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Abstract. Geoscientific models are based on geoscientific data, hence building better models, in the sense of attaining better 

predictions, often means acquiring additional data. In decision theory questions of what additional data is expected to best 

improve predictions/decisions is within the realm of value of information and Bayesian optimal survey design. However, 

these approaches often evaluate the optimality of one additional data acquisition campaign at a time. In many real settings, 15 

certainly in those related to the exploration of Earth resources, possibly a large sequence of data acquisition campaigns need 

to be planned. Geoscientific data acquisition can be expensive and time consuming, requiring effective measurement 

campaign planning to optimally allocate resources. Each measurement in a data acquisition sequence has the potential to 

inform where best to take the following measurements, however, directly optimizing a closed-loop measurement sequence 

requires solving an intractable combinatoric search problem. In this work, we formulate the sequential geoscientific data 20 

acquisition problem as a Partially Observable Markov Decision Process (POMDP). We then present methodologies to solve 

the sequential problem using Monte Carlo planning methods. We demonstrate the effectiveness of the proposed approach on 

a simple 2D synthetic exploration problem. Tests show that the proposed sequential approach is significantly more effective 

at reducing uncertainty than conventional methods. Although our approach is discussed in the context of mineral resource 

exploration, it likely has bearing on other types of geoscientific model questions. 25 

1 Introduction 

As the world weans itself off fossil fuels over the next decades, new forms of energy will heavily rely on Earth materials, in 

particular minerals. Rare earth elements are used in a variety of clean-energy technologies (Hague et al., 2014). Fully 

electrifying the light-duty auto fleet requires discovering new ore deposits of critical electric vehicle (EV) materials: copper, 

nickel, cobalt, and lithium (Savacool et al., 2020). Increasing the required supply of these critical minerals requires a yet 30 

unattained discovery rate of new deposits. Mineral exploration is slow, requiring extensive guidance from human experts. As 
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a result, the rate of new discoveries has declined over the last decades, since deposits with sections visible at the surface have 

mostly been discovered (Davies et al., 2021). At the same time, the demand will continue to increase, making minerals a 

targeted commodity subject to international conflict (National Research Council, 2008), social, and environmental concerns 

(Agusdinata et al., 2018). Enhancing and speeding up mineral exploration at a planet-wide scale is required. Our approach, 35 

using Artificial Intelligence for effective planning of exploration endeavors, aims to contribute to this challenge. 

 

Mineral exploration requires making sequential decisions about what type of data to acquire, where to acquire it, and at what 

resolution with the goal of detecting an economically mineable deposit. In other words, mineral exploration is a sequential 

decision-making problem under uncertainty. These types of problems have previously been studied under several non-40 

sequential frameworks in various areas of the geosciences. Optimizing spatial designs of experiments is a well-studied topic. 

McBratney et al. (1981) described a method for designing optimal sampling schemes based on the theory of regionalized 

variables (Matheron, 1971) by modeling spatial dependence with semi-variograms. The 1990s saw a significant debate 

arising in the soil sciences community (Brus & Gruijter, 1997; Van Groeningen et al., 1999; Lark, 2002, Heuvelink et al., 

2006) around adaptation of geostatistics and its role in optimal survey design. Likewise, geostatistics-based optimal design 45 

of environmental monitoring has been significantly developed (De Gruijter et al., 2006; Melles et al., 2011). Geostatistical 

methods are often not Bayesian, which may be a disadvantage when the spatial structures (e.g., variograms) are uncertain 

themselves. A method for Bayesian optimal design in spatial analysis was developed by Diggle & Lophaven (2006). 

 

Optimal placement of drill-holes for mineral exploration and mining (resource delineation) has received significant attention. 50 

Some methodologies aim to minimize the uncertainty on spatial properties through use of geostatistical algorithms that 

model the effect of measured data on spatial uncertainty (Pilger et al., 2001; Koppe et al., 2011; Koppe et al., 2017; Caers et 

al., 2022; Hall et al., 2022). Others rely on decision theoretic concepts of value of information to quantify the dollar value of 

gathered information to reduce uncertainty on an economic property of interest (Froyland et al., 2004; Eidsvik, & Ellefmo, 

2013; Soltani-Mohammadi & Hezarkhani, 2013). Bickel et al. (2008) recognizes the sequential nature of the problem and 55 

illustrate that sequential information gathering is superior to non-sequential schemes, a concept that goes back to the 1970s 

(Miller, 1975).  

 

The above methodologies evaluate the performance of a given spatial survey design, but do not address the combinatorial 

problem of creating optimal survey plans. In general, the number of sequences to evaluate grows exponentially with the 60 

number of surveys. For example, when planning a sequence of 10 surveys at 100 possible locations, there are more than 17 

billion possible sequences that could be evaluated. Many problems will likely require more than 10 data acquisition actions 

to discover a mineral deposit that is economically feasible. Therefore, methodologies (like Emery et al., 2008) that use 

optimization in combination with geostatistics are likely intractable for many practical problems.  

 65 
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Sequential planning methods solve for each action in a sequence only after observing the results of each previous action. 

Planning is typically done in either an open-loop or closed-loop fashion. Open-loop methods solve for each action in the 

sequence that gives the best immediate return according to some metric, without considering how the information learned 

from taking that action is likely to impact future decisions. Closed-loop methods solve for actions that maximize the 

expected return of all remaining actions in a sequence. Closed-loop methods tend to outperform open-loop methods, 70 

especially on tasks in which a lot of information is learned each step (Russell and Norvig, 2020: p.120-122). Closed-loop 

methods, however, tend to require significantly more computational effort than open-loop approaches.  

 

Recent work has applied Bayesian optimization to develop open-loop solutions to sequential experiment design (Shahriari et 

al., 2016). Marchant et al. (2014) specifically consider the application of Bayesian optimization to spatial-temporal 75 

measurement sequences. Receding horizon control has been used in sequential resource development (Grema et al., 2013) in 

conjunction with general particle swarm optimization. While these methods may be tractable, they are likely sub-optimal 

over the entire measurement sequence, since each action only optimizes its own return.  

 

Closed loop methods solve for optimal conditional sequences of actions. Common closed-loop methods include 80 

reinforcement learning, dynamic programming, and Monte Carlo planning. These methods search for optimal actions 

through extensive interaction with a simulation of the target environment. Because of the large amounts of data required, 

these methods were initially developed on virtual domains such as video games (Chaslot et al., 2008). Recently learning-

based approaches have achieved state-of-the-art performance in several real-world domains including autonomous driving 

(Brechtel et al, 2014) and robotic control (Grigorescu, 2020). Little work has been done, however, in applying these 85 

approaches to resource exploration. Torrado et al. (2017) proposed a Monte Carlo planning method for a similar task of 

optimal sequential reservoir development. This work, to the authors knowledge, is the first proposal for a general approach 

to optimal closed-loop decision making for geoscientific sequential data acquisition planning.  

 

2 Illustration case for sequential data acquisition planning in resource exploration 90 

Our development will be illustrated on an analogue case set-up that contains many elements common to resource exploration 

planning.  In that sense we aim for modularity in the development where several components (inverse modelling, geological 

modelling, data forward modelling) can be changed out without changing the sequential data acquisition methodology.  

 

Specifically, we will focus on the exploration of one or more orebodies in the subsurface. The elements of the problem 95 

definition consists of 1) a description of the state of knowledge of the physical world, 2) a description of data that exists or is 

planned to be acquired on the physical world, 3) rewards and costs associated with the exploration endeavor.  
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Knowledge and uncertainty about the subsurface is commonly represented by probability distributions over the parameters 

of the subsurface system. Gridded models describing parametric distributions over geological, geophysical, and geochemical 100 

properties may be too high dimensional for practical use in decision making. A realization (in geostatistical jargon) 

generated from a probability distribution over the subsurface represents a plausible representation of the physical world. An 

ensemble of plausible realizations is a tractable method to represent the distribution over the subsurface. The variation 

between multiple realizations is an empirical representation of uncertainty (lack of knowledge).  

 105 

A subsurface orebody may be hard to identify in a real setting for various reasons. In geophysical surveys, many other 

geological features may act as ore bodies. An orebody is also not necessarily a perfect anomaly in a homogenous geological 

setting. Tectonic, metamorphic, sedimentary, and other alteration processes may have changed the nature of the original 

orebody. In Figure 1, we show how we created an analogue situation that mimics many of these elements. Figure 1 

represents a simplified 1D depiction, though the methodology will be applied to 2D and 3D settings. Figure 1 should only be 110 

referenced as a template containing the challenges present in mineral exploration.  

 

First, we represent the mineralization by the function in Figure 1A. The example shows a unimodal function, however a 

multiple of these mineralization bumps may be present. Second, we introduce a “geological background variation” as shown 

in Figure 1B. This represents all geological processes that have altered the original ore-body shape. This variation is not 115 

entirely random and has some structure. In our setting, we model it as a Gaussian process with known correlation structure 

(variogram). In practice, a much more complex model of the background geology may be used with the presented methods. 

By adding the “mineralization field” to the “geological background field”, we obtain the “measurable variation” shown in 

Figure 1C. When a threshold 𝑡  is exceeded in the 𝑧(𝑥) field, we get the target which we will term “massive ore”. The 

massive ore is shown in Figure 1D and is the part of the orebody that would be considered for mining. In this example, this 120 

results in a single economic parameter: volume. We do not consider concentration, grade, or other economic parameters in 

this paper, though the methodology does not prevent including them. 

 

The next element is the set of measurements that are available to be taken. Measurements are indirect indicators of what is 

desired: the economic parameters of the orebody, which in our setting is the orebody volume. Measurements generally do 125 

not directly observe this value; however, they may reduce the uncertainty on it. Such uncertainty quantification is generally 

conducted with Bayesian approaches. Bayesian methods require stating measurement likelihood functions and prior 

distributions. In our setting, the various alternative realizations constitute samples of the prior. In this work, we consider 

taking point measurements of the total variational field, as shown in Figure 1C. We also consider taking only one 

measurement at a time because measuring may be expensive, and the results may inform where to best take the next 130 

measurement. Note that in this work, we will not perform traditional geostatistical conditional simulation using the 
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measurements as hard data, because the function 𝑚(𝑥)  is stochastic as well. Instead, we will solve Bayesian inverse 

problems that aims to infer 𝑚(𝑥) and 𝑟(𝑥) jointly from data. 𝑧(𝑥) represents the exhaustive set of observations that could be 

acquired. In the real world, measurements may have various degrees of noise (e.g. geophysical survey vs. borehole data). In 

this work, we assume that the noise on the point measurements is negligible, but that only a small area is directly observed. 135 

Measurement noise can be integrated into the Bayesian inverse problem, but our paper does not focus on it.  

 

 

Figure 1. Example 1D Mineralization. Sub-figure (A) shows a mineralization that is altered by geological background variation 

(B), resulting in the measurable variation (C). The massive orebody (D), whose volume is the economic parameter of interest, exists 140 
at locations where z(x) exceeds a threshold value.  

 

We test the presented methodology on a 2D case that is analogous to the 1D example. The 2D case set-up is shown in Figure 

2 and Figure 3. We define the mineralization 𝑚(𝑥) using a single uncertain parameter 𝜎 that determines the width. We 

assume 𝜎 has a uniform distribution with known bounds. Geological variation is modeled using a Gaussian process with 145 

known mean and variogram. We generate the measurable fields 𝑧(𝑥) by adding various realizations of 𝑚(𝑥) to realizations 

of 𝑟(𝑥), as shown in Figure 2. Then after defining a threshold 𝑡, we obtain the massive ore field 𝑖(𝑥) with the volume 𝑣, as 

shown in Figure 3.  

 

A

B

C

D
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 150 

Figure 2. Two-dimensional exploration problem. The mineralization field 𝒎(𝒙) (left), the background field 𝒓(𝒙) (center) are 

summed to create the measurable field 𝒛(𝒙) (right). 

 

 

Figure 3. Two-dimensional economic field. The massive ore field 𝒊(𝒙) shows where the measurable field 𝒛(𝒙) exceeds the economic 155 
threshold 𝒛𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅. 

 

The question we will address is: what is the optimal sequence of data acquisition that best informs “mine” vs “do not mine” 

decision? 

 160 
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3 Notational aspects 

 

In this paper, we will need to merge nomenclature and mathematical notations of two different domains: 

geosciences/geostatistics and artificial intelligence (AI). Here we list some nomenclature from each field that describe the 165 

same concept (see also Table 1). 

 

● A state = an instantiation of a set of parameters describing the world. For example, a geostatistical realization is a 

set of geological parameters representing the “state” of the subsurface in a gridded model. A state is referred to as 𝑠. 

● Belief over a state = probability distribution of instantiations of a set of parameters. In probability theory, one 170 

defines over all possible outcomes of a geological model a probability density. This density is very high-

dimensional in our setting. In AI ones uses 𝑏(𝑠), while in probability parlor, this is referred to as 𝑓(𝑠). 

● Belief update = Bayesian update. A belief update requires stating the prior and the likelihood model.  The likelihood 

in AI is termed the observation model 𝑂(𝑜|𝑠, 𝑎), while in Bayesian terminology one uses 𝑓(𝑜|𝑠). Note that in AI an 

additional “conditioning” is added as 𝑎, which represents the action by an AI agent. This is accounts for the fact that 175 

actions are taken in sequences. 𝑂(𝑜𝑡+1 ∣ 𝑠𝑡+1, 𝑎𝑡) is the likelihood of the observation at measurement 𝑡 + 1 , given 

the state at 𝑡 + 1 and action at 𝑡. 

● Observation space: the set of all possible outcomes of the measurements. In AI observations are denoted as 𝑜, while 

in Bayesian nomenclature these are termed data 𝑑. 

AI Terminology Geosciences Terminology Definition 

State: s Realization: 𝑧(𝑥) The (possibly unknown) subsurface 

geological parameters 

Action: 𝑎 Take measurement Measure 𝑧(𝑥) at 𝑥 

 

Observation: 𝑜 Measurement Measured value of 𝑧(𝑥)  

Belief: 𝑏(𝑠) Probability density over  𝑧(𝑥) A probability distribution over the possible 

geological parameter realizations 

Belief Update Bayesian Posterior Updating the distribution over geological 

parameters given new information according 

to Bayes’ rule 

 180 

Table 1: comparison between AI and geostatistical nomenclature 
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4 Methodology 

4.1 Partially observable Markov decision processes 

 This work frames mineral exploration as a sequential decision process. In a sequential problem, a decision-making 185 

agent must take a sequence of actions to reach a goal. Information gained from each action in the sequence can inform the 

choice of subsequent actions. An optimal action sequence will account for the expected information gain from each action 

and its impact on future decisions. This type of conditional planning may be referred to as closed-loop or feedback control. 

We will use the mineral-exploration problem outlined above as a working example for the remainder of this section. 

 190 

 A sequential decision problem can be modeled formally as a Markov decision process (MDP). An MDP is a 

mathematical description of a sequential decision process defined by a collection of probability distributions, spaces, and 

functions. The full MDP is typically defined by the tuple (𝑆, 𝐴, 𝑇, 𝑟, 𝛾).  The state space 𝑆 is the space of all states that the 

decision-making problem may take at any step. In the mineral exploration process, the state is defined by the geological 

model of the subsurface deposit as well as the locations of measurements. The action space 𝐴 defines the set of all actions 195 

that the agent may take. In the mineral exploration problem, this would be the set of all locations that the agent may acquire 

measurements (data). The transition model 𝑇(𝑠𝑡+1 ∣ 𝑠𝑡 , 𝑎𝑡), is the probability distribution over the next time step state 𝑠𝑡+1, 

conditioned on the current state and action. The step 𝑡  refers to the sequential actions and belief updates. The MDP 

formulation assumes that the state transition is fully informed by the immediately preceding state and action, which is the 

Markovian assumption. The transition model may be deterministic.  200 

 The reward function 𝑟(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1): 𝑆 × 𝐴 × 𝑆 → 𝑅 gives a measure of how taking an action from a state contributes 

to the utility of the total action sequence which the agent seeks to maximize. The objective of an agent in an MDP is to 

maximize the sum of all rewards accumulated over an action sequence. To preference rewards earlier in the process, a time 

discount factor 𝛾 ∈ (0,1] is used. The goal of solving an MDP is to maximize the sum of discounted rewards accumulated 

from a given state, defined as  205 

∑𝑡=1
𝑇𝛾𝑡−1𝑟(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) 

for a decision process with T steps. The sum of discounted rewards expected from a state is defined as the value of the state 

𝑉(𝑠). Given that the exact state transitions are not generally known in advance, the optimization target of solving an MDP is 

to maximize the expected value.  

 210 

 In many decision-making problems, such as all subsurface problems, the state at each time step (the geological 

model) is not fully known. In this case, agents make decisions based on imperfect observations of the relevant states of their 

environments. Sequential problems with state uncertainty are modeled as partially observable Markov decision processes 
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(POMDPs). POMDPs are defined by the MDP tuple plus an observation space 𝑂  and an observation model 𝑍(𝑜𝑡+1 ∣

𝑠𝑡+1, 𝑎𝑡). The observation space defines all the observations that the agent may make after taking an action. Observations are 215 

generally noisy measurements of a subset of the state. The observation model defines the conditional distribution of the 

observation given the state and action. In the mineral exploration problem, an observation would be the mineral content of 

the core sample taken at that time step.  

 

 To solve a POMDP, an agent must account for all the information gained from the sequence of previous 220 

observations when taking an action. It is common to represent the information gained from an observation sequence as a 

belief. A belief is a probability distribution over the unknown state of the world at a given time step. At the beginning of the 

decision-making process, the agent will start with a belief that is defined by all prior knowledge of the state available before 

making any observations. With each observation made, the belief is updated, typically using a Bayesian update as  

 225 

𝑏′(𝑠𝑡+1) ∝ 𝐿(𝑜𝑡+1 ∣ 𝑠𝑡+1, 𝑎𝑡)𝑏(𝑠𝑡+1). 

A belief may be an analytically defined probability distribution or an approximate distribution, such as a state ensemble 

updated with a particle filter. 

 Each decision in the sequence is made using the belief updated from the preceding observation. The process is 

depicted in Figure 4. An optimal choice in a sequential problem should consider all subsequent steps in the sequence. 230 

However, the number of trajectories of actions and observations reachable from a given state grows exponentially with the 

length of the sequence. As a result, optimizing conditional plans exactly is generally intractable. Instead, most POMDPs are 

solved approximately using stochastic planning and learning methods. 
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Figure 4: Exploration Markov Decision Process. Each decision step, the agent selects an action 𝒂𝒕based on its current belief over 235 
the world state using a planner (π). The agent takes the action in the world and observes some new data 𝒐𝒕+𝟏. This data is used to 

update the belief 𝒃𝒕+𝟏 for the next step. Each action results in a reward. 

 

 Monte Carlo tree search (MCTS) is a class of stochastic planning algorithms that is commonly used to solve MDPs 

and POMDPs. MCTS methods solve for actions each time a decision is made by simulating the potential outcome of 240 

available action sequences. It uses the simulations to estimate the expected value of each available action and then 

recommends the action with the highest expected value. Each simulated trajectory is recorded in a tree graph, as shown in 

Figure 5.. Each time a simulation is generated, the trajectory is added to the tree. Future action sequence trials are guided by 

the information in the tree at the start of that trial. MCTS algorithms are considered online planners, since they solve for an 

optimal action from a given starting state, and therefore require computation every time a decision is made.  245 
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Figure 5: Monte Carlo search tree. Each simulation in an MCTS algorithm is encoded into a search tree. The example tree is 

rooted at the belief, 𝒃(𝒔𝒕) given at the start of search. Paths from the root to a leaf of the tree represent a simulated trajectory of 

alternating actions, ai
t and observations, oi

t. An example trajectory in the tree is shown in bold. 

 250 

4.2 A POMDP for resource exploration 

 We propose formulating the mineral exploration problem as a sequential decision problem. A sequential plan allows 

information from each measurement in the sequence to inform the choice of subsequent measurements. 

 

     We now return the template example introduced in Figure 1 and state the elements of the POMDP. 255 

 

State Space (𝑆):  The state is a combination of a realization of the unknown subsurface geology (a geostatistical model) and 

any other environment factors that may constrain or affect the outcome of the measurements to be taken and the rewards 

gained. 

• Example POMDP: The state space is the combination of the sub-surface state space and the measurement state 260 

space. The subsurface state in the case of Figure 2 is the combination of 𝑚(𝑥) and 𝑟(𝑥). The measurement state 

defines the location of all previously acquired measurements. 
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Action Space (𝐴): The action space defines the set of measurement actions that can be taken at every step. The action space 

should also include MINE, and ABANDON (do not mine) actions. These actions allow the agent to terminate the 

measurement campaign.  265 

• Example POMDP: The action space is the set of all locations at which a measurement may be acquired in the 

exploration area, along with the MINE and ABANDON actions. Each measurement action is defined by the target 

measurement location. Taking an action 𝑎 signifies measuring 𝑧(𝑥) at 𝑥 = 𝑎. Available measurement locations are 

defined on a regular cartesian grid, and two measurements may not be drilled closer than some minimum distance 

from one another. The minimum distance may be set to zero to represent an unconstrained set.  270 

Observation Space (𝑂): The set of measurements values that may be observed from an action. The observation space may be 

composed of heterogeneous observation types to account for different measurements that may be taken; for example, to 

account for geochemical surface data and drill-core sample data.  

• Example POMDP: The mineralization 𝑧(𝑥) measured at a targeted location is defined as a scalar value. 

Observation Model (𝐿): the observation model defines the effect of sensor and other noise on the data generated by 275 

measurements. In the case that observations can be treated as noiseless, the conditional distribution can be defined by the 

Dirac as 𝐿(𝑜 ∣ 𝑠′, 𝑎) = 𝛿(𝑜 − 𝑔(𝑠′, 𝑎)) , where 𝑔(𝑠′, 𝑎)  is a deterministic function mapping the state and action to the 

observation. In Bayesian literature 𝑔 is also termed the data forward model. 

Transition Model (𝑇): The transition model defines how the state evolves as a result of actions. In our setting, the sub-

surface state does not change because of measuring actions, and only measurement state elements will be updated. The 280 

transition model can also be used to constrain the actions that are available at each step, by setting the transition probabilities 

to 0 for disallowed actions.  

• Example POMDP: The measurement state is updated with newly selected action locations. Later, we will test two 

different transition models. One model does not constrain the available actions and a second constrains the action 

space to measurement locations that are no further than a distance 𝛿 away from the previous measurement. The 285 

purpose of doing so is to illustrate that the methodology allows for action constraints. 

Reward Function (𝑟): The reward function defines a cost for each measurement action taken and a reward for the final 

MINE or ABANDON decision. The reward function takes the following form  

𝑟(𝑠, 𝑎) = 𝐶𝑜𝑠𝑡(𝑠, 𝑎)  𝑖𝑓  𝑎 ∈ 𝐴𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠  

𝑟(𝑠, 𝑎) = 0   𝑖𝑓 𝑎 =  𝐴𝐵𝐴𝑁𝐷𝑂𝑁 290 

𝑟(𝑠, 𝑎) = 𝑃𝑟𝑜𝑓𝑖𝑡(𝑠)  𝑖𝑓 𝑎 = 𝑀𝐼𝑁𝐸 
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where 𝐶𝑜𝑠𝑡(𝑠, 𝑎) defines the cost of taking a measurement, 𝑃𝑟𝑜𝑓𝑖𝑡(𝑠) defines the profit from mining a deposit, and 

𝐴𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠 is the set of measurement actions. 

• Example POMDP: Each measurement has a fixed cost, and the profit is a simple function of the amount of ore 

present v(s) (Figure 1D) and a fixed extraction cost, as shown below.  295 

𝐶𝑜𝑠𝑡(𝑠, 𝑎) = 𝑐𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡  

𝑃𝑟𝑜𝑓𝑖𝑡(𝑠) = 𝑣(𝑠) − 𝑐𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 
 
 

Discount Rate (𝛾): The discount rate defines a time discount rate for the costs and and profits and is used to calculate the net 300 

present value (NPV) of the measurement campaign. 

• Example POMDP: We use a discount rate of 0.99  

 

4.3 Solving the POMDP 

 In this section, we present a method to solve the example 2D mineral exploration POMDP. The methods presented 305 

may be generalized to additional mineral exploration problems. Algorithms to solve POMDPs can typically be applied to any 

valid POMDP model, though with differing effectiveness. The remaining subsections are divided into the tasks required to 

solve the POMDP: belief updating and searching over the large, combinatorial space of possible action sequences.  

4.3.1 Belief Modeling and Updating 

Belief updating in AI is the equivalent of inverse modeling in the geosciences. In our setting, we have indirect 310 

measurements 𝑜 (𝑧(𝑥)) of the state variables 𝑚(𝑥) and 𝑟(𝑥). We have assumed that 𝑚(𝑥) can be modeled with a single 

parameter, σ that is distributed uniformly over a known range. We also assume that 𝑟(𝑥) can be modeled as a Gaussian 

process with known mean 𝜇𝑟 and covariance 𝐶𝑟. The subscript 𝑡 denotes the step (iteration) of the decision-making process. 

After step 𝑡, a total of 𝑡 measurements have been taken and we denote the set of all measurements taken up to that point as 

𝑜1:𝑡 = {𝑜(𝑥𝛼), 𝑥𝛼 = 1, … 𝑡}   315 

The observed measurements are dependent upon both random functions, 𝑚(𝑥) and 𝑟(𝑥), hence a traditional conditional 

simulation cannot be directly applied. Instead, we formulate this problem as a hierarchical Bayes’ problem by factoring the 

joint distribution into  

𝑓(𝑚(𝑥), 𝑟(𝑥)|𝑜1:𝑡) =  𝑓(𝑚(𝑥)|𝑜1:𝑡) × 𝑓(𝑟(𝑥)|𝑚(𝑥), 𝑜1:𝑡) 
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Samples are generated from this distribution hierarchically by first drawing a sample from the distribution over 320 

𝑚(𝑥)  and then using the resulting sample to draw from the conditional distribution over 𝑟(𝑥) . We model the belief 

𝑓(𝑚(𝑥)|𝑜1:𝑡) as a particle set and update it using an importance resampling particle filter (Del Moral 1996, Liu et al. 1997). 

The conditional belief 𝑓(𝑟(𝑥)|𝑚(𝑥), 𝑜1:𝑡) is modeled as a conditional Gaussian process.  

 A particle set is an ensemble of realizations of the state variable with a sample distribution approximating the true 

state distribution. The initial particle set is generated by first sampling an ensemble from the uniform prior distribution. For 325 

an n particle set, this corresponds to an ensemble of  (𝑚𝑖(𝑥), 𝑟𝑖(𝑥)) , 𝑖 = 1, … 𝑛 where each particle is equiprobable.  

 When new information 𝑜𝑡 is observed, the particle filter updates the belief by updating the ensemble such that the 

new particles are sampled according to the posterior distribution 𝑓(𝑚(𝑥)|𝑜1:𝑡). To do this, a posterior weight is calculated 

for each particle according to Bayes’ rule as 

𝑤𝑖 ∝ 𝑓(𝑜𝑡|𝑚(𝑥), 𝑜1:𝑡−1) 330 

Note that each particle is treated as equiprobable in the particle set, so the prior probability is dropped in the above 

expression. The observed measurement 𝑜𝑡 is determined by the sum of 𝑚(𝑥) and 𝑟(𝑥) at the location of the measurement.  

We denote these values as 𝑜𝑡
𝑚 and 𝑜𝑡

𝑟 , respectively, such that 𝑜𝑡 = 𝑜𝑡
𝑚 + 𝑜𝑡

𝑟 . Using this notation, we can decompose the 

particle weight function into 

𝑤𝑖 ∝ 𝑓(𝑜𝑚
𝑡 |𝑚(𝑥)) × 𝑓(𝑜𝑟

𝑡|𝑚(𝑥), 𝑜1:𝑡−1) 335 

Because the value of 𝑜𝑚
𝑡  is completely determined by 𝑚(𝑥), we can simplify this further to  

𝑤𝑖 ∝ 𝑓(𝑜𝑡 − 𝑜𝑚
𝑡 |𝑜1:𝑡−1 − 𝑚(𝑥)) 

which is given by the Gaussian process model conditioned on the difference between the previous measurements and the 

𝑚(𝑥) values at their corresponding locations. 

 Once a weight has been calculated for each particle in the set, a new ensemble is generated. The new set is 340 

generated by sampling 𝑛 particles from the weighted set, with each particle being sampled with probability given by its 

weight. For each particle sampled, a new 𝑟(𝑥) field is generated with conditional Gaussian simulation, conditioning on the 

residual of the observed measurements and the sampled 𝑚(𝑥) field as  

𝑟(𝑥) ∼ 𝑁(𝜇𝑟 , 𝐶𝑟 |𝑜1:𝑡 − 𝑚(𝑥)) 

Sampling a particle ensemble with replacement in this way can lead to degeneracy, in which only a few values of 345 

𝑚(𝑥) are represented in the filtered ensemble. To prevent this, particles that are duplicated in the ensemble are perturbed 

slightly by adding zero-mean Gaussian noise to the 𝜎 parameter generating 𝑚(𝑥). The complete belief update is summarized 

in pseudocode in Algorithm 1 (Table 2) and described in text below. 

 

  350 
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Algorithm 1 UPDATEBELIEF 

function UPDATEBELIEF(b, a, o) 

 O ← bo ∪{o} 

A ← ba ∪ {a} 
W ← () 

for pi in b                                 Calculate Particle Weights 

  ri ← o - mi(xa)  

wi ← N(ri; μi(xa), σ i(xa)) 

APPEND wi to W  

 η ← 1/sumi wi 

for wi in W                                      Normalize Weights 

  wi ← η wi  

 D ← {} 

P ← {} 

while |P| < |b|                                 Resample Particles 

  p ← SAMPLE(b, W) 

if d in D 

   d ← d + e ~ N(0, σ2n)  

  m(x) ← f(x; d) forall x 

R ← O(xa) - m(xa) forall xa in A  

r(x) ~ GP(A, R)                       Conditional Gaussian process 
z(x) ← m(x) + r(x) 

p’ ← (d, z(x)) 

P ← P ∪ {p’} 

 b’ ← (P, O, A) 

return b’  

Table 2: pseudo algorithm for model inversion (belief update) using a hierarchical particle filter 

4.3.2 Online Monte Carlo Planning 

 To solve the POMDP, we search for the optimal action at each step using a variant of POMCPOW (Partially 

Observable Monte Carlo Planning with Observation Widening; Sunberg and Kochenderfer, 2018), a Monte Carlo tree search 355 

algorithm for POMDPs. Each time step 𝑡, the POMCPOW algorithm builds a tree of possible trajectories, with the root node 

of the tree representing the belief 𝑏𝑡 . The full tree is constructed before taking any action at that step. The action with the 

highest estimated value is then returned from the search process. 
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 POMCPOW generates a fixed number of trial trajectories 𝑚, by sampling 𝑚 states from the root belief. For each 

sampled state, POMCPOW simulates taking a series of actions 𝑎𝑡 , … , 𝑎𝑡+𝑘, and encodes the resulting series of observations 360 

as a branch of the tree. For each action visited along the branch, POMCPOW updates the estimate of the expected value of 

taking that action in the sequence using the rewards simulated in that trial. We modified the baseline POMCPOW algorithm 

by replacing the Monte Carlo value estimation with generalized mean estimation. The value of an action node in a tree is 

then given as  

�̄�(𝑏, 𝑎)  =  
1

𝑛
∑ �̄�(𝑏′)

𝑏′ ∈𝐶ℎ

 365 

where Ch is the set of n child belief nodes of action node, a. The �̅�(𝑏) term gives the estimated value of each belief node, 

defined as   

�̄�(𝑏)  =  (
1

𝑛
∑ �̄�(𝑏, 𝑎)𝛼

𝑎∈𝐶ℎ

)

1/𝛼

 

where Ch is the set of child action nodes of the estimated belief node. The value 𝛼 > 0 is a parameter, where values of 𝛼 >

1 more heavily weight actions with higher estimated values. We used 𝛼 =  ∞, which resulted in backing up the maximum 370 

action node estimate at each belief node.  

Each step of a simulated trial, POMCPOW simulates taking the action with the highest upper confidence bound on 

its estimated value. In this way, POMCPOW optimistically explores the action space. This strategy has been proven to 

converge to the optimal action in the limit of infinite samples. After all 𝑚 trials have been generated, POMCPOW returns 

the root node child action with the highest estimated value.  375 

 For POMDPs with large action spaces, POMCPOW limits how often new actions can be added to the search tree 

through a progressive widening rule. Under progressive widening, the total number of child action nodes that a given belief 

node may have, is defined as a function of the total number of times that node has been visited in previous trials. The limit is 

defined as 𝐶𝑚𝑎𝑥 = 𝑘𝑛𝛼 , where 𝑛 is the total number of previous visits. Actions added to the tree are sampled according to a 

stochastic policy. We defined the k-σ upper confidence bound for each point in the exploration area as 𝑈𝐶𝐵(𝑥) = 𝑚(𝑥) +380 

𝜇(𝑥) + 𝑘𝜎(𝑥) , where 𝜇  and 𝜎  are given by the distribution of the parent node belief. Actions were then sampled in 

proportion to the UCB value at the target location. Intuitively, this guided POMCPOW to search actions that had both high 

expected value, and high uncertainty.   

 

4.4 Illustration Case  385 

 In this section, we present the result of solving the problem for the mineral field shown in Figure 6, below. In all 

problems, rewards are measured in units of massive ore, where one pixel in the massive ore map (Figure 3) represents one 
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unit of ore. In all the problems studied, the massive ore threshold was set to 0.7 and the extraction cost was set to 150 units. 

This example case has a total volume of 158 units massive ore, making it a marginally profitable case. The measurement cost 

was 0.1 units per measurement taken. In this example, we constrained the measurements to be taken a maximum distance of 390 

10 distance units away from the previous measurement, where each pixel is one distance unit.  

Figure 7 shows the mean and standard deviation mineralization 𝑧(𝑥) at each point in the exploration area calculated 

from the initial belief ensemble before any measurements have been taken. The histogram in Figure 8 shows the distribution 

of massive ore quantities for the realizations in the ensemble. The vertical line shows the 158 massive ore volume of the 

illustration case realization. 395 

 

 

Figure 6: Illustration case. The left figure shows the mineralization 𝒛(𝒙) of the example case. The right figure shows the massive 

ore mass of the mineral field 𝒊(𝒙).  

 400 
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Figure 7: Initial ore belief. The left figure shows the mean mineralization from the prior belief at each point in the exploration 

area. The figure on the right shows the marginal standard deviation of mineralization at each point.  

 

 405 

Figure 8: Initial belief ore histogram. The figure shows the distribution of massive ore volumes in the initial belief ensemble. The 

vertical line shows the actual volume of ore in the illustration case. 

https://doi.org/10.5194/gmd-2022-166
Preprint. Discussion started: 8 August 2022
c© Author(s) 2022. CC BY 4.0 License.



19 

 

 We ran POMCPOW for 10,000 simulations per-step. The resulting actions taken in the first five steps are shown in 

Figure 9, below. As can be seen, the deviation of the belief over the ore quantities decreases as measurements are taken, and 

the expected value tends toward the true value. The agent tends to take an “extent finding” approach, where it alternates 410 

taking actions closer and then farther from the expected center of the orebody. This pattern may be interpreted as searching 

for the maximum extent of the ore-body edge.  

 

 415 
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Figure 9: Initial measurement trajectory. Each figure shows the belief resulting from the measurements taken by the agent. The 

circles show the locations at which measurements were taken. The arrows indicate the sequence in which actions were taken. 

 The complete 22 measurement trajectory is shown in Figure 10 below along with the final histogram. At the 420 

conclusion of the measurements, the algorithm correctly decided to mine the deposit. As can be seen, at the time it made its 

decision, the expected value of the ore-quantity was approximately one standard deviation above the extraction cost 

threshold of 150. The agent did not stop exploring once the expected value exceeded the threshold, but only once it had 

exceeded by a significant threshold. This suggests that the agent would stop only when the value of the information gained 

by a measurement was exceeded by the cost of the measurement.  425 
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Figure 10: Complete measurement trajectory. The figure on the left shows the complete trajectory of all measurements taken in 

the illustration case. The figure on the right shows the resulting histogram.  

 

5 Experiments and Comparison with Baseline Methods 430 

5.1 Overview of Test Cases 

 To test the proposed approach, we conducted experiments on a variety of problem configurations. For these 

experiments, we tested three different ore-settings. 

1. Single body, fixed position: A single mineralization process generated an ore body with a known centroid location 

at the center of the exploration domain.  435 

2. Single body, variable-position: A single mineralization process generated an ore body with an unknown centroid 

location somewhere in the exploration domain.  

3. Two body, variable-positions: Two mineralization processes generated orebodies, both with unknown centroid 

locations within the exploration domain.   

The illustration case previously presented was from the single body, fixed-position problem configuration. Examples of the 440 

single body, variable-position and two body cases are shown in Figure 11. For each problem configuration we tested the 

POMCPOW agent with measurements constrained to a distance of 10 units from the previous location and without 

constraints on measurement location.   
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 445 

 

Figure 11: (Top row): Single body, variable location realization. The left figure shows the mineral field generated by a primary 

process with a randomly selected centroid location. The right figure is the corresponding massive-ore map. (bottom row) Two 

body realization. The left figure shows the mineral field generated by two primary processes, each with a randomly selected 

centroid location. The right figure is the corresponding massive-ore map.  450 

 

We also tested the performance of POMCPOW against a baseline grid-pattern approach. In this method, 

measurements were taken at locations defined by k-by-k grids, as shown in Figure 12. Each grid pattern covers a square area 

located at the center of the exploration domain, with measurement coordinates taken at regularly spaced intervals along the 

cartesian directions of the grid. We solved for the optimal grid area for a 3-by-3 measurement grid by minimizing the 455 
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expected standard deviation of the resulting belief. We solved for this value by first optimizing with Nelder-Mead simplex 

search (Nelder 1965) on the continuous range [5, 50] and then rounding the resulting value. The grid area was set to 30-by-

30 for all grid patterns.  

We tested grids with 4, 9, and 16 measurements, as well as a single point fixed at the center of the exploration area. 

We also tested a baseline in which measurement locations were selected at random at each step. This allows us to understand 460 

the improvement of the approaches relative to an achievable lower-bound.  

 

 

Figure 12: Baseline grid patterns. The figures show the baseline grid patterns for 2-by-2, 3-by-3 and 4-by-4 grids, each with a total 

of 4, 9, and 16 measurements respectively. The grids cover the extent of a w-by-w area in the center of the exploration domain. A 465 
single measurement at the center of the domain is also shown in the leftmost figure.  

 

We ran Monte Carlo tests on the problem configurations described. For each case, we generated a set of 100 

mineral-field realizations, each one assumed as a possible truth. For each realization, measurements were taken according to 

the constrained and unconstrained POMCPOW solvers, the grid policy, and the random policy. The change in mean error 470 

and standard deviation for all the approaches was calculated. For the POMCPOW solver, we also measured the expected 

number of measurements as a function of the total deposit size, and the accuracy of the final MINE or ABANDON decision.  

The data from the tests suggested that different behavior emerged through POMCPOW for cases that were non-

economic, highly economic, and borderline economic. To investigate this, we solved one of each economic level for the 

three deposit settings using POMCPOW with action constraints. At the end of this section, we present the results of these 475 

trials and a plot of the observed trend in the Monte Carlo data.  

5.2 Single Body, Fixed Location 

 In this section, we present the results for the Monte Carlo tests on the case with a single, unimodal mineralization 

process located at the center of the exploration domain. For every solver, we measured the belief accuracy by calculating the 

relative mean absolute error (RMAE) of the estimated deposit volume resulting from each measurement. The relative MAE 480 

is the estimate error relative to the true deposit volume and is defined as 
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𝑅𝑀𝐴𝐸 =
1

𝑛
∑

|𝑣𝑖
̄  −  𝑣𝑖|

𝑣𝑖

𝑛

𝑖=1

 

where 𝑣�̄� and 𝑣𝑖  are the estimated and true deposit volumes for trial i, respectively. We calculated the RMAE after each 

measurement was taken by the POMCPOW policies and the random baseline. We also calculated the RMAE after all 

measurements were taken for the grid patterns with one, four, nine, and sixteen measurements. The resulting trends are 485 

shown in Figure 13 with one standard error bounds.  

 

Figure 13: Relative MAE single mineralization, fixed location. The plot shows the mean relative absolute error after a given 

number of measurements taken under each tested method. The mean absolute error is shown along with one standard error 

bounds for each trend.  490 

 

 We also measured the change in uncertainty (belief) by calculating the standard deviation resulting from each 

measurement. After each measurement, we calculated the ratio of the resulting volume standard deviation relative to the 

initial belief standard deviation (the Bayesian prior of volume). After measurement t in the sequence, the standard deviation 
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ratio is given by 
𝜎𝑡

𝜎0
, where 𝜎𝑡 is the belief standard deviation after the measurement (posterior standard deviation of volume), 495 

and 𝜎0 is the standard deviation of the initial belief. We calculated this ratio after each measurement was taken by the 

POMCPOW policies and the random baseline. We also calculated the ratio after all measurements were taken for the grid 

patterns with one, four, nine, and sixteen measurements. The mean standard deviation ratios over the Monte Carlo trials for 

each of the solvers is shown in Figure 14 along with one standard error bounds.  

 500 

Figure 14: Single Body, fixed location standard deviation ratios. The plot shows the mean standard deviation ratio after a given 

number of measurements taken under each tested method. The mean ratio is shown along with one standard error bounds for 

each trend.  

 

 In addition to the belief trends shown above, we also further analyzed the behavior of the POMCPOW methods 505 

with and without action distance constraints. For each, we examined the accuracy of the algorithm in making its final MINE 

or ABANDON decision, as well as how many measurements it took before reaching a decision. We also looked at the 

general trend in where it took measurements relative to the mineralization centroid location. These are presented in the 

following sub-sections.  
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 510 

5.2.1 POMCPOW, Constrained Actions 

 The final decision results for the POMCPOW solver with constraints on the maximum distance between 

measurement locations is shown in Table 3, below. This table presents the proportions of profitable and unprofitable deposits 

that POMCPOW decided to MINE or ABANDON at the end of each trial. A deposit is profitable if the ore volume exceeds 

the extraction threshold. A decision to MINE a profitable deposit or to ABANDON an unprofitable deposit is considered 515 

correct. The total amount of ore in profitable deposits that was mined is also presented. The average number of 

measurements taken before making a decision is shown for each deposit type, and for all cases.  

 

 Mined Abandoned Total  Accuracy 

Profitable 28 4 32 87.5% 

Unprofitable 2 66 68 97.1% 

Total 30 70 100 94.0% 

Profitable Ore 1097 57 1154 95.0% 

Mean Measures 7.8 5.9 6.5 – 

Table 3: Single Body, fixed location POMCPOW results with action constraints. 

 520 

 Among the assumed “true” deposits, 32% are profitable. Among all the profitable cases, there is a total of 1154 

units of ore, with POMCPOW deciding to mine 1097 units corresponding to 95% of profitable ore correctly extracted. On 

average, POMCPOW took 1.8 more measurements in profitable cases than in unprofitable cases. 

 

 POMCPOW was able to decide when to terminate taking measurements at any point during the campaign. If it did 525 

not decide to terminate, it was limited to a total of 25 measurements.  Figure 15 below shows the histogram of the number of 

measurements before termination taken by POMCPOW over the Monte Carlo trials.  

 

 

 530 
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 535 

Number of Measurements 

 

Figure 15: Measurement histogram, POMCPOW with action constraints, single body with fixed location. This figure shows 

histogram of the number of measurements taken by the POMCPOW solver over all Monte Carlo trials. The trials were limited to 

a maximum of 25 measurements.  540 

 

We recorded the distance between each measurement in the sequence and the center of the mineralization. The average 

distance for each point in the sequence is shown for ten measurements in Figure 16, along with one standard error bars. One 

notice how the agent starts away from the center of the orebody, then steps in toward the center, then gradually steps away 

from the center. 545 
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Figure 16: Measurement distance to center, POMCPOW with action constraints, single body with fixed location. The plot shows 

the average distance between the measurement location and the mineralization center for the measurements at each time step. One 

standard error bars are also presented. 550 

 

5.2.2 POMCPOW, Unconstrained Actions 

The final decision results for the POMCPOW solver with no constraints on measurement locations is shown in 

Table 4, below. The same set of trial deposits were used to test both the constrained and unconstrained cases. The same 

results as presented in the constrained case are presented here for the unconstrained case.   555 

 

 Mined Abandoned Total  Accuracy 

Profitable 27 5 32 84.4% 

Unprofitable 5 63 68 92.6% 

Total 30 70 100 90.0% 

Profitable Ore 1058 96 1154 91.6% 

Mean Measures 7.6 5.9 6.4 – 

Table 4: Single Body, fixed location POMCPOW results without action constraints. 
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Among all the profitable cases, there is a total of 1154 units of ore, with POMCPOW deciding to mine 1058 units 

corresponding to 91.6% of profitable ore correctly extracted. On average, POMCPOW took 1.7 more measurements in 560 

profitable cases than in unprofitable cases. 

As in the constrained test, we plot the number of measurements taken before making the final decision in Figure 17, 

below. We also present the average distance from the deposit center in Figure 18.  

 

Number of Measurements565 

 

Figure 17: Measurement histogram, POMCPOW without action constraints, single body with fixed location. This figure shows 

histogram of the number of measurements taken by the POMCPOW solver over all Monte Carlo trials. The trials were limited to 

a maximum of 25 measurements.  

 570 
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Figure 18: Measurement distance to center, POMCPOW without action constraints, single body with fixed location. The plot 

shows the average distance between the measurement location and the mineralization center for the measurements at each time 

step. One standard error bars are also presented. 

 575 

5.3 Single Body, Variable Location 

In this section, we present the results for the Monte Carlo tests on the case with a single, unimodal mineralization 

process located at a variable, unknown point in the exploration domain. For every solver, we measured the belief accuracy 

by calculating the relative mean absolute error (RMAE) of the estimated deposit volume resulting from each measurement. 

The resulting trends are shown in Figure 19 with one standard error bounds.  580 
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Figure 19: Relative MAE single mineralization, variable location. The plot shows the mean relative absolute error after a given 

number of measurements taken under each tested method. The mean absolute error is shown along with one standard error 

bounds for each trend.  585 

 

We also measured the change in belief uncertainty by calculating the standard deviation ratios of the belief volume 

estimate resulting from each measurement. The mean standard deviation ratios over the Monte Carlo trials for each of the 

solvers is shown in Figure 20 along with one standard error bounds.  

 590 
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Figure 20: Single Body, variable location standard deviation ratios. The plot shows the mean standard deviation ratio after a given 

number of measurements taken under each tested method. The mean ratio is shown along with one standard error bounds for 

each trend.  

 595 

5.3.1 POMCPOW, Constrained Actions 

The final decision results for the POMCPOW solver with distance constraints on measurement locations is shown 

in Table 5, below. The same set of trial deposits were used to test both the constrained and unconstrained cases.  

 

 Mined Abandoned Total  Accuracy  

Profitable 18 1 19 94.7%  

Unprofitable 3 78 81 96.3%  
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Total 21 79 100 96.0%  

Profitable Ore 778 36 814 95.6%  

Mean Measures 9.6 5.6 6.5 –  

Table 5: Single Body, variable location POMCPOW results with action constraints. 600 

 

For the deposits tested, 19% were profitable. Among all the profitable cases, there was a total of 814 units of ore, 

with POMCPOW deciding to mine 778 units corresponding to 95.6% of profitable ore correctly extracted. On average, 

POMCPOW took 4.0 more measurements in profitable cases than in unprofitable cases. 

We plotted the number of measurements taken before making the final decision in Figure 21, below. We also 605 

present the average distance from the deposit center in Figure 22.  

 

Number of Measurements 

 

Figure 21: Measurement histogram, POMCPOW with action constraints, single body with variable location. This figure shows 610 
histogram of the number of measurements taken by the POMCPOW solver over all Monte Carlo trials. The trials were limited to 

a maximum of 25 measurements.  
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Figure 22: Measurement distance to center, POMCPOW with action constraints, single body with variable location. The plot 615 
shows the average distance between the measurement location and the mineralization center for the measurements at each time 

step. One standard error bars are also presented. 

 

5.3.2 POMCPOW, Unconstrained Actions 

The final decision results for the POMCPOW solver with no constraints on measurement locations is shown in 620 

Table 6, below.  

 

 Mined Abandoned Total  Accuracy 

Profitable 17 2 19 89.4% 

Unprofitable 4 77 81 95.1% 

Total 21 79 100 94.0% 

Profitable Ore 754 60 814 92.6% 

Mean Measures 8.6 4.2 5.1 – 

Table 6: Single Body, variable location POMCPOW results without action constraints. 
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Among all the profitable cases, there was a total of 814 units of ore, with POMCPOW deciding to mine 754 units 625 

corresponding to 92.6% of profitable ore correctly extracted. On average, POMCPOW took 4.4 more measurements in 

profitable cases than in unprofitable cases. 

As in the constrained test, we plotted the number of measurements taken before making the final decision in Figure 

23, below. We also present the average distance from the deposit center in Figure 24.  

 630 

Number of Measurements 

 

Figure 23: Measurement histogram, POMCPOW without action constraints, single body with variable location. This figure shows 

histogram of the number of measurements taken by the POMCPOW solver over all Monte Carlo trials. The trials were limited to 

a maximum of 25 measurements.  635 
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Figure 24: Measurement distance to center, POMCPOW without action constraints, single body with variable location. The plot 

shows the average distance between the measurement location and the mineralization center for the measurements at each time 

step. One standard error bars are also presented. 640 

5.4 Multiple Bodies 

In this section, we present the results for the Monte Carlo tests on the case with two mineralization processes 

located at variable, unknown points in the exploration domain. For every solver, we measured the belief accuracy by 

calculating the relative mean absolute error (RMAE) of the estimated deposit volume resulting from each measurement. The 

resulting trends are shown in Figure 25 with one standard error bounds.  645 
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Figure 25: Relative MAE, two mineralization processes. The plot shows the mean relative absolute error after a given number of 

measurements taken under each tested method. The mean absolute error is shown along with one standard error bounds for each 

trend.  650 

 

We also measured the change in belief uncertainty by calculating the standard deviation ratios of the belief volume 

estimate resulting from each measurement. The mean standard deviation ratios over the Monte Carlo trials for each of the 

solvers is shown in Figure 26 along with one standard error bounds.  
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 655 

Figure 26: Two mineralization process standard deviation ratios. The plot shows the mean standard deviation ratio after a given 

number of measurements taken under each tested method. The mean ratio is shown along with one standard error bounds for 

each trend.  

 

5.4.1 POMCPOW, Constrained Actions 660 

The final decision results for the POMCPOW solver with no constraints on measurement locations is shown in 

Table 5, below. The same set of trial deposits were used to test both the constrained and unconstrained cases.  

 Mined Abandoned Total  Accuracy 

Profitable 13 6 19 68.4% 

Unprofitable 1 80 81 98.8% 

Total 14 86 100 93.0% 
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Profitable Ore 713 95 808 88.2% 

Mean Measures 10.1 5.4 6.2 – 

Table 7: Multi-body POMCPOW results with action constraints. 

 

For the deposits tested, 19% were profitable. Among all the profitable cases, there was a total of 808 units of ore, 665 

with POMCPOW deciding to mine 713 units corresponding to 88.2% of profitable ore correctly extracted. On average, 

POMCPOW took 4.7 more measurements in profitable cases than in unprofitable cases. 

We plotted the number of measurements taken before making the final decision in Figure 27, below.  

 

Number of Measurements 670 

 

Figure 27: Measurement histogram, POMCPOW with action constraints, multiple ore-bodies. This figure shows histogram of the 

number of measurements taken by the POMCPOW solver over all Monte Carlo trials. The trials were limited to a maximum of 25 

measurements. 

 675 

5.4.2 POMCPOW, Unconstrained Actions 

The final decision results for the POMCPOW solver with no constraints on measurement locations is shown in 

Table 8, below.  
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 Mined Abandoned Total  Accuracy 

Profitable 13 6 19 68.4% 

Unprofitable 1 80 81 98.8% 

Total 14 86 100 93.0% 

Profitable Ore 764 44 808 94.6% 

Mean Measures 8.9 6.1 6.5 – 

Table 8: Multi-Body POMCPOW results with action constraints. 

 680 

Among all the profitable cases, there was a total of 814 units of ore, with POMCPOW deciding to mine 764 units 

corresponding to 93.0% of profitable ore correctly extracted. On average, POMCPOW took 3.8 more measurements in 

profitable cases than in unprofitable cases. 

As in the constrained test, we plotted the number of measurements taken before making the final decision in Figure 

28, below.  685 

Number of Measurements

 

Figure 28: Measurement histogram, POMCPOW without action constraints, multiple ore-bodies. This figure shows histogram of 

the number of measurements taken by the POMCPOW solver over all Monte Carlo trials. The trials were limited to a maximum 

of 25 measurements. 690 
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5.5 Deposit Size Sensitivity Studies 

The POMCPOW solver was allowed to terminate the measurement campaign at any point before the maximum of 

25 measurements were taken. We hypothesized that the size of the deposit being measured would impact how many 

measurements POMCPOW decided to take. To test this, we ran POMCPOW on three different deposit sizes for each of the 695 

three problem configurations.  

1. Sub-Economic: The total massive ore was below the economic cutoff threshold by more than 30% of the threshold 

value.  

2. Borderline-Economic: The total massive ore was within 10% of the economic cutoff threshold value.  

3. Economic: The total massive ore was above the economic cutoff threshold by at least 20% of the economic 700 

threshold value.  

The resulting trajectory of measurements taken by POMCPOW for each of these configurations is shown in figure 29, figure 

30, and figure 31 for the single body with fixed location, single body with variable location, and multi-body cases, 

respectively. 

 705 

 

 

https://doi.org/10.5194/gmd-2022-166
Preprint. Discussion started: 8 August 2022
c© Author(s) 2022. CC BY 4.0 License.



42 

 

 

Figure 29: Deposit size study results for the single body with fixed centroid location case. The sub-economic, borderline, and 

economic cases are shown in the left, center, and right columns, respectively. The top row shows the massive ore present in the 710 
tested case. The center row shows the trajectory taken by POMCPOW and the standard deviation of the resultant belief. The 

bottom row shows the histogram of the ore volumes in the final belief along with the true massive ore volume. 

 

 

 715 

 

Figure 30: Deposit size study results for the single body with variable centroid location case. The sub-economic, borderline, and 

economic cases are shown in the left, center, and right columns, respectively. The top row shows the massive ore present in the 
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tested case. The center row shows the trajectory taken by POMCPOW and the standard deviation of the resultant belief. The 

bottom row shows the histogram of the ore volumes in the final belief along with the true massive ore volume. 720 

 

 

 

 

Figure 31: Deposit size study results for multi-body case. The sub-economic, borderline, and economic cases are shown in the left, 725 
center, and right columns, respectively. The top row shows the massive ore present in the tested case. The center row shows the 

trajectory taken by POMCPOW and the standard deviation of the resultant belief. The bottom row shows the histogram of the ore 

volumes in the final belief along with the true massive ore volume. 

 

 The number of measurements taken in each tested configuration are summarized in table 9. In all three problem 730 

configurations, POMCPOW made significantly fewer measurements on the sub-economic deposits than it did on the 

borderline or economic deposits. In the single-body cases, POMCPOW measured the borderline-economic deposits more 
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than the economic case. In the multi-body case, POMCPOW reached the maximum of 25 measurements for both the 

borderline, and economic cases.  

 735 

 Sub-Economic Borderline Economic 

Single-Body, Fixed Location 4 22 10 

Single-Body, Variable Location 5 25 23 

Multi-Body 13 25 25 

Table 9: Deposit size study summary. The total number of measurements taken by POMCPOW before terminating the 

measurement campaign is shown in for each test configuration and deposit size. Cases in which the maximum 25 measurements 

were taken are shown in bold.  

 
 We examined the results of the Monte Carlo studies for a trend in the measurement campaign length. There was a 740 

positive correlation between the size of the mineral deposit and the number of measurements taken in the single-body cases. 

This trend is shown in Figure 32. The multi-body cases did not have a significant number of trials with fewer than ten 

measurements.  

 

Figure 32: Measurement campaign length and deposit size. The mean deposit size is shown for different measurement campaign 745 
lengths, along with one standard-error bounds. 
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6 Discussion 

 In all three deposit configurations tested in the Monte Carlo studies, the measurements taken by POMCPOW tended 

to improve the RMAE and the standard deviation ratio of the resulting belief significantly more quickly than the grid pattern 750 

and the random methods. In all cases, POMCPOW tended to reach the accuracy and precision of the full sixteen 

measurement grid after just seven to ten measurements. With increasing complexity of the problem (more uncertainty, more 

bodies) the difference in performance between the AI and the grid pattern method increases.  

 In the single-body cases, the performance of the POMCPOW solver with and without action constraints was not 

generally significantly different. In several cases, the constrained trajectories outperformed the unconstrained trajectories in 755 

terms of both belief accuracy and variance. This suggests the POMCPOW solver did not completely converge in the 

unconstrained cases, since the constrained trajectories are necessarily a subset of those reachable in the unconstrained case. 

This is likely a result of the unconstrained problem having significantly more locations for POMCPOW to select from at 

each step. Converging on larger search spaces tends to require more trial simulations in POMCPOW to converge. In the 

presented experiments, the POMCPOW trials were run with the same number of rollouts in both the constrained and 760 

unconstrained cases. In the multi-body cases, the unconstrained solver did tend to outperform the constrained solution. This 

suggests that the constraints pose a more significant limitation to the solution in the multi-body case than in the single-body 

case.  

 In the single-body cases, the final MINE or ABANDON decisions made by POMCPOW were accurate in both 

economic and non-economic cases, choosing the correct decision in over 90% of cases in most test configurations. The 765 

accuracy in non-economic cases tended to be slightly higher than in economic cases. This is likely the result of sub-

economic deposits being more common in the prior distribution than economic deposits, and the initial belief expected ore 

volume starting below the economic threshold. The percentage of profitable ore mined tended to be higher than the ratio of 

correct mining decisions. For example, in the single-body fixed location case with measurement constraints, POMCPOW 

correctly identified approximately 89% of the profitable cases, though it mined 95% of all the profitable ore. This suggests 770 

that the economic cases which POMCOW failed to correctly identify were only marginally economic.  

The accuracy of the final POMCPOW decisions decreased significantly in the multi-body cases. In approximately 32% 

of profitable cases, the algorithm incorrectly decided to abandon the prospect. Inspection of the test results suggested that 

this was due to the belief model (Bayes model) failing to correctly resolve one of the two ore bodies before making a 

decision. An example of this is shown in Figure 32, where the algorithm incorrectly abandoned the marginally economic 775 

deposit after seven measurements before resolving both bodies. This behavior is likely caused by the belief incorrectly 

concentrating probability on a sub-economic, single body cases, not by the POMCPOW algorithm. The observed belief 

behavior was likely a result of the particle ensemble failing to retain a sufficient number of multi-body instances. Many 
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methods have been proposed to monitor and prevent this type of particle filter degeneracy (Thrun, 2005), hence, future 

research will focus on including better particle filter methods for these types of problems  780 

 

 

Figure 33: Multi-Body Failure Example. This figure shows an example of an incorrect ABANDON decision made on the multi-

body case. In this trial, the belief converged too quickly to a sub-economic case with a single ore-body before resolving the second 

ore body in the south west.  785 

 

Interesting emergent behavior was observed in the single-body cases. The initial measurement was not typically taken at 

the center of the belief distribution but was instead offset slightly. The subsequent measurements tended to step-in towards 

the center before gradually moving outward. This behavior can be understood as intuitive extent-finding methodology. Each 

measurement is taken to try to locate the edge of the deposit, where the most information about the deposit size can be 790 

learned. As more information is gained near the center, where positive observations are more likely, the measurements tend 

to move outward toward more informative, but higher variance data may be gathered. 

 One important feature of the defined POMDP is that it allows the solver to make a variable number of 

measurements before concluding. In each case studied, a wide variety of trajectory lengths were observed. Because there is a 

cost per-measurement and a time discount on the eventual reward, POMCPOW tended to prefer shorter measurement 795 

campaigns, when possible, with fewer than five measurements being the mode in most cases. However, clear evidence of 

truncation at the upper end can be seen in the measurement histograms, suggesting that in some cases, more than the 

maximum allowed 25 measurements would have been taken had the limit not been imposed. In general, it was observed that 

POMCPOW took more measurements on cases that we would consider more difficult. On cases that were borderline 

economic, in which resolving the deposit size with good fidelity was necessary to make the correct final decision, 800 

POMCPOW tended to take more measurements. For clearly sub-economic cases, POMCPOW abandoned after just a few 

measurements. For clearly economic cases, POMCPOW took more measurements than in clearly sub-economic cases. This 

is likely caused by the initial belief starting with an expected sub-economic value. This would require more Bayesian 

updates to converge toward an economic value than a sub-economic value. We also noted that fewer measurements were 

taken in the fixed-location cases than in the variable location cases. This is likely the result of the latter cases requiring the 805 

POMCPOW solver to localize the deposit in addition to measuring its extent. 
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7 Conclusion 

In this work, we presented a Bayesian sequential decision-making approach to improving geoscientific model 

through sequential data acquisition planning, with application to mineral exploration. We presented a framework to model 

challenges like mineral exploration problems by means of partially observable Markov decision processes (POMDPs). We 810 

demonstrated the general method with a specific example case in which we solved a 2D mineral exploration problem with a 

known exploration area. To solve this problem, we developed a hierarchical Bayesian belief using a particle filter and 

Gaussian process regression and the Monte Carlo search algorithm POMCPOW.  

The results of our studies demonstrate that a closed-loop sequential decision-making approach significantly 

outperforms a typical fixed-pattern grid approach. The measurements recommended by POMCPOW improved the accuracy 815 

and variance of the belief over the deposit extent significantly faster than the baseline methods. The resulting behavior that 

emerged from POMCPOW was intuitive and tended to result in shorter measurement campaigns than a fixed pattern 

resulting in comparable accuracy.  

The methods presented in this work are general to many areas of resource exploration. The belief and solver 

presented for the test case are not necessarily required to implement this approach. Future work should apply these methods 820 

to higher fidelity exploration problems using more realistic geological models and measurement simulations, such as 

geophysical surveys. The POMCPOW solver was chosen because it is generally applicable to many POMDPs without 

modification. However, as seen in the unconstrained cases, POMCPOW may have not converged to an approximately 

optimal solution. Future work should investigate modifications to the baseline POMCPOW algorithm to improve its 

performance in exploration tasks. Extensions to POMCOW should be explored to use the fact that the deposit state 825 

underlying the belief is static to reduce the variance of the value estimates and the required sample complexity of the search. 

Future work should also investigate other solver types, such as point-based value iteration (PBVI), that may handle high-

variance beliefs more efficiently.  

 

Code/data availability 830 

The current version of Intelligent Prospector is available from the project 

website: https://github.com/sisl/MineralExploration under the MIT License. The exact version of the model used to produce 

the results used in this paper is archived on Zenodo (Mern, 2022 10.5281/zenodo.6727378), as are input data and scripts to 

run the model and produce the plots for all the simulations presented in this paper (Mern, 2022 10.5281/zenodo.6727378). 
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