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Abstract. Dramatic increases in climate data underlie a gradual paradigm shift in knowledge-acquisition methods from 

physical-based models to data-based mining techniques. k-Means is one of the most popular data clustering/mining techniques, 

and it has been used to detect hidden patterns in climate systems. k-Means is established based on distance metrics for pattern 10 

recognition, which is relatively ineffective when dealing with “structured” data that are dominant in climate science, that is, 

data in time and space domains. Here, we propose (i) a novel structural similarity recognition-based k-means algorithm called 

structural k-means or S k-means for climate data mining and (ii) a new clustering uncertainty representation / evaluation 

framework based on the information entropy concept. We demonstrated that the novel S k-means could provide higher-quality 

clustering outcomes in terms of general silhouette analysis, although it requires higher computational resources compared with 15 

conventional algorithms. The results are consistent with different demonstration problem settings using different types of input 

data, including two-dimensional weather patterns, historical climate change in terms of time series, and tropical cyclone paths. 

Additionally, by quantifying the uncertainty underlying the clustering outcomes we for the first time evaluated the 

“meaningfulness” of applying a given clustering algorithm for a given dataset. We expect that this study will constitute a new 

standard of k-means clustering with “structural” input data, as well as a new framework for uncertainty 20 

representation/evaluation of clustering algorithms for (but not limited to) climate science. 

1. Introduction 

In recent decades, the volume and complexity of climate data have increased dramatically owing to advancements in data 

acquisition methods (Overpeck et al., 2011). This increase underlies a gradual shift of climate-knowledge acquisition paradigm 
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from using classical “first-principle” models (i.e., based on physical laws) to models and analyses directly based on data (i.e., 25 

based on data mining) (Kantardzic, 2011). Hence, numerous data mining methods have been developed to investigate the 

underlying nature and structure of data. Clustering is one of the principal unsupervised data mining methods. It is used to 

organize a set of data into clusters that maximize the homogeneity of the elements in a cluster and the heterogeneity among 

different clusters (Pérez-Ortega et al., 2019). Clustering algorithms are useful to handle large, multivariate, and highly 

dimensional data, which are difficult for human perception. Although numerous clustering algorithms exist, k-means is one of 30 

the most well-known and widely used in most research domains (Wu et al., 2008).  

The history of k-means can be traced back to the 1950s – 1960s, when it was developed through independent efforts (e.g., 

Lloyd, 1957; Forgy, 1965; Jancey, 1966; MacQueen, 1967). The name k-means was coined in a paper by MacQueen 

(MacQueen, 1967). k-Means has been extensively used in climate science, thanks to its ease of implementation and 

interpretation. It is used to explore unknown atmospheric mechanisms and/or improve predictions. The most common 35 

application is the use of k-means within “detection-and-attribution” framework. In this framework, first, specific atmospheric 

conditions, or events, e.g., abnormally hot weather or heavy precipitation, were detected. Then, the causes of these atmospheric 

conditions are attributed to atmospheric regimes/patterns, determined by using k-means (Esteban et al., 2005; Houssos et al., 

2008; Spekat et al., 2010; Zeng et al., 2019; Smith et al., 2020). A different application is the use of k-means for weather or 

climate predictions. In such a case, rather than being used as an independent prediction method, it is considered as 40 

complementary to existing numerical predictions. The combined k-means and numerical forecast system suggests the 

probability of occurrence of a certain weather condition by searching k-means derived analog patterns from historical data 

(Kannan and Ghosh, 2011; Gutiérrez et al., 2013; Le Roux et al., 2018; Pomee and Hertig, 2022). On top of this, under the 

analog approach, the algorithm can be used for future climate prediction (also known as a statistical downscaling) or for 

reconstructing historical data (Camus et al., 2014).  45 

The k-means algorithm is an interactive clustering method. To briefly describe, it involves four processing steps: i) initiation: 

predefines 𝑘 cluster centers (or centroids); ii) classification: clustering of an object with similar objects; iii) centroid update: 

recalculates centroids based on the updated classification; iv) convergence (equilibrium) judgement: halts the algorithm if 

object migrations are not observed from one cluster to another; otherwise, returns to step ii) if such migrations are observed 

(Pérez-Ortega et al., 2019). The dominance of k-means over most research fields is partly due to its simplicity and ease of use. 50 

However, simplicity inherits the drawbacks of the algorithm. Such drawbacks (which will be explained later) have inspired 
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researchers for decades to identify improvements. Consequently, these efforts have delivered a great number of k-means 

variants alongside those from the earliest time.  

Improving centroid initialization represents an important issue to be resolved. k-Means clustering outcomes are known to be 

sensitive to the initialization of centroids (Sydow, 1977; Katsavounidis et al., 1994; Bradley and Fayyad, 1998; Pelleg, 2000; 55 

Khan and Ahmad, 2004; Arthur and Vassilvitskii, 2006; Su and Dy, 2007; Eltibi and Ashour, 2011). Subsequent efforts have 

been made to improve the calculation procedure in the classification scheme primarily because it is the most computationally 

time-consuming. These efforts resulted in numerous k-means variants (Fahim et al., 2006; Lai and Huang, 2010; Perez et al., 

2012). More recent studies have focused on the underlying basis of the classification, that is, how to define the similarity for 

which an object should be classified to one cluster but not another.  60 

The conventional k-means classification scheme is established based on the distance paradigm, in which the similarity is 

determined by distance metrics. Such metrics include the Euclidean distance, Manhattan distance, or their general form, the 

Minkoski distance (Cordeiro de Amorim and Mirkin, 2012). The advantage of distance metrices lies in their ease of 

implementation and popularity, thus making the judgement for using them less controversial. Nonetheless, recent studies have 

pointed out that distance metrics defend less against noisy and irrelevant features (or dimensions, in other words) of input 65 

objects (vectors) (de Amorim, 2016). Few studies have proposed the use of feature weights to overcome this weakness (Chan 

et al., 2004; Huang et al., 2005; Cordeiro de Amorim and Mirkin, 2012). However, such improvements do not intentionally 

consider the structural relationship between vector dimensions, especially when data are time series or spatially distributed.  

Atmospheric data are characterized by their temporal and spatial “structuredness”. In other words, the information value of 

data lies in their relationship or trends in time and space. For example, when looking at weather maps, one might realize that 70 

locations of high or low pressures would be the first concern. The similarity, trend, or phase correlation of a time series might 

be more important than their absolute values. For these reasons, k-means under the distance paradigm treats the features of the 

input data equally, thus mask the similarity recognition between data, consequently deteriorating the clustering outcomes. This 

is true at least for a specific case of atmospheric data. However, to replace distance metrics by something different remains 

big challenging. It is because distance metrics have deep historical roots, and they undoubtedly laid the foundation for modern 75 

data mining, including clustering algorithms. As mentioned by Wang et al., “it (distance metric) is not bad, and easy to use” 

and “everyone else use it” (Wang et al., 2004).  
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Based on the nature of atmospheric data, a specific question raised here is whether another k-means approach is available that 

can consider the “structural” similarity in time and space between input objects. Answering this question has great practical 

value, particularly, for the climate informatics field owing to the unprecedented recent increase in archived data. The demand 80 

is growing for innovative and effective tools of data mining that can handle the inherent nature of climate data.  

Here we propose a novel k-means algorithm based on the “structural” similarity recognition, called Structural k-means or S k-

means. S k-means follows the same procedure as the generic k-means algorithm. It differs from the generic algorithm in 

incorporating a recent innovation in signal processing science, namely, the structural similarity (S-SIM) recognition concept 

(Wang et al, 2004) into the classification scheme. The novel S k-means inherits the simplicity of the generic algorithm and 85 

meanwhile can handle temporally and spatially ordered data. 

We evaluate the performance of S k-means clustering across three representative demonstration tests. The tests cover multiple 

types of input data, that is, spatial distributions (weather patterns), time series (historical change in temperature), and hybrid 

types (tropical cyclone tracking). Using multiple data types is a unique point of this study that can robustify the conclusions 

through cross comparisons. The performance of S k-means is evaluated against three other k-means algorithms using different 90 

similarity/distance metrics for the classification scheme, that is, the Pearson correlation coefficient, Euclidean, and Manhattan 

distances, hereafter called C, E, and M k-means, respectively. We implement various k (number of centroids) configurations 

and multiple initializations (randomized). Eventually, 1320 model runs are conducted. Such settings ensure the robustness of 

the results and conclusions. The “general” silhouette analysis/score, which is a scoring method based on general 

similarity/distance metrics, is used to quantify the algorithm performance.  95 

We propose a novel framework for clustering-uncertainty evaluation/representation based on the information entropy concept. 

This framework is primarily used to quantify the variability/consensus among the clustering outcomes across the different k-

means algorithms. At the core of the framework is the newly proposed concept “clustering uncertainty degree,” which builds 

on mutual information theory. Also, relevant visualization tools including connectivity matrix, heatmap, and chord diagram 

are proposed to represent the clustering uncertainty.  100 

To the best of our knowledge, this study is the first to address the uncertainty issue in the climate science. Our study is the first 

to propose a clustering-uncertainty evaluation framework, borrowing recent-most techniques and concepts in information 

theory. This framework is not only used to quantify the clustering uncertainty but also to serve a more fundamental purpose, 

i.e., to measure the “meaningfulness” of the application of clustering for a given problem dataset. We expect that this 
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framework together with the S k-means algorithm will establish a new standard in data mining and clustering studies, primarily 105 

for (but not limited to) climate science.  

The remainder of this paper is organized as follows. Section 2 describes the S k-means algorithm. Section 3 presents the test 

simulation configurations. Section 4 describes the evaluation metrics and a novel framework for clustering uncertainty. Section 

5 presents and discusses the results. Section 6 provides the concluding remarks. 

2. Description of the algorithms  110 

2.1 S k-means algorithm 

S k-means follows the conventional procedure of generic k-means clustering. To express this mathematically, let define 𝑋	 =

	{𝑥!, . . . 𝑥" , … , 𝑥#} be a set of 𝑛 objects (input vectors), where 𝑥" 	 ∈ 𝑅$ (𝑖 = 1, . . . , 𝑛) and 𝑑 ≥ 1 is the number of dimensions. 

Let 𝐾	 = 	 {1, . . . , 𝑘} with 𝑘 ≥ 2 denote the number of groups.  

For a k-partition, 𝛲	 = 	 {𝐺(1), . . . , 𝐺	(𝑘)} of 𝑋, let 𝑐% denote the centroid of cluster 𝐺(𝑗), for 𝑗	 ∈ 	𝐾, with 𝐶 = {𝑐!, . . . , 𝑐&} and 115 

a set of weight vectors 𝑊	 =	 {𝑤!!, . . . , 𝑤"%}. Hence, the clustering problem can be formulated as an optimization problem 

(Selim and Ismail, 1984), which is described by the following equation:	 

 
𝑃:minimize	𝑧(𝑊,𝑀) =FF𝑤"%𝑑G𝑥" , 𝑐%H

&

%'!

#

"'!

 

subject	to	F𝑤"% = 1, for	𝑖 = 1,… , 𝑛,
&

%'!

 

𝑤"% = 0	or	1, for	𝑖 = 1,… , 𝑛, and	𝑗 = 1,… , 𝑘	 

 

 

 

 

 

(1) 

where 𝑤"% 	= 	1 implies that object 𝑥" belongs to clusters 𝐺(𝑗) and 𝑑(𝑥" , 𝜇%) denotes the distance between 𝑥" and 𝜇% for 𝑖	 =

	1, . . . , 𝑛 and 𝑗	 = 	1, . . . , 𝑘.  
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The S k-means algorithm consists of four steps (Fig. 1a), which are similar to that of generic algorithms except for step (ii). 120 

The steps are described as follows: 

• (i) Initialization. Initialize 𝑘 centroid vectors. Although k-means has several options for initialization, we apply a 

randomized scheme to initialize the centroids. 

• (ii) Classification. Assign an object to its most similar centroid. The S k-means algorithm uses the structural similarity 

(S-SIM) recognition technique to determine the most similar centroids instead of using distance measures, such as 125 

that in generic algorithms. 

• (iii) Centroid calculation. Update centroid vectors by taking the mean value of the objects belonging to these clusters.  

• (iv) Convergence determination. The algorithm stops when equilibrium is reached, that is, when there are no object 

migrations from one cluster to another. If equilibrium is not reached, then the process is repeated from step (ii). 

S k-means is compared with E, M, and C k-means (k-means using the Euclidean distance, the Manhattan distance, and the 130 

Pearson correlation coefficient). E, M, and C k-means also follow the same procedure as indicated above except for 

classification scheme (ii), where the respective similarity/distance measures are used to determine the most similar centroids.  

2.2 Structural similarity 

The metrics for the structural similarity (S-SIM) recognition process were first introduced by Wang et al. (2004). It was 

developed to better predict the perceived quality of digital television and cinematic pictures. S-SIM is intended to improve the 135 

traditional peak signal-to-noise ratio or mean squared error in detecting similarities between “structural” signals, such as 

images. Intuitively, S-SIM is determined by considering the differences between two input signals (vectors 𝑥, 𝑦) across 

multiple aspects including “luminance” (𝑙), “contrast” (𝑐), “and structure” (𝑠), which represent the characteristics of human 

visual perception. “Luminance” measures the similarity in brightness values; “contrast” quantifies the similarity in illumination 

variability; and “structure” measures the correlation in spatial inter-dependencies between images (Wang and Bovik,2009). 140 

Mathematically, S-SIM is determined as follows:  

 𝑆𝑆𝐼𝑀(𝑥, 𝑦) = 𝑙(𝑥, 𝑦)(	 × 𝑐(𝑥, 𝑦)) × 𝑠(𝑥, 𝑦)* (2)  

where the individual comparison functions are 𝑙(𝑥, 𝑦) = +,!,"-.#
,!$-/"$-.#

, 𝑐(𝑥, 𝑦) = +0!0"-.$
0!$-0"$-.$

, and (𝑥, 𝑦) = 0!"-.%
0!0"-.%

. Here, 𝜇1	and		𝜇2 

represent the average and 𝜎1	and		𝜎2  represent the standard deviations of vectors 𝑥, 𝑦; and 𝑐!, 𝑐+, and	𝑐3 are parameters to 
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stabilize the division with a weak denominator. For simplification, we set 𝑐! = 𝑐+ = 𝑐3 = 0 and weights 𝛼 = 𝛽 = 𝛾 = 1 and 

reduce the original formula to the following: 145 

 𝑆𝑆𝐼𝑀(𝑥, 𝑦) = 		
2𝜇1𝜇2𝜎12

(𝜇1+ + 𝜇2+)(𝜎1+ + 𝜎2+)
 (3)  

S-SIM values range from -1 to 1, where -1 indicates totally dissimilar and 1 indicates totally similar. Wang and Bovik (2009) 

showed that S-SIM represents a powerful, easy-to-use, and easy-to-understand alternative to traditional distance metrics, such 

as Euclidean distance, for dealing with spatially and temporally structured data. S-SIM emerged as a “new-generation” 

similarity metric with an increasing number of applications outside the signal processing field. Moreover, S-SIM has recently 

attracted the attention of hydrological and meteorological researchers (e.g., Mo et al., 2014; Han and Szunyogh, 2018; Doan 150 

et al., 2021).  

3. Demonstration tests 

S k-means is applied to three representative clustering problems. These problems cover various types of input datasets that 

represent diverse issues, i.e., weather pattern (in terms of two-dimensional pressure data), historical climate change (in terms 

of time series), and tropical cyclone tracking data (the hybrid type of data containing both spatial and temporal information) 155 

(Fig. 1b). The details of these three tests are described below. 

• Weather pattern (WP) clustering. Group winter weather patterns in Japan. The mean sea level pressure (SLP) was 

obtained using ERA-Interim reanalysis data (Dee et al., 2011). The data had a horizontal resolution of 0.75°on a 

regular grid but were re-gridded to an equal-area scalable earth-type grid at a spatial resolution of 200 × 200 km. This 

interpolation/regridding method is commonly applied to high-latitude domains (Gibson et al., 2017). Data collected 160 

in winter months, that is, December, January, and February (DJF), for ten years (2005-2014) over the region from 20 

– 50 °N and 115 – 165°E were used. The total number of samples used was 902. Each sample had a grid size of 35 

pixels × 35 pixels. 

• Climate change (CC) clustering. Group temperature-increase time series data collected over 70 years (1951 – 2020) 

from in situ weather stations run by the Japan Meteorological Agency. A simple data-quality check was implemented. 165 

Weather stations that missed (daily basis) observations for more than 10% of the total period of interest were excluded. 

Therefore, 134 valid weather sites remained (see Fig. 1b CC for the location of weather sites). The annual mean of 
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each time series was calculated, and the climate change components were determined by subtracting the average of 

the first 30 years (1951 – 1980) from each value series.  

• Tropical cyclone (TC) tracking clustering. Group the best TC tracks from 1951 to 2020, which were retrieved from 170 

the Japan Regional Specialized Meteorological Center (RSMC) (https://www.jma.go.jp/jma/jma-eng/jma-

center/rsmc-hp-pub-eg/besttrack.html). Note that the RMSC provides only the best TC tracks, which have a maximum 

wind speed of more than 17.2	𝑚	 ⋅ 𝑠4!, e.g., wind force 8 of the Beaufort scale (Barua, 2019). These data contain the 

TC classification, maximum sustained wind speed, central pressure, and latitude and longitude of the TC centers with 

6-hourly intervals. In this study, only TCs that passed the Japan region, defined as the region between 25 – 45°N and 175 

126 – 150°E, were used for the analysis. Hence, the total number of TCs feeding the k-means was 863. Because k-

means clustering requires identical lengths of input vectors, the TC tracks were reconstructed so that they had an 

equal length of 20 segments by the method proposed by Kim et al. (Kim et al., 2011), which has been applied in 

several studies (Choi et al., 2012; Kim and Seo, 2016). 

As mentioned in the introduction, in addition to S k-means, the C, E, and M k-means methods that use Pearson correlation 180 

coefficients and Euclidean and Manhattan distances for the classification scheme were used for the tests. For this, we performed 

a total of 3	 × 	4	 = 	12 simulations. For each simulation, 11 𝑘 settings were implemented, that is, 𝑘 = 2, 4, 6, … , 20, and for 

each 𝑘, ten runs (randomized initializations) were realized. In summary, a total of 12	 × 	11	 × 	10	 = 	1320 runs (model 

realizations) were performed for the analysis. 

4. Evaluation measures 185 

4.1 Similarity distributions  

The similarity-distributions technique developed by Doan et al. (2021) to evaluate “global” pairwise relationship of input 

vectors was adopted, and it was named the similarity distribution (S-distribution or S-D) in this study. The S-distribution is a 

probability density function of pairwise similarities of a vector set. Suppose that 𝑋	 = 	 {𝑥!, . . . , 𝑥#} is the set of 𝑛 objects; 𝑠"% 

is the pairwise similarity between two objects, which is defined as 𝑠"% = 𝐹G𝑥" → 𝑥%H; and 𝐹 is the similarity function, 𝑖 =190 

1, 2, … , 𝑛; 𝑗 = 1,2, … , 𝑛. The normalized 𝑠"% is defined as 𝑠"%5 = (𝑠"% −min{𝑠})/(max{𝑠} − min{𝑠}). By definition, 𝑠"%5  ranges 

from 0 to 1, with the maximum value of 1 indicating perfect similarity (self-similarity) and the minimum value of 0 indicating 

a lack of similarity (distance to the furthest object), and it is data dependent. As 𝐹  is a symmetric function, that is, 
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𝐹G𝑥" → 𝑥%H = 𝐹G𝑥% → 𝑥"H for all similarity/distance indices of interest, i.e., S-SIM, COR, ED, and MD, duplicated values 

were removed. In addition, results showing self-similarity, that is, 𝑠"%5  with 𝑖 = 𝑗, were removed. Thus, 𝑛(𝑛 − 1)/2 values 195 

remained in the final set 𝑆 of 𝑠"%5 . The S-distribution, or S-D, is defined as the probability density function of the values of 𝑆. 

The S-Ds were then plotted together for comparison. In addition, statistical parameters, such as the mean, standard deviation, 

skewness, kurtosis, and Shannon entropy, were calculated to further diagnose the characteristics of the datasets of interest.  

4.2 “General” silhouette analysis 

In this study, we focused on k-means clustering as an unsupervised machine learning method. Thus, we assume the absence 200 

of “ground truth,” or predefined cluster labels of a given dataset in which the goodness of the cluster outcomes is defined. 

Therefore, an internal validation approach was adopted. In the internal validation, clustering is only compared with the result 

itself (Hassani and Seidl, 2017) based on the criterion that the clustering methods must group objects to optimize the 

homogeneity within a cluster and maximize the difference among clusters. Many internal indices have been used for clustering 

evaluation. However, a problem with conventional indices when dealing with non-distance metrics is that these indices are 205 

built on Cartesian geometric algebra, which is not the case with non-distance metrics.  

This study uses the general silhouette analysis method to validate the algorithms. Silhouette analysis is a comprehensive 

analysis of the interpretation and validation of cluster methods. This technique offers a concise graphical representation of 

how well each object has been classified (Rousseeuw, 1987). The silhouette value is a measure of how coherent an object is 

with its cluster versus how it is separated from other clusters. The general silhouette analysis is the generalized form of the 210 

silhouette analysis that can applicable also for non-distance metrices. This concept was firstly used for the evaluation of self-

organizing maps by Doan et al. (2021). Mathematically, the general silhouette coefficient (𝐺𝑆𝐶) for a given object is defined 

as follows:  

 𝐺𝑆𝐶 =
𝑏 − 𝑎

max	{𝑎, 𝑏} 
 (4)  

where 𝑎	𝑎𝑛𝑑		𝑏 are the mean intracluster distance and mean distance to the nearest cluster, respectively. Note that the distance 

here is the “general” distance and not the Euclidean distance, which was originally defined in the study by Rousseeuw (1987). 215 

The general distance is the reversed normalized similarity (i.e., −𝑠′"%) defined in subsection 4.1, which is why here we call it 

the general silhouette coefficient.  
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The 𝐺𝑆𝐶 values ranged from −1 to +1. A higher value indicates the goodness of the cluster assignments, that is, the object is 

coherent with its cluster and well separated from neighboring clusters. The clustering configuration is appropriate if most 

objects have high scores. In contrast, if many objects have low or negative values, then the clustering configuration performs 220 

poorly. A 𝐺𝑆𝐶 of zero indicates that the object is on or very close to the border of two neighboring clusters, and a negative 

𝐺𝑆𝐶 indicates that the object may have been assigned the wrong cluster label.  

4.3 Clustering uncertainty evaluation 

Evaluating the variability/uncertainty inherent in a clustering algorithm is challenging owing to the unique nature of the 

clustering outcome. On one hand, compared with other statistical random variables, it is difficult to define the statistical mean, 225 

standard deviation, or range between quantiles of a given ensemble of clustering realizations. Therefore, it is impossible to use 

statistical measurements to represent associated variability/uncertainty. On the other hand, applying a clustering algorithm as 

an unsupervised learning method assumes the absence of “ground truth” or “absolute reference” so that the variance from that 

could be easily defined. 

Herein, we propose a framework for the representation/evaluation of the variability/uncertainty of the clustering problem. The 230 

framework is based on a pairwise comparison of clustering realizations using a quantified index called the clustering 

uncertainty degree (CUD). The CUD is based on the mutual information concept; in more detail, it is a recently developed 

adjusted mutual information index. In information theory, mutual information from two random variables is used to quantify 

the "amount of information" obtained for one random variable by observing another random variable. The concept of mutual 

information is intimately linked to the entropy concept of a random variable, which is a fundamental notion in information 235 

theory that quantifies the expected "amount of information" held in this variable. Recently, mutual information has been 

applied to evaluate the agreement between two clustering assignments. To do so, the mathematical formula for mutual 

information 𝐼(𝑈, 𝑉) between two clustering realizations (label assignments of 𝑁 objects) 𝑈 and 𝑉 is defined as follows: 

 	𝐼(𝑈, 𝑉) = 𝐻(𝑈) + 𝐻(𝑉) − 𝐻(𝑈, 𝑉) (5)  

where 𝐻(𝑈)	𝑎𝑛𝑑		𝐻(𝑉)  are the entropies of each realization and 𝐻(𝑈, 𝑉)  is the joint entropy of the two. Entropies of 

clustering realizations are defined as the amount of uncertainty for partition sets.  240 
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𝐻(𝑈) = 	−	F𝑃(𝑖)log	(𝑃(𝑖))

|7|

"'!

 
 (6)  

 
𝐻(𝑉) = 	−	F𝑃′(𝑗)log	(𝑃′(𝑗))

|8|

%'!

 
(7) 

where 𝑃(𝑖) 	= 𝑎"/𝑁 and 𝑎" =	 |𝑈"| is the probability that an object pickup at random from 𝑈 falls into class 𝑈". Similarly, for 

𝑉, 𝑃′(𝑗) 	= 𝑏%/𝑁, where 𝑏% =	 |𝑉"| is the probability of an object from 𝑉 falling into class 𝑉%. 

 
𝐻(𝑈, 𝑉) = 	−	FF𝑃(𝑖, 𝑗)log	(𝑃(𝑖, 𝑗))

|8|

9'!

|7|

"'!

 
(8)  

where 𝑃(𝑖, 𝑗) 	= v𝑈" ∩ 𝑉%v/𝑁 is probability that an object pickup at random falls into both class 𝑈"	and 𝑉%. 

By definition, mutual information ranges from 0 to 1. A value of 1 indicates perfect agreement (equality) between the two 

clustering realizations, while values close to zero indicate that the two label assignments are largely independent. The drawback 245 

of mutual information is the possibility of weakness. Vinh et al. (2009) derived the expected mutual information and proposed 

the concept of adjusted mutual information that can defend against chance (Vinh and Epps, 2009; Vinh et al., 2010; Romano 

et al., 2016). Thus, random (uniform) label assignments have an adjusted mutual information score close to 0.0 for any number 

of clusters and objects (which is not the case for raw mutual information).  

 𝐸[𝐼(𝑈, 𝑉)]

= 		FF F
𝑛"%
𝑁 log {

𝑁𝑛"%
𝑎"𝑏%

|

:;<	(?&,A')

#&''C?&-A'4DE
(

𝑎"! 𝑏%! (𝑁 − 𝑎")! (𝑁 − 𝑏%)!
𝑁! 𝑛"%! (𝑎" − 𝑛"%)! (𝑏% − 𝑛"%)! (𝑁 − 𝑎" − 𝑏% + 𝑛"%)!

	
|8|

%'!

|7|

"'!

 

((9) 

 
𝐼′(𝑈, 𝑉) =

𝐼(𝑈, 𝑉) − 𝐸[𝐼(𝑈, 𝑉)]
𝑚𝑒𝑎𝑛{𝑈(𝑈), 𝐻(𝑉)} − 𝐸[𝐼(𝑈, 𝑉)]	 

 

((10) 
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The core concept underlying the CUD, i.e., clustering uncertainty degree, is defined as follows: 250 

 𝐶𝑈𝐷(𝑈, 𝑉) = 1 − 	𝐼′(𝑈, 𝑉) ((11) 

By definition, CUD is a representation of pairwise disconsensus of clustering realizations. The CUD ranges from 0 – 1. A 

value of 1 indicates the greatest disconsensus or highest uncertainty between 𝑈 and 𝑉, while a value of 0 indicates perfect 

consensus or no uncertainty. The connectivity matrix of pairwise CUDs is defined as a 𝑀	 × 	𝑀 matrix and CUD values for a 

pair of clustering realizations, where 𝑀 is the number of clustering realizations. The connectivity matrix naturally serves as a 

visualization tool to assess the general uncertainty of the clustering system. Other visualization tools are also used to visualize 255 

the CUD, including a heatmap and a chord diagram (Holten, 2006). Heatmaps work like a connectivity matrix but in a more 

visualized form. A chord diagram is a useful graphical method for demonstrating the interrelationships between the data in a 

matrix. The data are plotted radially around a circle. The relationships between data points are usually drawn as arcs that 

connect the data.  

5. Results and discussion 260 

5.1 S-distributions 

Before analyzing the k-means clustering results, we diagnosed the nature of the input data using S-distributions (or S-D). S-

Ds provide “global” insights into how data vectors are related to each other in four S-SIM, COR, ED, and MD topological 

spaces. The results, which are shown in Figure 2, demonstrate an apparent difference in the shape of the S-Ds. Notably, the 

S-Ds for ED and MD appeared more symmetrical than those for S-SIM and COR across the three types of input data, that is, 265 

WP, CC, and TC. For S-SIM and COR, S-Ds tended to be more tailed (both sides), with skewness over the left tail. Quantitively, 

the standard deviation of S-Ds for S-SIM and COR tended to be higher (0.13 – 0.20) than those for ED and MD (approximately 

0.11 – 0.13) (Table 1), despite an exception for ED in the TC simulation. The consistent skew-over-left of S-SIM and COR 

indicates that those tend to project “hierarchical affinity” of input vectors, meaning that a given vector tends to be closer to a 

certain group of peers and relatively far from another group located at the opposite end of similarity spectrum. These results 270 

demonstrate that the discrimination ability of S-SIM and COR is higher than that of traditional distance metrics, such as ED 

or MD.  
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5.2 Clustering results 

As explained in Section 3, three demonstration problems, WP, CC, and TC, were conducted with different 𝑘 configurations 

and centroid initializations, with a total number of runs of 1320. The results are shown partly in Figure 3, 4, and 5. Recall that 275 

this study addresses the algorithm aspects (attempting to seek general insight into the system’s performance regardless of 

problems). We do not intend to physically interpret the specific clustering outcomes, although some phenomenal explanations 

are provided in the manuscript.  

The clustering results are partly visualized and shown together with quantified silhouette scores in Figures 3, 4, and 5 for WP, 

CC, and TC, respectively. Note that only the configuration 𝑘	 = 	4  for the first initialization (R0) is shown. For other 280 

initializations ( R1–9), see the Supplementary Material. First, we examined the k-means-detected weather patterns over the 

Japan region (Fig. 3). During December, January, and February (DJF), the weather in Japan is dominated by a winter-type 

pattern. The winter type is characterized by the Siberian High, which develops over the Eurasian continent, and the Aleutian 

Low, which develops over the northern North Pacific. The location of the high and low winds resulted in prevailing 

northwesterly winds. The wind blows cold air from Siberia to Japan and causes heavy snowfall on the western coast and sunny 285 

weather on the Pacific side of the country. This winter-type pattern is clearly captured by all types of k-means, that is, C2 for 

S, C4 for C, C3 for E, and C4 for M k-means (Fig. 3). An interesting result was revealed by the silhouette analysis. The S k-

means method generated dominant C2 over other types regarding its frequency (the thickness of each cluster label in the 

silhouette diagram indicates the number of members in the cluster). This result is consistent with prior knowledge of the 

weather patterns over the region (https://www.data.jma.go.jp/gmd/cpd/longfcst/en/tourist_japan.html). Moreover, the S k-290 

means algorithm showed consistently higher silhouette scores than the other algorithms for all 𝑘	 = 	2, 4, … , 20 settings (Fig. 

6a). The highest score for S k-means was followed by that for C k-means. E and M k-means consistently had lower scores than 

S and C k-means.  

Regarding the CC experiment, the time-series results were visualized with reference to the real geographical locations of the 

weather stations to support the interpretation (Fig. 4). CC is aimed at clustering the 70-year time series of temperature 295 

anomalies (from the 1950 – 1979 average). Overall, the analysis shows that although a temperature increase is seen over all 

stations, this trend is not geographically uniform. These regional differences were well captured by k-means clustering. For 

example, the northern part (Hokkaido) is consistently separated from other regions in terms of temperature warming. This 

finding implies faster warming in the north than in other regions. Although this is not the main concern of this study, such a 

result highlights the usefulness of k-means to detect regional differences, which is useful for building detailed appropriate 300 
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climate change actions. Regarding clustering quality, a similar superiority of S and C k-means was confirmed. Similar to WP, 

the S and C k-means had relatively higher silhouette scores for the CC data compared with E and M k-means (Fig. 6b).  

In addition, the TC experiment aimed to determine how k-means works with hybrid spatiotemporal data. Similar to the above 

experiments, for the WP and CC data, the S and C k-means methods outperformed the E and M k-means methods, as reflected 

by the higher silhouette scores shown in Figure 5 and Figure 6c. In addition, the results of all clustering methods were 305 

consistent, with the silhouette scores decreasing and being stable when 𝑘 was equal to or larger than four. This suggests that 

for clustering the TC track, the optimal number of statistically distinctive cluster pattern pairs for 𝑘 is four. Figure 5 shows 

the four main patterns of the TC track determined using the four clustering methods. Although there are some differences in 

the TC track between the results of the tested clustering methods, such as genesis and depression points, all determined patterns 

are characterized mainly by curved trajectories. These averaged patterns could be divided into two groups: i) not crossing and 310 

ii) crossing mainland Japan. Overall, the number of TCs in group i) was higher than that in group ii), with these tracks 

characterized by TCs containing both straight and re-curving TC trajectories forming to the east of 140° E (e.g., clusters 2 and 

4 of S k-means in Fig. 5a). For group ii), the averaged patterns show the TC track passing through the central area of Japan 

(e.g., clusters 1 and 3 of S k-means in Fig. 5a) 

Consistently, a higher performance of S k-means was observed throughout the ensemble of tests, 𝑘 settings, and initializations. 315 

The performance of S k-means is sometimes completed using C k-means. The two S and C k-means algorithms outperform 

the distance-metrics-based E and M k-means algorithms. However, it is worth noting that these results were obtained from the 

silhouette analysis. Additional evaluation approaches might be needed to generalize the conclusions, although this could be 

challenging because most objective clustering evaluations have been developed on the Cartesian geometric algebra assumption 

(that could work for distance metrics but might not work for non-distance measures). Therefore, to address this issue, it is 320 

necessary to develop new evaluation approaches beyond the distance paradigm. Another difficulty in k-means evaluation is 

that, similar to other clustering techniques, k-means is classified as an unsupervised machine learning method. This means that 

there is an absence of a single “ground truth,” referring to the definition of the goodness of the clustering result. We also 

suggest diversifying the clustering problems with different types of input data, or for different geographical areas, to obtain a 

more comprehensive picture of the proposed algorithm and its advantages and disadvantages. We also suggest linking the 325 

cluster results for prediction purposes, for that the “goodness” of the clustering algorithm can be determined in practice. Such 

questions could be useful for future research. 
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Computational cost is also an important factor, especially in a practical sense. We measured the computational cost of obtaining 

the results, which are shown in Figure 7. Overall, S k-means and C k-means require more time to complete the same task than 

E and M k-means. Roughly, S k-means required 5 – 6 times more computational time than E k-means. C k-means was 330 

comparable to S k-means. M k-means required less computational time than E k-means. Such a tradeoff between higher 

performance and computational cost should be considered when selecting an algorithm. However, the general computational 

cost was a big problem; for example, in this study, the time to finish one run was mostly less than a minute, which was very 

small compared to the numerical weather prediction or climate simulation. In addition, the computational issue can be solved 

by drastically improving the computational ability or using a parallel computational approach.  335 

5.3 Uncertainty evaluation 

The results of the proposed clustering uncertainty evaluation framework (CUEF) is discussed here. The clustering uncertainty 

degree (CUD) is shown in Figure 8 (for 𝑘 = 4 and run R0; the collective results are shown in Figure 10). As explained in 

Section 4, two visualization tools, that is, heat maps and chord diagrams, were proposed for diagnosing clustering uncertainty. 

Accordingly, pairwise differences and overall variability among clustering outcomes are comprehended in both quantified and 340 

qualified manners. For example, from Figure 8a (WP), the CUD values for S relative to C, E, and M k-means are 0.67, 0.75, 

and 0.77, respectively, according to the heatmap. Note that the maximum value (1.0) indicates the absolute disagreement 

between two clustering assignments and the minimum value (0.0) indicates the absolute consensus between the two. However, 

based on the same results, the chord diagram demonstrates the pairwise relationship in a more qualified manner. From the 

diagram, one can easily determine which algorithms (S, C, M, or E) have less consensus with another (wide arc length on the 345 

circle means less consensus), and vice versa. Notably, the results show that E and M k-means showed a higher consensus with 

each other. Particularly in the CC and TC experiments, S k-means showed less uncertainty/high consensus relative to E and M 

compared with C k-means. 

In addition to the algorithm-wise uncertainties, this study evaluated the initialization-wise uncertainties. The k-mean results 

are sensitive to how centroids are initialized. One might want to apply this proposed framework to evaluate initialization-350 

induced clustering uncertainty. Here, heat maps in which pairwise CUDs between runs (i.e., R0 – R9 for each simulation) are 

shown in Figure 9 for the WP, CC, and TC experiments, and four k-means algorithms. Note that we do not show a chord 

diagram here because such a diagram is not relevant if the number of comparing elements is sufficiently small and have actual 

meaning that must be discussed. This is not the case when R0 – R9 are compared. The results demonstrate that there is less 

uncertainty regarding initialization than that owing to the selection of k-means algorithms (Fig. 9 and 10). In particular, the 355 
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initialization-wise CUDs are lower than the algorithm-wise CUD for WP and TC. Meanwhile, in CC, the initialization-wise 

and algorithm-wise CUDs do not show apparent differences except for 𝑘 < 6 (Fig. 10).  

The above results demonstrate the effectiveness of CUEF with the core concept of CUDs used within visualization frameworks, 

such as heatmaps or chord diagrams, to quantitively represent/evaluate the uncertainty inherent in clustering outcomes. 

Heatmaps and chord diagrams are useful in offering intuitive and general comprehension of uncertainty and consensus among 360 

the outcomes. CUEF can be used to evaluate algorithm-wise and initialization-wise uncertainties, or both. Note that CUEF is 

not limited to k-means clustering and can also be applied to other clustering algorithms. In addition, note that most clustering 

approaches use a type of randomized initialization to start the learning procedures, and CUEF can be used to evaluate the 

intrinsic uncertainty of these algorithms. As the first study to address this issue, we believe that CUEF can constitute a new 

standard for addressing uncertainty issues when performing data clustering in (but not limited to) climate science.  365 

An additional important benefit of CUEF is that it can be used to answer the fundamental question of how meaningful it is to 

apply a clustering solution to a given problem. For example, in Figure 8 and 9, which compare WP, CC, and TC, the CUDs 

for WP are usually higher than those for CC and TC (higher CUD values are intuitively identified by a lighter color). This 

finding indicates that WP can yield more random clustering outcomes regardless of the algorithm used or initialization; 

therefore, the problem lies in the data itself and not the clustering procedure. This makes sense because different data have 370 

different topologies, which can make them unsuitable or even invalid for a clustering solution. The question of whether it is 

valid or meaningful to apply a clustering solution to a dataset is more important than how to find the best method of clustering. 

Although this issue is fundamentally important, to the authors’ best knowledge, no studies have addressed this question or 

proposed a solution, at least among the climate sciences. We believe that CUEF can be used to answer the question of whether 

it is meaningful to apply clustering to a given dataset. In this paper, although we proposed three demonstration problems for 375 

comparison, more diverse problem settings should be implemented in the future to test the effectiveness of CUEF. 

6. Summary and remarks 

This study proposes (i) a novel k-means algorithm primarily for mining climate data and (ii) a clustering-uncertainty evaluation 

framework. The novel k-means algorithm, called S k-means, is characterized by its ability to deal with inherent spatiotemporal 

“structuredness” in climate data. In detail, S k-means incorporates the recent innovation in signal recognition regarding 380 

structural similarity into the classification scheme, which has been developed on the distance metrics paradigm.  

https://doi.org/10.5194/gmd-2022-172
Preprint. Discussion started: 7 September 2022
c© Author(s) 2022. CC BY 4.0 License.



 

 

17 

 

 

 

The performance of S k-means was evaluated against other k-means using other distance/similarity metrics, namely, the 

Pearson correlation coefficient, Euclidean, and Manhattan distance (C, E, and M k-means, respectively) for multiple 

demonstration tests: clustering weather patterns (spatial-related data), historical climate change (time series) for long-term 

recorded weather station data, and best tracks of tropical cyclones (spatiotemporal hybrid). Multiple 𝑘  settings (𝑘	 =385 

	2, 4, … , 20) for each 𝑘 and an ensemble of 10 randomized initializations were implemented, resulting in a total of 1320 runs 

produced to generate robust results.  

The quantitative approaches similarity distribution (S-D) and general silhouette analysis were used to evaluate the performance 

of the algorithm. S-D diagrams were used to diagnose the topological relationship of input datasets after projection onto 

different distance/similarity spaces, and they showed that structural similarity matrix groups are likely to have a higher ability 390 

to discriminate the data (characteristics that might be useful for clustering) than conventional distance metrics. Regarding the 

clustering results, the general silhouette analysis showed consistently higher scores for S and C k-means compared with E and 

M k-means. The superiority of S k-means clustering may be achieved by k-means clustering. However, S k-means consistently 

outperformed E- and M-k-means. It is worth noting that a higher clustering performance often requires more computational 

resources, and S k-means requires five to six times more computational time than E k-means.  395 

The higher performance of S k-means indicates its promise as a new standard for climate-data clustering/mining, which is a 

rising research field within the big data context. Nevertheless, certain issues must be noted when interpreting the results of this 

study. First, k-means clustering is assumed to be an unsupervised data-mining method. In other words, there is an assumption 

of no ground-truth labeling information, which is the reference used to define the goodness of the result. Instead, the goodness 

of the algorithm is evaluated based on an objective calculus approach using the general silhouette analysis/score. This score is 400 

free from the Cartesian geometry assumption, thus allowing the algorithms to be compared with non-distance metrics. 

Nevertheless, it is suggested that more non-Cartesian-geometry evaluation scores be developed and used to evaluate non-

distance clustering algorithms, particularly S k-means, in the future. 

Finally, another important contribution of this study is that we built a framework for clustering uncertainty evaluation for the 

first time, and it is primarily applicable to climate research. The evaluation framework is built on the mutual information 405 

concept, which was recently developed to quantify divergence of one clustering from its “ground truth”. This is the first time 

this concept has been adapted for clustering uncertainty evaluations in the form of the “clustering uncertainty degree” (CUD) 

concept. The CUD can measure pairwise discrepancies among clusters, and the collective CUDs can provide an overall picture 

of the variability/uncertainty of cluster algorithms. Naturally, the CUD can be used to evaluate whether a given problem (input 
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vectors) is preferable for clustering. In other words, if the cluster algorithm provides higher uncertainty in its outcomes, then 410 

it is not appropriate for use, and vice versa. Note that the question of whether it is valid or meaningful to apply a clustering 

solution to a dataset is more important than determining the best method to apply. For example, for what shown in this study, 

the WP problem caused more uncertainty in clustering than the CC and TC problems. Thus, it is questioned about the 

“meaningfulness” of the clustering application for WP compared with CC and TC. We expect this clustering-uncertainty-

evaluation framework will change the conventional agenda of data clustering by adding a procedure to evaluate its application's 415 

meaningfulness/effectiveness for a given data. 
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List of tables 

Table 1. Statistical metrices of S-distributions for three demonstration input datasets, i.e., weather pattern (WP), climate change 525 
(CC), and tropical cyclone (TC). The different distance/similarity measures are structural similarity (S-SIM), the Pearson 

correlation coefficient (COR), Euclidean distance (ED) and Manhattan distance (MD). Statistical measures include the mean (Mean), 

standard deviation (STD), skewness (SKEW), kurtosis (KUR) and Shannon entropy (ENTROPY) 
 

WP 
   

CC 
   

TC 
   

 
S-SIM COR ED MD S-SIM COR ED MD S-SIM COR ED MD 

Mean 0.68 0.71 0.67 0.68 0.71 0.81 0.66 0.65 0.81 0.87 0.65 0.69 

STD 0.18 0.19 0.11 0.11 0.20 0.13 0.12 0.13 0.14 0.11 0.15 0.13 

SKEW -0.66 -0.81 -0.73 -0.74 -1.08 -1.25 -0.65 -0.67 -1.10 -1.67 -0.46 -0.59 

KUR -0.18 0.00 0.58 0.64 0.97 1.79 0.59 0.58 1.15 3.31 -0.32 0.03 

ENTROPY 2.83 2.79 2.19 2.16 2.83 2.29 2.32 2.36 2.30 1.80 2.57 2.45 
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List of figures 

 

 

Fig. 1 Illustration of the k-means clustering algorithm (a) and three demonstration experiments (b). Demonstration experiments 

include clustering weather patterns (WPs) in terms of daily ERA-Interim sea level pressure (SLP) during winter months (December, 535 
January, and February) for ten years 2005 – 2014 over the Japan region; clustering climate change (CC) in terms of historical (1951 

– 2020) annual mean temperature collected from in situ weather stations in Japan; and clustering best tracks of tropical cyclones 

that passed the Northwest Pacific region from 1951 – 2020. Data were obtained from the JMA 
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 540 

 

Fig. 2 Comparison of the S-distributions of normalized pairwise similarity using the structural similarity (S-SIM), the Pearson 

correlation coefficient (COR) the Euclidean distance (ED) and the Manhattan distance (MD) for three demonstration experiments: 

WP, CC, and TC. With a population size of N, 𝑵(𝑵#𝟏)
𝟐

 values of pairwise similarity are observed because S-SIM, COR, ED and MD 

are symmetric measures and self-similarity is excluded. Values are normalized from 0 to 1. The maximum similarity is 1, which 545 
corresponds to completely similar, and the minimum similarity is 0, which corresponds to the lowest pairwise similarity.  
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Fig. 3 Result for the WP experiment. The winter SLP pattern revealed by S, C, E, and M k-means with 𝒌	 = 	𝟒. “H” indicates the 

location of the high, and “L” indicates the location of the low. General silhouette analysis results are shown below the maps, where 

the x-axis indicates the score and the y-axis presents the labels of clusters numbered 1 – 4. Input data are ERA-Interim SLP data, 550 
which were re-gridded to Cartesian coordinates with a resolution of 200 x 200 km and grid size of 35 x 35. Daily data for December, 

January, and February collected over ten year 2005 – 2014 were used. 
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 555 

 

Fig. 4 Result for the CC experiment for clustering of climate change (temperature increase) time series over 134 weather stations 

over the entirety of Japan. Patterns were revealed by S, C, E, and M k-means, with 𝒌	 = 	𝟒. Input data correspond to annual mean 

data collected over 70 years from 1951 – 2020 (subtracted by the mean of the first 30 years) and observed temperature achieved at 

in situ weather stations (dots in map) operated by the JMA. Time series of centroids and input vectors are shown in below panels 560 
together with general silhouette analysis results, where the x-axis indicates the score (S-score) and the y-axis presents the labels of 

clusters numbered 1 – 4.  
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Fig. 5 Results of the TC experiment for clustering tropical cyclone paths. The pattern was revealed by S, C, E, and M k-means, with 

𝒌	 = 	𝟒. Input data are the best TC tracks obtained by the JMA from 1951 – 2020. Only TCs that passed the dashed box in the map 565 
are used to feed the k-means. Thus, a total of 863 TC tracking data points are used. The left side of each panel show the general 

silhouette analysis results, where the x-axis indicates the score (S-score) and y-axis presents the labels of clusters numbered 1 – 4. 

The centroid TC path is illustrated by the bold line, and the color is consistent with that in the silhouette diagram. 
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Fig. 6 Comparison of the average silhouette score (S-score) of S, C, E, and M k-means for k = 2, 4, …, 20 for three demonstration 570 
experiments: WP (a), CC (b) and TC (c). The uncertainty range in each line indicates the standard deviations of the scores among 

10 runs with randomized initializations. 
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 Fig. 7 Comparison of the run time (in sec) of S, C, E, and M k-means for k = 2, 4, …, 20 for three demonstration experiments: WP 

(a), CC (b) and TC (c). The uncertainty range in each line indicates the standard deviation of the scores among 10 runs with 575 
randomized initializations. Note that the y axis is logarithmically rescaled. 
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Fig. 8 Clustering uncertainty degree (CUD) based on adjusted mutual information (AMI) between clustering results from different 580 
k-means algorithms, i.e., S, C, E, and M k-means, for different demo experiments: WP, CC, and TC. (a, b, c) CUD in heatmaps, and 

(d, e, f) visualization of the interconnection using the chord diagrams. Note that the results are from the configuration with 𝒌 = 𝟒 

and the first initialization run. 
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Fig. 9 Clustering uncertainty degree (CUD) based on adjusted mutual information (AMI) between the clustering results from 585 
different runs (10 runs indicated by R0, R1, …, R9) of different k-means algorithms, i.e., S, C, E, and M k-means (rows), for different 

demo experiments: WP, CC, and TC (columns). Note that the results are from the configuration with 𝒌 = 𝟒  and the first 

initialization run. 

 

 590 

 

Fig. 10 Clustering uncertainty degree (CUD) based on adjusted mutual information (AMI) between the clustering results from 

different runs (10 runs indicated by R0, R1, …, R9) of different k-means algorithms, i.e., S, C, E, and M k-means (rows), for different 

demo experiments: WP, CC, and TC (columns). Note that the results are from the configuration 𝒌 = 𝟐, 𝟒,… , 𝟐𝟎. 
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