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Abstract. Dramatic increases in climate data underlie a gradual paradigm shift in knowledge-acquisition methods from 

physical-based models to data-based mining approaches. k-Means is one of the most popular data clustering/mining techniques, 

and it has been used to detect hidden patterns in climate systems. k-Means is established based on distance metrics for pattern 10 

recognition, which is relatively ineffective when dealing with “structured” data that are dominant in climate science, that is, 

data in time and space domains. Here, we propose (i) a novel structural similarity recognition-based k-means algorithm called 

structural k-means or S k-means for climate data mining and (ii) a new clustering uncertainty representation / evaluation 

framework based on the information entropy concept. We demonstrated that the novel S k-means could provide higher-quality 

clustering outcomes in terms of general silhouette analysis, although it requires higher computational resources compared with 15 

conventional algorithms. The results are consistent with different demonstration problem settings using different types of input 

data, including two-dimensional weather patterns, historical climate change in terms of time series, and tropical cyclone paths. 

Additionally, by quantifying the uncertainty underlying the clustering outcomes we for the first time evaluated the 

“meaningfulness” of applying a given clustering algorithm for a given dataset. We expect that this study will constitute a new 

standard of k-means clustering with “structural” input data, as well as a new framework for uncertainty 20 

representation/evaluation of clustering algorithms for (but not limited to) climate science. 

1. Introduction 

In recent decades, the volume and complexity of climate data have increased dramatically owing to advancements in data 

acquisition methods (Overpeck et al., 2011). This increase underlies a gradual shift of climate-knowledge acquisition paradigm 
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from using classical “first-principle” models (i.e., based on physical laws) to models and analyses directly based on data (i.e., 25 

data mining) (Kantardzic, 2011). Hence, numerous data mining techniques have been developed to shed light on the underlying 

nature and structure of data. Clustering, as one of the principal data mining methods, is the technique to organize a set of data 

into clusters that maximize the homogeneity of the elements in a cluster and the heterogeneity among different clusters (Pérez-

Ortega et al., 2019). Clustering algorithms are useful to handle large, multivariate, and highly dimensional data, which are 

difficult for human perception. Among numerous clustering algorithms, k-means is one of the most well-known and widely 30 

used in most research domains (Wu et al., 2008).  

The history of k-means can be traced back to the 1950s – 1960s, when it was developed through independent efforts (e.g., 

Lloyd, 1957; Forgy, 1965; Jancey, 1966; MacQueen, 1967). The name k-means was coined in a paper by MacQueen 

(MacQueen, 1967). k-Means has been extensively used in climate science, thanks to its ease of implementation and 

interpretation. It is used to explore unknown atmospheric mechanisms and/or improve predictions. The most common 35 

application is the use of k-means within “detection-and-attribution” framework. In the framework, specific atmospheric 

conditions, or events, e.g., abnormally hot weather or heavy precipitation, are detected first. Then, the causes of these 

atmospheric conditions are attributed to atmospheric regimes/patterns, determined by k-means (Esteban et al., 2005; Houssos 

et al., 2008; Spekat et al., 2010; Zeng et al., 2019; Smith et al., 2020). Another application is the use of k-means for weather 

or climate predictions. In such a case, rather than being used as an independent prediction method, it is used to complement 40 

existing numerical prediction systems by suggesting the occurrence probability of certain weather conditions referring analog 

patterns to that derived by k-means from historical data (Kannan and Ghosh, 2011; Gutiérrez et al., 2013; Le Roux et al., 2018; 

Pomee and Hertig, 2022). Furthermore, k-means is also used for future climate prediction (also known as a statistical 

downscaling) or for reconstructing historical data (Camus et al., 2014) using the same analog approach.  

The k-means algorithm is an interactive clustering method. To briefly describe, it involves four processing steps: i) initiation: 45 

pre-definition of 𝑘 cluster centers (or centroids); ii) classification: clustering of an object with similar objects; iii) centroid 

update: recalculation of centroids based on the updated classification; iv) convergence (equilibrium) judgement: halts the 

algorithm if object migrations are not observed from one cluster to another; otherwise, returns to step ii) if such migrations are 

observed (Pérez-Ortega et al., 2019). The dominance of k-means over most research fields is partly due to its simplicity and 

ease of use. Also, simplicity inherits the drawbacks of the algorithm, which have inspired researchers for decades to identify 50 

improvements. Consequently, these efforts have delivered a great number of k-means variants alongside those from the earliest 

time.  
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Improving centroid initialization represents an important issue to be resolved. k-Means clustering outcomes are known to be 

sensitive to the initialization of centroids (Sydow, 1977; Katsavounidis et al., 1994; Bradley and Fayyad, 1998; Pelleg, 2000; 

Khan and Ahmad, 2004; Arthur and Vassilvitskii, 2006; Su and Dy, 2007; Eltibi and Ashour, 2011). Subsequent efforts have 55 

been made to improve the calculation procedure in the classification scheme primarily because it is the most computationally 

time-consuming. These efforts resulted in numerous k-means variants (Fahim et al., 2006; Lai and Huang, 2010; Perez et al., 

2012). More recent studies have focused on the fundemental basis of the classification, that is, how to define the similarity for 

which an object should be classified to one cluster but not another.  

The conventional k-means classification scheme is established based on the distance paradigm, in which the similarity is 60 

determined by distance metrics including the Euclidean distance, Manhattan distance, or their general form, the Minkoski 

distance (Cordeiro de Amorim and Mirkin, 2012). The advantage of distance metrices lies in their ease of implementation and 

popularity, thus making the judgement for using them less controversial. Nonetheless, recent studies have pointed out that 

distance metrics defend less against noisy and irrelevant features (or dimensions, in other words) of input objects (vectors) (de 

Amorim, 2016). Few studies have proposed the use of feature weights to overcome this weakness (Chan et al., 2004; Huang 65 

et al., 2005; Cordeiro de Amorim and Mirkin, 2012). However, such improvements do not intentionally consider the structural 

relationship between vector dimensions, especially when data are time series or spatially distributed.  

Atmospheric data are characterized by their temporal and spatial “structuredness”. In other words, the information value of 

data lies in their interrelationship or trends in time and space. For example, when looking at weather maps, one might realize 

that locations of high or low pressures would be the first concern. Likewise, the similarity in trend, or the phase correlation 70 

between two time series might be more important than the difference in their absolute values. Thus, the distance measures, 

which treat the features of the input objects equally, might underestimate the inherent “structuredness” in the objects when 

determining the similarity between them, consequently deteriorating the clustering outcomes. However, to replace distance 

metrics by something different remains big challenging, because distance metrics have deep historical roots, and they 

undoubtedly laid the foundation for modern data mining, including clustering algorithms. As mentioned by Wang et al., “it 75 

(distance metric) is not bad, and easy to use” and “everyone else use it” (Wang et al., 2004).  

Contemplating the nature of atmospheric data, a specific question raised here is whether another k-means approach is available 

that can consider the “structural” similarity in time and space between input objects. Answering this question has great practical 

value, particularly, for the climate informatics field owing to the unprecedented recent increase in archived data. The demand 

is growing for innovative and effective tools of data mining that can handle the inherent nature of climate data.  80 
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Here we propose a novel k-means algorithm based on the “structural” similarity recognition, called Structural k-means or S k-

means. S k-means follows the same procedure as the generic k-means algorithm. It differs from the generic algorithm in 

incorporating a recent innovation in signal processing science, namely, the structural similarity (S-SIM) recognition concept 

(Wang et al., 2004) into the classification scheme. The novel S k-means inherits the simplicity of the generic algorithm and 

meanwhile can handle temporally and spatially ordered data. 85 

We evaluate the performance of S k-means clustering across three representative demonstration tests. The tests cover multiple 

types of input data, that is, spatial distributions (weather patterns), time series (historical change in temperature), and hybrid 

types (tropical cyclone tracking). Using multiple data types is a unique point of this study that can robustify the conclusions 

through cross comparisons. The performance of S k-means is evaluated against three other k-means algorithms using different 

similarity/distance metrics for the classification scheme, that is, the Pearson correlation coefficient, Euclidean, and Manhattan 90 

distances, hereafter called C, E, and M k-means, respectively. We implement various k (number of centroids) configurations 

and multiple initializations (randomized). Eventually, 1320 model runs are conducted. Such settings ensure the robustness of 

the results and conclusions. The “general” silhouette analysis/score, which is a scoring method based on general 

similarity/distance metrics, is used to quantify the algorithm performance.  

We propose a novel framework for clustering-uncertainty evaluation/representation based on the information entropy concept. 95 

This framework is primarily used to quantify the variability/consensus among the clustering outcomes across the different k-

means algorithms. At the core of the framework is the newly proposed concept “clustering uncertainty degree,” which builds 

on mutual information theory. Also, relevant visualization tools including connectivity matrix, heatmap, and chord diagram 

are proposed to represent the clustering uncertainty.  

To the best of our knowledge, this study is the first to address the uncertainty issue in the climate science. Our study is the first 100 

to propose a clustering-uncertainty evaluation framework, borrowing recent-most techniques and concepts in information 

theory. This framework is not only used to quantify the clustering uncertainty but also to serve a more fundamental purpose, 

i.e., to measure the “meaningfulness” of the application of clustering for a given problem dataset. We expect that this 

framework together with the S k-means algorithm will establish a new standard in data mining and clustering studies, primarily 

for (but not limited to) climate science.  105 



 

 

5 

 

 

 

The remainder of this paper is organized as follows. Section 2 describes the S k-means algorithm. Section 3 presents the test 

simulation configurations. Section 4 describes the evaluation metrics and a novel framework for clustering uncertainty. Section 

5 presents and discusses the results. Section 6 provides the concluding remarks. 

2. Description of the algorithms  

2.1 S k-means algorithm 110 

S k-means follows the conventional procedure of generic k-means clustering. To express this mathematically, let define 𝑋	 =

	{𝑥!, . . . 𝑥" , … , 𝑥#} be a set of 𝑛 objects (input vectors), where 𝑥" 	 ∈ 𝑅$ (𝑖 = 1, . . . , 𝑛) and 𝑑 ≥ 1 is the number of dimensions. 

Let 𝐾	 = 	 {1, . . . , 𝑘} with 𝑘 ≥ 2 denote the number of groups.  

For a k-partition, 𝛲	 = 	 {𝐺(1), . . . , 𝐺	(𝑘)} of 𝑋, let 𝑐% denote the centroid of cluster 𝐺(𝑗), for 𝑗	 ∈ 	𝐾, with 𝐶 = {𝑐!, . . . , 𝑐&} and 

a set of weight vectors 𝑊	 =	 {𝑤!!, . . . , 𝑤"%}. Hence, the clustering problem can be formulated as an optimization problem 115 

(Selim and Ismail, 1984), which is described by the following equation:	 

 
𝑃:minimize	𝑧(𝑊,𝑀) =FF𝑤"%𝑑G𝑥" , 𝑐%H

&

%'!

#

"'!

 

subject	to	F𝑤"% = 1, for	𝑖 = 1,… , 𝑛,
&

%'!

 

𝑤"% = 0	or	1, for	𝑖 = 1,… , 𝑛, and	𝑗 = 1,… , 𝑘	 

 

 

 

 

 

(1) 

where 𝑤"% 	= 	1 implies that object 𝑥" belongs to clusters 𝐺(𝑗) and 𝑑(𝑥" , 𝜇%) denotes the distance between 𝑥" and 𝜇% for 𝑖	 =

	1, . . . , 𝑛 and 𝑗	 = 	1, . . . , 𝑘.  

The S k-means algorithm consists of four steps (Fig. 1a), which are similar to that of generic algorithms except for step (ii). 

The steps are described as follows: 120 
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• (i) Initialization. Initialize 𝑘 centroid vectors. Although k-means has several options for initialization, we apply a 

randomized scheme to initialize the centroids. 

• (ii) Classification. Assign an object to its most similar centroid. The S k-means algorithm uses the structural similarity 

(S-SIM) (Wang et al., 2004) recognition technique to determine the most similar centroids instead of using distance 

measures, such as that in generic algorithms. 125 

• (iii) Centroid calculation. Update centroid vectors by taking the mean value of the objects belonging to these clusters.  

• (iv) Convergence determination. The algorithm stops when equilibrium is reached, that is, when there are no object 

migrations from one cluster to another. Technically, the algorithm converges if the sum of the mean square errors of 

centroids versus those in the previous step become zero in the experiments of this study. The convergence criterion 

is the same for all k-means variants used. A limitation of iteration is setup to 100 to avoid the infinite loop of iterations. 130 

If equilibrium is not reached, then the process is repeated from step (ii).  

S k-means is compared with E, M, and C k-means (k-means using the Euclidean distance, the Manhattan distance, and the 

Pearson correlation coefficient). E, M, and C k-means also follow the same procedure as indicated above except for 

classification scheme (ii), where the respective similarity/distance measures are used to determine the most similar centroids.  

2.2 Structural similarity 135 

The metrics for the structural similarity (S-SIM) recognition process were first introduced by Wang et al. (2004). It was 

developed to better predict the perceived quality of digital television and cinematic pictures. S-SIM is intended to improve the 

traditional peak signal-to-noise ratio or mean squared error in detecting similarities between “structural” signals, such as 

images. Intuitively, S-SIM is determined by considering the differences between two input signals (vectors 𝑥, 𝑦) across 

multiple aspects including “luminance”, “contrast”, “and structure” which represent the characteristics of human visual 140 

perception. Luminance masking is a phenomenon whereby image distortions tend to be less visible in bright regions, while 

contrast masking is a phenomenon whereby distortions become less visible where there is significant activity or "texture" in 

the image. Mathematically, S-SIM is determined as follows: 

 𝑆𝑆𝐼𝑀(𝑥, 𝑦) = 𝑙(𝑥, 𝑦)(	 × 𝑐(𝑥, 𝑦)) × 𝑠(𝑥, 𝑦)* (2)  

where 𝑙(𝑥, 𝑦), 𝑐(𝑥, 𝑦) , and 𝑠(𝑥, 𝑦)  measure similarities in luminance (brightness values), contrast and structure between 

sample vectors 𝑥, 𝑦 with weight values 𝛼, 𝛽 and 𝛾. Let 𝜇+	and		𝜇, be the mean values; 𝜎+	and		𝜎, the standard deviations; 𝜎+, 145 
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the covariance of the two sample vectors 𝑥, 𝑦, then luminance, contrast, and structure similarities are defined as 𝑙(𝑥, 𝑦) =
-.!."/0#
.!$/1"$/0#

, 𝑐(𝑥, 𝑦) = -2!2"/0$
2!$/2"$/0$

, and 𝑠(𝑥, 𝑦) = 2!"/0%
2!2"/0%

. Note that 𝑐!, 𝑐-	and 𝑐3 are parameters to stabilize the division with a 

weak denominator. Even if 𝑐! = 𝑐- = 𝑐3 = 0, S-SIM still work quite well (Wang and Bovik, 2009). 𝑙(𝑥, 𝑦) measures the 

similarity in brightness, i.e., the difference regarding mean values; 𝑐(𝑥, 𝑦) quantifies the similarity in illumination variability, 

which is regarded to standard deviations; and 𝑠(𝑥, 𝑦) measures the correlation in spatial inter-dependencies between images 150 

that is close to the Pearson correlation coefficient. For simplification, here we set 𝑐! = 𝑐- = 𝑐3 = 0 and weights 𝛼 = 𝛽 = 𝛾 =

1 and reduce the original formula to the following: 

 S-SIM(𝑥, 𝑦) = 		 -.!."2!"
(.!$/."$)(2!$/2"$)

 (3)  

S-SIM is symmetric index, i.e., S-SIM(𝑥, 𝑦) =		S-SIM(𝑦, 𝑥). It does not satisfy the triangle inequality or non-negativity, and 

thus is not a distance function. S -SIM ranges from -1 to 1, where -1 indicates totally dissimilar and 1 indicates totally similar. 

Wang and Bovik (2009) showed that S-SIM represents a powerful, easy-to-use, and easy-to-understand alternative to 155 

traditional distance metrics, such as Euclidean distance, for dealing with spatially and temporally structured data, i.e., data 

having strong spatial and temporal inter-dependencies. These inter-dependencies carry important information about the objects 

in the visual scene. S-SIM emerged as a “new-generation” similarity metric with an increasing number of applications outside 

the signal processing field, including hydrology and meteorology (e.g., Mo et al., 2014; Han and Szunyogh, 2018; Doan et al., 

2021).  160 

3. Demonstration tests 

S k-means is applied to three representative clustering problems. These problems cover various types of input datasets that 

represent diverse issues, i.e., weather pattern (in terms of two-dimensional pressure data), historical climate change (in terms 

of time series), and tropical cyclone tracking data (the hybrid type of data containing both spatial and temporal information) 

(Fig. 1b). The details of these three tests are described below. 165 

• Weather pattern (WP) clustering. Group winter weather patterns in Japan. The mean sea level pressure (SLP) was 

obtained using ERA-Interim reanalysis data (Dee et al., 2011). The data have a horizontal resolution of 0.75°on a 

regular grid but are re-gridded to an equal-area scalable earth-type grid at a spatial resolution of 200 × 200 km using 

nearest-neighbor interpolation method. This interpolation/regridding method is commonly applied to high-latitude 
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domains (Gibson et al., 2017). Data collected in winter months, that is, December, January, and February (DJF), for 170 

ten years (2005-2014) over the region from 20 – 50 °N and 115 – 165°E were used. The total number of samples used 

is 902. Each sample has a grid size of 35 pixels × 35 pixels. 

• Climate change (CC) clustering. Group temperature-increase time series data collected over 70 years (1951 – 2020) 

from in situ weather stations run by the Japan Meteorological Agency. A simple data-quality check is implemented. 

Weather stations that missed (daily basis) observations for more than 10% of the total period of interest are excluded. 175 

Therefore, 134 valid weather sites remain (see Fig. 1b CC for the location of weather sites). The annual mean of each 

time series is calculated, and the climate change component is determined by subtracting the average of the first 30 

years (1951 – 1980) from each value series.  

• Tropical cyclone (TC) tracking clustering. Group the best TC tracks from 1951 to 2020, which are retrieved from the 

Japan Regional Specialized Meteorological Center (RSMC) (https://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-180 

hp-pub-eg/besttrack.html). Note that the RMSC provides only the best TC tracks, which have a maximum wind speed 

of more than 17.2	𝑚	 ⋅ 𝑠6! , e.g., wind force 8 of the Beaufort scale (Barua, 2019). These data contain the TC 

classification, maximum sustained wind speed, central pressure, and latitude and longitude of the TC centers with 6-

hourly intervals. In this study, only TCs that passed the Japan region, defined as the region between 25 – 45°N and 

126 – 150°E, are used for the analysis. Hence, the total number of TCs feeding the k-means is 863. Because k-means 185 

clustering requires identical lengths of input vectors, the TC tracks are reconstructed so that they had an equal length 

of 20 segments by the method proposed by Kim et al. (Kim et al., 2011), which has been applied in several studies 

(Choi et al., 2012; Kim and Seo, 2016). 

As mentioned in the introduction, in addition to S k-means, the C, E, and M k-means methods that use Pearson correlation 

coefficients and Euclidean and Manhattan distances for the classification scheme are used for the tests. For this, we perform a 190 

total of 3	 × 	4	 = 	12 simulations. For each simulation, 11 𝑘 settings are implemented, that is, 𝑘 = 2, 4, 6, … , 20, and for each 

𝑘, ten runs (randomized initializations) are realized. In summary, a total of 12	 × 	11	 × 	10	 = 	1320 runs (model realizations) 

are performed for the analysis. 
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4. Evaluation measures 

4.1 Similarity distributions  195 

The similarity-distributions technique developed by Doan et al. (2021) to evaluate “global” pairwise relationship of input 

vectors is adopted for performance evaluation. In this study it is named the similarity distribution (S-distribution or S-D). The 

S-distribution is a probability density function of pairwise similarities of a vector set. Let 𝑋	 = 	 {𝑥!, . . . , 𝑥#} be the set of 𝑛 

objects; 𝑠"% the pairwise similarity between two objects, which is defined as 𝑠"% = 𝐹G𝑥" → 𝑥%H; and 𝐹 the similarity function, 

𝑖 = 1, 2, … , 𝑛; 𝑗 = 1,2, … , 𝑛. The normalized 𝑠"%  is defined as 𝑠"%7 = (𝑠"% −min{𝑠})/(max{𝑠} − min{𝑠}). By definition, 𝑠"%7  200 

ranges from 0 to 1, with the maximum value of 1 indicating perfect similarity (self-similarity) and the minimum value of 0 

indicating a lack of similarity (distance to the furthest object), thus 𝑠"%7  is data dependent. As 𝐹 is a symmetric function, that is, 

𝐹G𝑥" → 𝑥%H = 𝐹G𝑥% → 𝑥"H for all similarity/distance indices of interest, i.e., S-SIM, COR, ED, and MD, duplicated values are 

removed. Also, self-similarity values, that is, 𝑠"%7  with 𝑖 = 𝑗, are removed. Thus, 𝑛(𝑛 − 1)/2 values remained in the final set 𝑆 

of 𝑠"%7 . The S-distribution, or S-D, is defined as the probability density function of the values of 𝑆. The S-Ds were then plotted 205 

together for comparison. In addition, statistical parameters, such as the mean, standard deviation, skewness, kurtosis, and 

Shannon entropy, were calculated to further diagnose the characteristics of the datasets of interest.  

4.2 “General” silhouette analysis 

As k-means clustering is an unsupervised machine learning method, it does not require “ground truth”, or predefined cluster 

labels of an input dataset for classification. The absence of “ground truth” means that the algorithm can be validated only with 210 

internal validation criteria. Internal validation is to define the goodness of clustering outcome based on the result itself to 

define how clustering methods optimize the homogeneity within a cluster and maximize the difference among clusters (Hassani 

and Seidl, 2017). There are numerous indices for clustering internal validation, though most of them are built on Cartesian 

geometric algebra, which is not the case with non-distance metrics like S-SIM.  

Thus, this study uses the general silhouette analysis method to validate the algorithms. The general silhouette analysis is the 215 

generalized form of the silhouette analysis  (Rousseeuw, 1987) that can applicable also for non-distance metrices. This concept 

was firstly used for the evaluation of self-organizing maps by Doan et al. (2021). Silhouette analysis is a comprehensive 

analysis of the interpretation and validation of cluster methods. This technique offers a concise graphical representation of 

how well each object has been classified (Rousseeuw, 1987). The silhouette value is a measure of how coherent an object is 
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with its cluster versus how it is separated from other clusters. Mathematically, the general silhouette coefficient (𝐺𝑆𝐶) for a 220 

given object is defined as follows:  

 𝐺𝑆𝐶 =
𝑏 − 𝑎

max	{𝑎, 𝑏} 
 (4)  

where 𝑎	𝑎𝑛𝑑		𝑏 are the mean intracluster distance and mean distance to the nearest cluster, respectively. Note that the distance 

here is the “general” distance and not the Euclidean distance, which is originally defined in the study by Rousseeuw (1987). 

The general distance is the reversed normalized similarity (i.e., −𝑠′"%) defined in subsection 4.1, which is why here we call it 

the general silhouette coefficient.  225 

The 𝐺𝑆𝐶 values ranged from −1 to +1. A higher value indicates the goodness of the cluster assignments, that is, the object is 

coherent with its cluster and well separated from neighboring clusters. The clustering configuration is appropriate if most 

objects have high scores. In contrast, if many objects have low or negative values, then the clustering configuration performs 

poorly. A 𝐺𝑆𝐶 of zero indicates that the object is on or very close to the border of two neighboring clusters, and a negative 

𝐺𝑆𝐶 indicates that the object may have been assigned the wrong cluster label.  230 

4.3 Clustering uncertainty evaluation 

Evaluating the variability or uncertainty inherent in a clustering algorithm is challenging owing to the unique nature of the 

clustering outcome. It is difficult to define the statistical mean, standard deviation, or range between quantiles of a given 

ensemble of clustering realizations.  

Herein, we propose a framework for the representation/evaluation of the uncertainty of the clustering problem, which is based 235 

on a pairwise comparison of clustering realizations using a quantified index called the clustering uncertainty degree (CUD). 

The CUD is built-up on the mutual information concept, in more detail, the adjusted mutual information index. In information 

theory, mutual information from two random variables is used to quantify the "amount of information" obtained for one random 

variable by observing another random variable. The concept of mutual information is intimately linked to the entropy concept 

of a random variable, which is a fundamental notion in information theory that quantifies the expected "amount of information" 240 

held in this variable. In this study, mutual information is applied to evaluate the agreement between two clustering realizations 

(label assignments of 𝑁 objects). To do so, the mathematical formula for mutual information 𝐼(𝑈, 𝑉) between two clustering 

realizations 𝑈 and 𝑉 is defined as follows: 
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 	𝐼(𝑈, 𝑉) = 𝐻(𝑈) + 𝐻(𝑉) − 𝐻(𝑈, 𝑉) (5)  

where 𝐻(𝑈)	𝑎𝑛𝑑		𝐻(𝑉)  are the entropies of each realization and 𝐻(𝑈, 𝑉)  is the joint entropy of the two. Entropies of 

clustering realizations are defined as the amount of uncertainty for partition sets of each realization.  245 

 
𝐻(𝑈) = 	−	F𝑃(𝑖)log	(𝑃(𝑖))

|9|

"'!

 
 (6)  

 
𝐻(𝑉) = 	−	F𝑃′(𝑗)log	(𝑃′(𝑗))

|:|

%'!

 
(7) 

where 𝑃(𝑖) 	= 𝑎"/𝑁 and 𝑎" =	 |𝑈"| is the probability that an object pickup at random from 𝑈 falls into class 𝑈". Similarly, for 

𝑉, 𝑃′(𝑗) 	= 𝑏%/𝑁, where 𝑏% =	 |𝑉"| is the probability of an object from 𝑉 falling into class 𝑉%. 

 
𝐻(𝑈, 𝑉) = 	−	FF𝑃(𝑖, 𝑗)log	(𝑃(𝑖, 𝑗))

|:|

;'!

|9|

"'!

 
(8)  

where 𝑃(𝑖, 𝑗) 	= v𝑈" ∩ 𝑉%v/𝑁 is probability that an object pickup at random falls into both class 𝑈"	and 𝑉%. 

By definition, mutual information ranges from 0 to 1. A value of 1 indicates perfect agreement (equality) between the two 

clustering realizations, while values close to zero indicate that the two label assignments are largely independent. However, 250 

mutual information is weak against chance. Vinh et al. (2009) derived the expected mutual information and proposed the 

concept of adjusted mutual information that can defend against chance (Vinh and Epps, 2009; Vinh et al., 2010; Romano et 

al., 2016). Thus, random (uniform) label assignments have an adjusted mutual information score close to 0.0 for any number 

of clusters and objects (which is not the case for raw mutual information). Note that the adjusted mutual information is 

primarily developed to measure the “goodness” of clustering outcomes versus prior-known “ground truth”. In this study, we 255 

diversify this primary purpose by applying the metrics to evaluate the uncertainty/consistent/convergence of clustering 

outcomes. Also, using the adjusted mutual information must be understood as showcase for the evaluation framework. We 

could also use alternative techniques, e.g., rand index, for the same purpose. 
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𝐼′(𝑈, 𝑉) =

𝐼(𝑈, 𝑉) − 𝐸[𝐼(𝑈, 𝑉)]
𝑚𝑒𝑎𝑛{𝑈(𝑈), 𝐻(𝑉)} − 𝐸[𝐼(𝑈, 𝑉)]	 

 

(10) 

The core concept underlying the CUD, i.e., clustering uncertainty degree, is defined as follows: 

 𝐶𝑈𝐷(𝑈, 𝑉) = 1 − 	𝐼′(𝑈, 𝑉) (11) 

By definition, CUD is a representation of pairwise dissensus of clustering realizations. The CUD ranges from 0 to 1. A value 260 

of 1 indicates the greatest dissensus or highest uncertainty between 𝑈 and 𝑉, while a value of 0 indicates perfect consensus or 

no uncertainty. The connectivity matrix of pairwise CUDs is defined as a 𝑀	 × 	𝑀 matrix and CUD values for a pair of 

clustering realizations, where 𝑀  is the number of clustering realizations. The connectivity matrix naturally serves as a 

visualization tool to assess the general uncertainty of the clustering system. Other visualization tools are also used to visualize 

the CUD, including a heatmap and a chord diagram (Holten, 2006). Heatmaps work like a connectivity matrix but in a more 265 

visualized form. A chord diagram is a useful graphical method for demonstrating the interrelationships between the data in a 

matrix. The data are plotted radially around a circle. The relationships between data points are usually drawn as arcs that 

connect the data.  

5. Results and discussion 

5.1 S-distributions 270 

Before analyzing the k-means clustering results, we diagnose the nature of the input data using S-distributions (or S-Ds). S-Ds 

provide “global” insights into how data vectors are related to each other in four S-SIM, COR, ED, and MD topological spaces. 

The results, which are shown in Figure 2, demonstrate an apparent difference in the shape of the S-Ds. Notably, the S-Ds for 
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ED and MD appear more symmetrical than those for S-SIM and COR across the three types of input data, that is, WP, CC, 

and TC. For S-SIM and COR, S-Ds tend to be more tailed (both sides), with skewness over the left tail. Quantitively, the 275 

standard deviation of S-Ds for S-SIM and COR exhibit higher values (approximately 0.13 – 0.20) than those for ED and MD 

(approximately 0.11 – 0.13) (Table 1), despite an exception for ED in the TC simulation. The skewness (measures the 

symmetry of S-Ds) exhibits negative values meaning the distributions are left-skewed. This fact is clearly confirmed in 

visualized results (Figure 2). Especially, S-SIM and COR exhibit higher skewed than ED and MD particularly in the CC and 

TC experiments. The skew-over-left of S-SIM and COR indicates that those tend to project “hierarchical affinity” of input 280 

vectors, meaning that a given vector tends to be closer to a certain group of peers and relatively far from another group located 

at the opposite end of similarity spectrum. In this sense, these results demonstrate that the discrimination ability of S-SIM and 

COR is higher than that of traditional distance metrics, such as ED or MD. In addition, kurtosis and Shannon entropy measure 

the flatness and “information value” (or “information gain” in the case of comparison) of distributions, respectively. Overall, 

kurtosis values are consistent with the visualized results in Figure 2, i.e., S-Ds of S-SIM and COR tend to spread more over 285 

two tails than those of ED and MD. Entropy, on the other hand, is likely more data dependent. It does not show obviously 

higher and lower trends of S-SIM, and COR than those of ED and MD. 

5.2 Clustering results 

As explained in Section 3, three demonstration problems, WP, CC, and TC, are conducted with different 𝑘 configurations and 

centroid initializations, with a total number of runs of 1320. Note that this study addresses the algorithm aspects (attempting 290 

to seek general insight into the system’s performance regardless of problems). We do not intend to physically interpret the 

specific clustering outcomes, although some phenomenal explanations are provided in the manuscript.  

The clustering results are partly visualized and shown together with quantified silhouette scores in Figures 3, 4, and 5 for WP, 

CC, and TC, respectively, for the configuration 𝑘	 = 	4 and the first initialization, R0 (see the Supplementary Material for 

more information). Here, we explain the k-means-detected weather patterns over the Japan region during December, January, 295 

and February (DJF) (Fig. 3). During DJF, the weather in Japan is dominated by a winter-type pattern. The winter type is 

characterized by the Siberian High (develops over the Eurasian continent) and the Aleutian Low (develops over the northern 

North Pacific) resulting in prevailing northwesterly winds. The wind blows cold air from Siberia to Japan and causes heavy 

snowfall on the western coast and sunny weather on the Pacific side of the country. This winter-type pattern is clearly captured 

by all k-means variants, that is, C2 for S, C4 for C, C3 for E, and C4 for M k-means (Fig. 3). The silhouette analysis reveals 300 

an interesting result. S k-means generates dominant cluster C2 over other clusters regarding its frequency (the thickness of 
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each cluster label in the silhouette diagram indicates the number of members in the cluster). This result is consistent with prior 

knowledge of the weather patterns over the region (https://www.data.jma.go.jp/gmd/cpd/longfcst/en/tourist_japan.html). 

Moreover, S k-means shows consistently highest silhouette scores than the other algorithms for all 𝑘	 = 	2, 4, … , 20 settings 

(Fig. 6a), followed by C k-means. E and M k-means have lower scores than S and C k-means.  305 

Regarding the CC experiment, the time-series results are visualized with reference to the geographical locations of the weather 

stations to support interpretation (Fig. 4). Overall, the result shows that although it is seen over all stations, the warming trend 

is not geographically uniform. These regional differences are well captured by the clustering. For example, the northern part 

(Hokkaido) is consistently separated from other regions in terms of warming rate which is faster than the other regions. Such 

a result highlights the usefulness of k-means to detect regional differences, which is useful for building detailed appropriate 310 

climate change actions (though it is not the main concern of this study). Regarding clustering quality, the superiority of S and 

C k-means is confirmed. Like WP, S and C k-means exhibit relatively higher silhouette scores for the CC data compared with 

E and M k-means (Fig. 6b).  

In addition, the TC experiment aims to determine how k-means works with hybrid spatiotemporal data. Like the above 

experiments, S and C k-means are likely to outperform E and M k-means, that is clearly reflected by their higher silhouette 315 

scores (Fig. 5 and Fig. 6c). Figure 5 shows the four main patterns of the TC track determined using the four clustering methods. 

Although there are some differences in the results among the k-means variants, such as the genesis and depression points, all 

determined patterns are characterized mainly by curved trajectories. These averaged patterns could be divided into two groups: 

i) not crossing and ii) crossing mainland Japan. Overall, the number of TCs in group i) was higher than that in group ii), with 

these tracks characterized by TCs containing both straight and re-curving TC trajectories forming to the east of 140° E (e.g., 320 

clusters 2 and 4 of S k-means in Fig. 5a). For group ii), the averaged patterns show the TC track passing through the central 

area of Japan (e.g., clusters 1 and 3 of S k-means in Fig. 5a) 

Consistently, the higher performance of S k-means is observed throughout the ensemble of tests, 𝑘 settings, and initializations. 

The performance of S k-means is sometimes competed by C k-means. The two, S and C k-means, outperform the distance-

metrics-based E and M k-means. It is worth noting that these results are obtained from the silhouette analysis. Additional 325 

evaluation approaches might be needed to generalize the conclusions, although this could be challenging because most 

objective clustering evaluations have been developed on the Cartesian geometric algebra assumption (that could work for 

distance metrics but might not work for non-distance measures). Therefore, it is necessary to develop new evaluation 

approaches beyond the distance paradigm. Another difficulty lies in the fact that, like other clustering techniques, k-means is 
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an unsupervised machine learning technique. It works in an absence of a single “ground truth” to guide the classification. The 330 

absence of “ground truth” indicates the difficulty to define the “goodness” or meaningfulness of k-means clustering outcomes. 

In pragmatic view, clustering outcomes become meaningful if they are assigned with physical meaning or successfully used 

for practical purposes like a prediction. Doing so does not fall into the scope of this study (it is a huge work and must be 

addressed in an independent study), here we adopt another approach to gain insight into the behavior of the k-means variants. 

By taking a careful glance at the silhouette plots shown in Figure 3, it's possible to notice a discrepancy in S k-means compared 335 

to the rest. S k-means is likely to generate, say, “high-ordered” clustering, i.e., one dominant weather pattern (larger group 

size) beside several non-dominant (smaller group size). The same trend is seen with different k settings (not shown). This 

agrees well with the prior knowledge recognized by meteorological research community and local people about the winter 

weather patterns in Japan (explained above. The insight leads to some possible hypotheses: (i) Does S k-means perform better, 

i.e., closer to the human perception, than other variants? (ii) Is achieving “highly-ordered” clustering the intrinsic property of 340 

S k-means?  

To examine the hypotheses, we attempt to quantify the “orderliness” of clustering outcomes using the Shannon entropy. The 

results, illustrated in Figure 7, show a good agreement between the calculated entropy values versus the intuition. S k-means 

appears to have consistently lower entropy (highly ordered clustering) than the other algorithms for the WP experiment (Fig. 

7a), but not for the CC, and TC experiments (Fig. 7b, c). We can dismiss the second hypothesis (ii), which posits that achieving 345 

"highly-ordered clustering" is an intrinsic property of S k-means, because it is not universally true across all experiences. Now 

hypothesis (i) remains. It is possible that S k-means can achieve clustering which fits closer to human perception. However, 

because we don’t have prior knowledge regarding the CC and TC experiments, it is early to conclude that with the complete 

certainty. To diversify the clustering problems with different types of input data, or for different geographical areas, is 

necessary to obtain the comprehensive insight into S k-means. 350 

To further the discussion from a different aspect, we examine how the similarity between objects is recognized in k-means 

variants. For intuitive comprehension, we generate “imagination” weather patterns and assess the discrimination ability of 

similarity/distance metrices. Figure 8 illustrates the weather patterns including the reference (a), characterized by two extrema 

(Low and High) symmetrically distributed over both sides, the Gaussian noise contamination (b), the blurring (to the mean 

value) (c), luminance shift (d), contrast stretch (e) and the spatial shift (f). Though the Euclidean distance from these patterns 355 

(b-e) to the reference are intentionally set to be identical (=2.9), by using S-SIM, one can rank the similarities with descending 

order: S-SIM(d-a) = .99 > S-SIM(e-a) = .8 > S-SIM(b-a) = .67 > S-SIM(f-a) = .5 >> S-SIM(b-a) = 0. This simple demonstration 
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confirms the superiority of S-SIM in recognizing the difference between two-dimensional patterns, agreeing well with human 

intuition compared to ED. This implies that S-SIM could reduce the situation of random classification (i.e., an object is 

assigned to a centroid by chance) adding confidence to S k-means derived results. Though this result is shown for the two-360 

dimensional data, it is believed to be true for one-dimensional structured data like time series. 

Computational cost is another important factor, especially in a practical sense. We measure the computational cost of each 

experiment and show the results in Figure 9. Overall, S and C k-means require more time to complete the same task than E 

and M k-means. Roughly, S k-means required 5 – 6 times more computational time than E k-means. C k-means was comparable 

to S k-means. M k-means required less computational time than E k-means. Such a tradeoff between higher performance and 365 

computational cost should be considered when selecting an algorithm. Nevertheless, the computational cost is not a big issue 

at least limited to the settings of this study; for example, the time to finish a run is less than a minute, which is very small 

compared to the numerical weather prediction or climate simulation. In addition, the computational issue can be solved with 

the advancement of computational ability or by using a parallel computational approach.  

5.3 Uncertainty evaluation 370 

The results for the clustering uncertainty evaluation framework (CUEF) are discussed here. The clustering uncertainty degree 

(CUD) is shown in Figure 10 (for 𝑘 = 4 and run R0; the collective results are shown in Figure 12). As explained in Section 

4, two visualization tools, i.e., heat maps and chord diagrams, are used to visualize the clustering uncertainty. For example, 

Figure 10a (WP) show the CUD values for S relative to C, E, and M k-means are 0.67, 0.75, and 0.77, respectively, with the 

heatmap. Note that the maximum CUD (=1) indicates the absolute disagreement between two clustering assignments and the 375 

minimum CUD (=0) indicates the absolute consensus between the two. The chord diagram demonstrates the pairwise 

relationship in a more qualified manner. One can easily determine which algorithms (S, C, M, or E) have less consensus with 

another (wide arc length on the circle means less consensus), and vice versa. For example, E and M k-means show the high 

consensus with each other. S k-means shows less uncertainty/high consensus relative to E and M compared with C k-means, 

particularly in the CC and TC experiments. Note that we run the four k-means variants with the randomized centroids each 380 

time. Additional runs using the same starting centroids for the four k-means variants show that the uncertainty related to the 

clustering algorithm selection remains regardless of using the same or randomized staring centroids. 

In addition to the algorithm-wise uncertainty, we evaluate the initialization-wise uncertainty. The pairwise CUDs between 

runs (i.e., R0 – R9 for each simulation) are shown in Figure 11 for the WP, CC, and TC experiments with each k-means 
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variant. The results demonstrate the smaller uncertainty regarding initialization than that owing to the selection of k-means 385 

algorithms. Particularly, the initialization-wise CUDs are much lower than the algorithm-wise CUD for WP and TC. 

Meanwhile, in CC, the initialization-wise and algorithm-wise CUDs do not exhibit apparent differences except for 𝑘 < 6 (Fig. 

12).  

The above results demonstrate the effectiveness of CUEF (with CUD as the core concept used within visualization framework 

including heatmaps or chord diagrams) to quantitively represent/evaluate the uncertainty inherent in clustering outcomes. 390 

Heatmaps and chord diagrams are useful in offering intuitive and general comprehension of uncertainty and consensus among 

the outcomes. CUEF is used to evaluate algorithm-wise (k-means variants in this study, but it can be used to compare clustering 

algorithms, e.g., affinity propagation, DBSCAN, self-organizing map, etc.), and initialization-wise uncertainties. Note that 

there are several techniques for improving the cluster initialization such as k-means++ (Arthur and Vassilvitskii, 2007). The 

result from additional simulations using k-means++ shows that the technique could help to reduce, though not wholly remove, 395 

the uncertainty regarding initialization. 

In addition, clustering uncertainty must be understood in a broader context. It can be induced by also input data. Figure 10 

and 11 shows the consistently higher CUDs for WP than those for CC and TC. It means that WP yields more random clustering 

outcomes regardless of the algorithm used. In the other words, input data itself can possess uncertain source for clustering. 

This makes sense because different data have different topologies, which can make them unsuitable or even invalid for a 400 

clustering solution. The question of whether it is valid or meaningful to apply a clustering solution to a dataset is more 

important than how to find the best method of clustering.  

In this sense, CUEF can be used to measure the meaningfulness of clustering application to a given problem. As the big data 

era is coming, clustering analysis could play vital role in discovering unseen structures of atmospheric data that are massive 

and inaccessible to human perception. The last decades have witnessed a wide range of clustering applications from detecting 405 

atmospheric regimes/patterns from data (Esteban et al., 2005; Houssos et al., 2008; Spekat et al., 2010; Zeng et al., 2019; Smith 

et al., 2020) to using these extracted patterns for weather forecasts and climate predictions (Kannan and Ghosh, 2011; Gutiérrez 

et al., 2013; Le Roux et al., 2018; Pomee and Hertig, 2022) or even reconstructing historical data (Camus et al., 2014). So far, 

tremendous efforts have been invested in either proposing/improving clustering algorithms or inventing criteria for evaluating 

the goodness of the results.  410 
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A fundamental question is posed about “what is the right thing to do rather than how to do it right?” In other words, it is about 

how to justify the choice of clustering solution rather than looking for the way to do it right. In this sense, CUEF could help 

users justify the choice based directly on their data rather than relying on the experiences or literature reviews (select it because 

others are using it). This value of CUEF is significant in a time of unprecedented expansion of climate data and clustering 

algorithms, diversifying the needs in data mining. We recommend CUEF as a necessary procedure (or standard) for clustering 415 

techniques. Even though the final decision on whether to apply a clustering solution might depend on multiple factors, e.g., 

the purpose of further analysis, CUEF eventually can support the result explanation and help to robustify the discussion. 

6. Summary and remarks 

This study proposes (i) a novel k-means algorithm primarily for mining climate data and (ii) a clustering-uncertainty evaluation 

framework. The novel k-means algorithm, called S k-means, is characterized by its ability to deal with inherent spatiotemporal 420 

“structuredness” in climate data. In detail, S k-means incorporates the recent innovation in signal recognition regarding 

structural similarity into the classification scheme, which has been primarily established based on the distance metrics 

paradigm.  

The performance of S k-means is evaluated against the other k-means variants, C, E, and M k-means, i.e., k-means using the 

Pearson correlation coefficient, Euclidean, and Manhattan distance (C, E, and M k-means, respectively). Three demonstration 425 

tests, i.e., clustering weather patterns (spatial-related data), historical climate change (time series) for long-term recorded 

weather station data, and best tracks of tropical cyclones (spatiotemporal hybrid), eleven 𝑘 settings (𝑘	 = 	2, 4, … , 20), and for 

each 𝑘 and an ensemble of ten randomized initializations, are implemented, resulting in a total of 1320 runs produced to 

generate robust results.  

The quantitative approaches, i.e., similarity distribution (S-D) and general silhouette analysis, are used to evaluate the 430 

performance of the algorithms. S-D diagrams were used to diagnose the topological relationship of input datasets in different 

distance/similarity spaces. The results show that structural similarity groups are likely to have a higher ability to discriminate 

the data (characteristics that might be useful for clustering) than conventional distance metrics. Regarding the clustering results, 

the general silhouette analysis shows consistently higher scores for S and C k-means compared with E and M k-means. The 

superiority of S k-means clustering is followed by C k-means clustering. Both S and C k-means consistently outperform E- 435 

and M-k-means. The trade-off between the clustering performance and computational resource requirement is revealed, as S 

k-means requires five to six times more computational time than E k-means.  
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S k-means could be promising as a new standard for climate-data clustering/mining, which is a rising research field within the 

big data context. Nevertheless, certain issues must be noted when interpreting the results of this study. First, as k-means 

clustering is an unsupervised data-mining method, it works under an assumption of no “ground-truth” labeling information. 440 

Therefore, there is no absolute reference to define the goodness of the clustering result. In this study, the goodness of the 

algorithm is evaluated based on an objective calculus approach using the general silhouette analysis/score. Though, this score 

is free from the Cartesian geometry assumption, thus allowing the algorithms to be compared with non-distance metrics, it is 

suggested that more evaluation and diversifying clustering problems are needed to gain deeper insight into the algorithm. 

Finally, another important contribution of this study is that we built a framework for clustering uncertainty evaluation for the 445 

first time, and it is primarily applicable to climate research. The evaluation framework is built on the mutual information 

concept. This is the first time this concept has been adapted for clustering uncertainty evaluations in the form of the “clustering 

uncertainty degree” (CUD). CUD measures pairwise discrepancies among clusters, and the collective CUDs provide an overall 

picture of the consistency/uncertainty of the cluster algorithms. Naturally, CUD can be used to evaluate whether a given 

problem (input data) is preferable for clustering. In other words, if the cluster algorithm provides higher uncertainty in its 450 

outcomes, then it is not appropriate for use, and vice versa. For example, for what shown in this study, the WP problem caused 

more uncertainty in clustering than the CC and TC problems. Thus, it is questioned about the “meaningfulness” of the 

clustering application for WP compared with CC and TC. We expect this clustering-uncertainty-evaluation framework will 

change the conventional agenda of data clustering by adding a procedure to evaluate its application's 

meaningfulness/effectiveness for a given data. 455 
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List of tables 580 

Table 1. Statistical metrices of S-distributions for three demonstration input datasets, i.e., weather pattern (WP), climate change 

(CC), and tropical cyclone (TC). The different distance/similarity measures are structural similarity (S-SIM), the Pearson 

correlation coefficient (COR), Euclidean distance (ED) and Manhattan distance (MD). Statistical measures include the mean (Mean), 

standard deviation (STD), skewness (SKEW), kurtosis (KUR) and Shannon entropy (ENTROPY) 
 

WP 
   

CC 
   

TC 
   

 
S-SIM COR ED MD S-SIM COR ED MD S-SIM COR ED MD 

Mean 0.68 0.71 0.67 0.68 0.71 0.81 0.66 0.65 0.81 0.87 0.65 0.69 

STD 0.18 0.19 0.11 0.11 0.20 0.13 0.12 0.13 0.14 0.11 0.15 0.13 

SKEW -0.66 -0.81 -0.73 -0.74 -1.08 -1.25 -0.65 -0.67 -1.10 -1.67 -0.46 -0.59 

KUR -0.18 0.00 0.58 0.64 0.97 1.79 0.59 0.58 1.15 3.31 -0.32 0.03 

ENTROPY 2.83 2.79 2.19 2.16 2.83 2.29 2.32 2.36 2.30 1.80 2.57 2.45 
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Fig. 1 Illustration of the k-means clustering algorithm (a) and three demonstration experiments (b). Demonstration experiments 590 
include clustering weather patterns (WPs) in terms of daily ERA-Interim sea level pressure (SLP) during winter months (December, 

January, and February) for ten years 2005 – 2014 over the Japan region; clustering climate change (CC) in terms of historical (1951 

– 2020) annual mean temperature collected from in situ weather stations in Japan; and clustering best tracks of tropical cyclones 

that passed the Northwest Pacific region from 1951 – 2020. Data were obtained from the JMA 
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Fig. 2 Comparison of the S-distributions of normalized pairwise similarity using the structural similarity (S-SIM), the Pearson 

correlation coefficient (COR) the Euclidean distance (ED) and the Manhattan distance (MD) for three demonstration experiments: 

WP, CC, and TC. With a population size of N, 𝑵(𝑵#𝟏)
𝟐

 values of pairwise similarity are observed because S-SIM, COR, ED and MD 600 

are symmetric measures and self-similarity is excluded. Values are normalized from 0 to 1. The maximum similarity is 1, which 

corresponds to completely similar, and the minimum similarity is 0, which corresponds to the lowest pairwise similarity.  
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Fig. 3 Result for the WP experiment. The winter SLP pattern revealed by S, C, E, and M k-means with 𝒌	 = 	𝟒. “H” indicates the 605 
location of the high, and “L” indicates the location of the low. General silhouette analysis results are shown below the maps, where 

the x-axis indicates the score and the y-axis presents the labels of clusters numbered 1 – 4. Input data are ERA-Interim SLP data, 

which were re-gridded to Cartesian coordinates with a resolution of 200 x 200 km and grid size of 35 x 35. Daily data for December, 

January, and February collected over ten year 2005 – 2014 were used. 
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Fig. 4 Result for the CC experiment for clustering of climate change (temperature increase) time series over 134 weather stations 615 
over the entirety of Japan. Patterns were revealed by S, C, E, and M k-means, with 𝒌	 = 	𝟒. Input data correspond to annual mean 

data collected over 70 years from 1951 – 2020 (subtracted by the mean of the first 30 years) and observed temperature achieved at 

in situ weather stations (dots in map) operated by the JMA. Time series of centroids and input vectors are shown in below panels 

together with general silhouette analysis results, where the x-axis indicates the score (S-score) and the y-axis presents the labels of 

clusters numbered 1 – 4.  620 
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Fig. 5 Results of the TC experiment for clustering tropical cyclone paths. The pattern was revealed by S, C, E, and M k-means, with 

𝒌	 = 	𝟒. Input data are the best TC tracks obtained by the JMA from 1951 – 2020. Only TCs that passed the dashed box in the map 

are used to feed the k-means. Thus, a total of 863 TC tracking data points are used. The left side of each panel show the general 625 
silhouette analysis results, where the x-axis indicates the score (S-score) and y-axis presents the labels of clusters numbered 1 – 4. 

The centroid TC path is illustrated by the bold line, and the color is consistent with that in the silhouette diagram. 
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Fig. 6 Comparison of the average silhouette score (S-score) of S, C, E, and M k-means for k = 2, 4, …, 20 for three demonstration 

experiments: WP (a), CC (b) and TC (c). The uncertainty range in each line indicates the standard deviations of the scores among 630 
10 runs with randomized initializations. 
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Fig. 7 Shannon entropy of clustering results. Comparison of the average silhouette score (S-score) of S, C, E, and M k-means for k 

= 2, 4, …, 20 for three demonstration experiments: WP (a), CC (b) and TC (c). The uncertainty range in each line indicates the 

standard deviations of the scores among 10 runs with randomized initializations. 635 
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Fig. 8 Imagination air pressure patterns. Subpanels are the reference (a), Gaussian noise contamination (b), blurring (to mean value) 

(c), luminance shift (d), contrast stretch (e), and spatial shift (f). The ED (Euclidean distance) and S-SIM (structural similarity) 

values shown above each panel are those calculate to the reference one (a). The rightmost subpanel shows the cross session (between 640 
two points P1 and P2 in a)) with L, H indicates the location of imagination Low and High air pressure extrema. 
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 Fig. 9 Comparison of the run time (in sec) of S, C, E, and M k-means for k = 2, 4, …, 20 for three demonstration experiments: WP 

(a), CC (b) and TC (c). The uncertainty range in each line indicates the standard deviation of the scores among 10 runs with 645 
randomized initializations. Note that the y axis is logarithmically rescaled. 
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Fig. 10 Clustering uncertainty degree (CUD) based on adjusted mutual information (AMI) between clustering results from different 650 
k-means algorithms, i.e., S, C, E, and M k-means, for different demo experiments: WP, CC, and TC. (a, b, c) CUD in heatmaps, and 

(d, e, f) visualization of the interconnection using the chord diagrams. Note that the results are from the configuration with 𝒌 = 𝟒 

and the first initialization run. 
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Fig. 11 Clustering uncertainty degree (CUD) based on adjusted mutual information (AMI) between the clustering results from 655 
different runs (10 runs indicated by R0, R1, …, R9) of different k-means algorithms, i.e., S, C, E, and M k-means (rows), for different 

demo experiments: WP, CC, and TC (columns). Note that the results are from the configuration with 𝒌 = 𝟒  and the first 

initialization run. 

 

 660 

 

Fig. 12 Clustering uncertainty degree (CUD) based on adjusted mutual information (AMI) between the clustering results from 

different runs (10 runs indicated by R0, R1, …, R9) of different k-means algorithms, i.e., S, C, E, and M k-means (rows), for different 

demo experiments: WP, CC, and TC (columns). Note that the results are from the configuration 𝒌 = 𝟐, 𝟒,… , 𝟐𝟎. 

 665 


