extensively in the literature 
(Beven et al., 2015; Bierkens et al., 2015; Melsen et al., 2016; Wood et al., 2011; Fan, 2015).   



Land surface models often ignore lateral surface and subsurface water movements, also 
because these fine scale processes cannot be resolved realistically at coarse resolution (e.g. 
Clark et al., 2015) - we have made this point in the manuscript. On the other hand, processes-
based integrated hydrologic models can better represent heterogeneity in the representation of 
water and energy states and fluxes when run at high spatial resolution because due to the 
higher resolved surface properties that help in providing a more accurate representation of the 
lateral transports of surface and subsurface water movements driven by topographic slopes (Ji 
et al., 2017; Shrestha et al., 2015) - we have clarified this point in the manuscript. 
 
4: what does more complex refer to? Complex in what regard? 
Here complex refers to more complex models such as the integrated land surface hydrological 
models such as Parflow-CLM (e.g., as defined in Kuffour et al. (2020)) that solve three-
dimensional Richard's equation to simulate three-dimensional movement of subsurface water 
in a continuum approach with two-dimensional overland flow whereas most LSMs are one 
dimensional and therefore only solve subsurface water movement vertically and ignore 
surface routing. This is clarified in the revised manuscript. 
  
11: what is PF-CLM-EU3km? It has not been introduced; quantify good agreement 
We now replaced “PF-CLM-EU3km” with ParFlow-CLM throughout the manuscript. 
Originally we tried to distinguish our specific implementation from others, such as 
PfCONUSv1.  
 
17: this is the first-time heterogeneities are mentioned. Is it implied that this is a result of the 
higher spatial resolution? This should be explained 
Thanks for this comment - we overlooked this explanation. We have now explained this in the 
revised manuscript.  
 
Fig. 1 c) WTD in log scale without indicating what red is. Is that deeper than 100 m? How 
deep is it? Why is the WTD so deep near larger rivers? Why so shallow in mountainous 
regions? What is the reasoning here why this is plausible? Is it plausible in the light of the 
performance of other large-scale models? 
Thanks for pointing this out. Red color indicates deeper water table with maximum of 51 m 
depth. The deeper WT near the large rivers is probably due to the fact that large rivers were 
burned into the digital elevation model data in order to hydrologically correct the topographic 
slopes and ensure European river network connectivity. Burning of rivers appears to make the 
valleys more steep, resulting in a deeper WTD near the rivers. We have made this point in the 
manuscript, describing that this was a limitation of the current model setup implementation, 
that owing to the coarse resolution of the digital elevation model (DEM) (3km), topographic 
highs were smoothed and in order to get accurate river connectivity we needed to “burn” or 
imprint the rivers or rather river corridors into the DEM. This limitation is acknowledged in 
the discussion section along with recommendations for improvement. 
 
415: I get the problem of inconsistent WTD elevation data. Still, this should be solvable for at 
least some regions in Europe. I feel that the authors feared that the model performance would 
be judged too harshly. Whatever the reason, the solution shown here is not acceptable.  
Furthermore, you can't simply select only the cells that simulate WTD < 10!! This is the range 
almost all models do a good job. This is not advancing our science. This is far from ok. 
 
Thanks for your comment. This has prompted us to further clarifications in our revised 
manuscript. Reported water table depth data across Europe is only poorly quality controlled, 
and inconsistent methods and standards are used for the calculation of the depth (Fan et al., 



2013). Because of these inconsistencies in reporting water table depth data, we compare the 
anomalies. For example, groundwater levels (meter above sea level) data was provided for 
most groundwater monitoring wells (i.e., 2018 grid cells out of 2738 located mostly in 
Germany) but no reference surface elevation information was given. This makes it difficult to 
convert groundwater levels to WTD or to calculate modeled groundwater levels for direct 
comparison of absolute values. We complied however with the reviewer’s suggestion, to 
extend our analysis to show the difference in WTD absolute values for the remaining 720 grid 
cells where WTD data was provided. See our detailed response below.  
We did not deliberately set out to obfuscate the model’s shortcomings. Please note that we 
showed an example of ParFlow-CLM performance in the supplementary material (Figure S11 
and S12) with highest and lowest correlation (R) values across different regions to highlight 
model limitations in different regions.  
To address the reviewer's concern about not including all the data, we conducted our analysis 
using all the available data without any filtering for quality control. However, this has resulted 
in no significant differences, compared to previous results as shown in the following Fig. 1. 

  
Figure 1: (a) Correlation map between in-situ water table depth (WTD) anomalies and 
ParFlow-CLM model using all available data (2738 grid cells). (b) Cumulative distribution 
function (CDF) of correlation coefficient of ParFlow-CLM with observed WTD anomalies. 
The inset in (a) shows a zoom of the Mid-Europe (ME) region. 
 
We would like to acknowledge that the reviewer's suggestions have led to a more 
comprehensive analysis and as a result, has strengthened the revised manuscript. 
 
Please show how much the model deviates from observations. You motivate your paper with 
the statement that representation of groundwater is essential and then skip a proper evaluation 
of your model. 
 



I suspect it will not perform perfectly - no large-scale model currently can, and you are 
providing some reasonable answers by referring to Gleeson et al., 2021, which is good but not 
enough. Please provide a more extensive discussion on how the performance differs from 
other existing research. 
 
To address this comment, we extended our analysis to make a direct comparison between 
model and observations for all those locations (720) where WTD data is provided. As 
explained above, for most locations (i.e. 2018 grid cells), groundwater levels (meter above sea 
level) data was provided but no reference surface elevation information was given which is 
needed to convert groundwater levels to WTD or to calculate modeled groundwater levels for 
direct comparison of absolute values. Therefore, we excluded these locations from this 
comparison. For the remaining 720 locations, the difference in the observed and simulated 
WTD is shown in Fig. 2. For these grid cells, we found a good agreement between the 
ParFlow-CLM and observed WTD with mean difference of -3.60 m, RMSE of 4.25 m and 
25th, 50th and 75th quantile for simulated minus observed WTD are -2.6 m, -1.37 m and -0.84 
m, respectively. Negative values in WTD difference indicates more shallower WTD 
simulated by ParFlow-CLM. Despite this wet bias, the model is able to capture the temporal 
dynamics well with R > 0.5 for more than 50% of locations.  
 

 
Figure 2: (a) Difference in observed and ParFlow-simulated WTD at filtered locations (N = 
720), and (b) RMSE values at filtered locations, (c) Spearman correlation (R) values at 
selected locations. Histogram plots show the distribution of (d) simulated minus observed 
WTD and (e) RMSE values. (f) Cumulative distribution function (CDF) of Spearman 
correlation of ParFlow-CLM with observed WTD monthly data. 
 
In addition to this analysis, we included comparison of total water storage (TWS) simulated 
by ParFlow-CLM with GRACE satellite data for the time period of 2003-2006 as shown in 
the following Fig. 3.  
 



 
Figure 3: Time series of total water storage anomalies simulated by ParFlow-CLM and its 
comparison with GRACE products across major regions in the EU-CORDEX domain. 
 
To provide more discussion on how our model differs from other existing implementations of 
ParFlow-CLM, we compare our results with the CONUS implementation of ParFlow-CLM 
model (O'Neill et al., 2021) as shown in Table 1 below. As stated previously, the CONUS 
domain does not suffer the same data sparsity issues and because of different domains, 
resolution and climatic conditions, a direct quantitative comparison is not possible. We, 
however, concluded from this comparison the following points:  
  
Streamflow: Both modeling setups show good agreement with observation from gauge 
stations in terms of temporal dynamics. However, the EU-CORDEX model shows negative 
biases for the majority of the stations, whereas, the CONUS model simulates higher positive 
biases for many gauge locations.  
 
ET: A comparison to the FLUXNET sites shows that both model implementations show 
overall high correlations for all sites but overpredict ET for most sites. In regard to the remote 
sensing (RS) comparisons, CONUS implementation overpredicted ET in the dry regions (e.g., 
south west) but underpredicted ET in more wetter and snow dominated regions (i.e., in the 
northern and eastern part of the domain) relative to the MODIS ET data. We see a similar 
behavior of the EU-CORDEX model when compared with the GLEAM dataset, which 
showed a slight underprediction in the north eastern part of Europe (more snow dominated) 
and a small overpredication in the southern part (relatively dry regions). However, in 
comparison to the GLASS ET dataset, which is a MODIS based product, ParFlow-CLM 
underestimated ET. In addition, both model implementations show an underestimation of ET 
in mountainous regions, regardless of which product is used for validation. 
 
Soil moisture: For surface soil moisture comparison, both EU-CORDEX and PfCONUSv1 
models show similar performance with correlation (R) values between 0.17–0.77 and 0.25–
0.77, respectively across different regions. Interestingly, overall both model implementations 
show an underestimation of surface SM in the dry regions and overestimation in the wetter 
regions. Similarly both implementation show lower correlation values for regions with dense 
vegetation, complex topography, snow cover and frozen soil (i.e. upper Colorado in the 



CONUS domain and Scandinavia in the EU-CORDEX domain), which might be due to the 
large uncertainties in the ESA CCI data for areas with such conditions.  
 
WTD: We find a good agreement between the ParFlow-CLM and observed WTD with a 
mean difference of -3.60 m, RMSE of 4.25 m and 25th, 50th and 75th quantile for simulated 
minus observed WTD are -2.6 m, -1.37 m and -0.84 m, respectively. Negative values in WTD 
difference indicates shallower WTD simulated by ParFlow-CLM. Despite this wet bias, the 
model is able to capture the temporal dynamics well with R > 0.5 for more than 50% of 
locations. For the CONUS implementation, O'Neill et al. (2021) showed similar wet bias for 
most locations which they found to be aquifer-dependent with greatest wet biases occurring 
for aquifers experiencing the highest rate of depletion in the past. 
 
TWS: Both models show good agreement for TWS anomalies relative to GRACE satellite 
data in terms of temporal dynamics. EU-CORDEX setup simulated much stronger dry 
anomalies in the dry regions (MD and IP regions) and overpredicted wet anomalies for snow 
dominated regions (e.g. Scandinavian region).  
 
The summary Table 1 shows a similar performance among the EU-CORDEX domain setup 
and the CONUS domain setup, giving additional confidence that the EU-CORDEX model 
implementation is performing adequately. 
 
Table 1:  Summary of ParFlow-CLM model performance for different variables and its 
comparison with CONUS implementation described by O'Neill et al. (2021). 
 

  This study (EU-CORDEX) O'Neill el al 2021 (CONUS) Comparison 

    

Variable 
Datasets 
used R  pbias (%)  

Datasets 
used  R  pbias (%)   

Streamflow 

GRDC 
gauge 
stations 
(monthly)  0.77 

-16 % (50th 
percentile) 

USGS gauge 
stations 
(daily) 

0.65 (50th 
percentile) 

41.3 % 
(50th 
percentile) 

PFCONUSv1: higher positive bias, 
EU-CORDEX: higher negative bias 

ET 

eddy 
covarianc
e towers 
from 
FLUXNET 
dataset 
(daily) 

0.94   

eddy 
covariance 
towers from 
FLUXNET 
dataset 
(daily) 

0.72 (50th 
percentile) 

37.9% 
(50th 
percentile) 

PFCONUSv1: positive bias         
EU-CORDEX: positive bias 

RS-based 
GLEAM 
and GLASS 
datasets 
(monthly) 

0.91, 
0.91 
(50th 
percentil
e) 

-9.9% and -
18.2% 
(50th 
percentile) 

RS MODIS 
dataset 
(MOD16A2) 
and SSEBop 
(monthly) 

0.85 and 
0.91 (50th 
percentile) 

14.2% and 
13.2% 
(50th 
percentile) 

PFCONUSv1: Underpredicts ET in 
the north/east (wet/snow 
regions) and overpredicts in the 
south (dry regions). 
Underpredicts ET in the 
mountainous regions.                   
EU-CORDEX: Underpredict ET in 
the wet/snow regions, small 
overpredications in the south 
(dry regions). Underpredicts ET in 
the mountainous regions. 

Soil 
Moisture 

ESA-CCI 
(monthly) 

0.70 
(50th 
percentil
e) 

  ESA-CCI 0.69 (50th 
percentile) 

  

PFCONUSv1: shows overall lower 
amplitude in the west (dry) and 
higher amplitude in the east 
(wet) relative to the CCI product;           
EU-CORDEX: overall wet bias, dry 
bias in southern Europe 

TWS 
GRACE 
dataset 
(monthly) 

ranging  
from 
0.76 and 
0.91 for 

  

GRACE 
dataset 
(monthly) 
 

ranging 
from 0.43 
to 0.94 for 

  

Both model setups show stronger 
dry anomalies and overpredict 
wet anomalies relative to the 
GRACE data. 



major 
regions 

major 
basins 

WTD 

groundwa
ter 
monitorin
g wells  

0.50 
(50th 
percentil
e) 

  
groundwater 
monitoring 
wells  

0.46 (50th 
percentile) 

  
PFCONUSv1: a shallow WTD bias, 
EU-CORDEX: a shallow WTD bias 

 
 
417: ?? = Fig. 7 
It has been corrected in the revised manuscript. 
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