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Abstract. Geoscientific models are based on geoscientific data, hence building better models, in the sense of attaining better
predictions, often means acquiring additional data. In decision theory questions of what additional data is expected to best
improve predictions/decisions is within the realm of value of information and Bayesian optimal survey design. However, these
approaches often evaluate the optimality of one additional data acquisition campaign at a time. In many real settings, certainly
in those related to the exploration of Earth resources, possibly a large sequence of data acquisition campaigns need to be
planned. Geoscientific data acquisition can be expensive and time consuming, requiring effective measurement campaign
planning to optimally allocate resources. Each measurement in a data acquisition sequence has the potential to inform where
best to take the following measurements, however, directly optimizing a closed-loop measurement sequence requires solving
an intractable combinatoric search problem. In this work, we formulate the sequential geoscientific data acquisition problem
as a Partially Observable Markov Decision Process (POMDP). We then present methodologies to solve the sequential problem
using Monte Carlo planning methods. We demonstrate the effectiveness of the proposed approach on a simple 2D synthetic
exploration problem. Tests show that the proposed sequential approach is significantly more effective at reducing uncertainty
than conventional methods. Although our approach is discussed in the context of mineral resource exploration, it likely has

bearing on other types of geoscientific model questions.

1 Introduction

As the world weans itself off fossil fuels over the next decades, new forms of energy will heavily rely on Earth materials, in
particular minerals. Rare earth elements are used in a variety of clean-energy technologies (Hague et al., 2014). Fully
electrifying the light-duty auto fleet requires discovering new ore deposits of critical electric vehicle (EV) materials: copper,
nickel, cobalt, and lithium (Savacool et al., 2020). Increasing the required supply of these critical minerals requires a yet

unattained discovery rate of new deposits. Mineral exploration is slow, requiring extensive guidance from human experts. As
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a result, the rate of new discoveries has declined over the last decades, since deposits with sections visible at the surface have
mostly been discovered (Davies et al., 2021). At the same time, the demand will continue to increase, making minerals a
targeted commodity subject to international conflict (National Research Council, 2008), social, and environmental concerns
(Agusdinata et al., 2018). Enhancing and speeding up mineral exploration at a planet-wide scale is required. Our approach,

using Artificial Intelligence for effective planning of exploration endeavors, aims to contribute to this challenge.

Mineral exploration requires making sequential decisions about what type of data to acquire, where to acquire it, and at what
resolution with the goal of detecting an economically mineable deposit. In other words, mineral exploration is a sequential
decision-making problem under uncertainty. These types of problems have previously been studied under several non-
sequential frameworks in various areas of the geosciences. Optimizing spatial designs of experiments is a well-studied topic.
McBratney et al. (1981) described a method for designing optimal sampling schemes based on the theory of regionalized
variables (Matheron, 1971) by modeling spatial dependence with semi-variograms. The 1990s saw a significant debate arising
in the soil sciences community (Brus & Gruijter, 1997; Van Groeningen et al., 1999; Lark, 2002, Heuvelink et al., 2006)
around adaptation of geostatistics and its role in optimal survey design. Likewise, geostatistics-based optimal design of
environmental monitoring has been significantly developed (De Gruijter et al., 2006; Melles et al., 2011). Geostatistical
methods are often not Bayesian, which may be a disadvantage when the spatial structures (e.g., variograms) are uncertain

themselves. A method for Bayesian optimal design in spatial analysis was developed by Diggle & Lophaven (2006).

Optimal placement of drill-holes for mineral exploration and mining (resource delineation) has received significant attention.
Some methodologies aim to minimize the uncertainty on spatial properties through use of geostatistical algorithms that model
the effect of measured data on spatial uncertainty (Pilger et al., 2001; Koppe et al., 2011; Koppe et al., 2017; Caers et al., 2022;
Hall et al., 2022). Others rely on decision theoretic concepts of value of information to quantify the dollar value of gathered
information to reduce uncertainty on an economic property of interest (Froyland et al., 2004; Eidsvik, & Ellefmo, 2013;
Soltani-Mohammadi & Hezarkhani, 2013). Bickel et al. (2008) recognizes the sequential nature of the problem and illustrate
that sequential information gathering is superior to non-sequential schemes, a concept that goes back to the 1970s (Miller,
1975).

The above methodologies evaluate the performance of a given spatial survey design, but do not address the combinatorial
problem of creating optimal survey plans. In general, the number of sequences to evaluate grows exponentially with the number
of surveys. For example, when planning a sequence of 10 surveys at 100 possible locations, there are more than 17 billion
possible sequences that could be evaluated. Many problems will likely require more than 10 data acquisition actions to discover
a mineral deposit that is economically feasible. Therefore, methodologies (like Emery et al., 2008) that use optimization in

combination with geostatistics are likely intractable for many practical problems.
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Sequential planning methods solve for each action in a sequence only after observing the results of each previous action.
Planning is typically done in either an open-loop or closed-loop fashion. Open-loop methods solve for each action in the
sequence that gives the best immediate return according to some metric, without considering how the information learned from
taking that action is likely to impact future decisions. Closed-loop methods solve for actions that maximize the expected return
of all remaining actions in a sequence. Closed-loop methods tend to outperform open-loop methods, especially on tasks in
which a lot of information is learned each step (Russell and Norvig, 2020: p.120-122). Closed-loop methods, however, tend to

require significantly more computational effort than open-loop approaches.

Recent work has applied Bayesian optimization to develop open-loop solutions to sequential experiment design (Shahriari et
al., 2016). Marchant et al. (2014) specifically consider the application of Bayesian optimization to spatial-temporal
measurement sequences. Receding horizon control has been used in sequential resource development (Grema et al., 2013) in
conjunction with general particle swarm optimization. While these methods may be tractable, they are likely sub-optimal over

the entire measurement sequence, since each action only optimizes its own return.

Closed loop methods solve for optimal conditional sequences of actions. Common closed-loop methods include reinforcement
learning, dynamic programming, and Monte Carlo planning. These methods search for optimal actions through extensive
interaction with a simulation of the target environment. Because of the large amounts of data required, these methods were
initially developed on virtual domains such as video games (Chaslot et al., 2008). Recently learning-based approaches have
achieved state-of-the-art performance in several real-world domains including autonomous driving (Brechtel et al, 2014) and
robotic control (Grigorescu, 2020). Little work has been done, however, in applying these approaches to resource exploration.
Torrado et al. (2017) proposed a Monte Carlo planning method for a similar task of optimal sequential reservoir development.
This work, to the authors knowledge, is the first proposal for a general approach to optimal closed-loop decision making for

geoscientific sequential data acquisition planning. In this work, we propose an approach based on Monte Carlo planning.

2 lllustration case for sequential data acquisition planning in resource exploration

Our development will be illustrated on an analogue case set-up that contains many elements common to resource exploration
planning. In that sense we aim for modularity in the development where several components (inverse modelling, geological

modelling, data forward modelling) can be changed out without changing the sequential data acquisition methodology.

Specifically, we will focus on the exploration of one or more orebodies in the subsurface. The elements of the problem
definition consists of 1) a description of the state of knowledge of the physical world, 2) a description of data that exists or is

planned to be acquired on the physical world, 3) rewards and costs associated with the exploration endeavor.
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Knowledge and uncertainty about the subsurface is commonly represented by probability distributions over the parameters of
the subsurface system. Gridded models describing parametric distributions over geological, geophysical, and geochemical
properties may be too high dimensional for practical use in decision making. A realization (in geostatistical jargon) generated
from a probability distribution over the subsurface represents a plausible representation of the physical world. An ensemble of
plausible realizations is a tractable method to represent the distribution over the subsurface. The variation between multiple

realizations is an empirical representation of uncertainty (lack of knowledge).

A subsurface orebody may be hard to identify in a real setting for various reasons. In geophysical surveys, many other
geological features may act as ore bodies. An orebody is also not necessarily a perfect anomaly in a homogenous geological
setting. Tectonic, metamorphic, sedimentary, and other alteration processes may have changed the nature of the original
orebody. In Figure 1, we show how we created an analogue situation that mimics many of these elements. Figure 1 represents
a simplified 1D depiction, though the methodology will be applied to 2D and 3D settings. Figure 1 should only be referenced

as a template containing the challenges present in mineral exploration.

First, we represent the mineralization by the function in Figure 1A. The example shows a unimodal function, however a
multiple of these mineralization bumps may be present. Second, we introduce a “geological background variation” as shown
in Figure 1B. This represents all geological processes that have altered the original ore-body shape. This variation is not entirely
random and has some structure. In our setting, we model it as a Gaussian process with known correlation structure (variogram).
In practice, a much more complex model of the background geology may be used with the presented methods, and hence the
noise term in this simple example is used to develop a methodology. By adding the “mineralization field” to the “geological
background field”, we obtain the “measurable variation” shown in Figure 1C. When a threshold t is exceeded in the z(x)
field, we get the target which we will term “massive ore”. The massive ore is shown in Figure 1D and is the part of the orebody
that would be considered for mining. In this example, this results in a single economic parameter: volume. We do not consider

concentration, grade, or other economic parameters in this paper, though the methodology does not prevent including them.

The next element is the set of measurements that are available to be taken. Measurements are indirect indicators of what is
desired: the economic parameters of the orebody, which in our setting is the orebody volume. Measurements generally do not
directly observe this value; however, they may reduce the uncertainty on it. Such uncertainty quantification is generally
conducted with Bayesian approaches. Bayesian methods require stating measurement likelihood functions and prior
distributions. In our setting, the various alternative realizations constitute samples of the prior. In this work, we consider taking
point measurements of the total variational field, as shown in Figure 1C. We also consider taking only one measurement at a
time because measuring may be expensive, and the results may inform where to best take the next measurement. Note that in
this work, we will not perform traditional geostatistical conditional simulation using the measurements as hard data, because

the function m(x) is stochastic as well. Instead, we will solve Bayesian inverse problems that aims to infer m(x) and r(x)

4
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jointly from data. z(x) represents the exhaustive set of observations that could be acquired. In the real world, measurements
may have various degrees of noise (e.g. geophysical survey vs. borehole data). In this work, we assume that the noise on the
point measurements is negligible, but that only a small area is directly observed. Measurement noise can be integrated into the
Bayesian inverse problem, but our paper does not focus on it.

A m(x) mineralization
+
r(x) geological
B background
> variation
01 = z(x = ay) threshold t.
cC . T : Measureable
z(x) ! | ! variation
1 1 az)
i : :
D _ . : E v — J i(x)dx economic
i(x) Massive Ore T

v

Figure 1. Example 1D Mineralization. Sub-figure (A) shows a mineralization that is altered by geological background variation (B),
resulting in the measurable variation (C). The massive orebody (D), whose volume is the economic parameter of interest, exists at
locations where z(x) exceeds a threshold value.

We test the presented methodology on a 2D case that is analogous to the 1D example. The 2D case set-up is shown in Figure
2 and Figure 3. We define the mineralization m(x) using a single uncertain parameter ¢ that determines the width. We assume
o has a uniform distribution with known bounds. Geological variation is modeled using a Gaussian process with known mean

and variogram. We generate the measurable fields z(x) by adding various realizations of m(x) to realizations of r(x), as



146
147
148

149

150
151

152

153

154
155

156
157
158
159

shown in Figure 2. Then after defining a threshold ¢, we obtain the massive ore field i(x) with the volume v, as shown in

Figure 3.

Mineralization Field m(x) Background Field r(x) Measureable Field z(x)

1.0
0.9
0.8
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0.6
0.5
0.4
0.3
0.2
0.1

Figure 2. Two-dimensional exploration problem. The mineralization field m(x) (left), the background field (x) (center) are summed
to create the measurable field z(x) (right).

Measureable Field z(x) Massive Ore Field i(x)

o

Figure 3. Two-dimensional economic field. The massive ore field i(x) shows where the measurable field z(x) exceeds the economic
thl’esh0|d Zthreshold-

The question we will address is: what is the optimal sequence of data acquisition that best informs “mine” vs “do not mine”

decision, based on a mineable volume exceeding some minimum threshold?
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3 Notational aspects

In this paper, we will need to merge nomenclature and mathematical notations of two different domains:

geosciences/geostatistics and artificial intelligence (Al). Here we list some nomenclature from each field that describe the

same concept (see also Table 1).

A state = an instantiation of a set of parameters describing the world. For example, a geostatistical realization is a set

of geological parameters representing the “state” of the subsurface in a gridded model. A state is referred to as s.

Belief over a state = probability distribution of instantiations of a set of parameters. In probability theory, one defines
over all possible outcomes of a geological model a probability density. This density is very high-dimensional in our

setting. In Al ones uses b(s), while in probability parlor, this is referred to as f(s).

Belief update = Bayesian update. A belief update requires stating the prior and the likelihood model. The likelihood
in Al is termed the observation model L(o|s, a), while in Bayesian terminology one uses f(o|s). Note that in Al an
additional “conditioning” is added as a, which represents the action by an Al agent. This  accounts for the fact that
actions are taken in sequences. L(0.41 | S¢4+1, @;) is the likelihood of the observation at measurement t + 1 , given

the state at ¢ + 1 and action at ¢t.

Observation space: the set of all possible outcomes of the measurements. In Al observations are denoted as o, while

in Bayesian nomenclature these are termed data d.

Al

Terminology Terminology

ien initi
Geosciences Definition

The (possibly unknown)

State: s Realization: z(x) subsurface geological
parameters

Action: a Take measurement Measure z(x) at x

Observation: o Measurement Measured value of z(x)

Belief: b(s) Probability density over A probability distribution over



179
180

181

182

183

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

z(x) the possible geological
parameter realizations

Updating the distribution over
geological parameters given
new information according to
Bayes’ rule

Belief Update Bayesian Posterior

Table 1: comparison between Al and geostatistical nomenclature

4 Methodology
4.1 Partially observable Markov decision processes

This work frames mineral exploration as a sequential decision process. In a sequential problem, a decision-making
agent must take a sequence of actions to reach a goal. Information gained from each action in the sequence can inform the
choice of subsequent actions. An optimal action sequence will account for the expected information gain from each action and
its impact on future decisions. This type of conditional planning may be referred to as closed-loop or feedback control. We

will use the mineral-exploration problem outlined above as a working example for the remainder of this section.

A sequential decision problem can be modeled formally as a Markov decision process (MDP). An MDP is a
mathematical description of a sequential decision process defined by a collection of probability distributions, spaces, and
functions. The full MDP is typically defined by the tuple (S,A,T,r,y). The state space S is the space of all states that the
decision-making problem may take at any step. In the mineral exploration process, the state is defined by the geological model
of the subsurface deposit as well as the locations of measurements. The action space A defines the set of all actions that the
agent may take. In the mineral exploration problem, this would be the set of all locations that the agent may acquire
measurements (data). The transition model T (s;;, | st a;), is the probability distribution over the next time step state s;, 4,
conditioned on the current state and action. The step t refers to the sequential actions and belief updates. The MDP formulation
assumes that the state transition is fully informed by the immediately preceding state and action, which is the Markovian
assumption. The transition model may be deterministic.

The reward function r(s;, a;, S¢+1): S X A X S — R gives a measure of how taking an action from a state contributes
to the utility of the total action sequence which the agent seeks to maximize. The objective of an agent in an MDP is to

maximize the sum of all rewards accumulated over an action sequence. To preference rewards earlier in the process, a time
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discount factor y € (0,1] is used. The goal of solving an MDP is to maximize the sum of discounted rewards accumulated
from a given state, defined as

Zt:lTYt_lr(St' A, Ses1)
for a decision process with T steps. The sum of discounted rewards expected from a state is defined as the value of the state
V (s). Given that the exact state transitions are not generally known in advance, the optimization target of solving an MDP is

to maximize the expected value.

In many decision-making problems, such as all subsurface problems, the state at each time step (the geological model)
is not fully known. In this case, agents make decisions based on imperfect observations of the relevant states of their
environments. Sequential problems with state uncertainty are modeled as partially observable Markov decision processes
(POMDPs). POMDPs are defined by the MDP tuple plus an observation space O and an observation model L(0;41 | S¢41,at)-
The observation space defines all the observations that the agent may make after taking an action. Observations are generally
noisy measurements of a subset of the state. The observation model defines the conditional distribution of the observation
given the state and action. In the mineral exploration problem, an observation would be the mineral content of the core sample

taken at that time step.

To solve a POMDP, an agent must account for all the information gained from the sequence of previous observations
when taking an action. It is common to represent the information gained from an observation sequence as a belief. A belief is
a probability distribution over the unknown state of the world at a given time step. At the beginning of the decision-making
process, the agent will start with a belief that is defined by all prior knowledge of the state available before making any

observations. With each observation made, the belief is updated, typically using a Bayesian update as

b'(s¢41) X L(0psq | Spi1, @ ID(Si1)-

Note that b’'(s;41) is Al notation for a posterior p(s|o), where p(s) is the prior. A belief may be an analytically defined
probability distribution or an approximate distribution, such as a state ensemble updated with a particle filter.

Each decision in the sequence is made using the belief updated from the preceding observation. The process is
depicted in Figure 4. An optimal choice in a sequential problem should consider all subsequent steps in the sequence. However,
the number of trajectories of actions and observations reachable from a given state grows exponentially with the length of the
sequence. As a result, optimizing conditional plans exactly is generally intractable. Instead, most POMDPs are solved

approximately using stochastic planning and learning methods.
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Figure 4: Exploration Markov Decision Process. Each decision step, the agent selects an action a; based on its current belief over
the world state using a planner (7). The agent takes the action in the world and observes some new data o;,,. This data is used to
update the belief b, for the next step. Each action results in a reward.

Monte Carlo tree search (MCTYS) is a class of stochastic planning algorithms that is commonly used to solve MDPs
and POMDPs. MCTS methods solve for actions each time a decision is made by simulating the potential outcome of available
action sequences. It uses the simulations to estimate the expected value of each available action and then recommends the
action with the highest expected value. Each simulated trajectory is recorded in a tree graph, as shown in Figure 5.. Each time

a simulation is generated, the trajectory is added to the tree. Future action sequence trials are guided by the information in the

10



243 tree at the start of that trial. MCTS algorithms are considered online planners, since they solve for an optimal action from a

244 given starting state, and therefore require computation every time a decision is made.

b(s,)

245

246 Figure 5: Monte Carlo search tree. Each simulation in an MCTS algorithm is encoded into a search tree. The example tree is rooted
247 at the belief, b(s;) given at the start of search. Paths from the root to a leaf of the tree represent a simulated trajectory of alternating
248 actions, a't and observations, o't. An example trajectory in the tree is shown in bold.

249

250 4.2 A POMDRP for resource exploration

251 We propose formulating the mineral exploration problem as a sequential decision problem. A sequential plan allows
252 information from each measurement in the sequence to inform the choice of subsequent measurements.

253

254 We now return the template example introduced in Figure 1 and state the elements of the POMDP.

255

256  State Space (S): The state is a combination of a realization of the unknown subsurface geology (a geostatistical model) and
257  any other environment factors that may constrain or affect the outcome of the measurements to be taken and the rewards
258 gained.

11
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» Example POMDP: The state space is the combination of the sub-surface state space and the measurement state space.
The subsurface state in the case of Figure 2 is the combination of m(x) and r(x). The measurement state defines the

location of all previously acquired measurements.

Action Space (A): The action space defines the set of measurement actions that can be taken at every step. The action space
should also include MINE, and ABANDON (do not mine) actions. These actions allow the agent to terminate the measurement

campaign.

» Example POMDP: The action space is the set of all locations at which a measurement may be acquired in the
exploration area, along with the MINE and ABANDON actions. Each measurement action is defined by the target
measurement location. Taking an action a signifies measuring z(x) at x = a. Available measurement locations are
defined on a regular cartesian grid, and two measurements may not be drilled closer than some minimum distance

from one another. The minimum distance may be set to zero to represent an unconstrained set.

Observation Space (0): The set of measurements values that may be observed from an action. The observation space may be
composed of heterogeneous observation types to account for different measurements that may be taken; for example, to account
for geochemical surface data and drill-core sample data.

» Example POMDP: The mineralization z(x) measured at a targeted location is defined as a scalar value.

Observation Model (L): the observation model defines the effect of sensor and other noise on the data generated by
measurements. In the case that observations can be treated as noiseless, the conditional distribution can be defined by the Dirac
as L(o|s',a) = 6(0 — g(s',a)), where g(s’,a) is a deterministic function mapping the state and action to the observation.

In Bayesian literature g is also termed the data forward model.

Transition Model (T): The transition model defines how the state evolves as a result of actions. In our setting, the sub-surface
state does not change because of measuring actions, and only measurement state elements will be updated. The transition
model can also be used to constrain the actions that are available at each step, by setting the transition probabilities to 0 for

disallowed actions.

» Example POMDP: The measurement state is updated with newly selected action locations. Later, we will test two
different transition models. One model does not constrain the available actions and a second constrains the action
space to measurement locations that are no further than a distance § away from the previous measurement. The

purpose of doing so is to illustrate that the methodology allows for action constraints.

Reward Function (r): The reward function defines a cost for each measurement action taken and a reward for the final MINE

or ABANDON decision. The reward function takes the following form

r(s,a) = —Cost(s,a) if a € Ayeasurements

12
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r(s,a) =0 if a= ABANDON
r(s,a) = Profit(s) if a = MINE
where Cost (s, a) defines the cost of taking a measurement, Profit(s) defines the profit from mining a deposit, and

Apreasurements 1S the set of measurement actions.

« Example POMDP: Each measurement has a fixed cost, and the profit is a simple function of the amount of ore

present v(s) (Figure 1D) and a fixed extraction cost, as shown below.

Cost(s, @) = Cyeasurement

PTOfit(S) = U(S) — Cgxtraction

Discount Rate (y): The discount rate defines a time discount rate for the costs and and profits and is used to calculate the net

present value (NPV) of the measurement campaign.

» Example POMDP: We use a discount rate of 0.99

4.3 Solving the POMDP

In this section, we present a method to solve the example 2D mineral exploration POMDP. The methods presented
may be generalized to additional mineral exploration problems. Algorithms to solve POMDPs can typically be applied to any
valid POMDP model, though with differing effectiveness. The remaining subsections are divided into the tasks required to
solve the POMDP: belief updating and searching over the large, combinatorial space of possible action sequences.

The proposed solver is based on Monte Carlo tree search (MCTS), which is a class of stochastic planning algorithms
that is commonly used to solve MDPs and POMDPs. MCTS methods solve for actions each time a decision is made by
simulating the potential outcome of available action sequences. It uses the simulations to estimate the expected value of each
available action and then recommends the action with the highest expected value. Each simulated trajectory is recorded in a
tree graph, as shown in Figure 5. Each time a simulation is generated, the trajectory is added to the tree. Future action sequence
trials are guided by the information in the tree at the start of that trial. MCTS algorithms are considered online planners, since
they solve for an optimal action from a given starting state, and therefore require computation every time a decision is made.

Reinforcement learning based approaches may also be used to solve POMDP, though they are likely not as well suited
as the presented Monte Carlo method. Reinforcement learning methods learn the optimal action for each possible encountered
state offline before any actions are taken. Because offline methods learn policies for the entire space of experiences that may

be encountered, they tend to require significantly more training data than online methods and can struggle to generalize to

13
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experiences outside the training set. Reinforcement learning methods are typically formulated for fully observable problems,

and do not explore partially observable domains as effectively as MCTS.

4.3.1 Belief Modeling and Updating

Belief updating in Al is the equivalent of inverse modeling in the geosciences. In our setting, we have indirect
measurements o (z(x)) of the state variables m(x) and r(x). We have assumed that m(x) can be modeled with a single
parameter, o that is distributed uniformly over a known range. We also assume that r(x) can be modeled as a Gaussian process
with known mean p,- and covariance C,.. The subscript t denotes the step (iteration) of the decision-making process. After step
t, a total of t measurements have been taken and we denote the set of all measurements taken up to that point as

01 ={0(xg), x4 = 1,...t}
The observed measurements are dependent upon both random functions, m(x) and r(x), hence a traditional conditional
simulation cannot be directly applied. Instead, we formulate this problem as a hierarchical Bayes’ problem by factoring the
joint distribution into
fm(), r()0y.) = fFmx)|oy.) X f(r(x)Im(x), 01.)

Samples are generated from this distribution hierarchically by first drawing a sample from the distribution over m(x)
and then using the resulting sample to draw from the conditional distribution over r(x). We model the belief f(m(x)|o;.;) as
a particle set and update it using an importance resampling particle filter (Del Moral 1996, Liu et al. 1997). The conditional
belief f(r(x)|m(x), 0,..) is modeled as a conditional Gaussian process.

A particle set is an ensemble of realizations of the state variable with a sample distribution approximating the true

state distribution. The initial particle set is generated by first sampling an ensemble from the uniform prior distribution. For an
n particle set, this corresponds to an ensemble of (mi(x),ri(x)) ,i =1, ...nwhere each particle is equiprobable.

When new information o, is observed, the particle filter updates the belief by updating the ensemble such that the
new particles are sampled according to the posterior distribution f(m(x)|o,..). To do this, a posterior weight is calculated for
each particle according to Bayes’ rule as

wh o f(og|m(x), 01.0-1)
Note that each particle is treated as equiprobable in the particle set, so the prior probability is dropped in the above expression.
The observed measurement o, is determined by the sum of m(x) and r(x) at the location of the measurement. We denote
these values as o™ and of, respectively, such that o, = o™ + of . Using this notation, we can decompose the particle weight
function into
wt o« f(o,ﬁ1|m(x)) X f(oflm(x), 01.0—1)
Because the value of o}, is completely determined by m(x), we can simplify this further to

wh o f (0 — 0fl01.4—1 — M(X))
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which is given by the Gaussian process model conditioned on the difference between the previous measurements and the m(x)
values at their corresponding locations.

Once a weight has been calculated for each particle in the set, a new ensemble is generated. The new set is generated
by sampling n particles from the weighted set, with each particle being sampled with probability given by its weight. For each
particle sampled, a new r(x) field is generated with conditional Gaussian simulation, conditioning on the residual of the
observed measurements and the sampled m(x) field as

r(x) ~ N(ur, Gy [01,; — m(x))

Sampling a particle ensemble with replacement in this way can lead to degeneracy, in which only a few values of
m(x) are represented in the filtered ensemble. To prevent this, particles that are duplicated in the ensemble are perturbed
slightly by adding zero-mean Gaussian noise to the o parameter generating m(x). The complete belief update is summarized

in pseudocode in Algorithm 1 (Table 2) and described in text below.

Algorithm 1 UPDATEBELIEF

function UPDATEBRELIEF (b, a, o)

O « bo U{o}
A « baU{a}

W~ ()
for p; in b Calculate Particle
Weights

ri « O — mj(Xa)

Wi « N(ri; pi(xa), O i(xa))
APPEND wi to W

n « 1/sumi wi
for wi; in W Normalize
Weights

Wi<—1’]Wi
D « {}

P« {}
while |P| < |Db| Resample Particles
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p « SAMPLE (b, W)
if d in D

de-d+ e, e ~N(0, 02%)

m(x) « f(x; d) forall x

R « O0(xa) - m(xa) forall x5 in A

r(x) ~ GP(A, R) Conditional Gaussian process
zZ(x) « m(x) + r(x)

p’ ~ (d, z(x))

P PU {p}

b’ « (P, O, A)
return b’

Table 2: pseudo algorithm for model inversion (belief update) using a hierarchical particle filter

4.3.2 Online Monte Carlo Planning

To solve the POMDP, we search for the optimal action at each step using a variant of POMCPOW (Partially
Observable Monte Carlo Planning with Observation Widening; Sunberg and Kochenderfer, 2018), a Monte Carlo tree search
algorithm for POMDPs. At each time step t, the POMCPOW algorithm builds a tree of possible trajectories, with the root
node of the tree representing the belief b,.  The tree construction process completes before taking any action at that step.
The action with the highest estimated value is then returned from the search process.

POMCPOW generates a fixed number of trial trajectories m, by sampling m states from the root belief. For each
sampled state, POMCPOW simulates taking a series of actions a;, ..., a;,x, and encodes the resulting series of observations as
a branch of the tree. For each action visited along the branch, POMCPOW updates the estimate of the expected value of taking
that action in the sequence using the rewards simulated in that trial. We modified the baseline POMCPOW algorithm by
replacing the Monte Carlo value estimation with generalized mean estimation. The value of an action node in a tree is then

given as

_ 1 _
Wby = > V)
br eCh
where Ch is the set of n child belief nodes of action node, a. The V(b) term gives the estimated value of each belief node,
defined as
1/a
_ 1 _
ORI X0

a€ecCh
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where Ch is the set of child action nodes of the estimated belief node. The value a > 0 is a parameter, where values of @ > 1
more heavily weight actions with higher estimated values. We used & = oo, which resulted in backing up the maximum action
node estimate at each belief node.

Each step of a simulated trial, POMCPOW simulates taking the action with the highest upper confidence bound on
its estimated value. In this way, POMCPOW optimistically explores the action space. This strategy has been proven to
converge to the optimal action in the limit of infinite samples. After all m trials have been generated, POMCPOW returns the
root node child action with the highest estimated value.

For POMDPs with large action spaces, POMCPOW limits how often new actions can be added to the search tree
through a progressive widening rule. Under progressive widening, the total number of child action nodes that a given belief
node may have, is defined as a function of the total number of times that node has been visited in previous trials. The limit is
defined as C,,,4, = kn%, where n is the total number of previous visits. Actions added to the tree are sampled according to a
stochastic policy. We defined the k-o upper confidence bound for each point in the exploration area as UCB(x) = m(x) +
u(x) + ko(x), where u and o are given by the distribution of the parent node belief. Actions were then sampled in proportion
to the UCB value at the target location. Intuitively, this guided POMCPOW to search actions that had both high expected

value, and high uncertainty.

4.4 1llustration Case

In this section, we present the result of solving the problem for the mineral field shown in Figure 6, below. In all
problems, rewards are measured in units of massive ore, where one pixel in the massive ore map (Figure 3) represents one unit
of ore. In all the problems studied, the massive ore threshold was set to 0.7 and the extraction cost was set to 150 units. T his
example case has a total volume of 158 units massive ore, making it a marginally profitable case. The measurement cost was
0.1 units per measurement taken. In this example, we constrained the measurements to be taken a maximum distance of 10
distance units away from the previous measurement, where each pixel is one distance unit.

Figure 7 shows the mean and standard deviation mineralization z(x) at each point in the exploration area calculated
from the initial belief ensemble before any measurements have been taken. The histogram in Figure 8 shows the distribution
of massive ore quantities for the realizations in the ensemble. The vertical line shows the 158 massive ore volume of the

illustration case realization.
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410

411 Figure 6: Illustration case. The left figure shows the mineralization z(x) of the example case. The right figure shows the massive ore
412 mass of the mineral field i(x).
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415 Figure 7: Initial ore belief. The left figure shows the mean mineralization from the prior belief at each point in the exploration area.
416 The fi