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Abstract. The seasonally-dependent Antarctic sea ice concentration (SIC) budget is well-observed and synthesizes many 

important air-sea-ice interaction processes. However, it is rarely well simulated in Earth System Models and means to tune 

the former are not well understood. In this study, we investigate the sensitivity of 18 key NEMO4.0-SI3 (Nucleus for 15 

European Modelling of the Ocean coupled with the Sea Ice modelling Integrated Initiative) model parameters on modelled 

SIC and sea ice volume (SIV) budgets in the Southern Ocean based on a total of 449 model runs and two global sensitivity 

analysis methods. We found the simulated SIC/SIV budgets are sensitive to ice strength, the thermal conductivity of snow, 

the number of ice categories, two parameters related to lateral melting, ice-ocean drag coefficient and air-ice drag coefficient. 

An optimised ice-ocean drag coefficient and air-ice drag coefficient can reduce the root-mean-square error between 20 

simulated and observed SIC budget by about 10%. This implies that a more accurate calculation of ice velocity is the key to 

optimising the SIC budget simulation, which is unlikely to be achieved perfectly by simply tuning the model parameters in 

the presence of biased atmospheric forcing. Nevertheless, ten combinations of NEMO4.0-SI3 model parameters were 

recommended as they could yield better sea ice extent and SIC budgets than using the standard values.  

1 Introduction 25 

The Southern Ocean sea ice, a crucial component of the climate system, has experienced a slight but statistically significant 

expansion from 1979 to 2015 and remarkable fluctuations in the last few years (Comiso et al., 2017; Parkinson, 2019; 

Raphael and Handcock, 2022; Wang et al., 2022). Several state-of-the-art climate models have successfully simulated the 

near-realistic annual cycle of sea ice area (SIA) (Holmes et al., 2019), but they typically still fail to capture the observed sea 

ice variability and trends (Zunz et al., 2013; Turner et al., 2013; Shu et al., 2015; Shu et al., 2020). This implies that standard 30 

metrics commonly used for model evaluation, such as sea ice extent (SIE), SIA and total volume (SIV), are rather 
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rudimentary and of limited use in improving the model skill (Notz, 2014; Notz, 2015), and better metrics are needed to 

optimise models. 

Holland and Kwok (2012) proposed an analysis of sea ice concentration (SIC) budgets, i.e., decomposing the dynamic and 

the other processes leading to changes in SIC to compare with the same processes in observations, as an extension of the 35 

commonly used diagnostics for individual variables (e.g., SIC, ice thickness and ice drift). Diagnostics using SIC budgets for 

fully coupled climate models as well as ocean-sea ice models driven by atmospheric reanalysis showed that the relatively 

realistic sea ice extent in the models was the result of excessive sea ice velocity bias (Uotila et al., 2014; Lecomte et al., 

2016). Correcting the sea ice velocity field in the model with satellite observations was able to simulate the trend of 

expanding sea ice extent in the Southern Ocean during 1992–2015 (Sun and Eisenman, 2021). Furthermore, correctly 40 

modelling the sea ice budget is so important as the ocean can only be driven correctly if the sea ice budget is realistic 

(Holmes et al., 2019), which is related to the importance of sea ice in transporting fresh water (Abernathey et al., 2016; 

Haumann et al., 2016) and the role of sea ice as a mediator of polar air-ocean matter and energy exchange (Thomas and 

Dieckmann, 2010). 

Sensitivity experiments with three different atmospheric reanalyses indicated that, at least in winter (April to October), 45 

SIC budgets are sensitive to atmospheric forcing, as sea ice models driven by these atmospheric reanalysis products show 

large errors compared to observations (Barthélemy et al., 2018). This was further validated by the fact that even when using 

the same atmospheric reanalysis, the SIC budget in the ice-ocean reanalysis products can vary considerably (Nie et al., 2022). 

On the other hand, some studies have shown that simulations of the Southern Ocean sea ice area are not sensitive to model 

parameters (e.g., Massonnet et al., 2011; Uotila et al., 2012; Rae et al., 2014), but this is likely due to the dynamic and 50 

thermodynamic biases in SIC budget cancelling out (Uotila et al., 2014), i.e. wrong processes lead to a right-looking result. 

Therefore, a hypothesis was proposed that model physics could be more important than previously recognised for improving 

sea ice modelling skills in the Southern Ocean (Barthélemy et al., 2018). Indeed, the conclusions of Uotila et al. (2014) 

showed that the SIC budget is sensitive to model configuration and they surmised that it may be possible to adjust the model 

parameters to make the SIC budget components more realistic. An example is that by changing the ice-ocean stress turning 55 

angle from 0° to 16°, the advection contribution to sea ice area change would be halved, although the divergence 

contribution would become unrealistic (Uotila et al., 2014). However, the sensitivity of the sea ice budgets to the model 

parameters has not been systematically assessed to date. 

The most common approach for sensitivity experiments is to adjust a single variable of interest at a time, while keeping all 

other parameters fixed (e.g., Fichefet and Morales Maqueda, 1997; Rae et al., 2014), but due to the complexity and strong 60 

non-linearity of the model, there are often interactions between variables that cannot be identified with this approach. 

Another approach is to adjust several variables simultaneously. Kim et al. (2006) tested the sensitivity of 22 parameters of 

the Los Alamos sea-ice model (CICE) based on the automatic differentiation method and adjusted the parameters to make 

the simulation as close as possible to the observations. Uotila et al. (2012) conducted experiments on 100 combinations of 10 

parameters in a coupled ocean-ice model and recommended several optimal sets of parameters that would produce a realistic 65 
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global sea ice distribution. To address the problem that the above sensitivity experiments cannot fully explore the entire 

high-dimensional parameter space, a more attractive way is to do a global sensitivity analysis (GSA; Saltelli et al., 2008). 

However, a completely performed GSA requires a very large number of runs of the model, for example, O(104) runs for 

O(10) parameters (Saltelli et al., 2010). One option is to build an emulator to quickly and with modest computational 

requirements predict the possible model outputs for a given input and as a substitute for the full dynamic model (Sacks et al., 70 

1989; Kennedy and O’Hagan, 2000; Oakley and O’Hagan, 2004). In brief, an emulator is a machine learning method that 

statistically constructs relationships between inputs and outputs from existing model results. 

There has been some success in quantifying the parameter uncertainty using emulators in ocean/sea ice models. For 

example, Urrego-Blanco et al. (2016) applied a Gaussian process (GP) emulator to perform the GSA on 39 parameters in 

CICE. Williamson et al. (2017) built an emulator for the NEMO ocean model and quantified the effect of uncertainty on the 75 

model for 24 parameters. In this paper, our research objective is to quantify the sensitivity of the Southern Ocean SIC and 

SIV budgets to key parameters in a coupled ocean-sea ice model by constructing a GP emulator, and furthermore, to verify 

whether the model parameters can be adjusted to obtain near-realistic SIC budget components. It is worth noting that 

NEMO4.0-SI3 parameters' default values are generally optimised based on Arctic observations (e.g., Warren, 1999; Perovich 

et al., 2002; Lüpkes et al., 2012) and here we are investigating their optimal values in the Southern Ocean SIC budget 80 

perspective, which has not been done so far. 

2 Materials and data 

2.1 Model configuration and parameter space elicitation 

Sea ice simulations in this study were performed using the version 4.0.7 revision 15731 of the Nucleus for European 

Modelling of the Ocean (NEMO; NEMO System Team, 2022) coupled with the Sea Ice modelling Integrated Initiative (SI3; 85 

NEMO Sea Ice Working Group, 2019), hereafter called NEMO4.0-SI3. The model represents global ocean via a commonly 

used nominal 2° tri-polar grid (ORCA2), which is about 85 km resolution between 55°S and 75°S. The ORCA2 was chosen 

because it is already capable of identifying features of the Southern Ocean SIC budget at this resolution (Nie et al., 2022) 

and, considering that hundreds of experiments will be performed, using ORCA2 is computationally comparably cheap. The 

ORCA2 grid configuration has 31 unevenly spaced vertical layers from 10 m thick (near surface) to 500 m thick (at 5500 m 90 

depth). The vertical physics of the ocean is solved by the combination of the Turbulent Kinetic Energy (TKE) turbulent 

closure scheme (Marsaleix et al., 2008), an enhanced vertical diffusion scheme applied on tracer (Madec et al., 1998) and a 

double diffusive mixing scheme (Merryfield et al., 1999).  

The sea ice momentum equation is calculated by using the adaptive elastic-viscous-plastic method (Kimmritz et al., 2016, 

2017), which is formulated on a C-grid and improved the numerical efficiency of the modified EVP scheme. The default 95 

number of sea ice thickness categories is 5, with each category having two vertical layers of ice and one layer of snow on top 

of ice. The thermodynamic component of NEMO4.0-SI3 includes the 1D energy-conserving model (Bitz and Lipscomb, 
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1999) and a time-dependent vertical salinity profile (Vancoppenolle et al., 2009). The sea ice model uses the same 1.5-hour 

time step as the ocean model. 

In this study, the NEMO4.0-SI3 model is forced with the DRAKKAR Forcing Set version 5.2 (DFS5.2, Dussin et al., 100 

2016), based primarily on the ERA-Interim with some corrections (Dee et al., 2011) and covering the time period 1979–2017. 

The DFS5.2 provides the atmospheric field required for the NCAR bulk formula (Large and Yeager, 2004) in NEMO4.0-SI3, 

which includes 2 m air temperature, 2 m specific humidity, 10 m zonal and meridional wind speeds, mean sea level pressure, 

downward long-wave and short-wave radiation, and the total and solid precipitation rates. In these atmospheric fields, the 

frequency of radiation and precipitation is 1 day and 3 hours for all other surface boundary conditions. The spatial resolution 105 

of DFS5.2 is approximately 80 km, close to that of ORCA2 in the Southern Ocean. The continental discharge rates followed 

the climatological dataset of Dai and Trenberth (2002) and do not include ice mass loss in Antarctica. The simulations are 

initialized at rest via the temperature and salinity fields from the World Ocean Atlas 2018 monthly climatology (WOA18; 

Zweng et al., 2019), run from January 1979 to December 2017, with only the last decade of model output (2008-2017) being 

used for analysis. 110 

To investigate the sensitivity of sea ice budgets, we selected 18 parameters and determined their uncertainties (Table 1), 

which cover a number of important processes in sea ice modelling, such as ice/snow physical properties, ocean mixing and 

eddies, and ice-ocean/air-ice interactions. The lower and upper bounds of the parameters were selected according to the 

listed references and the uncertainty intervals were suitably extended to avoid under-sampling at the edge of the interval. The 

standard values of the parameters used for the control experiment (CTRL) are the default values for NEMO4.0-SI3. 115 

 

Table 1. The 18 parameters investigated, including their realistic ranges taken from the listed references. 

 

Category Symbol Description and unit Low Standard High Reference

rn_pstar Ice strength parameter [N/m2] 5.00E+03 2.00E+04 3.50E+04 Massonnet et al. (2014)

rhos Snow density [kg/m3] 130 330 530 Massom et al. (2001) and Warren et al. (1999)

rhoi Ice density [kg/m3] 880 917 940 Timco and Frederking (1996)

rn_cnd_s Thermal conductivity of the snow [W/m/K] 0.1 0.31 0.5 Maykut and Untersteiner (1971) and Lecomte et al. (2013)

rn_beta Coefficient beta for lateral melting parameter 0.2 1 1.8 Lupkes et al. (2012)

rn_dmin Minimum floe diameter for lateral melting parameter [m] 2 8 14 Lupkes et al. (2012)

rn_alb_sdry Dry snow albdo 0.85 0.85 0.87 Perovich et al. (2002) and Brandt et al. (2005)

rn_alb_smlt Melting snow albdo 0.72 0.75 0.82 Perovich et al. (2002) and Brandt et al. (2005)

rn_alb_idry Dry ice albdo 0.54 0.6 0.65 Perovich et al. (2002) and Brandt et al. (2005)

rn_alb_imlt Melting ice albdo 0.49 0.5 0.58 Perovich et al. (2002) and Brandt et al. (2005)

rn_sal_gd Restoring ice salinity, gravity drainage [g/kg] 4 5 7.5 Nakawo and Sinha (1981)

jpl Number of ice thickness categories 1 5 30 Massonnet et al. (2019)

rn_avm0 Eddy viscosity [m2/s] 1.00E-05 1.20E-04 1.50E-04 Williamson et al. (2017)

rn_avt0 Eddy diffusivity [m2/s] 1.00E-06 1.20E-05 1.50E-05 Williamson et al. (2017)

rn_deds Magnitude of the damping on salinity [mm/day] -20 -166.67 -180 NEMO System Team (2022)

rn_ce Magnitude of the mixed layer eddy 0.04 0.06 0.1 NEMO System Team (2022)

rn_cio Ice-ocean drag coefficient 2.00E-03 5.00E-03 8.00E-03 Massonnet et al. (2014)

Cd_ice Air-ice drag coefficient 8.00E-04 1.40E-03 2.00E-03 Massonnet et al. (2014)
Coupling

Ice/snow

Ocean
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2.2 Experimental design 

The flow chart describing the procedure for obtaining the optimised model parameter values based on evaluation metrics is 120 

shown in Fig. 1. We start with the definition of the 18-dimensional parameter space (as already done in Table 1); the next 

steps are to sample from this parameter space and run the NEMO4.0-SI3 model with a limited number of sampled sets of 

parameter values (the sampling method is described in the next section). Three sets of metrics are then calculated from the 

NEMO4.0-SI3 model output: 1) the area integrals of SIC budget components, 2) the area integrals of SIV budget components, 

and 3) the root-mean-square errors (RMSEs) between the simulated and observed SIC budgets (RMSESICB).  125 

After the calculation of the three sets of metrics, GP emulators are trained (to be described in Section 2.4) to link the 

parameter sets with the evaluation metrics based on the NEMO4.0-SI3 simulations. Two GSA methods are used: the PAWN 

method (Pianosi and Wagener, 2015) and Sobol method (Sobol, 2001; both described in Appendix A), large amount of input 

data to comprehensively explore the full parameter space covered by NEMO4.0-SI3 simulations and complemented by the 

GP emulators. Finally, once the key parameters have been identified by the GSA methods, parameter sets that provide results 130 

closest to the observations can be identified. 

 
Figure 1. Flow chart describing how to to obtain optimised parameter values for the NEMO4.0-SI3 model. 

Parameter space

Sampling

Run NEMO4-SI 3 model

Enough successful model results?

Diagnosis of 
model outputs

Building GP emulator

Recommend parameters

N

Y

Global sensitivity analysis

SIC budget

SIV budget

RMSE between simulated 
and observed SIC budget
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2.3 Latin Hypercube Sampling 

We use the Latin Hypercube Sampling (LHS) method with a maxi-min property to generate low-discrepancy sequences 135 

from the 18-dimensional parameter space (step 2 in Figure 1) to identify parameter set values for the NEMO4.0-SI3 

simulations. The LHS is a stratified sampling method that divides each dimension evenly to ensure that samples are available 

in all intervals, and therefore allows for a more evenly drawn sample than the usual random sampling methods (Morris and 

Mitchell, 1995; McKay et al., 2000). Additionally, the maxi-min property is a space-filling criteria that aims to maximize the 

minimum Euclidean distance between two sampling points and thus improves the effectiveness of the GP emulation (Joseph 140 

and Hung, 2008) to be carried out after the NEMO4.0-SI3 simulations. The recommendation for the number of samples to 

build a GP emulator is N=10p (Loeppky et al., 2009), where p is the dimension of parameter space and equals to 18 in this 

study. In practice, however, we decided to use about 20p samples in order to build the GP emulator as accurate as possible 

(Williamson et al., 2017). Based on this principle, and taking into account possible model run failures, we first perform a 

sampling of 800 points in parameter space to run the NEMO4.0-SI3, and if the number of successful experiments ends up 145 

being too little (less than 360), we will continue the sampling. 

2.4 Gaussian process emulator and model selection 

The amount of computation using NEMO4.0-SI3 required for comprehensively to cover the 18-paramere space for the model 

evaluation remains practically too large, and the use of a much faster GP emulator is required to emulate the behaviour of 

NEMO4.0-SI3 given the 18 parameter values. The emulator functionality is described next. 150 

Let 𝑋𝑋𝑡𝑡 = (𝑥⃗𝑥1, 𝑥⃗𝑥2,⋯ , 𝑥⃗𝑥𝑁𝑁)𝑇𝑇 and 𝑌𝑌�⃗𝑡𝑡 = (𝑦𝑦1,𝑦𝑦2,⋯ ,𝑦𝑦𝑁𝑁)𝑇𝑇 denote the total number of N simulations, each 𝑥⃗𝑥𝑖𝑖 is a column vector 

of 18 values, sampled from the 18-dimensional parameter space by the LHS, and each 𝑦𝑦𝑖𝑖  is a real number representing the 

corresponding one model output metric, which is assumed to be noiseless here. A GP emulator 𝑓𝑓(⋅) for a model output 

metric 𝑌𝑌𝑡𝑡 = 𝑓𝑓(𝑋𝑋𝑡𝑡) can generally be represented as 

𝑓𝑓(⋅) ∼ 𝐺𝐺𝐺𝐺�μ(⋅),𝐾𝐾(⋅,⋅)�,                                                                                                                                                              (1) 155 

where μ(⋅) and 𝐾𝐾(⋅,⋅)  are prior mean function and covariance function respectively. Then the posterior distribution for 

parameter values 𝑋𝑋∗ can be obtained as 

𝑓𝑓(𝐗𝐗∗)|𝑓𝑓(𝐗𝐗𝑡𝑡)～𝑁𝑁(𝜇𝜇∗,𝐾𝐾∗)                                                                                                                                                            (2) 

where 

μ∗ = μ + 𝐾𝐾(𝑋𝑋∗,𝑋𝑋𝑡𝑡)𝐾𝐾(𝑋𝑋𝑡𝑡 ,𝑋𝑋𝑡𝑡)−1(𝑓𝑓(𝑋𝑋𝑡𝑡) − μ),                                                                                                                             (3) 160 

𝐾𝐾∗ = 𝐾𝐾(𝑋𝑋∗,𝑋𝑋∗) − 𝐾𝐾(𝑋𝑋∗,𝑋𝑋𝑡𝑡)𝐾𝐾(𝑋𝑋𝑡𝑡 ,𝑋𝑋𝑡𝑡)−1𝐾𝐾(𝑋𝑋𝑡𝑡 ,𝑋𝑋∗).                                                                                                                  (4) 

We used the GPy software (GPy, 2012), with the prior of the mean function set to zero by default, and the user only had to 

choose the covariance function K to build the GP emulator for each evaluation metric. To achieve this, we used a 10-fold 

cross-validation method for model selection (Geisser, 1975). The idea is to divide the dataset {𝑋𝑋𝑡𝑡 , 𝑌𝑌} evenly into 10 parts, 

each time using 9 parts as the "training data" to train the emulator and 1 part as the "true data" for model validation, and so 165 
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on for 10 cycles and taking the average as a proxy for model performance. Using this approach, we traversed the linear, 

squared exponential, exponential, Matern 3/2, Matern 5/2 covariance functions and their sums and products (Rasmussen and 

Williams, 2006), for a total of 177 different combinations, and then selected the covariance function with both the minimum 

RMSE and the highest correlation coefficient between the simulated and emulated values. 

2.5 Sea ice concentration and volume budgets 170 

Following the ice conservation law, the change of a sea ice state field Θ,such as SIC and SIV, can be contributed to dynamic 

and other processes (Leppäranta 2011, Chapter 3.4): 
𝜕𝜕Θ
𝜕𝜕𝜕𝜕

= −𝒖𝒖 ⋅ 𝛻𝛻Θ − Θ𝛻𝛻 ⋅ 𝒖𝒖 + (𝑓𝑓 − 𝑟𝑟)                                                                                                                                             (5) 

where 𝒖𝒖 is the sea ice velocity, 𝑓𝑓  represents the change from freezing/melting, 𝑟𝑟  stands for any other progresses (e.g., 

ridging and rafting). Integrating the Eq.(5) in time, then the net changes in Θ over a period of time (𝑡𝑡2 − 𝑡𝑡1) can be obtained 175 

as: 

∫ 𝜕𝜕Θ
𝜕𝜕𝑡𝑡
𝑑𝑑𝑑𝑑 = −𝑡𝑡2

𝑡𝑡1
∫ 𝒖𝒖 ⋅ 𝛻𝛻Θ𝑑𝑑𝑑𝑑 −𝑡𝑡2
𝑡𝑡1

∫ Θ𝛻𝛻 ⋅ 𝒖𝒖𝑑𝑑𝑑𝑑 +𝑡𝑡2
𝑡𝑡1

∫ (𝑓𝑓 − 𝑟𝑟)𝑑𝑑𝑑𝑑𝑡𝑡2
𝑡𝑡1

,                                                                                                     (6) 

where the left-hand-side term is the change or 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (also referred to specifically as 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 and 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 for changes in SIC 

and SIV respectively), the first term on the right-hand-side represents the contribution of advection (𝑎𝑎𝑎𝑎𝑎𝑎), the second term 

divergence (𝑑𝑑𝑑𝑑𝑑𝑑) and the last term residual (𝑟𝑟𝑟𝑟𝑟𝑟). A positive value for each term is defined as an increase of Θ and a negative 180 

value for a decrease. 

The budgets for SIC and SIV were calculated in our study, including seasonal climatologies for each SIC or SIV budget 

term, following the same approach as Holland and Kimura (2016). First, the daily 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 was obtained by central differencing 

of the ice fields on the day before and after; the advection and divergence were first calculated on each day, and then 

averaged over the corresponding 3-day periods to be consistent with the daily 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. Second, 𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑑𝑑𝑑𝑑𝑑𝑑 were subtracted 185 

from the 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 to obtain the daily 𝑟𝑟𝑟𝑟𝑟𝑟; and finally, all daily terms were summed over each season and averaged over the 

years 2008-2017. 

2.6 Observational data 

Daily sea ice velocity observations from Kimura et al. (2013) and SIC from the NOAA/NSIDC Climate Data Record of 

Passive Microwave Sea Ice Concentration, Version 4 (Meier et al., 2021) (hereafter referred to as CDR) were used to 190 

calculate the observed SIC budget. The ice velocity dataset KIMURA was generated from the brightness temperature of the 

36-GHz channel of the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) using the maximum 

cross correlation technique (Kimura et al., 2013), and ultimately deriving a 60 km resolution product. Therefore, the 

KIMURA data shares the same period as AMSR-E and its successor AMSR2, covering from 2002 to the present. Following 

Holland and Kwok (2012), a 3 × 3 grid filter was used in the calculations to smooth out the grid-scale noise present in the 195 

satellite-derived ice drift. Regarding the SIC satellite observations, the CDR SIC is a rule-based combination of the NASA 
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Team (Cavalieri et al., 1984) and NASA Bootstrap (Comiso, 1986) ice concentration datasets in the same 25 𝑘𝑘𝑘𝑘 × 25 𝑘𝑘𝑘𝑘 

grid, covering the years from 1978 to 2021, with daily, grid-based uncertainty estimates. The other three SIC observational 

products are only used as references in the calculation of SIE (integral of grid cells areas where SIC > 15%) and SIA 

(integral of grid cells areas multiplied by the SIC in each grid cell), they are AMSR-E/AMSR2 provided by NSIDC 200 

(Cavalieri et al., 2014; Meier et al., 2018), Ocean-Sea Ice Satellite Application Facilities (OSISAF) from European 

Meteorological Satellite agency (EUMETSAT; Eastwood et al., 2014) and CERSAT developed by the French National 

Institute for Ocean Science (IFREMER, Ezraty et al., 2007). 

The observed SIC budget (Fig. B1) shows that the Southern Ocean sea ice is generally transported to the ice edge at lower 

latitudes by advection and melts there, while divergence yields open water and thus promotes freezing of ice (Holland and 205 

Kwok, 2012; Uotila et al., 2014). It is important to note that the calculated SIC budget observations were considered as "true 

values" in our study, despite the uncertainties and biases in the ice drift observations, such as the overall overestimation of 5% 

compared to the buoy measured velocities (Kimura et al., 2013). The simulated SIC budgets and the root-mean-square errors 

from the observed one were only calculated at grid points with SIC larger than 15% and at dates where ice drift observations 

existed, to minimize the uncertainty of results caused by missing observations and observational errors. 210 

3 Results 

3.1 Sea ice concentration and thickness in the model ensemble 

Out of 800 experiments, 44% were terminated due to model instability caused by parameter combinations, resulting in an 

ensemble of models of size 449, which included the CTRL experiment. The seasonal cycles of SIE and SIA for the model 

ensemble are shown in Fig. 2. The SIE and SIA intervals for the ensemble cover the observed values fairly well, except for 215 

September when SIA is systematically slightly overestimated. Inter-model disagreement due to parameter uncertainty is 

greatest in summer (ranging from 0.42 to 8.26 × 106 𝑘𝑘𝑚𝑚2 ), when SIE and SIA are at a minimum (observed at 4.26 ×

106 𝑘𝑘𝑚𝑚2), while there is little disagreement between models during the autumn months. Among the members of the model 

ensemble, the CTRL run essentially overlaps with the ensemble mean and matches well with the observations. 

In February, comparing the ensemble mean SIC (Fig. B2a-b) with the CDR observation shows that there are still 220 

challenges in the modelling of the local patterns, especially as the NEMO4.0-SI3 significantly underestimates the SIC near 

the East Antarctic coast. In addition, the ensemble standard deviation for February stands at a high level (around 20%) in 

most regions. Whereas in September (Fig. B2d-f) the ensemble mean SIC is more consistent with the observations than in 

February, although differences between the ensemble members remain relatively high (around 10%) in marginal ice areas 

where the SIC is low. Overall, the discrepancies between ensemble members due to parameter uncertainty are smaller at high 225 

SIC areas (SIC > 90%) than in low SIC areas. 
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Figure 2.  Simulated monthly climatologies of (a) sea ice extent (SIE), (b) area (SIA) and (c) volume (SIV) from 2008 to 

2017, ensemble model means and results from four sets of experiments of interest are also highlighted. The SIE and SIA 230 

calculated from the CDR, AMSR-E/AMSR2, CERSAT and OSISAF are used as references in the form of mean ± one 

deviation. 

 

Similar to the seasonal cycles of SIE and SIA, the CTRL run's SIV remains close to the ensemble mean. However, the 

differences between SIVs simulated based on different parameter sets are much greater than for SIEs (Fig. 2c), for instance 235 

in winter, the maximum values of SIVs in the ensemble members are more than twice as large as the minimum values. 

Additionally, the SIV cycles show a larger spread in winter than in summer, which is opposite to that of SIE cycles. For the 
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ensemble mean sea ice thickness, thicker sea ice of up to two meters is maintained year-round in the western Weddell Sea 

(Fig. B3a,c), which appears to be higher than the previous observation-based dataset of 1.2 to 1.5 meters (Haumann et al., 

2016, in their Extended Data Figure 2). However, the lack of observations from the same period as this study precludes a 240 

direct comparison. The spatial pattern of ice thickness standard deviation between model ensembles (Fig. B3) is similar to 

that of sea ice thickness, which means thicker sea ice is usually accompanied by a larger standard deviation. 

3.2 Sea ice concentration and volume budgets in the model ensemble  

The diagnostics of the SIC and sea ice thickness of the model ensemble in the last section show that the NEMO4.0-SI3 

model driven by DFS5.2 provides reasonable results. The mean states of the model ensemble being close to the CTRL 245 

experiment, for SIC in particular, match the observations very well, which provides a good basis for the budget analysis. In 

this section we first calculated the SIC budget and SIV budget for the ensemble of 449 model runs by applying the same 

approach as for the calculation of the observed SIC budget (cf. Fig. B1), and then computed the RMSESICB (step 5 in Figure 

1).  

3.2.1 Model ensemble mean and standard deviation 250 

As can be seen in Fig. 3, the spatial pattern characteristics of the ensemble mean of 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 and 𝑎𝑎𝑎𝑎𝑎𝑎 for each season are 

generally consistent with observations. The magnitudes of the model ensembles of 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 and 𝑎𝑎𝑎𝑎𝑎𝑎 are significantly larger 

due to the fact that the observed ice drift has some missing values and the 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 term is only integrated over the grids with 

ice drift observations. However, the simulated divergence appears to be systematically biased when compared to the 

observational data, the simulated 𝑑𝑑𝑑𝑑𝑑𝑑 in the inner ice pack is smaller than the observed even considering there are missing 255 

data in the observations, and some sporadic convergence (positive value of divergence) scattered in the marginal ice zone is 

not captured by the model. The lack of divergence in the inner ice pack also leads to a lack of open water and thus 

insufficient freezing of sea ice, which can be seen from the winter and spring 𝑟𝑟𝑟𝑟𝑟𝑟 in Fig. 3, and in summer in the south 

Weddell Sea. In summer, the overall contribution of model simulated advection and divergence to sea ice change is minimal, 

with thermodynamic sea ice melt dominating, which is consistent with the observational data. 260 

The standard deviation of each budget terms for the model ensemble was also calculated (Fig. 4), the deviations between 

simulated sea ice changes are mainly concentrated in autumn and summer, and are mainly located in the Weddell and Ross 

Seas, with insignificant deviations in winter and autumn. For the advection term, the inter-model deviation is large at the ice 

edge, where sea ice is transported by the advection, and the coastal area, where winds and currents are strong. The deviations 

of the divergence term in the model ensemble are mostly concentrated in the coastal region, while the model ensemble is 265 

more consistent in the inner ice pack, although the greatest differences between simulations and observations are found there. 

Since the 𝑟𝑟𝑟𝑟𝑟𝑟 term was calculated by subtracting 𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑑𝑑𝑑𝑑𝑑𝑑 from 𝑑𝑑𝑑𝑑/𝑑𝑑𝑡𝑡, the deviations in these three terms are generally 
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combined in the 𝑟𝑟𝑟𝑟𝑟𝑟 term, with the possible exception of some cancelling out of deviations in these terms, for example, in 

the Weddell Sea in autumn 𝑟𝑟𝑟𝑟𝑟𝑟 deviates less than 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑. 

 270 

  
Figure 3. Mean seasonal SIC budget components for the ensemble of 449 model runs from 2008 to 2017. The specific 

meaning of each term has been described in section 2.5. A positive/negative percentage value indicates an increase/decrease 

in SIC during the season. The first column is the sum of other columns. The SIC budget for each member was first calculated 

separately and then averaged together. 275 
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Figure 4. Standard deviation of seasonal SIC budget components for the ensemble of 449 model runs. The maximum value 

of colormap is limited to 30% per season for the best presentation. A higher percentage value means that the model ensemble 

is more divergent here. 

 

The SIV increases extensively in the Southern Ocean in autumn and winter and decreases in summer (𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 column in 

Fig. 5), and is generally decreasing in spring, except for a slight increase in the Amundsen-Bellingshausen Seas as well as 280 

along the South Weddell Sea. Differing from the SIC budget (Fig. 3) in which advection contributes little to sea ice changes 

in the inner ice pack, the ensemble model mean shows that advection will lead to a reduction in SIV (𝑎𝑎𝑎𝑎𝑎𝑎 column in Fig. 5), 

although SIC maintains high in this region. The spatial pattern of the divergence of SIV does not differ much from that of 

SIC, and since the contribution of simulated SIC divergence to sea ice change is underestimated compared to the 
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observational data as mentioned earlier, it is safe to assume here that divergence should similarly underestimate the change 285 

in SIV, given the strong interdependence of SIC and SIV. The inner ice pack maintains an increase in SIV from autumn to 

spring as the sea ice freezes, and from spring onwards the sea ice starts to melt from the marginal ice zone and reaches a full 

melting of the entire Southern Ocean sea ice in summer (𝑟𝑟𝑟𝑟𝑟𝑟 column in Fig. 5). 

 

 290 
Figure 5. As Fig. 3, but for SIV budget. A positive/negative value indicates an increase/decrease in SIV, respectively. 

 

For simulations of overall changes in SIV, the standard deviation between ensemble members is only slightly greater in 

summer than in other seasons (Fig. 6). The disagreement between members originates mainly from the contribution of 
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advection to SIV change, which is most pronounced along the West Weddell Sea and Antarctic Peninsula coasts, in marginal 295 

ice zone and the East Antarctic coast. In addition, the contribution of advection and divergence to SIV that simulated based 

on different parameter sets, varies considerably in the Antarctica coastal region, similar to the SIC budget. The residual term, 

which equals the thermodynamic contribution as SIV is conserved, still has the largest standard deviation as it retains the 

deviations of the other terms. 

 300 

 
Figure 6. As Fig. 4, but for SIV budget. The maximum value of colormap is limited to 2.5 km3 per season for the best 

presentation. 
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The area and time integrals of each budget term for the simulated SIC and SIV are presented in Table 2. Although this 

quantification of the contribution of each term to sea ice change does not consider local differences and cancels out positive 

and negative sea ice change to some extent, it is a simple and easy to implement method for quantifying the sensitivity of sea 305 

ice budget to parameters. As can be seen from the ensemble mean of SIC and SIV budget terms, the area integrals of the 

advection and divergence contributions to sea ice change largely cancel each other out. For SIV this is because these two 

processes do not change the total amount of sea ice, and for SIC this also holds approximately, considering that in the 

Southern Ocean sea ice is close to free drifting and the non-conservate nature of SIC due to ridging can be neglected (Uotila 

et al., 2014; Holland and Kimura, 2016). Therefore, when studying the effects of model parameter uncertainty on sea ice 310 

budgets in the following sections, it is only necessary to only use the area integrals of 𝑟𝑟𝑟𝑟𝑟𝑟 (or 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) and 𝑎𝑎𝑎𝑎𝑎𝑎 (or 𝑑𝑑𝑑𝑑𝑑𝑑). 

 

Table 2. Area integrals of sea ice concentration (SIC) and sea ice volume (SIV) budget components for the ensemble of 449 

model runs. Data are listed in the form of mean ± one standard deviation. The units are 106 𝑘𝑘𝑚𝑚2 and 103 𝑘𝑘𝑚𝑚3 for SIC and 

SIV budget respectively. 315 

 

3.2.2 RMSEs between the simulated and observed SIC budgets 

The RMSESICB is calculated as a complement to the area integrals of each SIC budget term. In matching the simulated 

results to the observational data, we first linearly interpolated the modelled data onto the grid cells containing observed data, 

and then calculated daily budgets for only those dates for which observations were available and for grids with SIC greater 320 

than 15%, and finally calculated the seasonal SIC budget climatology. Fig. 7 counts the RMSESICB for all model ensemble 

members. The model ensemble has the smallest RMSESICB with observations in term of net sea ice change (~15%), followed 

by advection (~25%), and a larger RMSESICB for the divergence term, which is consistent with the results showed in Fig. 3 

and Fig. B1. In the model ensemble, the RMSESICB of the CTRL experiment is essentially at or below the median level, and 

the distributions of the RMSESICB in the model ensemble are not symmetric, i.e., there are more flier points outside of third 325 

quartile plus 1.5 times the inter-quartile range. 

 

Season Name dadt adv div res
SIC 8.57 ± 0.47 2.30 ± 0.22 -2.35 ± 0.22 8.62 ± 0.47
SIV 9.51 ± 1.06 2.23 ± 0.42 -2.17 ± 0.41 9.45 ± 1.05

SIC 6.74 ± 0.17 3.17 ± 0.37 -3.28 ± 0.38 6.85 ± 0.18
SIV 18.73 ± 2.13 4.94 ± 0.87 -4.75 ± 0.86 18.55 ± 2.11

SIC -5.84 ± 0.73 2.91 ± 0.35 -3.02 ± 0.35 -5.73 ± 0.72
SIV -5.86 ± 2.01 6.27 ± 1.05 -6.02 ± 1.04 -6.10 ± 2.04

SIC -9.57 ± 0.40 0.55 ± 0.11 -0.55 ± 0.11 -9.57 ± 0.40
SIV -22.65 ± 3.01 1.02 ± 0.29 -1.00 ± 0.29 -22.67 ± 3.01

Spring (SON)

Summer (DJF)

Autumn (MAM)

Winter (JJA)
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Figure 7. Boxplots of RMSE for each component of the simulated and observed SIC budget. Boxes extend from the first 

quartile (top border) to the third quartile (bottom border), the red line represents the median of all 449 model results, the 330 

CTRL experiment and three best performed experiments are also flagged. The whiskers extend outwards from the box to 1.5 

times the inter-quartile range, with a few flier points beyond the whiskers. The 25% horizontal dashed lines are marked as 

references. 
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3.3 Sensitivity of ice concentration and volume budgets to parameters 

Based on the results of the last section, the area integrals of adv and res in the SIC (and SIV) budget and the RMSESICB are 335 

used as the metrics to assess the sensitivity of the model’s sea ice budget to 18 parameters in this section. Before conducting 

the GSA, Fig. B4 shows the cross-validation results for the best GP emulator for each of the 𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑟𝑟𝑟𝑟𝑟𝑟 term area integral 

metrics of the SIC and SIV budgets (step 6 in Figure 1). Overall, the emulated and simulated values have a very high 

correlation coefficients (typically greater than 0.98), thus the built emulator is considered successful and will be used as a 

proxy for NEMO4.0-SI3 in the subsequent sensitivity analysis. 340 

The sensitivity of each metric to the 18 parameters, quantified by the Sobol and PAWN methods, Is illustrated in Fig. 8. It 

should be noted that the sensitivity scores for the two methods are independent and not comparable in absolute terms. 

Following Urrego-Blanco et al. (2016), the Sobol sensitivity index below 0.02 is considered insignificant, and for the 

Kolmogorov-Smirnov (KS) mean index in PAWN, the critical value at confidence level of 0.05 is about 6.65 × 10−2. Both 

GSA methods show that the advection is very sensitive to ice strength (rn_pstar) outside of summer in the SIC budget. Ice-345 

ocean drag coefficient (rn_cio) and air-ice drag coefficient (Cd_ice) have an influence on the modelled advection 

contribution to sea ice change from summer to autumn and spring, respectively. In summer, the snow thermal conductivity 

(rn_cnd_s) and two lateral melting parameters (rn_beta and rn_dmin) also has some effect on the advection of SIC budget. 

The total and first-order Sobol indices are not very different, which is usually the case for both indices of the PAWN method, 

however, with the exception of the number of ice thickness categories (jpl), where KS max is shown to be much larger than 350 

KS mean (e.g., in autumn and summer). For other metrics, this also happens for sensitivity assessment of some other 

parameters, which will be discussed further in the next section. The residual term of the SIC budget shows considerable 

sensitivity to ice-ocean drag coefficient (rn_cio), which persists from autumn to spring. Meanwhile the effect of air-ice drag 

coefficient (Cd_ice) on 𝑟𝑟𝑟𝑟𝑟𝑟 increases continuously from autumn to summer. Ice strength still has a weak effect, much less 

than its effect on 𝑎𝑎𝑎𝑎𝑎𝑎. In addition, snow thermal conductivity (rn_cnd_s) and number of ice thickness categories (jpl) have a 355 

non-negligible effect on the modelling of 𝑟𝑟𝑟𝑟𝑟𝑟 in winter and summer, respectively. 

Among the sensitivity indices of the SIV budget, the most noticeable parameter is snow thermal conductivity (rn_cnd_s), 

to which both 𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑟𝑟𝑟𝑟𝑟𝑟 are very sensitive at all times of the year, except in the spring when it has less impact on 𝑟𝑟𝑟𝑟𝑟𝑟 (Fig. 

8). Another physical parameter related to the snow on sea ice (rhos, i.e., snow density) is important for 𝑟𝑟𝑟𝑟𝑟𝑟 simulations in the 

SIV budget, especially from autumn to winter, the period when sea ice freezes fast (Fig. 2c). Similar to the SIC budget, the 360 

air-ice and ice-ocean drag coefficients remain crucial for the SIV budget in spring and summer, while the ice strength is only 

important for advection in winter and spring. 
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Figure 8. The total (ST) and first-order (S1) Sobol sensitivity indices, and the maximum (KS max) and mean (KS mean) 365 

PAWN sensitivity indices for each sea ice budget component to 18 parameters. The blue and grey dashed lines are the 

thresholds for S1 and KS mean indices, respectively. Larger Sobol/PAWN index value indicates that the metric is more 

sensitive to this parameter. The blue connecting line indicates that the Sobol second-order index for the combination of these 

two parameters is greater than 0.02. 
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3.4 Sensitivity of SIC budget errors to parameters 370 

The results for four RMSESICB metrics based on the best performing GP emulators are shown in Fig. B5. The GP emulator 

performs well for the RMSESICB of 𝑎𝑎𝑎𝑎𝑎𝑎, 𝑑𝑑𝑑𝑑𝑑𝑑 and 𝑟𝑟𝑟𝑟𝑟𝑟, with a correlation coefficient greater than 0.998, except in summer. As 

can be seen in Fig. 7 in the summer months, the difference in RMSESICB for these three terms is very small compared to 

other seasons, and this small difference is likely to be random and therefore difficult to capture well by the GP emulator. The 

GP emulator also does not perform well in terms of 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 RMSESICB (Fig. B5, first column) and there is also likely to be a 375 

large randomness in the difference in 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑  between the model ensemble and the observational data. Given the poor 

performance of the GP emulator in terms of 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 RMSESICB as well as RMSESICB over the summer, the GSA results 

obtained by using it instead of the NEMO4.0-SI3 dynamical ocean model are subject to uncertainty and should be kept in 

mind in the following analysis. 

Fig. 9 demonstrates quite clearly that for 𝑎𝑎𝑎𝑎𝑎𝑎, 𝑑𝑑𝑑𝑑𝑑𝑑 and 𝑟𝑟𝑟𝑟𝑟𝑟 RMSESICB in autumn, winter and spring (which are also the 380 

terms and seasons with the largest RMSESICB values, Fig. 7), only air-ice and ice-ocean drag coefficients are the most critical 

parameters, while ice strength also has, but only weakly, an effect. Besides these two important drag coefficients, Fig. 9 also 

shows that the 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 RMSESICB between model and observational data might be sensitive to the snow thermal conductivity 

and ice category number to some extent. The analysis is more complicated in summer, as is the sensitivity of SIC budget and 

SIV budget to the parameters. In addition to all the previously mentioned parameters that have an impact, Fig. 9 shows that 385 

in summer the RMSESICB may also be sensitive to the minimum floe diameter for lateral melting parameter (rn_dmin) and 

the magnitude of the damping on salinity (rn_deds), which is a parameter belonging to the ocean module. Further comparing 

Fig. 8 and Fig. 9, it can be found that overall, both the simulation of the SIC budget by the NEMO4.0-SI3 model and its 

RMSESICB are most sensitive to the air-ice and ice-ocean drag coefficients, both of which belong to the coupling category in 

Table 1. Next important are ice strength as well as the thermal conductivity of snow, identified by the six metrics related to 390 

SIC budget. In summer, some thermodynamic melting related parameters, such as rn_beta (coefficient beta in the lateral 

melting parameterization scheme) and rn_dmin (minimum floe diameter in the lateral melting parameterization scheme), are 

important. In contrast, the SIC budget simulated by the model is sensitive to the number of ice thickness categories (jpl), 

unlike the RMSESICB metrics. 

As it has been identified that the RMSESICB metrics are sensitive to the two most critical parameters (air-ice and ice-ocean 395 

drag coefficients) and one relatively important parameter (ice strength), Fig. 10 illustrates the RMSESICB for all SIC budget 

terms and all seasons, averaged over 449 model runs, in relation to the values of these three parameters with the top 10 

combinations listed in Table 3. It can be seen in Fig. 10b that the RMSESICB broadly decreases with increasing ice-ocean 

drag coefficient (rn_cio) and decreasing air-ice drag coefficient (Cd_ice), such that the 10 sets of model runs with the 

smallest RMSESICB are concentrated in the top left corner of the figure, where air-ice drag coefficient is approximately from 400 

8 × 10−4 to 1 × 10−3, and ice-ocean drag coefficient is approximately from 5.5 × 10−3 to 7.5 × 10−3 (Table 3). In contrast, 



20 
 

the best 10 ice strength values are more dispersed, and greater than 15 × 103 (Fig. 10a,c), and the RMSESICB does not 

depend linearly on it as with air-ice and ice-ocean drag coefficients (i.e., Cd_ice and rn_cio). 

  

Figure 9. As Fig. 8, but for the sensitivity of the RMSE between SIC budgets of the model and the observational data to 18 405 

parameters. The red connecting lines are the same as the blue ones but for the Sobol second-order index larger than 0.1. 
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Figure 10. Average RMSESICB for all four SIC budget components for different combinations of key parameters. The 

numbers 1 to 10 indicate the results of the 10 best parameter sets in ascending order of the average RMSESICB, and the points 410 

with red edges indicate the standard values used for the CTRL experiment. 

 

Table 3. The 10 best performed experiments in terms of mean RMSESICB (i.e., RMSE between simulated and observed SIC 

budget) and the values of the 3 key parameters they used. Note that these values are highly correspond to the DRAKKAR 

Forcing Set version 5.2 (Dussin et al., 2016) atmospheric forcing used in this study. 415 

 

Rank RMSE (%) Cd_ice (10-4) rn_cio (10-3) rn_pstar (104)
1 25.127 9.563 6.094 3.298
2 25.163 8.478 7.379 1.954
3 25.182 8.125 6.402 2.929
4 25.270 9.100 5.572 3.047
5 25.299 9.407 6.384 2.555
6 25.356 9.643 7.491 2.119
7 25.364 8.172 5.783 2.839
8 25.378 9.455 7.262 3.154
9 25.389 8.807 6.293 2.437

10 25.391 8.373 5.957 1.723
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4 Discussion 

4.1 Key parameters and their physical effects 

Several parameters have been identified in Sections 3.3 and 3.4 as having a significant impact on the simulated SIC and SIV 

budgets in the Southern Ocean. In this section we present how these parameters specifically act on the SIC and SIV budget 420 

by looking at the impact of parameter changes on the cumulative distribution function (CDF) in the PAWN method. 

Considering the performance of the GP emulator (Fig. B4) as well as the number of sensitive parameters (Fig. 8), the area 

integral of 𝑟𝑟𝑟𝑟𝑟𝑟 component in the SIC budget in spring and the area integral of 𝑎𝑎𝑎𝑎𝑎𝑎 component in the SIV budget in winter 

have been selected here as examples to be discussed. Figs. 11 and 12 show how the CDF of the model output changes as one 

parameter is fixed to vary across a range of values, and other parameters varied freely. 425 

 

 
Figure 11. Cumulative distribution function (CDF) of the area integral of the 𝑟𝑟𝑟𝑟𝑟𝑟 component in the spring SIC budget (cf. 

Fig. 3). Red lines are the unconditional CDF for the ensemble of 449 model runs, and the grey lines stand for conditional 

CDF at different fixed values of parameters calculated by the GP emulator. The units of the x-axis are 106 𝑘𝑘𝑚𝑚2. 430 
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Since the low thermal conductivity of the snow reduces the heat transfer from the bottom of the ice to the atmosphere, it 

reduces the ice growth rate (Fichefet et al., 2000; Lecomte et al., 2013), and therefore leads to less freezing inside the ice 

pack, and 𝑟𝑟𝑟𝑟𝑟𝑟 moves more towards negative values (Fig. 11d). The reduction in freezing due to the reduction in snow 

thermal conductivity is more pronounced in winter (Fig. 8) and the SIV budget simulation is more sensitive to this parameter 

than the SIC budget, as it is primarily affecting the vertical ice growth. 435 

The rn_beta and rn_dmin are the two parameters that determine the minimum floe diameter of sea ice, and their decrease 

implies a decrease in sea ice floe sizes, which promotes the lateral melting (Lüpkes et al., 2012). Consequently, in contrast to 

the reduction of snow thermal conductivity (rn_cnd_s) which inhibits ice freezing, rn_beta and rn_dmin lead to more 

negative values of 𝑟𝑟𝑟𝑟𝑟𝑟 (Fig. 11e-f) by promoting sea ice melting at low-latitude regions (Fig. 3). Furthermore, this effect is 

greater in summer than in spring and plays a weak role in winter (Fig. 8), which fits well with the magnitude of the SIC 440 

reduction in the 𝑟𝑟𝑟𝑟𝑟𝑟 column in Fig. 3, although it is not the only process affecting SIC. 

 

 
Figure 12. As Fig. 11, but for the area integral of 𝑎𝑎𝑎𝑎𝑎𝑎 component of winter SIV budget. The units of the x-axis are 103 𝑘𝑘𝑚𝑚3. 
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 445 

Compared to rather continuous looking variations in CDFs of other parameters, the variation in CDFs due to changes in 

number of ice thickness categories (jpl) is more dispersed (Fig. 11l), with several lines being clearly outliers, which were 

checked to match jpl=1. This is because the multi-category sea ice thickness takes into account the subgrid-scale variations 

in sea ice properties (Thorndike et al., 1975; Massonnet et al., 2019; Moreno-Chamarro et al., 2020) and is therefore 

significantly different from the single thickness category (jpl=1). For instance, the presence of thin sea-ice categories in 450 

multi-category sea-ice schemes allows for greater melt rates compared to a single-category scheme (Uotila et al., 2017). 

The ice-ocean drag coefficient and the air-ice drag coefficient should be discussed jointly, as the sea-ice drift velocity is 

related to the Nansen number 𝑁𝑁𝑁𝑁 = �ρ𝑎𝑎𝐶𝐶𝑎𝑎/ρ𝑤𝑤𝐶𝐶𝑤𝑤 , where ρ𝑎𝑎/𝑤𝑤 and 𝐶𝐶𝑎𝑎/𝑤𝑤 are air/water density and air-ice/ice-ocean drag 

coefficient. The Fig. 11q and 9r illustrate that a decrease in 𝐶𝐶𝑎𝑎/𝐶𝐶𝑤𝑤 leads to a larger 𝑟𝑟𝑟𝑟𝑟𝑟, which has two possibilities, either 

sea ice melt is inhibited or freezing is intensified, by assuming that sea ice deformation is comparably small (Holland and 455 

Kwok, 2012). Since the solution of free sea ice drift (Leppäranta, 2011, Chapter 6.1.1) indicates that the decrease in 𝐶𝐶𝑎𝑎/𝐶𝐶𝑤𝑤 

leads to a decrease in sea ice velocity, we argue that this causes a more limited transport of sea ice to low-latitude region, 

leading to the inhibited melting (see spring 𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑟𝑟𝑟𝑟𝑟𝑟 in Fig. 3). 

With the exception of snow thermal conductivity (rn_cnd_s), ice-ocean drag coefficient (rn_cio) and air-ice drag 

coefficient (Cd_ice), whose physical effects have been elucidated, the 𝑎𝑎𝑎𝑎𝑎𝑎 term in the winter SIV budget is also sensitive to 460 

ice strength (rn_pstar) (Fig. 12a). This can be explained by the fact that the weaker ice is more easily to deform and increase 

ice thickness (Docquier et al., 2017), leading to a smaller drift speed and therefore results in a smaller absolute value of the 

area integral of 𝑎𝑎𝑎𝑎𝑎𝑎 or 𝑑𝑑𝑑𝑑𝑑𝑑. This is also true in spring (Fig. 8), as ice drift speeds are greater in winter and spring compared 

to other seasons during the period of this study (not shown but similar to, e.g., Holland et al., 2016) and making the ridging 

of weak ice more pronounced. 465 

For the NEMO4.0-SI3, the snow thickness on sea ice is determined by the snow density as the solid precipitation 

equivalent which is determined by atmospheric reanalyses, and other factors affecting the snow depth (e.g., wind packing, 

windblown snow lost to leads, etc.; Petty et al., 2018) that are not included (NEMO Sea Ice Working Group, 2019). When 

the snow density decreases in the model, the snow thickness increases, thereby reducing the heat exchange between the ice 

and the atmosphere, which in turn limits the vertical increase in sea ice thickness. Thus, for the SI3 model, the effect of 470 

reducing snow thickness and reducing snow thermal conductivity on the simulation of sea ice thickness is equivalent. This is 

the reason why the 𝑟𝑟𝑟𝑟𝑟𝑟 term in the SIV budget show similarly high sensitivities to snow thermal conductivity (rn_cnd_s) and 

ice density (rhos) (Fig. 8). These two parameters have the greatest influence on the total SIV and thus also on the area 

integral of the 𝑎𝑎𝑎𝑎𝑎𝑎 during autumn and winter, the seasons when sea ice vertical growth is most pronounced. When sea ice 

thickening is limited, the value of SIV itself becomes smaller, resulting in a smaller area integral for 𝑎𝑎𝑎𝑎𝑎𝑎 (Fig. 12b). 475 

However, of the seven parameters discussed above that have an impact on the SIC budget, only two drag coefficients play 

a critical role to the RMSE of simulated and observed SIC budget, followed by the weak effect of sea ice strength (Fig. 9). 
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This means that while adjusting snow thermal conductivity has an impact on the simulation of SIE (Urrego-Blanco et al., 

2016) and may improve the SIE seasonal cycle to be closer to the observations (Lecomte et al., 2013), it does not make the 

model's simulation of the SIC budget any more realistic. In addition, although the remaining parameters display sensitivity 480 

during the summer months (bottom row in the Fig. 9), the robustness of this result is not guaranteed given the already low 

level of RMSE in the summer and the mediocre performance of the GP emulator (bottom row in the Fig. B5). 

4.2 Interactions between the parameters 

In addition to the sensitivity of the model to individual parameters discussed in the previous section, using the second order 

sensitivity indices provided by the Sobol method, the interaction between the parameters can be further explored. We have 485 

added some vertical connector lines in Figs. 8 and 9 to indicate that a simultaneous change in two parameters has a 

significant impact. Not surprisingly, the interconnection of the ice-ocean and the air-ice drag coefficients causes their 

simultaneous changes to have the greatest impact on the advection metric in both SIC and SIV budgets, especially in winter 

and spring, the two seasons with the largest sea ice speeds. Furthermore, for the SIV budget, the contribution of its advection 

term to SIV change is also sensitive to the simultaneous changes in snow thermal conductivity (rn_cnd_s) and ice-ocean drag 490 

coefficient (rn_cio) in autumn. This makes sense, considering that sea ice starts to grow vertically in autumn and that the 

advection is significantly affected by the ice-ocean drag coefficient (Fig. 8). However, snow thermal conductivity (rn_cnd_s) 

does not interact with any drag coefficient in winter, when ice vertical grow is also rapid (Fig. 2c), thus the interaction in 

autumn remains somewhat uncertain due to the GP emulator does not perform very well for 𝑎𝑎𝑎𝑎𝑎𝑎 in the autumn SIV budget 

(r=0.961). 495 

The ratio between the ice-ocean and the air-ice drag coefficients continues to dominate the sensitivity of the four RMSE 

metrics as the sea ice velocity is controlled by 𝐶𝐶𝑎𝑎/𝐶𝐶𝑤𝑤 (Fig. 9). Although the GSA results also show some sensitivity to ice 

strength, there is little interaction between this parameter and the two drag coefficients in the SIV budget, except for the 𝑎𝑎𝑎𝑎𝑎𝑎 

term in summer. Despite this, considering that the 𝑎𝑎𝑎𝑎𝑎𝑎 RMSESICB itself fluctuates very little in summer and the GP emulator 

is not a perfect performer, there is uncertainty in this result. Fig. 9 also shows that the 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 RMSESICB is sensitive to 500 

simultaneous changes in rn_beta (coefficient beta in the lateral melting parameterization scheme) and rn_cio (ice-ocean drag 

coefficient) in the autumn, which we argue may be an error introduced by the poorer performing GP emulator (r=0.915) as 

the rn_beta is a parameter related to lateral melting that should not have a significant effect in the autumn. 

4.3 Recommended set of parameters 

The previous sections have shown the sensitivity of the simulated sea ice budget to parameters and there are a number of 505 

parameter sets that are recommended (Table 3), in this section we provide further insight into how these parameter sets 

perform in terms of other metrics. Fig. 2 highlights the SIE, SIA and SIV seasonal cycles of the three experiments that 

performed best in the mean RMSESICB (as listed in Table 3). An interesting thing is that although these three experiments 

used rn_cio/Cd_ice values that were clearly above/below the standard values, they all exhibit SIE and SIA seasonal cycles 
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that are very close to the model ensemble mean and the CTRL. The EXP397, which is the best performing one, has a SIV 510 

seasonal cycle that almost overlaps with the ensemble mean, while the second and third best are both close to the CTRL. 

This evidence again suggests that even if the realistic SIE is modelled, there is no guarantee of a reasonable SIC budget 

(Uotila et al., 2014; Nie et al., 2022).  

Regionally, the recommended parameter sets match the observed SIC budgets much better in all sectors of the Southern 

Ocean (Fig. B6). On the other hand, even the optimal set of parameters recommended in this study (EXP397) would only 515 

reduce the 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎, 𝑑𝑑𝑑𝑑𝑑𝑑 and 𝑟𝑟𝑟𝑟𝑟𝑟 RMSESICB by about 2%, 5%, 8% and 10% respectively (Fig. 7 and Fig. B6), which is a 

rather modest impact. This indicates that the accurate modelling of the SIC budget does not appear to be possible by simply 

changing the atmospheric forcing product or tuning ocean model’s parameters, as the atmospheric forcing itself is 

systematically biased (Barthélemy et al., 2018). As shown in Fig. B7, all model ensembles have similarly shaped ice-speed 

seasonal cycles that all differ significantly from observations, meaning that adjusting the parameter values alone will not 520 

correct errors caused by biases in the atmospheric forcing. Nevertheless, the parameter sets in Table 3 can be confidently 

recommended to NEMO4.0-SI3 modelers to optimize the Southern hemispheric sea ice in the ORCA2 grid, provided that 

DFS5.2 is used as the atmospheric forcing. 

In addition, Fig. B8 shows that the recommended parameter sets also provide some improvements in the Arctic SIE and 

SIA simulations compared to the default parameters, as reflected by more sea ice in summer months, which is closer to 525 

observations than in the CTRL experiment. However, given that SIE and SIA are limited metrics (Notz, 2014; Notz, 2015) 

and that the key parameters affecting sea ice simulations may not be the same between the northern and southern 

hemispheres due to the vast geographical differences (e.g. ocean and land locations, atmospheric and oceanic circulations), 

whether these parameter sets, which perform well in the Southern Ocean SIC budget, can be safely applied to the Arctic 

merits further investigation. 530 

5 Conclusions 

To investigate the impacts of model parameter uncertainty on sea ice budgets in the Southern Ocean, we drove the 

NEMO4.0-SI3 ice-ocean coupled model with DFS5.2 atmospheric forcing and simultaneously adjusted 18 potentially critical 

model parameters and generated the model ensemble with a size of 449. Preliminary diagnostics of the model output for the 

SIE and SIA seasonal cycles revealed that the model results are generally reasonable, as the ensemble model mean being 535 

very close to observations. The ensemble model mean SIC budget shows the basic characteristics of the observed SIC budget, 

although differing a lot in details, and the adjustment of the parameters indeed leads to a certain degree of perturbation of the 

SIC and SIV budgets, which sets the stage for the sensitivity experiments that followed. 

Benefiting from the overall excellent performance of the GP emulator, GSA was carried out with adequate computational 

resources. The results show that the contribution of the modelled advection to the changes in SIC is very sensitive to ice 540 

strength, ice-ocean and air-ice drag coefficients from autumn to spring, and to snow thermal conductivity in summer, 
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followed by two other parameters related to lateral melting as well as the ice-ocean drag coefficient. Additionally, the 𝑟𝑟𝑟𝑟𝑟𝑟 

term in summer is very sensitive to the number of ice categories, which is attributed to the significant difference in sea ice 

melt rates between single and multi-category sea ice categories. In addition to several parameters that have an impact on the 

simulation of the SIC budget, the SIV budget also shows a high sensitivity to snow density, which is also one of the 545 

parameters that leads to a high uncertainty in the satellite-derived sea ice thickness (e.g., Liao et al., 2022; Wang et al., 2022). 

However, considering the simple approach to snow in the current NEMO4.0-SI3 model (e.g., one layer and the effect of 

windblown is not taken into account, etc.), the effects of snow density and snow thermal conductivity on sea ice thickness 

are largely equivalent. 

The sensitivity of the RMSESICB to 18 parameters was assessed. Overall, the ice-ocean and air-ice drag coefficients are the 550 

most important ones, followed by ice strength. Moreover, there are other parameters that significantly affect RMSESICB 

during the summer months, but since RMSESICB values are inherently small during the summer months, we consider the 

effects of these parameters on the RMSESICB to be negligible. Based on these results, we recommend 10 combinations of ice-

ocean drag coefficient, air-ice drag coefficient and ice strength that can be safely used for the DFS5.2 driven NEMO4.0-SI3 

model with the ORCA2 grid. The recommended combinations of these parameters allow the simulations of near-observed 555 

SIE and SIA seasonal cycles, as well as similar SIV seasonal cycles with the CTRL experiment and, more importantly, 

resulting in a more realistic SIC budget compared to the standard parameters. 

Apart from the success of the GP emulator, another reason why the GSA results are considered reliable is that the two 

GSA methods used in this paper show a high degree of consistency in the identification of key parameters. Nevertheless, we 

recommend that it is necessary to use two or more GSA methods together to target same problem, as variance-based Sobol 560 

method and density-based PAWN method each have their own characteristics and can be cross-referenced and complement 

each other, which has also been revealed in other studies (e.g., Pianosi and Wagener, 2015; Zadeh et al., 2017; Mora et al., 

2019). 

There are at least two limitations in this study, the first is that we selected the area integral of 𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑟𝑟𝑟𝑟𝑟𝑟 as metrics, and 

although they can be used as proxies for the total contribution of dynamical and other processes to sea ice change 565 

respectively, the local biases may counteract and affect the integrals. We therefore complemented this with another set of 

metrics using the RMSESICB. The second limitation stems from the fact that uncertainties in observations cannot be 

accurately assessed and the observed budgets were simply referred to as the "true", which could be re-evaluated after more 

accurate observations become available, or when the uncertainties in observed ice motion can be more accurately estimated. 

In summary, the key to reproducing a realistic SIC budget for an ice-ocean coupled model driven by atmospheric 570 

reanalysis is to simulate realistic sea ice velocities, which undoubtedly remains a challenge. It would be very useful to 

correct the biases in the atmospheric reanalysis, and the model could then be further optimised by adjusting several key 

parameters identified in this study. The recommended parameter sets are determined based on the current climate scenario, 

and their optimal values are expected to change to some extent when applied to simulate sea ice in a warming world. In 

general, one might expect the global or hemispheric optimal parameter values to change little because even now global sea-575 
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ice models can reasonably reproduce regional sea ice characteristics, ideally associated with a wide range of optimal 

parameter values. 
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Appendix A: Global sensitivity analysis 

Two different kinds of GSA methods were performed here, as only one may not adequately bring out all the characteristics 

(Baki et al., 2022; Pianosi et al., 2015). The first one is the variance-based sensitivity analysis, which is also referred to as 

Sobol indices (Sobol, 2001). Suppose the relationship between model output 𝑌𝑌 and parameter sets 𝑋𝑋 is 𝑌𝑌 = 𝑓𝑓(𝑋𝑋), where 605 

𝑋𝑋𝑖𝑖 ∈ [0,1], 𝑖𝑖 = 1,2, … , 𝑝𝑝, and it can be decomposed as (Sobol, 1990): 

𝑌𝑌 = 𝑓𝑓0 + ∑ 𝑓𝑓𝑖𝑖(𝑋𝑋𝑖𝑖)
𝑝𝑝
𝑖𝑖=1 + ∑ 𝑓𝑓𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗�

𝑝𝑝
𝑖𝑖<𝑗𝑗 + ⋯+ 𝑓𝑓1,2,…,𝑝𝑝�𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑝𝑝�,                                                                                  (A1) 

where 𝑓𝑓0  is a constant, 𝑓𝑓𝑖𝑖  and 𝑓𝑓𝑖𝑖𝑖𝑖  are functions of 𝑋𝑋𝑖𝑖  and 𝑋𝑋𝑖𝑖𝑖𝑖  respectively, and so on. Then the 𝑖𝑖𝑡𝑡ℎ  parameter’s first-order 

indices (𝑆𝑆𝑖𝑖) and total-effect index (𝑆𝑆𝑇𝑇𝑇𝑇) are estimated as (Sobol, 2001; Saltelli et al., 2010): 

𝑆𝑆𝑖𝑖 ≈
1
𝑁𝑁∑ 𝑓𝑓(𝑩𝑩)𝑗𝑗�𝑓𝑓�𝑿𝑿𝐵𝐵
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𝑝𝑝
𝑖𝑖<𝑗𝑗 +⋯+𝑉𝑉12…𝑝𝑝

,                                                                                                                                                  (A2) 610 

𝑆𝑆𝑇𝑇𝑇𝑇 ≈
1
2𝑁𝑁∑ �𝑓𝑓�𝑿𝑿𝐵𝐵
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𝑗𝑗
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𝑗𝑗=1

∑ 𝑉𝑉𝑖𝑖
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𝑝𝑝
𝑖𝑖<𝑗𝑗 +⋯+𝑉𝑉12…𝑝𝑝

,                                                                                                                                                   (A3) 

where 𝑉𝑉𝑖𝑖 = 𝑉𝑉𝑉𝑉𝑟𝑟𝑋𝑋𝑖𝑖 �𝐸𝐸𝑿𝑿∼𝑖𝑖(𝑌𝑌|𝑋𝑋𝑖𝑖)�,  𝑉𝑉𝑖𝑖𝑖𝑖 = 𝑉𝑉𝑉𝑉𝑟𝑟𝑋𝑋𝑖𝑖𝑖𝑖 �𝐸𝐸𝑿𝑿∼𝑖𝑖𝑖𝑖�𝑌𝑌|𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗�� − 𝑉𝑉𝑖𝑖 − 𝑉𝑉𝑗𝑗 ,  and so on, the 𝑿𝑿∼𝑖𝑖  indicates the set of all 

parameters except 𝑋𝑋𝑖𝑖. The matrix 𝑩𝑩 is a 𝑁𝑁 × 𝑝𝑝 matrix generated by sampling the parameter space with the LHS method and 

used as a "perturbation matrix". 𝑁𝑁 denotes the number of model simulations. The matrices 𝑿𝑿𝐵𝐵𝑖𝑖 , 𝑖𝑖 = 1,2, … , 𝑝𝑝 are obtained by 

replacing the 𝑖𝑖𝑡𝑡ℎ column of 𝑿𝑿 with the same column of 𝑩𝑩. 615 

The other GSA method named PAWN (Pianosi and Wagener, 2015) is a density-based method, in which sensitivity is 

assessed by quantifying the effect of parameter changes on the cumulative distribution function (CDF) of the model output 𝑌𝑌. 

In brief, the distance between the CDF of 𝑌𝑌 obtained from the control simulation (i.e., unconditional CDF) and the CDF of 

the output perturbed by changing the parameters (i.e., conditional CDF) is calculated by the Kolmogorov-Smirnov statistic 

(KS): 620 

𝐾𝐾𝐾𝐾(𝑋𝑋𝑖𝑖) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑌𝑌
�𝐹𝐹𝑌𝑌(𝑌𝑌) − 𝐹𝐹𝑌𝑌|𝑋𝑋𝑖𝑖(𝑌𝑌)�,                                                                                                                                         (A4) 

where 𝐹𝐹𝑌𝑌(𝑌𝑌) is the unconditional CDF and 𝐹𝐹𝑌𝑌|𝑋𝑋𝑖𝑖(𝑌𝑌) is the conditional CDF with the fixed 𝑋𝑋𝑖𝑖. Since the KS statistic may vary 

due to 𝑋𝑋𝑖𝑖  taking different values, the PAWN index 𝑇𝑇𝑖𝑖 , which indicates the sensitivity of 𝑌𝑌  to 𝑋𝑋𝑖𝑖 , is then obtained by 

considering a statistic (e.g., maximum or median) over all possible 𝑋𝑋𝑖𝑖: 

𝑇𝑇𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑋𝑋𝑖𝑖

[𝐾𝐾𝐾𝐾(𝑋𝑋𝑖𝑖)].                                                                                                                                                                   (A5) 625 
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Appendix B: Supplementary Figures 

  
Fig. B1. Seasonal mean of sea ice concentration (SIC) budget components for 2008-2017, calculated based on satellite-

derived sea ice velocity (Kimura et al., 2013) and SIC (Meier et al., 2021) observations. The positive value stands for the 

SIC increase and the negative value for the decrease. 
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 630 
Fig. B2. (a-b) Observed (NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 4; 

CDR) and model ensemble mean February SIC climatologies (only SIC > 15% are shown), (c) standard deviation of all 

model runs. (d-f) The same as (a-c) but for September. 
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Fig. B3. (a) Ensemble model mean February sea ice thickness climatologies (only SIC > 15% are shown) and (b) the 635 

standard deviation. (c-d) The same as (a-b) but for September. 
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Fig. B4. Validation results of the best Gaussian process (GP) emulators for each of the four metrics (area integrals of 𝑎𝑎𝑎𝑎𝑎𝑎 

and 𝑟𝑟𝑟𝑟𝑟𝑟 components in SIC and SIV budgets) selected by the 10-fold cross-validation. Each subplot consists of 449 error 

bars and a 1:1 line, and Pearson correlation coefficients are also listed. Each metric has been normalized (scaled to [0, 1] 

using the difference between the maximum and minimum values of the simulation) for better presentation. 
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Fig. B5. As Fig. B4, but for the root-mean-square error between SIC budget components of the simulation and the 

observation (RMSESICB). 
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Fig. B6. As Fig. 7, but the RMSE of each SIC budget term is averaged over four seasons and counted separately in each 

Southern Ocean sector. The vertical dotted line marks the demarcation of each sector. AB=Amundsen-Bellingshausen Seas. 
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Fig. B7. Sea ice speed seasonal cycles for the observation (Kimura et al., 2013) and simulations, over 2008-2017. The 

simulated sea ice velocities are first interpolated onto the KIMURA data grid, then the spatial average of the ice speed is 

calculated in the areas where observations are available. The ice speeds of the 10 experiments with the closest SIC budget to 

the observation are marked with magenta dashed lines. 
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Fig. B8. As Fig. 2 (a) and (b) but for the Arctic. 
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