
Responses to Reviewer 1’s comment 

Manuscript by Doan et. al. presents a S k-means clustering framework, improving on standard 
k-means clustering, and demonstrate their application to several climate datasets.  

Manuscript presents a methods focused study, which however lacks sufficient discussion to 
demonstrate the benefits of the proposed algorithmic improvements to standard k-means 
algorithm. Section "Results and Discussions" focus more on Results and less on Discussion, 
which is the critical weakness of the manuscript in its current form. 

We appreciate the reviewer for his/her critical, and insightful comments, which are very helpful in 
improving this manuscript. We have addressed all the comments point-by-point adding appropriate 
discussions, some of which are based on current results and some on additional tests and analyses. In 
summarization, additional discussions are to address:  

a) how can S k-means capture the “structuredness” of input data, 
b) uniqueness, and new insight that S k-means enables, quantified by the Shannon entropy, 
c) the novelty of the clustering uncertainty evaluation in a broader context, 
d) additional explanations regarding methods. 

We hope the reviewer satisfy with the responses.  

1. Manuscript is missing several key references from the reference list.  Wang et. al. 2004, 
Wang and Bovik, 2009 Mo et al., 2014; Han and Szunyogh, 2018; Doan et al., 2021 

We have added these references to the revised manuscript.  

2. One of the motivation for the proposed work, as discussed in introduction, is to mine the 
unique "structuredness" of temporal and spatial climate data (Line 67-81). However, rest of the 
manuscript focused on comparison of various clustering methods based on Silhouette scores, 
uncertainty degree etc. Proposed S k-means consistently shows better scores than the other 
methods, but if and how it better captures the "structuredness" of the data need to be 
discussed, since that's the key contribution of the study. 

We agree. We have added discussion on how S k-means captures the “structuredness” of the data into the 
manuscript. We focus on the ability of the algorithm to distinguish the difference between “imagination” 
data, which are generated for intuitive comprehension. An additional figure (Figure R1, which 
corresponds to Figure 8 in the revised manuscript) has also been added to the manuscript (Line 350 - 
360). 

“To further the discussion from a different aspect, we examine how the similarity between objects 
is recognized in k-means variants. For intuitive comprehension, we generate “imagination” 
weather patterns and assess the discrimination ability of similarity/distance metrices. Figure 8 
illustrates the weather patterns including the reference (a), characterized by two extrema (Low 
and High) symmetrically distributed over both sides, the Gaussian noise contamination (b), the 
blurring (to the mean value) (c), luminance shift (d), contrast stretch (e) and the spatial shift (f). 
Though the Euclidean distance from these patterns (b-e) to the reference are intentionally set to 
be identical (=2.9), by using S-SIM, one can rank the similarities with descending order: S-
SIM(d-a) = .99 > S-SIM(e-a) = .8 > S-SIM(b-a) = .67 > S-SIM(f-a) = .5 >> S-SIM(b-a) = 0. This 



simple demonstration confirms the superiority of S-SIM in recognizing the difference between 
two-dimensional patterns, agreeing well with human intuition compared to ED. This implies that 
S-SIM could reduce the situation of random classification (i.e., an object is assigned to a centroid 
by chance) adding confidence to S k-means derived results. Though this result is shown for the 
two-dimensional data, it is believed to be true for one-dimensional structured data like time 
series.” 

 

Figure R1. Imagination air pressure patterns. Subpanels are the reference (a), Gaussian noise contamination 
(b), blurring (to mean value) (c), luminance shift (d), contrast stretch (e), and spatial shift (f). The ED 
(Euclidean distance) and S-SIM (structural similarity) values shown above each panel are those calculated to 
reference one (a). The rightmost subpanel shows the cross-session (between two points P1 and P2 in a)) with 
L, H indicating the location of imagination Low and High air pressure extrema. 

3. Structural similarity metric (Section 2.2) is the most important part of the study. However, 
several symbols/terms in equations 2, 3 and on lines 142-145 are not defined or explained. In 
particular the equations for luminance, contrast and structure. And the cited articles (Wang et. 
al. 2004, Wang and Bovik, 2009) that developed the similarity metrics are missing from the 
reference list. That makes it difficult to understand the similarity metric. Aside from describing 
equations for S-SIM, there are disussions, in methods section or later, as to how these 
structural metrics capture the spatial and temporal structuredness of climate data.  

We have added more the explanation for equations 2, 3 clarifying the concept of luminance, contrast and 
structure similarities. All symbols/terms and notations have been checked to assure that they are all 
appropriated defined. We copied here the revised text (red color) within the relevant context for the 
reviewer’s reference (Line 136 – 160):  

“The metrics for the structural similarity (S-SIM) recognition process were first introduced by 
Wang et al. (2004). It was developed to better predict the perceived quality of digital television 
and cinematic pictures. S-SIM is intended to improve the traditional peak signal-to-noise ratio or 
mean squared error in detecting similarities between “structural” signals, such as images. 
Intuitively, S-SIM is determined by considering the differences between two input signals 
(vectors 𝑥, 𝑦) across multiple aspects including “luminance”, “contrast”, “and structure” which 



represent the characteristics of human visual perception. Luminance masking is a phenomenon 
whereby image distortions tend to be less visible in bright regions, while contrast masking is a 
phenomenon whereby distortions become less visible where there is significant activity or 
"texture" in the image. Mathematically, S-SIM is determined as follows: 

 𝑆𝑆𝐼𝑀(𝑥, 𝑦) = 𝑙(𝑥, 𝑦)! 	 × 𝑐(𝑥, 𝑦)" × 𝑠(𝑥, 𝑦)# 
(1)  

where 𝑙(𝑥, 𝑦), 𝑐(𝑥, 𝑦), and 𝑠(𝑥, 𝑦) measure similarities in luminance (brightness values), contrast 
and structure between sample vectors 𝑥, 𝑦 with weight values 𝛼, 𝛽 and 𝛾. Let 𝜇$	and		𝜇% be the 
mean values; 𝜎$	and		𝜎% the standard deviations; 𝜎$% the covariance of the two sample vectors 
𝑥, 𝑦, then luminance, contrast, and structure similarities are defined as 𝑙(𝑥, 𝑦) = &'!'"()#

'!$(*"$()#
, 

𝑐(𝑥, 𝑦) = &+!+"()$
+!$(+"$()$

, and 𝑠(𝑥, 𝑦) = +!"()%
+!+"()%

. Note that 𝑐,, 𝑐&	and 𝑐- are parameters to stabilize the 

division with a weak denominator. Even if 𝑐, = 𝑐& = 𝑐- = 0, S-SIM still work quite well (Wang 
and Bovik, 2009). 𝑙(𝑥, 𝑦) measures the similarity in brightness, i.e., the difference regarding 
mean values; 𝑐(𝑥, 𝑦) quantifies the similarity in illumination variability, which is regarded to 
standard deviations; and 𝑠(𝑥, 𝑦) measures the correlation in spatial inter-dependencies between 
images that is close to the Pearson correlation coefficient. For simplification, here we set 
𝑐, = 𝑐& = 𝑐- = 0 and weights 𝛼 = 𝛽 = 𝛾 = 1 and reduce the original formula to the following: 

 S-SIM(𝑥, 𝑦) = 		 &'!'"+!"
('!$('"$)(+!$(+"$)

 
(2)  

S-SIM is symmetric index, i.e., S-SIM(𝑥, 𝑦) =		S-SIM(𝑦, 𝑥). It does not satisfy the triangle 
inequality or non-negativity, and thus is not a distance function. S -SIM ranges from -1 to 1, 
where -1 indicates totally dissimilar and 1 indicates totally similar. Wang and Bovik (2009) 
showed that S-SIM represents a powerful, easy-to-use, and easy-to-understand alternative to 
traditional distance metrics, such as Euclidean distance, for dealing with spatially and temporally 
structured data, i.e., data having strong spatial and temporal inter-dependencies. These inter-
dependencies carry important information about the objects in the visual scene. S-SIM emerged 
as a “new-generation” similarity metric with an increasing number of applications outside the 
signal processing field, including hydrology and meteorology (e.g., Mo et al., 2014; Han and 
Szunyogh, 2018; Doan et al., 2021). ” 

Regarding the second part of the question, please see the previous response to comment 2. 

4. Discussion of clustering results in Section 5.2 is very high level.  Question remains, aside 
from slightly higher scores what unique and new insights does the S k-means clustering 
enabled? 

We have added new insight into S k-means clustering results, focusing on its unique characteristics. To 
support the arguments, we use the Shannon entropy concept and calculate clustering entropy which is 
shown in Figure R2 (corresponding to Figure 7 in the manuscript). Following are the details of the 
discussion, which have been also added in the revised manuscript (Line 332 - 349).  

“In pragmatic view, clustering outcomes become meaningful if they are assigned with physical 
meaning or successfully used for practical purposes like a prediction. Doing so does not fall into 
the scope of this study (it is a huge work and must be addressed in an independent study), here we 
adopt another approach to gain insight into the behavior of the k-means variants. 



Give a cautious look on the silhouette plots in Figure 3, one might realize an anomaly of S k-
means compared with the others. S k-means is likely to generate, say, “high-ordered” clustering, 
i.e., one dominant weather pattern (larger group size) besides several non-dominant (smaller 
group size). The same trend is seen with different k settings (not shown). This agrees well with 
the prior knowledge recognized by meteorological research community and local people about 
the winter weather patterns in Japan (explained above. The insight leads to some possible 
hypotheses: (i) Does S k-means perform better, i.e., closer to the human perception, than other 
variants? (ii) Is achieving “highly-ordered” clustering the intrinsic property of S k-means?  

To examine the hypotheses, we attempt to quantify the “orderliness” of clustering outcomes using 
the Shannon entropy. The results, illustrated in Figure 7, show a good agreement between the 
calculated entropy values versus the intuition. S k-means appears to have consistently lower 
entropy (highly ordered clustering) than the other algorithms for the WP experiment (Fig. 7a), but 
not for the CC, and TC experiments (Fig. 7b, c). Because, it is not true in all the experiences, we 
could exclude the second hypothesis (ii), i.e., achieving “highly-ordered clustering” is the 
intrinsic property of S k-means. Now hypothesis (i) remains. It is possible that S k-means can 
achieve clustering which fits closer to human perception. However, because we don’t have prior 
knowledge regarding the CC and TC experiments, it is early to conclude that with the complete 
certainty. To diversify the clustering problems with different types of input data, or for different 
geographical areas, is necessary to obtain the comprehensive insight into S k-means.” 

  

Figure 2. Shannon entropy of clustering results. Comparison of the average silhouette score (S-score) of S, C, 
E, and M k-means for k = 2, 4, …, 20 for three demonstration experiments: WP (a), CC (b), and TC (c). The 
uncertainty range in each line indicates the standard deviations of the scores among ten runs with 
randomized initializations. (Figure 7 in the manuscript) 

5. I am glad to see S k-means being compared with three other k-means variants. They were all 
run for a 11 different 'k' and with 10 random ensembles each, resulting in a toal of 1320 
clustering runs. BUT were all four k-means variants run with exactly the same random starting 
centroids for the purpose of comparison? It's important to do that for a fair comparison. Also, 



was a consistent convergence criteria used for all four methods? Converge criteria was 
mentioned on Lines 128-129, but what criteria was used in the study never discussed.  

The four k-means variants have been conducted with the randomized centroids each time. It is because we 
aim at comparison four variants as they are as integrated systems. We also understand the concern of the 
reviewer. To address this and assure that our conclusion is robust, we have run additional experiments 
assuming the same random starting centroids. In detail, the extra 132 run (3 experiments x 11 k settings x 
4 k-means variants) has been conducted based on 33 pre-defined starting centroid sets (3 experiments x 11 
k settings).  

The quick conclusion is the uncertainty (related to clustering algorithm selection) remains even though 
the same starting centroids are used. Compare Figure 3 (additional runs) and Figure 4 (original runs) for k 
= 4; the CUD in clustering results from the four k-means variants is confirmed at the same level. The 
results demonstrated the validity of the original comparison. For this reason, we do not change the 
structure of the original paper. However, we added a few discussions about this (Line 379 – 381). 

“Note that we run the four k-means variants with the randomized centroids each time. Additional 
runs using the same starting centroids for the four k-means variants show that the uncertainty 
related to the clustering algorithm selection remains regardless of using the same or randomized 
staring centroids.”  

 

Figure 3. Clustering uncertainty degree (CUD) based on adjusted mutual information (AMI) between 
clustering results from different k-means algorithms, i.e., S, C, E, and M k-means, for different demo 
experiments: WP, CC, and TC. (a, b, c) CUD in heatmaps, and (d, e, f) visualization of the interconnection 
using the chord diagrams. Note that the results are from the configuration with k=4 and the four k-means 
variants use the same starting centroids. 

 



 

Figure 4. (Figure 10 in the manuscript) Clustering uncertainty degree (CUD) based on adjusted mutual 
information (AMI) between clustering results from different k-means algorithms, i.e., S, C, E, and M k-
means, for different demo experiments: WP, CC, and TC. (a, b, c) CUD in heatmaps, and (d, e, f) 
visualization of the interconnection using the chord diagrams. Note that the results are from the 
configuration with k=4 and the four k-means variants use the randomized starting centroids. 

Regarding the second part of the comment, the same convergence criterion has been used for all four 
methods. We have added this information to the revised manuscript (Line 138 – 140).  

“Technically, the algorithm converges if the sum of the mean square errors of centroids versus 
those in the previous step become zero in the experiments of this study. The convergence 
criterion is the same for all k-means variants used. A limitation of iteration is setup to 100 to 
avoid the infinite loop of iterations.” 

6. Lines 364-365 "As the first study to address this issue, we believe that CUEF can constitute a 
new standard for addressing uncertainty issues when performing data clustering in (but not 
limited to) climate science." -- This is an overstatement. It's well know that custering algorithms 
are local search methods that are sensitive to random start, however, there are number of 
approaches in published literature to identify good seeds and ensure that algorithms can 
converge to a consistent cluster set.  

We partially agree with this comment. A reason is that the clustering uncertainty evaluation framework 
(CUEF) must be understood in a broader context. The clustering uncertainty is not only caused by 
initialization. It is also caused by selecting different clustering algorithms (k-means variants or 
algorithms other than k-means such as affinity propagation, DBSCAN, self-organizing map, etc.). It is 
also caused by input data. 

We agree that there are number of approaches to identify good seeds to improve the convergence of k-
means. According to knowledge of the authors, the most well-known approach is k-means ++ (Arthur and 
Vassilvitskii, 2007). The intuition behind this method is that spreading out the k initial cluster centroids is 
preferable: the first cluster centroid is chosen randomly from the input data points. Each subsequent 
cluster centroid is determined from the remaining input data points with probability proportional to its 
distance from the point's closest existing centroid.  



We have run additional simulations, in which the k-means++ scheme of initialization is used instead of 
fully randomized method in the original k-means algorithm. The results, shown in following figures 
following, demonstrate two things. 

(1) Clustering uncertainty of k-means++ exists among different initialization (Fig. R5). It is because 
the algorithm is not completely free from random choice of seed. However, the clustering 
uncertainty is obviously reduced compared than original k-means (Fig. R7 – Figure 10 in the 
manuscript). Even, in TC experiment, E k-means ++ can provide a zero uncertainty regarding 
initialization. In WP experiment, the uncertainty is higher, implies that it depends much on data 
used.  

(2) Clustering uncertainty in using different k-means ++, i.e., S, C, E, M k-means++ still exists (Fig. 
R3). The degree of uncertainty is the same with that among S, C, E, M k-means (as shown in Fig. 
R4 which corresponds to Fig 9 in the original manuscript).  

We have added additional discussion about CUEF into the revised manuscript. Below is the copy of the 
additional discussion (red color) in relevant context (Line 387 – 400): 

“The above results demonstrate the effectiveness of CUEF (with CUD as the core concept used 
within visualization framework including heatmaps or chord diagrams) to quantitively 
represent/evaluate the uncertainty inherent in clustering outcomes. Heatmaps and chord diagrams 
are useful in offering intuitive and general comprehension of uncertainty and consensus among 
the outcomes. CUEF is used to evaluate algorithm-wise (k-means variants in this study, but it can 
be used to compare clustering algorithms, e.g., affinity propagation, DBSCAN, self-organizing 
map, etc.), and initialization-wise uncertainties. Note that there are several techniques for 
improving the cluster initialization such as k-means++ (Arthur and Vassilvitskii, 2007). The 
result from additional simulations using k-means++ shows that the technique could help to 
reduce, though not wholly remove, the uncertainty regarding initialization. 

In addition, clustering uncertainty must be understood in a broader context. It can be induced by 
also input data. Figure 8 and 9 shows the consistently higher CUDs for WP than those for CC 
and TC. It means that WP yields more random clustering outcomes regardless of the algorithm 
used. In the other words, input data itself can possess uncertain source for clustering. This makes 
sense because different data have different topologies, which can make them unsuitable or even 
invalid for a clustering solution. The question of whether it is valid or meaningful to apply a 
clustering solution to a dataset is more important than how to find the best method of clustering. ” 



 

Figure 5. Clustering uncertainty degree (CUD) based on adjusted mutual information (AMI) between 
clustering results from different k-means algorithms, i.e., S, C, E, and M k-means++, for different demo 
experiments: WP, CC, and TC. (a, b, c) CUD in heatmaps, and (d, e, f) visualization of the interconnection 
using the chord diagrams. Note that the results are from the configuration with k=4 and the first initialization 
run. 

 

 

 

Figure 6 (Figure 10 in the manuscript) Clustering uncertainty degree (CUD) based on adjusted mutual 
information (AMI) between clustering results from different k-means algorithms, i.e., S, C, E, and M k-



means, for different demo experiments: WP, CC, and TC. (a, b, c) CUD in heatmaps, and (d, e, f) 
visualization of the interconnection using the chord diagrams. Note that the results are from the 
configuration with k=4 and the first initialization run. 

 

Figure 7 Clustering uncertainty degree (CUD) based on adjusted mutual information (AMI) between the 
clustering results from different runs (10 runs indicated by R0, R1, …, R9) of different k-means++ 
algorithms, i.e., S, C, E, and M k-means++ (rows), for different demo experiments: WP, CC, and TC 
(columns). Note that the results are from the configuration with k=4 and the first initialization run. 



 

Figure 8 (Figure 11 in the manuscript)  Clustering uncertainty degree (CUD) based on adjusted mutual 
information (AMI) between the clustering results from different runs (10 runs indicated by R0, R1, …, R9) of 
different k-means algorithms, i.e., S, C, E, and M k-means (rows), for different demo experiments: WP, CC, 
and TC (columns). Note that the results are from the configuration with k=4 and the first initialization run. 

Reference: 

● Arthur, D.; Vassilvitskii, S. (2007). "k-means++: the advantages of careful seeding" (PDF). 
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms. Society for 
Industrial and Applied Mathematics Philadelphia, PA, USA. pp. 1027–1035. 

7. Lines 370-374: "This makes sense because different data have different topologies, which 
can make them unsuitable or even invalid for a clustering solution. The question of whether it is 
valid or meaningful to apply a clustering solution to a dataset is more important than how to find 
the best method of clustering.  Although this issue is fundamentally important, to the authors’ 
best knowledge, no studies have addressed this question or proposed a solution, at least 
among the climate sciences." -- this again is broad and biased inference based on the 
demonstrated applications and results.  



We agree that the statement could sound overestimation, though we have a reason to say that. In this 
study we are trying to raise the awareness that “do right things” must be more important than “do things 
right”. Before selecting a clustering solution, one needs to answer the primary question whether it is 
meaningful to apply this? We believe that CUEF could help answer this to some extent. 

We have revised the lines, we removed the sentence: “Although this issue is fundamentally important, to 
the authors’ best knowledge, no studies have addressed this question or proposed a solution, at least 
among the climate sciences.” Instead, we added discussion about the above aspect of CUEF (Line 401 – 
415).  

“In this sense, CUEF can be used to measure the meaningfulness of clustering application to a 
given problem. As the big data era is coming, clustering analysis could play vital role in 
discovering unseen structures of atmospheric data that are massive and inaccessible to human 
perception. The last decades have witnessed a wide range of clustering applications from 
detecting atmospheric regimes/patterns from data (Esteban et al., 2005; Houssos et al., 2008; 
Spekat et al., 2010; Zeng et al., 2019; Smith et al., 2020) to using these extracted patterns for 
weather forecasts and climate predictions (Kannan and Ghosh, 2011; Gutiérrez et al., 2013; Le 
Roux et al., 2018; Pomee and Hertig, 2022) or even reconstructing historical data (Camus et al., 
2014). So far, tremendous efforts have been invested in either proposing/improving clustering 
algorithms or inventing criteria for evaluating the goodness of the results.  

A fundamental question is posed about “what is the right thing to do rather than how to do it 
right?” In other words, it is about how to justify the choice of clustering solution rather than 
looking for the way to do it right. In this sense, CUEF could help users justify the choice based 
directly on their data rather than relying on the experiences or literature reviews (select it because 
others are using it). This value of CUEF is significant in a time of unprecedented expansion of 
climate data and clustering algorithms, diversifying the needs in data mining. We recommend 
CUEF as a necessary procedure (or standard) for clustering techniques. Even though the final 
decision on whether to apply a clustering solution might depend on multiple factors, e.g., the 
purpose of further analysis, CUEF eventually can support the result explanation and help to 
robustify the discussion.” 

8. Authors have termed their clustering framework to be novel, including in the title of the 
manuscript, which in my opinion is overstated and not justified. There are three key 
methodology elements in the paper + application to three select climate datasets.  

Application component of study is weak and limited in scope. But author's acknowledge that 
application/interpretation was not the focus of their study, Lines 277-278 "We do not intend to 
physically interpret the specific clustering outcomes, although some phenomenal explanations 
are provided in the manuscript." So novelty is not in the three applications.  

Three elements of methodology are adopted from published literature:  
 
1. Structural similarity based k-means -- adopted from Wang et. al. 2004, Wang and Bovik, 
2009  
 
2. Evaluation of clustering algorithms using Similarity distributions (adopted from Doan et. al. 
2021), Silhouette scores (adopted from Hassani and Seidl, 2017). 
 
3. Clustering uncertainty degree and information theory (Vinh et al. (2009)) 



Building upon published literature is normal discourse of scientific research. But I suggest 
reconsidering the use of term "novel". 

The reviewer is correct about basic structure of this study. We sincerely accept the request of the reviewer 
to reconsider the use of term “novel” in the title. We have revised the title to: 

“Structural k-means (S k-means) and clustering uncertainty evaluation framework (CUEF) for 
mining climate data”.  

Apart from discussion whether it is proper to have “novelty” in the title, let us explain in more detail the 
“new values” that we added to current literature.  

First, S k-means algorithm is the first variant, according to knowledge of the authors, adopts structural 
similarity paradigm to cluster things. There have been a lot of variants of k-means regarding how to 
determine similarity/distance between objects, but most are based on distance paradigm.  

The second value is the clustering uncertainty evaluation framework. The reason we call it a framework 
because it is more than an application of a technique like mutual information. We propose the way to 
evaluate the meaningfulness of application of clustering solution for a given problem. We use mutual 
information as a showcase, though we can use different criteria such as rand index. Also, remember that 
the adjusted mutual information (Vinh et al., 2009) is primarily developed to measure the “goodness” of 
clustering algorithm based on assumption of existing “ground truth”. Here we diversify its usage by 
applying it to evaluate the uncertainty/consistent/convergence of clustering solutions. Using mutual 
information have to be understood as a showcase of CUED, but not CUED itself. 

We have added to revised manuscript (Line 254 – 258). 

“Note that the adjusted mutual information is primarily developed to measure the “goodness” of 
clustering outcomes versus prior-known “ground truth”. In this study, we diversify this primary 
purpose by applying the metrics to evaluate the uncertainty/consistent/convergence of clustering 
outcomes. Also, using the adjusted mutual information must be understood as showcase for the 
evaluation framework. We could also use alternative techniques, e.g., rand index, for the same 
purpose.” 

  



Responses to Reviewer 2’s comments 

This study by Doan et al. presents the use of a S k-means clustering as a better alternative for 
climate and atmospheric science to clustering data than traditional k-means methods. This 
study introduces a novel framework to identify uncertainty within clustering methodologies and 
said framework introduces a methodology by which researchers can compare different 
clustering techniques with each other in a way that doesn't require a ground truth dataset to 
exist by which to compare results to. The study presents the methdology in an excellent manner 
that seems like it would be easy to replicate/apply to future studies.  

S k-means is a useful technique that adapats SSIM techniques, traditionally used in image 
comparison analysis, to be applied to climate data. It is an improved technique, compared to the 
traditional distance metric comparisons, as this takes into account both spatial and temporal 
differences in datasets. This manuscript does a good job at summarizing the use of the 
aforementioned techniques with respect to three example tests for typical climate situations in 
which clustering is used. However, this manuscript lacks in the discussion and summary 
sections. The manuscript needs to emphasize more as to the usefulness of this new uncertainty 
framework compared to current available methodology. The results are well explained, but there 
is a lack of discussion about how this brings a significant change to current techniques/how this 
improves current understanding and techniques.  

Thanks, the reviewer for the positive feedbacks. We have added that the discussion about the significant 
contribution of the proposed methodologies versus current techniques into the revised manuscript. Below 
is the copy of the additional discussion (red color) within the relevant context (Line 395 – 415).  

“In addition, clustering uncertainty must be understood in a broader context. It can be induced by 
also input data. Figure 8 and 9 shows the consistently higher CUDs for WP than those for CC 
and TC. It means that WP yields more random clustering outcomes regardless of the algorithm 
used. In the other words, input data itself can possess uncertain source for clustering. This makes 
sense because different data have different topologies, which can make them unsuitable or even 
invalid for a clustering solution. The question of whether it is valid or meaningful to apply a 
clustering solution to a dataset is more important than how to find the best method of clustering.  

In this sense, CUEF can be used to measure the meaningfulness of clustering application to a 
given problem. As the big data era is coming, clustering analysis could play vital role in 
discovering unseen structures of atmospheric data that are massive and inaccessible to human 
perception. The last decades have witnessed a wide range of clustering applications from 
detecting atmospheric regimes/patterns from data (Esteban et al., 2005; Houssos et al., 2008; 
Spekat et al., 2010; Zeng et al., 2019; Smith et al., 2020) to using these extracted patterns for 
weather forecasts and climate predictions (Kannan and Ghosh, 2011; Gutiérrez et al., 2013; Le 
Roux et al., 2018; Pomee and Hertig, 2022) or even reconstructing historical data (Camus et al., 
2014). So far, tremendous efforts have been invested in either proposing/improving clustering 
algorithms or inventing criteria for evaluating the goodness of the results.  

A fundamental question is posed about “what is the right thing to do rather than how to do it 
right?” In other words, it is about how to justify the choice of clustering solution rather than 
looking for the way to do it right. In this sense, CUEF could help users justify the choice based 
directly on their data rather than relying on the experiences or literature reviews (select it because 
others are using it). This value of CUEF is significant in a time of unprecedented expansion of 
climate data and clustering algorithms, diversifying the needs in data mining. We recommend 



CUEF as a necessary procedure (or standard) for clustering techniques. Even though the final 
decision on whether to apply a clustering solution might depend on multiple factors, e.g., the 
purpose of further analysis, CUEF eventually can support the result explanation and help to 
robustify the discussion.” 

1. Table 1 provides a nice summary of different metrics compared between the different k- 
means models used in the study. In the text, the mean and standard deviation are mentioned 
from the table, however, the other metrics are not mentioned at all other than in passing. The 
Shannon metric needs to be explained more and some presentation of the data should be given 
in the text to give the reader some context as to its meaning and how it is used in this study.  

Thank you for the noticing. In the revised manuscript, we have added the explanation related to other 
metrics. We copied Figure 2 and Table 1 here together with additional explanation for reference (Line 
271 – 287). 

“Before analyzing the k-means clustering results, we diagnose the nature of the input data using 
S-distributions (or S-Ds). S-Ds provide “global” insights into how data vectors are related to each 
other in four S-SIM, COR, ED, and MD topological spaces. The results, which are shown in 
Figure 2, demonstrate an apparent difference in the shape of the S-Ds. Notably, the S-Ds for ED 
and MD appear more symmetrical than those for S-SIM and COR across the three types of input 
data, that is, WP, CC, and TC. For S-SIM and COR, S-Ds tend to be more tailed (both sides), 
with skewness over the left tail. Quantitively, the standard deviation of S-Ds for S-SIM and COR 
exhibit higher values (approximately 0.13 – 0.20) than those for ED and MD (approximately 0.11 
– 0.13) (Table 1), despite an exception for ED in the TC simulation. The skewness (measures the 
symmetry of S-Ds) exhibits negative values meaning the distributions are left-skewed. This fact is 
clearly confirmed in visualized results (Figure 2). Especially, S-SIM and COR exhibit higher 
skewed than ED and MD particularly in the CC and TC experiments. The skew-over-left of S-
SIM and COR indicates that those tend to project “hierarchical affinity” of input vectors, meaning 
that a given vector tends to be closer to a certain group of peers and relatively far from another 
group located at the opposite end of similarity spectrum. In this sense, these results demonstrate 
that the discrimination ability of S-SIM and COR is higher than that of traditional distance 
metrics, such as ED or MD. In addition, kurtosis and Shannon entropy measure the flatness and 
“information value” (or “information gain” in the case of comparison) of distributions, 
respectively. Overall, kurtosis values are consistent with the visualized results in Figure 2, i.e., S-
Ds of S-SIM and COR tend to spread more over two tails than those of ED and MD. Entropy, on 
the other hand, is likely more data dependent. It does not show obviously higher and lower trends 
of S-SIM, and COR than those of ED and MD.” 

 



 

Fig. 2 (in the manuscript) Comparison of the S-distributions of normalized pairwise similarity using the 
structural similarity (S-SIM), the Pearson correlation coefficient (COR) the Euclidean distance (ED) and the 
Manhattan distance (MD) for three demonstration experiments: WP, CC, and TC. With a population size of 
N, 𝑵(𝑵#𝟏)

𝟐
 values of pairwise similarity are observed because S-SIM, COR, ED and MD are symmetric 

measures and self-similarity is excluded. Values are normalized from 0 to 1. The maximum similarity is 1, 
which corresponds to completely similar, and the minimum similarity is 0, which corresponds to the lowest 
pairwise similarity.  

Table 1 (in the manuscript). Statistical metrices of S-distributions for three demonstration input datasets, i.e., 
weather pattern (WP), climate change (CC), and tropical cyclone (TC). The different distance/similarity 
measures are structural similarity (S-SIM), the Pearson correlation coefficient (COR), Euclidean distance 
(ED) and Manhattan distance (MD). Statistical measures include the mean (Mean), standard deviation (STD), 
skewness (SKEW), kurtosis (KUR) and Shannon entropy (ENTROPY) 

 
WP 

   
CC 

   
TC 

   
 

S-SIM COR ED MD S-SIM COR ED MD S-SIM COR ED MD 
Mean 0.68 0.71 0.67 0.68 0.71 0.81 0.66 0.65 0.81 0.87 0.65 0.69 
STD 0.18 0.19 0.11 0.11 0.20 0.13 0.12 0.13 0.14 0.11 0.15 0.13 
SKEW -0.66 -0.81 -0.73 -0.74 -1.08 -1.25 -0.65 -0.67 -1.10 -1.67 -0.46 -0.59 
KUR -0.18 0.00 0.58 0.64 0.97 1.79 0.59 0.58 1.15 3.31 -0.32 0.03 
ENTROPY 2.83 2.79 2.19 2.16 2.83 2.29 2.32 2.36 2.30 1.80 2.57 2.45 

 

2. Many references from the text are missing citations. Please check over the references in the 
paper to make sure all are cited, here are a few that I found that were not cited: Jancey 1966, 
Lloyd 1957, Wang et al. 2004, etc.  

We apology for this inconvenience caused for the reviewer. We will add these references into the revised 
manuscript (Line 33, 76).  

3. This study intends to establish both the uncertainty framework and the s k-means 
methodology as a new standard for data mining in the climate sciences. While the uncertainty 
framework definitely provides a new standard by which to test the usefulness and effectiveness 
of different clustering algorithms against each other, no work has been shown as to the ability of 



the s k-means clustering. While comparisons are shown between the s k-means to other k-
means clustering measures, we cannot objectively say from this study that the S k-means 
method better captured the underlying structures within the data compared to the other k-means 
models. A more comprehensive case study would be needed, rather than the short test cases, 
that applies the methodologies to a known problem that has a ground truth that can be 
compared back to.  

The reviewer is very critical on this point. “Ground truth”, if exists, is the best solution to determine the 
goodness of one method against another. However, there are reasons that we do not use “ground truth” in 
this study. First, we have no reliable “ground truth”, i.e., “real” patterns of three datasets, WP, CC, and 
TC. The reviewer might notice that the lack of “ground truth” is common in other atmospheric data also, 
not only related to our experience settings. Because it is difficult to define “true” weather pattern, even 
though some individuals (i.e., weather forecasters) might claim that they have. In our opinion, climate 
data is very, that we called, “contextual” data, i.e., a claim of a weather pattern (or typhoon pathway 
pattern) is not exclusively dependent on data, it is rather associated with broader contexts of personal 
experiences, knowledges. It is why we try to avoid “personal-experience involvement” in the evaluation 
until “universal ground truth” is available.  

Nevertheless, we add discussion about the ability of S k-means in capturing the “structuredness” of the 
data with additional analysis and plotting (show below) to address different aspect of the reviewer’s 
comment. Here we focus on the ability of the algorithm to distinguish the difference between objects. 
With comparing imagination weather patterns (generated for intuitive comprehension) we demonstrate 
that using S-SIM could provide better (closer to human intuitive) similarity recognition than distance 
metrices. The following discussion and the additional figure (Figure 8 in the revised manuscript) are 
added to the manuscript (Line 350 – 360). 

“To further the discussion from a different aspect, we examine how the similarity between objects 
is recognized in k-means variants. For intuitive comprehension, we generate “imagination” 
weather patterns and assess the discrimination ability of similarity/distance metrices. Figure 8 
illustrates the weather patterns including the reference (a), characterized by two extrema (Low 
and High) symmetrically distributed over both sides, the Gaussian noise contamination (b), the 
blurring (to the mean value) (c), luminance shift (d), contrast stretch (e) and the spatial shift (f). 
Though the Euclidean distance from these patterns (b-e) to the reference are intentionally set to 
be identical (=2.9), by using S-SIM, one can rank the similarities with descending order: S-
SIM(d-a) = .99 > S-SIM(e-a) = .8 > S-SIM(b-a) = .67 > S-SIM(f-a) = .5 >> S-SIM(b-a) = 0. This 
simple demonstration confirms the superiority of S-SIM in recognizing the difference between 
two-dimensional patterns, agreeing well with human intuition compared to ED. This implies that 
S-SIM could reduce the situation of random classification (i.e., an object is assigned to a centroid 
by chance) adding confidence to S k-means derived results. Though this result is shown for the 
two-dimensional data, it is believed to be true for one-dimensional structured data like time 
series.” 



 

Figure 8 (in the revised manuscript). Imagination air pressure patterns. Subpanels are the reference (a), 
Gaussian noise contamination (b), blurring (to mean value) (c), luminance shift (d), contrast stretch (e), and 
spatial shift (f). The ED (Euclidean distance) and S-SIM (structural similarity) values shown above each 
panel are those calculated to reference one (a). The rightmost subpanel shows the cross-session (between two 
points P1 and P2 in a)) with L, H indicating the location of imagination Low and High air pressure extrema. 

4. The use of 3 different test case scenarios to test the uncertainty framework was a great idea 
and well presented. It gives good insight into how this methodology can be used in the wide-
array of applications in climate science.  

Thanks, the reviewer for this compliment.  

5. Lines 370-374. This question of applying the framework to see whether data is suitable for 
clustering is a much more novel approach and useful to the science than comparing the 
initializations. There are many other methodologies and ways to get suitable initializations for 
clustering and help datasets to converge on useful clustering.  

Thank you. Indeed, our study emphasize the effectiveness of the CUED for when comparing algorithms 
and datasets. Though initializations could cause the uncertainty but some improvement such as k-
means++ could help to reduce uncertainty and preserve the consistency in clustering results. The 
discussion regarding this comment can be found the above answer (to the general comment).  

6. Lines 370-374. It is tough to say with respect to WPs that clustering my be ineffective. WPs 
present a lot of uncertainty compared to other types of climate data, so without care as to what 
is being analyzed/searched for in the data, uncertainty analysis may present false positives for 
datasets that would not be suitable for clustering. This isn't a problem with the methodology, the 
authors do note that these are inherently a data issue, which this methodology does not take 
into account. The authors could do to make note of similar situations in the manuscript for those 
who would use this method in the future.  



The reviewer is correct. We add some clarification to avoid the potential misinterpretation to the revised 
manuscript (Line 414 – 415). 

“Even though the final decision on whether to apply a clustering solution might depend on 
multiple factors, e.g., the purpose of further analysis, CUEF eventually can support the result 
explanation and help to robustify the discussion.” 

7. Some figures need revision, specificaly figures 3, 4, and 5. In Figure 3, the silhouette score 
charts are very small compared to the WP plots. Make them a similar size and make the text 
size more legible. Figures 4 and 5 have the silhouette score charts inside of the other figures. 
There is far too much going on inside these figures as it is, and adding the silhouette plots 
inside here makes it more cluttered and confusing to understand. Move them outside the plots 
and enlargen them.  

We have replotted the Figures 3, 4, and 5 exactly following the suggestions of the reviewer. The replotted 
figures are attached below for reference. 



 

Fig. 3 (in manuscript). The silhouette score charts become bigger and text size more legible. 



 

Fig 4 (in the revised manuscript). Moved the silhouette score charts outside of maps and enlarged the charts 
and made the text size legible. 

 

 



 

Fig 5 (in the revised manuscript). Moved the silhouette score charts outside of maps and enlarged the charts 
and made the text size legible. 

 

  



Minor notes:  

Lines 72-74: Rephrase the wording, it is confusing in this state.  

We have rephrased the sentence from  

“For these reasons, k-means under the distance paradigm treats the features of the input data equally, thus 
mask the similarity recognition between data, consequently deteriorating the clustering outcomes.” 

to (Line 71 - 73) 

“Thus, the distance measures, which treat the features of the input objects equally, might ignore 
inherent “structuredness” in the objects when recognize the similarity between them. This 
characteristic could deteriorate the clustering outcomes.” 

Line 75: Remove ".It is" and use because to join the two sentences into one for better flow.  

Have removed “.It is” and joined two sentences into one (Line 74). 

Line 125: Should cite the SSIM technique (Wang et al. 2004)  

Cited Wang et al., 2004 (Line 76). 

Lines 158-160: What's the interpolation method used?  

We used nearest-neighbor interpolation for regridding the data. We add this information into the revised 
manuscript (Line 169). 

“The data had a horizontal resolution of 0.75°on a regular grid but were re-gridded to an equal-
area scalable earth-type grid at a spatial resolution of 200 × 200 km using nearest-neighbor 
interpolation method.” 

Line 238: Could explain cluster realization better/earlier. Explaining it in this sentence while also 
introducing a new concept could cause confusion to the reader.  

Have rephrased the text for clarification (Line 241).  

“In this study, mutual information is applied to evaluate the agreement between two clustering 
realizations (label assignments of 𝑁 objects). To do so, the mathematical formula for mutual 
information 𝐼(𝑈, 𝑉) between two clustering realizations 𝑈 and 𝑉 is defined as follows:” 

Line 239-240: What do you mean by partition set? Is this the same thing as the cluster 
realization?  

Yes, partition set is detailed form of cluster realization. We have revised the sentence for clarification 
(Line 245). 

“Entropies of clustering realizations are defined as the amount of uncertainty for partition sets of 
each realization.” 



Line 246: What do you mean by weakness? Is it related to the randomess you discuss in the 
next few lines?  

Yes, mutual information is weak with random clustering (or chance). We have revised the text for easier 
understanding (Line 251). 

“However, mutual information is weak against chance.” 

Line 297: Change tense of "were" to "are".  

We have revised the text accordingly (Line 308): 

“These regional differences are well captured by k-means clustering. For example, the northern 
part (Hokkaido) is consistently separated from other regions in terms of temperature warming.” 

Line 316: What does "completed by C K-means" mean? Is it a typo?  

It is “competed” not “completed”. We have revised the text to (Line 324): 

“The performance of S k-means is sometimes competed by C k-means.” 

 


