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Abstract. Geoscientific models are based on geoscientific data, hence building better models, in the sense of attaining better 12 

predictions, often means acquiring additional data. In decision theory questions of what additional data is expected to best 13 

improve predictions/decisions is within the realm of value of information and Bayesian optimal survey design. However, these 14 

approaches often evaluate the optimality of one additional data acquisition campaign at a time. In many real settings, certainly 15 

in those related to the exploration of Earth resources, possibly a large sequence of data acquisition campaigns need to be 16 

planned. Geoscientific data acquisition can be expensive and time consuming, requiring effective measurement campaign 17 

planning to optimally allocate resources. Each measurement in a data acquisition sequence has the potential to inform where 18 

best to take the following measurements, however, directly optimizing a closed-loop measurement sequence requires solving 19 

an intractable combinatoric search problem. In this work, we formulate the sequential geoscientific data acquisition problem 20 

as a Partially Observable Markov Decision Process (POMDP). We then present methodologies to solve the sequential problem 21 

using Monte Carlo planning methods. We demonstrate the effectiveness of the proposed approach on a simple 2D synthetic 22 

exploration problem. Tests show that the proposed sequential approach is significantly more effective at reducing uncertainty 23 

than conventional methods. Although our approach is discussed in the context of mineral resource exploration, it likely has 24 

bearing on other types of geoscientific model questions. 25 

1 Introduction 26 

As the world weans itself off fossil fuels over the next decades, new forms of energy will heavily rely on Earth materials, in 27 

particular minerals. Rare earth elements are used in a variety of clean-energy technologies (Hague et al., 2014). Fully 28 

electrifying the light-duty auto fleet requires discovering new ore deposits of critical electric vehicle (EV) materials: copper, 29 

nickel, cobalt, and lithium (Savacool et al., 2020). Increasing the required supply of these critical minerals requires a yet 30 

unattained discovery rate of new deposits. Mineral exploration is slow, requiring extensive guidance from human experts. As 31 
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a result, the rate of new discoveries has declined over the last decades, since deposits with sections visible at the surface have 32 

mostly been discovered (Davies et al., 2021). At the same time, the demand will continue to increase, making minerals a 33 

targeted commodity subject to international conflict (National Research Council, 2008), social, and environmental concerns 34 

(Agusdinata et al., 2018). Enhancing and speeding up mineral exploration at a planet-wide scale is required. Our approach, 35 

using Artificial Intelligence for effective planning of exploration endeavors, aims to contribute to this challenge. 36 

 37 

Mineral exploration requires making sequential decisions about what type of data to acquire, where to acquire it, and at what 38 

resolution with the goal of detecting an economically mineable deposit. In other words, mineral exploration is a sequential 39 

decision-making problem under uncertainty. These types of problems have previously been studied under several non-40 

sequential frameworks in various areas of the geosciences. Optimizing spatial designs of experiments is a well-studied topic. 41 

McBratney et al. (1981) described a method for designing optimal sampling schemes based on the theory of regionalized 42 

variables (Matheron, 1971) by modeling spatial dependence with semi-variograms. The 1990s saw a significant debate arising 43 

in the soil sciences community (Brus & Gruijter, 1997; Van Groeningen et al., 1999; Lark, 2002, Heuvelink et al., 2006) 44 

around adaptation of geostatistics and its role in optimal survey design. Likewise, geostatistics-based optimal design of 45 

environmental monitoring has been significantly developed (De Gruijter et al., 2006; Melles et al., 2011). Geostatistical 46 

methods are often not Bayesian, which may be a disadvantage when the spatial structures (e.g., variograms) are uncertain 47 

themselves. A method for Bayesian optimal design in spatial analysis was developed by Diggle & Lophaven (2006). 48 

 49 

Optimal placement of drill-holes for mineral exploration and mining (resource delineation) has received significant attention. 50 

Some methodologies aim to minimize the uncertainty on spatial properties through use of geostatistical algorithms that model 51 

the effect of measured data on spatial uncertainty (Pilger et al., 2001; Koppe et al., 2011; Koppe et al., 2017; Caers et al., 2022; 52 

Hall et al., 2022). Others rely on decision theoretic concepts of value of information to quantify the dollar value of gathered 53 

information to reduce uncertainty on an economic property of interest (Froyland et al., 2004; Eidsvik, & Ellefmo, 2013; 54 

Soltani-Mohammadi & Hezarkhani, 2013). Bickel et al. (2008) recognizes the sequential nature of the problem and illustrate 55 

that sequential information gathering is superior to non-sequential schemes, a concept that goes back to the 1970s (Miller, 56 

1975).  57 

 58 

The above methodologies evaluate the performance of a given spatial survey design, but do not address the combinatorial 59 

problem of creating optimal survey plans. In general, the number of sequences to evaluate grows exponentially with the number 60 

of surveys. For example, when planning a sequence of 10 surveys at 100 possible locations, there are more than 17 billion 61 

possible sequences that could be evaluated. Many problems will likely require more than 10 data acquisition actions to discover 62 

a mineral deposit that is economically feasible. Therefore, methodologies (like Emery et al., 2008) that use optimization in 63 

combination with geostatistics are likely intractable for many practical problems.  64 

 65 
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Sequential planning methods solve for each action in a sequence only after observing the results of each previous action. 66 

Planning is typically done in either an open-loop or closed-loop fashion. Open-loop methods solve for each action in the 67 

sequence that gives the best immediate return according to some metric, without considering how the information learned from 68 

taking that action is likely to impact future decisions. Closed-loop methods solve for actions that maximize the expected return 69 

of all remaining actions in a sequence. Closed-loop methods tend to outperform open-loop methods, especially on tasks in 70 

which a lot of information is learned each step (Russell and Norvig, 2020: p.120-122). Closed-loop methods, however, tend to 71 

require significantly more computational effort than open-loop approaches.  72 

 73 

Recent work has applied Bayesian optimization to develop open-loop solutions to sequential experiment design (Shahriari et 74 

al., 2016). Marchant et al. (2014) specifically consider the application of Bayesian optimization to spatial-temporal 75 

measurement sequences. Receding horizon control has been used in sequential resource development (Grema et al., 2013) in 76 

conjunction with general particle swarm optimization. While these methods may be tractable, they are likely sub-optimal over 77 

the entire measurement sequence, since each action only optimizes its own return.  78 

 79 

Closed loop methods solve for optimal conditional sequences of actions. Common closed-loop methods include reinforcement 80 

learning, dynamic programming, and Monte Carlo planning. These methods search for optimal actions through extensive 81 

interaction with a simulation of the target environment. Because of the large amounts of data required, these methods were 82 

initially developed on virtual domains such as video games (Chaslot et al., 2008). Recently learning-based approaches have 83 

achieved state-of-the-art performance in several real-world domains including autonomous driving (Brechtel et al, 2014) and 84 

robotic control (Grigorescu, 2020). Little work has been done, however, in applying these approaches to resource exploration. 85 

Torrado et al. (2017) proposed a Monte Carlo planning method for a similar task of optimal sequential reservoir development. 86 

This work, to the authors knowledge, is the first proposal for a general approach to optimal closed-loop decision making for 87 

geoscientific sequential data acquisition planning.  In this work, we propose an approach based on Monte Carlo planning. 88 

2 Illustration case for sequential data acquisition planning in resource exploration 89 

Our development will be illustrated on an analogue case set-up that contains many elements common to resource exploration 90 

planning.  In that sense we aim for modularity in the development where several components (inverse modelling, geological 91 

modelling, data forward modelling) can be changed out without changing the sequential data acquisition methodology.  92 

 93 

Specifically, we will focus on the exploration of one or more orebodies in the subsurface. The elements of the problem 94 

definition consists of 1) a description of the state of knowledge of the physical world, 2) a description of data that exists or is 95 

planned to be acquired on the physical world, 3) rewards and costs associated with the exploration endeavor.  96 

 97 
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Knowledge and uncertainty about the subsurface is commonly represented by probability distributions over the parameters of 98 

the subsurface system. Gridded models describing parametric distributions over geological, geophysical, and geochemical 99 

properties may be too high dimensional for practical use in decision making. A realization (in geostatistical jargon) generated 100 

from a probability distribution over the subsurface represents a plausible representation of the physical world. An ensemble of 101 

plausible realizations is a tractable method to represent the distribution over the subsurface. The variation between multiple 102 

realizations is an empirical representation of uncertainty (lack of knowledge).  103 

 104 

A subsurface orebody may be hard to identify in a real setting for various reasons. In geophysical surveys, many other 105 

geological features may act as ore bodies. An orebody is also not necessarily a perfect anomaly in a homogenous geological 106 

setting. Tectonic, metamorphic, sedimentary, and other alteration processes may have changed the nature of the original 107 

orebody. In Figure 1, we show how we created an analogue situation that mimics many of these elements. Figure 1 represents 108 

a simplified 1D depiction, though the methodology will be applied to 2D and 3D settings. Figure 1 should only be referenced 109 

as a template containing the challenges present in mineral exploration.  110 

 111 

First, we represent the mineralization by the function in Figure 1A. The example shows a unimodal function, however a 112 

multiple of these mineralization bumps may be present. Second, we introduce a “geological background variation” as shown 113 

in Figure 1B. This represents all geological processes that have altered the original ore-body shape. This variation is not entirely 114 

random and has some structure. In our setting, we model it as a Gaussian process with known correlation structure (variogram). 115 

In practice, a much more complex model of the background geology may be used with the presented methods, and hence the 116 

noise term in this simple example is used to develop a methodology. By adding the “mineralization field” to the “geological 117 

background field”, we obtain the “measurable variation” shown in Figure 1C. When a threshold 𝑡  is exceeded in the 𝑧(𝑥) 118 

field, we get the target which we will term “massive ore”. The massive ore is shown in Figure 1D and is the part of the orebody 119 

that would be considered for mining. In this example, this results in a single economic parameter: volume. We do not consider 120 

concentration, grade, or other economic parameters in this paper, though the methodology does not prevent including them. 121 

 122 

The next element is the set of measurements that are available to be taken. Measurements are indirect indicators of what is 123 

desired: the economic parameters of the orebody, which in our setting is the orebody volume. Measurements generally do not 124 

directly observe this value; however, they may reduce the uncertainty on it. Such uncertainty quantification is generally 125 

conducted with Bayesian approaches. Bayesian methods require stating measurement likelihood functions and prior 126 

distributions. In our setting, the various alternative realizations constitute samples of the prior. In this work, we consider taking 127 

point measurements of the total variational field, as shown in Figure 1C. We also consider taking only one measurement at a 128 

time because measuring may be expensive, and the results may inform where to best take the next measurement. Note that in 129 

this work, we will not perform traditional geostatistical conditional simulation using the measurements as hard data, because 130 

the function 𝑚(𝑥) is stochastic as well. Instead, we will solve Bayesian inverse problems that aims to infer 𝑚(𝑥) and 𝑟(𝑥) 131 



5 

 

jointly from data. 𝑧(𝑥) represents the exhaustive set of observations that could be acquired. In the real world, measurements 132 

may have various degrees of noise (e.g. geophysical survey vs. borehole data). In this work, we assume that the noise on the 133 

point measurements is negligible, but that only a small area is directly observed. Measurement noise can be integrated into the 134 

Bayesian inverse problem, but our paper does not focus on it.  135 

 136 

 137 

Figure 1. Example 1D Mineralization. Sub-figure (A) shows a mineralization that is altered by geological background variation (B), 138 
resulting in the measurable variation (C). The massive orebody (D), whose volume is the economic parameter of interest, exists at 139 
locations where z(x) exceeds a threshold value.  140 

 141 

We test the presented methodology on a 2D case that is analogous to the 1D example. The 2D case set-up is shown in Figure 142 

2 and Figure 3. We define the mineralization 𝑚(𝑥) using a single uncertain parameter 𝜎 that determines the width. We assume 143 

𝜎 has a uniform distribution with known bounds. Geological variation is modeled using a Gaussian process with known mean 144 

and variogram. We generate the measurable fields 𝑧(𝑥) by adding various realizations of 𝑚(𝑥) to realizations of 𝑟(𝑥), as 145 
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shown in Figure 2. Then after defining a threshold 𝑡, we obtain the massive ore field 𝑖(𝑥) with the volume 𝑣, as shown in 146 

Figure 3.  147 

 148 

 149 

Figure 2. Two-dimensional exploration problem. The mineralization field 𝑚(𝑥) (left), the background field 𝑟(𝑥) (center) are summed 150 
to create the measurable field 𝑧(𝑥) (right). 151 

 152 

 153 

Figure 3. Two-dimensional economic field. The massive ore field 𝑖(𝑥) shows where the measurable field 𝑧(𝑥) exceeds the economic 154 
threshold 𝑧𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. 155 

 156 

The question we will address is: what is the optimal sequence of data acquisition that best informs “mine” vs “do not mine” 157 

decision, based on a mineable volume exceeding some minimum threshold? 158 

 159 
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 160 

3 Notational aspects 161 

 162 

In this paper, we will need to merge nomenclature and mathematical notations of two different domains: 163 

geosciences/geostatistics and artificial intelligence (AI). Here we list some nomenclature from each field that describe the 164 

same concept (see also Table 1). 165 

 166 

● A state = an instantiation of a set of parameters describing the world. For example, a geostatistical realization is a set 167 

of geological parameters representing the “state” of the subsurface in a gridded model. A state is referred to as 𝑠. 168 

● Belief over a state = probability distribution of instantiations of a set of parameters. In probability theory, one defines 169 

over all possible outcomes of a geological model a probability density. This density is very high-dimensional in our 170 

setting. In AI ones uses 𝑏(𝑠), while in probability parlor, this is referred to as 𝑓(𝑠). 171 

● Belief update = Bayesian update. A belief update requires stating the prior and the likelihood model.  The likelihood 172 

in AI is termed the observation model 𝐿(𝑜|𝑠, 𝑎), while in Bayesian terminology one uses 𝑓(𝑜|𝑠). Note that in AI an 173 

additional “conditioning” is added as 𝑎, which represents the action by an AI agent. This      accounts for the fact that 174 

actions are taken in sequences. 𝐿(𝑜𝑡+1 ∣ 𝑠𝑡+1, 𝑎𝑡) is the likelihood of the observation at measurement 𝑡 + 1 , given 175 

the state at 𝑡 + 1 and action at 𝑡. 176 

● Observation space: the set of all possible outcomes of the measurements. In AI observations are denoted as 𝑜, while 177 

in Bayesian nomenclature these are termed data 𝑑. 178 

AI 
Terminology 

Geosciences 
Terminology 

Definition 

State: s Realization: 𝑧(𝑥) 
The (possibly unknown) 
subsurface geological 

parameters 

Action: 𝑎 Take measurement 
Measure 𝑧(𝑥) at 𝑥 

 

Observation: 𝑜 Measurement Measured value of 𝑧(𝑥)  

Belief: 𝑏(𝑠) Probability density over A probability distribution over 
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 𝑧(𝑥) the possible geological 

parameter realizations 

Belief Update Bayesian Posterior 

Updating the distribution over 
geological parameters given 

new information according to 
Bayes’ rule 

 179 

Table 1: comparison between AI and geostatistical nomenclature 180 

 181 

4 Methodology 182 

4.1 Partially observable Markov decision processes 183 

 This work frames mineral exploration as a sequential decision process. In a sequential problem, a decision-making 184 

agent must take a sequence of actions to reach a goal. Information gained from each action in the sequence can inform the 185 

choice of subsequent actions. An optimal action sequence will account for the expected information gain from each action and 186 

its impact on future decisions. This type of conditional planning may be referred to as closed-loop or feedback control. We 187 

will use the mineral-exploration problem outlined above as a working example for the remainder of this section. 188 

 189 

 A sequential decision problem can be modeled formally as a Markov decision process (MDP). An MDP is a 190 

mathematical description of a sequential decision process defined by a collection of probability distributions, spaces, and 191 

functions. The full MDP is typically defined by the tuple (𝑆, 𝐴, 𝑇, 𝑟, 𝛾).  The state space 𝑆 is the space of all states that the 192 

decision-making problem may take at any step. In the mineral exploration process, the state is defined by the geological model 193 

of the subsurface deposit as well as the locations of measurements. The action space 𝐴 defines the set of all actions that the 194 

agent may take. In the mineral exploration problem, this would be the set of all locations that the agent may acquire 195 

measurements (data). The transition model 𝑇(𝑠𝑡+1 ∣ 𝑠𝑡 , 𝑎𝑡), is the probability distribution over the next time step state 𝑠𝑡+1, 196 

conditioned on the current state and action. The step 𝑡 refers to the sequential actions and belief updates. The MDP formulation 197 

assumes that the state transition is fully informed by the immediately preceding state and action, which is the Markovian 198 

assumption. The transition model may be deterministic.  199 

 The reward function 𝑟(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1): 𝑆 × 𝐴 × 𝑆 → 𝑅 gives a measure of how taking an action from a state contributes 200 

to the utility of the total action sequence which the agent seeks to maximize. The objective of an agent in an MDP is to 201 

maximize the sum of all rewards accumulated over an action sequence. To preference rewards earlier in the process, a time 202 
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discount factor 𝛾 ∈ (0,1] is used. The goal of solving an MDP is to maximize the sum of discounted rewards accumulated 203 

from a given state, defined as  204 

∑𝑡=1
𝑇𝛾𝑡−1𝑟(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) 205 

for a decision process with T steps. The sum of discounted rewards expected from a state is defined as the value of the state 206 

𝑉(𝑠). Given that the exact state transitions are not generally known in advance, the optimization target of solving an MDP is 207 

to maximize the expected value.  208 

 209 

 In many decision-making problems, such as all subsurface problems, the state at each time step (the geological model) 210 

is not fully known. In this case, agents make decisions based on imperfect observations of the relevant states of their 211 

environments. Sequential problems with state uncertainty are modeled as partially observable Markov decision processes 212 

(POMDPs). POMDPs are defined by the MDP tuple plus an observation space 𝑂 and an observation model 𝐿(𝑜𝑡+1 ∣ 𝑠𝑡+1, 𝑎𝑡). 213 

The observation space defines all the observations that the agent may make after taking an action. Observations are generally 214 

noisy measurements of a subset of the state. The observation model defines the conditional distribution of the observation 215 

given the state and action. In the mineral exploration problem, an observation would be the mineral content of the core sample 216 

taken at that time step.  217 

 218 

 To solve a POMDP, an agent must account for all the information gained from the sequence of previous observations 219 

when taking an action. It is common to represent the information gained from an observation sequence as a belief. A belief is 220 

a probability distribution over the unknown state of the world at a given time step. At the beginning of the decision-making 221 

process, the agent will start with a belief that is defined by all prior knowledge of the state available before making any 222 

observations. With each observation made, the belief is updated, typically using a Bayesian update as  223 

 224 

𝑏′(𝑠𝑡+1) ∝ 𝐿( 𝑜𝑡+1 ∣∣ 𝑠𝑡+1, 𝑎𝑡 )𝑏(𝑠𝑡+1). 225 

Note that 𝑏′(𝑠𝑡+1) is AI notation for a posterior 𝑝(𝑠|𝑜), where 𝑝(𝑠) is the prior. A belief may be an analytically defined 226 

probability distribution or an approximate distribution, such as a state ensemble updated with a particle filter. 227 

 Each decision in the sequence is made using the belief updated from the preceding observation. The process is 228 

depicted in Figure 4. An optimal choice in a sequential problem should consider all subsequent steps in the sequence. However, 229 

the number of trajectories of actions and observations reachable from a given state grows exponentially with the length of the 230 

sequence. As a result, optimizing conditional plans exactly is generally intractable. Instead, most POMDPs are solved 231 

approximately using stochastic planning and learning methods. 232 
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 233 

Figure 4: Exploration Markov Decision Process. Each decision step, the agent selects an action 𝑎𝑡 based on its current belief over 234 
the world state using a planner (π). The agent takes the action in the world and observes some new data 𝑜𝑡+1. This data is used to 235 
update the belief 𝑏𝑡+1 for the next step. Each action results in a reward. 236 

 237 

 Monte Carlo tree search (MCTS) is a class of stochastic planning algorithms that is commonly used to solve MDPs 238 

and POMDPs. MCTS methods solve for actions each time a decision is made by simulating the potential outcome of available 239 

action sequences. It uses the simulations to estimate the expected value of each available action and then recommends the 240 

action with the highest expected value. Each simulated trajectory is recorded in a tree graph, as shown in Figure 5.. Each time 241 

a simulation is generated, the trajectory is added to the tree. Future action sequence trials are guided by the information in the 242 
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tree at the start of that trial. MCTS algorithms are considered online planners, since they solve for an optimal action from a 243 

given starting state, and therefore require computation every time a decision is made.  244 

 245 

Figure 5: Monte Carlo search tree. Each simulation in an MCTS algorithm is encoded into a search tree. The example tree is rooted 246 
at the belief, 𝑏(𝑠𝑡) given at the start of search. Paths from the root to a leaf of the tree represent a simulated trajectory of alternating 247 
actions, ai

t and observations, oi
t. An example trajectory in the tree is shown in bold. 248 

 249 

4.2 A POMDP for resource exploration 250 

 We propose formulating the mineral exploration problem as a sequential decision problem. A sequential plan allows 251 

information from each measurement in the sequence to inform the choice of subsequent measurements. 252 

 253 

     We now return the template example introduced in Figure 1 and state the elements of the POMDP. 254 

 255 

State Space (𝑆):  The state is a combination of a realization of the unknown subsurface geology (a geostatistical model) and 256 

any other environment factors that may constrain or affect the outcome of the measurements to be taken and the rewards 257 

gained. 258 
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• Example POMDP: The state space is the combination of the sub-surface state space and the measurement state space. 259 

The subsurface state in the case of Figure 2 is the combination of 𝑚(𝑥) and 𝑟(𝑥). The measurement state defines the 260 

location of all previously acquired measurements. 261 

Action Space (𝐴): The action space defines the set of measurement actions that can be taken at every step. The action space 262 

should also include MINE, and ABANDON (do not mine) actions. These actions allow the agent to terminate the measurement 263 

campaign.  264 

• Example POMDP: The action space is the set of all locations at which a measurement may be acquired in the 265 

exploration area, along with the MINE and ABANDON actions. Each measurement action is defined by the target 266 

measurement location. Taking an action 𝑎 signifies measuring 𝑧(𝑥) at 𝑥 = 𝑎. Available measurement locations are 267 

defined on a regular cartesian grid, and two measurements may not be drilled closer than some minimum distance 268 

from one another. The minimum distance may be set to zero to represent an unconstrained set.  269 

Observation Space (𝑂): The set of measurements values that may be observed from an action. The observation space may be 270 

composed of heterogeneous observation types to account for different measurements that may be taken; for example, to account 271 

for geochemical surface data and drill-core sample data.  272 

• Example POMDP: The mineralization 𝑧(𝑥) measured at a targeted location is defined as a scalar value. 273 

Observation Model (𝐿): the observation model defines the effect of sensor and other noise on the data generated by 274 

measurements. In the case that observations can be treated as noiseless, the conditional distribution can be defined by the Dirac 275 

as 𝐿(𝑜 ∣ 𝑠′, 𝑎) = 𝛿(𝑜 − 𝑔(𝑠′, 𝑎)), where 𝑔(𝑠′, 𝑎) is a deterministic function mapping the state and action to the observation. 276 

In Bayesian literature 𝑔 is also termed the data forward model. 277 

Transition Model (𝑇): The transition model defines how the state evolves as a result of actions. In our setting, the sub-surface 278 

state does not change because of measuring actions, and only measurement state elements will be updated. The transition 279 

model can also be used to constrain the actions that are available at each step, by setting the transition probabilities to 0 for 280 

disallowed actions.  281 

• Example POMDP: The measurement state is updated with newly selected action locations. Later, we will test two 282 

different transition models. One model does not constrain the available actions and a second constrains the action 283 

space to measurement locations that are no further than a distance 𝛿 away from the previous measurement. The 284 

purpose of doing so is to illustrate that the methodology allows for action constraints. 285 

Reward Function (𝑟): The reward function defines a cost for each measurement action taken and a reward for the final MINE 286 

or ABANDON decision. The reward function takes the following form  287 

𝑟(𝑠, 𝑎) = −𝐶𝑜𝑠𝑡(𝑠, 𝑎)  𝑖𝑓  𝑎 ∈ 𝐴𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠  288 
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𝑟(𝑠, 𝑎) = 0   𝑖𝑓 𝑎 =  𝐴𝐵𝐴𝑁𝐷𝑂𝑁 289 

𝑟(𝑠, 𝑎) = 𝑃𝑟𝑜𝑓𝑖𝑡(𝑠)  𝑖𝑓 𝑎 = 𝑀𝐼𝑁𝐸 290 

where 𝐶𝑜𝑠𝑡(𝑠, 𝑎) defines the cost of taking a measurement, 𝑃𝑟𝑜𝑓𝑖𝑡(𝑠) defines the profit from mining a deposit, and 291 

𝐴𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠 is the set of measurement actions. 292 

• Example POMDP: Each measurement has a fixed cost, and the profit is a simple function of the amount of ore 293 

present v(s) (Figure 1D) and a fixed extraction cost, as shown below.  294 

𝐶𝑜𝑠𝑡(𝑠, 𝑎) = 𝑐𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡  295 

𝑃𝑟𝑜𝑓𝑖𝑡(𝑠) = 𝑣(𝑠) − 𝑐𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛  296 

 297 

 298 

Discount Rate (𝛾): The discount rate defines a time discount rate for the costs and and profits and is used to calculate the net 299 

present value (NPV) of the measurement campaign. 300 

• Example POMDP: We use a discount rate of 0.99  301 

 302 

4.3 Solving the POMDP 303 

 In this section, we present a method to solve the example 2D mineral exploration POMDP. The methods presented 304 

may be generalized to additional mineral exploration problems. Algorithms to solve POMDPs can typically be applied to any 305 

valid POMDP model, though with differing effectiveness. The remaining subsections are divided into the tasks required to 306 

solve the POMDP: belief updating and searching over the large, combinatorial space of possible action sequences.  307 

The proposed solver is based on Monte Carlo tree search (MCTS), which is a class of stochastic planning algorithms 308 

that is commonly used to solve MDPs and POMDPs. MCTS methods solve for actions each time a decision is made by 309 

simulating the potential outcome of available action sequences. It uses the simulations to estimate the expected value of each 310 

available action and then recommends the action with the highest expected value. Each simulated trajectory is recorded in a 311 

tree graph, as shown in Figure 5. Each time a simulation is generated, the trajectory is added to the tree. Future action sequence 312 

trials are guided by the information in the tree at the start of that trial. MCTS algorithms are considered online planners, since 313 

they solve for an optimal action from a given starting state, and therefore require computation every time a decision is made.  314 

Reinforcement learning based approaches may also be used to solve POMDP, though they are likely not as well suited 315 

as the presented Monte Carlo method. Reinforcement learning methods learn the optimal action for each possible encountered 316 

state offline before any actions are taken. Because offline methods learn policies for the entire space of experiences that may 317 

be encountered, they tend to require significantly more training data than online methods and can struggle to generalize to 318 
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experiences outside the training set. Reinforcement learning methods are typically formulated for fully observable problems, 319 

and do not explore partially observable domains as effectively as MCTS.  320 

 321 

4.3.1 Belief Modeling and Updating 322 

Belief updating in AI is the equivalent of inverse modeling in the geosciences. In our setting, we have indirect 323 

measurements 𝑜 (𝑧(𝑥)) of the state variables 𝑚(𝑥) and 𝑟(𝑥). We have assumed that 𝑚(𝑥) can be modeled with a single 324 

parameter, σ that is distributed uniformly over a known range. We also assume that 𝑟(𝑥) can be modeled as a Gaussian process 325 

with known mean 𝜇𝑟 and covariance 𝐶𝑟. The subscript 𝑡 denotes the step (iteration) of the decision-making process. After step 326 

𝑡, a total of 𝑡 measurements have been taken and we denote the set of all measurements taken up to that point as 327 

𝑜1:𝑡 = {𝑜(𝑥𝛼), 𝑥𝛼 = 1, … 𝑡}   328 

The observed measurements are dependent upon both random functions, 𝑚(𝑥) and 𝑟(𝑥), hence a traditional conditional 329 

simulation cannot be directly applied. Instead, we formulate this problem as a hierarchical Bayes’ problem by factoring the 330 

joint distribution into  331 

𝑓(𝑚(𝑥), 𝑟(𝑥)|𝑜1:𝑡) =  𝑓(𝑚(𝑥)|𝑜1:𝑡) × 𝑓(𝑟(𝑥)|𝑚(𝑥), 𝑜1:𝑡) 332 

Samples are generated from this distribution hierarchically by first drawing a sample from the distribution over 𝑚(𝑥) 333 

and then using the resulting sample to draw from the conditional distribution over 𝑟(𝑥). We model the belief 𝑓(𝑚(𝑥)|𝑜1:𝑡) as 334 

a particle set and update it using an importance resampling particle filter (Del Moral 1996, Liu et al. 1997). The conditional 335 

belief 𝑓(𝑟(𝑥)|𝑚(𝑥), 𝑜1:𝑡) is modeled as a conditional Gaussian process.  336 

 A particle set is an ensemble of realizations of the state variable with a sample distribution approximating the true 337 

state distribution. The initial particle set is generated by first sampling an ensemble from the uniform prior distribution. For an 338 

n particle set, this corresponds to an ensemble of  (𝑚𝑖(𝑥), 𝑟𝑖(𝑥)) , 𝑖 = 1, … 𝑛 where each particle is equiprobable.  339 

 When new information 𝑜𝑡 is observed, the particle filter updates the belief by updating the ensemble such that the 340 

new particles are sampled according to the posterior distribution 𝑓(𝑚(𝑥)|𝑜1:𝑡). To do this, a posterior weight is calculated for 341 

each particle according to Bayes’ rule as 342 

𝑤𝑖 ∝ 𝑓(𝑜𝑡|𝑚(𝑥), 𝑜1:𝑡−1) 343 

Note that each particle is treated as equiprobable in the particle set, so the prior probability is dropped in the above expression. 344 

The observed measurement 𝑜𝑡 is determined by the sum of 𝑚(𝑥) and 𝑟(𝑥) at the location of the measurement.  We denote 345 

these values as 𝑜𝑡
𝑚 and 𝑜𝑡

𝑟, respectively, such that 𝑜𝑡 = 𝑜𝑡
𝑚 + 𝑜𝑡

𝑟 . Using this notation, we can decompose the particle weight 346 

function into 347 

𝑤𝑖 ∝ 𝑓(𝑜𝑚
𝑡 |𝑚(𝑥)) × 𝑓(𝑜𝑟

𝑡|𝑚(𝑥), 𝑜1:𝑡−1) 348 

Because the value of 𝑜𝑚
𝑡  is completely determined by 𝑚(𝑥), we can simplify this further to  349 

𝑤𝑖 ∝ 𝑓(𝑜𝑡 − 𝑜𝑚
𝑡 |𝑜1:𝑡−1 − 𝑚(𝑥)) 350 
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which is given by the Gaussian process model conditioned on the difference between the previous measurements and the 𝑚(𝑥) 351 

values at their corresponding locations. 352 

 Once a weight has been calculated for each particle in the set, a new ensemble is generated. The new set is generated 353 

by sampling 𝑛 particles from the weighted set, with each particle being sampled with probability given by its weight. For each 354 

particle sampled, a new 𝑟(𝑥) field is generated with conditional Gaussian simulation, conditioning on the residual of the 355 

observed measurements and the sampled 𝑚(𝑥) field as  356 

𝑟(𝑥) ∼ 𝑁(𝜇𝑟 , 𝐶𝑟  |𝑜1:𝑡 − 𝑚(𝑥)) 357 

Sampling a particle ensemble with replacement in this way can lead to degeneracy, in which only a few values of 358 

𝑚(𝑥) are represented in the filtered ensemble. To prevent this, particles that are duplicated in the ensemble are perturbed 359 

slightly by adding zero-mean Gaussian noise to the 𝜎 parameter generating 𝑚(𝑥). The complete belief update is summarized 360 

in pseudocode in Algorithm 1 (Table 2) and described in text below. 361 

 362 

  363 

 364 

Algorithm 1 UPDATEBELIEF 

function UPDATEBELIEF(b, a, o) 

 

O ← bo ∪{o} 
A ← ba ∪ {a} 
W ← () 

for pi in b                                 Calculate Particle 

Weights 

  

ri ← o - mi(xa)  

wi ← N(ri; μi(xa), σ i(xa)) 

APPEND wi to W  

 

η ← 1/sumi wi 

for wi in W                                      Normalize 

Weights 

  wi ← η wi  

 

D ← {} 

P ← {} 

while |P| < |b|                          Resample Particles 
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p ← SAMPLE(b, W) 

if d in D 

   d ← d + e, e ~ N(0, σ2n)  

  

m(x) ← f(x; d) forall x 

R ← O(xa) - m(xa) forall xa in A  

r(x) ~ GP(A, R)               Conditional Gaussian process 

z(x) ← m(x) + r(x) 

p’ ← (d, z(x)) 

P ← P ∪ {p’} 

 
b’ ← (P, O, A) 

return b’  

Table 2: pseudo algorithm for model inversion (belief update) using a hierarchical particle filter 365 

4.3.2 Online Monte Carlo Planning 366 

 To solve the POMDP, we search for the optimal action at each step using a variant of POMCPOW (Partially 367 

Observable Monte Carlo Planning with Observation Widening; Sunberg and Kochenderfer, 2018), a Monte Carlo tree search 368 

algorithm for POMDPs. At each time step 𝑡, the POMCPOW algorithm builds a tree of possible trajectories, with the root 369 

node of the tree representing the belief 𝑏𝑡 .      The tree construction process completes before taking any action at that step. 370 

The action with the highest estimated value is then returned from the search process. 371 

 POMCPOW generates a fixed number of trial trajectories 𝑚, by sampling 𝑚 states from the root belief. For each 372 

sampled state, POMCPOW simulates taking a series of actions 𝑎𝑡 , … , 𝑎𝑡+𝑘, and encodes the resulting series of observations as 373 

a branch of the tree. For each action visited along the branch, POMCPOW updates the estimate of the expected value of taking 374 

that action in the sequence using the rewards simulated in that trial. We modified the baseline POMCPOW algorithm by 375 

replacing the Monte Carlo value estimation with generalized mean estimation. The value of an action node in a tree is then 376 

given as  377 

�̄�(𝑏, 𝑎)  =  
1

𝑛
∑

𝑏′ ∈𝐶ℎ

�̄�(𝑏′) 378 

where Ch is the set of n child belief nodes of action node, a. The 𝑉(𝑏) term gives the estimated value of each belief node, 379 

defined as   380 

�̄�(𝑏)  =  (
1

𝑛
∑

𝑎∈𝐶ℎ

�̄�(𝑏, 𝑎)𝛼)

1/𝛼

 381 
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where Ch is the set of child action nodes of the estimated belief node. The value 𝛼 > 0 is a parameter, where values of 𝛼 > 1 382 

more heavily weight actions with higher estimated values. We used 𝛼 =  ∞, which resulted in backing up the maximum action 383 

node estimate at each belief node.  384 

Each step of a simulated trial, POMCPOW simulates taking the action with the highest upper confidence bound on 385 

its estimated value. In this way, POMCPOW optimistically explores the action space. This strategy has been proven to 386 

converge to the optimal action in the limit of infinite samples. After all 𝑚 trials have been generated, POMCPOW returns the 387 

root node child action with the highest estimated value.  388 

 For POMDPs with large action spaces, POMCPOW limits how often new actions can be added to the search tree 389 

through a progressive widening rule. Under progressive widening, the total number of child action nodes that a given belief 390 

node may have, is defined as a function of the total number of times that node has been visited in previous trials. The limit is 391 

defined as 𝐶𝑚𝑎𝑥 = 𝑘𝑛𝛼 , where 𝑛 is the total number of previous visits. Actions added to the tree are sampled according to a 392 

stochastic policy. We defined the k-σ upper confidence bound for each point in the exploration area as 𝑈𝐶𝐵(𝑥) = 𝑚(𝑥) +393 

𝜇(𝑥) + 𝑘𝜎(𝑥), where 𝜇 and 𝜎 are given by the distribution of the parent node belief. Actions were then sampled in proportion 394 

to the UCB value at the target location. Intuitively, this guided POMCPOW to search actions that had both high expected 395 

value, and high uncertainty.   396 

 397 

4.4 Illustration Case  398 

 In this section, we present the result of solving the problem for the mineral field shown in Figure 6, below. In all 399 

problems, rewards are measured in units of massive ore, where one pixel in the massive ore map (Figure 3) represents one unit 400 

of ore. In all the problems studied, the massive ore threshold was set to 0.7 and the extraction cost was set to 150 units. This 401 

example case has a total volume of 158 units massive ore, making it a marginally profitable case. The measurement cost was 402 

0.1 units per measurement taken. In this example, we constrained the measurements to be taken a maximum distance of 10 403 

distance units away from the previous measurement, where each pixel is one distance unit.  404 

Figure 7 shows the mean and standard deviation mineralization 𝑧(𝑥) at each point in the exploration area calculated 405 

from the initial belief ensemble before any measurements have been taken. The histogram in Figure 8 shows the distribution 406 

of massive ore quantities for the realizations in the ensemble. The vertical line shows the 158 massive ore volume of the 407 

illustration case realization. 408 

 409 
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 410 

Figure 6: Illustration case. The left figure shows the mineralization 𝑧(𝑥) of the example case. The right figure shows the massive ore 411 
mass of the mineral field 𝑖(𝑥).  412 

 413 

 414 

Figure 7: Initial ore belief. The left figure shows the mean mineralization from the prior belief at each point in the exploration area. 415 
The figure on the right shows the marginal standard deviation of mineralization at each point.  416 

 417 
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 418 

Figure 8: Initial belief ore histogram. The figure shows the distribution of massive ore volumes in the initial belief ensemble. The 419 
vertical line shows the actual volume of ore in the illustration case. 420 

 We ran POMCPOW for 10,000 trial simulations (trajectories) per-step. The resulting actions taken in the first five 421 

steps are shown in Figure 9, below. As can be seen, the deviation of the belief over the ore quantities decreases as measurements 422 

are taken, and the expected value tends toward the true value. The agent tends to take an “extent finding” approach, where it 423 

alternates taking actions closer and then farther from the expected center of the orebody. This pattern may be interpreted as 424 

searching for the maximum extent of the ore-body edge.  425 
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426 

 427 

 428 
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 429 

 430 

Figure 9: Initial measurement trajectory. Each figure shows the belief resulting from the measurements taken by the agent. The 431 
circles show the locations at which measurements were taken. The arrows indicate the sequence in which actions were taken. 432 

 The complete 22 measurement trajectory is shown in Figure 10 below along with the final histogram. At the 433 

conclusion of the measurements, the algorithm correctly decided to mine the deposit. As can be seen, at the time it made its 434 

decision, the expected value of the ore-quantity was approximately one standard deviation above the extraction cost threshold 435 

of 150. The agent did not stop exploring once the expected value exceeded the threshold, but only once it had exceeded by a 436 

significant threshold. This suggests that the agent would stop only when the value of the information gained by a measurement 437 

was exceeded by the cost of the measurement.  438 
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  439 

Figure 10: Complete measurement trajectory. The figure on the left shows the complete trajectory of all measurements taken in the 440 
illustration case. The figure on the right shows the resulting histogram.  441 

 442 

5 Experiments and Comparison with Baseline Methods 443 

5.1 Overview of Test Cases 444 

 To test the proposed approach, we conducted experiments on a variety of problem configurations. For these 445 

experiments, we tested three different ore-settings. 446 

1. Single body, fixed position: A single mineralization process generated an ore body with a known centroid location at 447 

the center of the exploration domain.  448 

2. Single body, variable-position: A single mineralization process generated an ore body with an unknown centroid 449 

location somewhere in the exploration domain.  450 

3. Two body, variable-positions: Two mineralization processes generated orebodies, both with unknown centroid 451 

locations within the exploration domain.   452 

The illustration case previously presented was from the single body, fixed-position problem configuration. Examples of the 453 

single body, variable-position and two body cases are shown in Figure 11. For each problem configuration we tested the 454 

POMCPOW agent with measurements constrained to a distance of 10 units from the previous location and without constraints 455 

on measurement location. We limited the agent to a maximum of 25 measurements.  456 
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 457 

 458 

 459 

Figure 11: (Top row): Single body, variable location realization. The left figure shows the mineral field generated by a primary 460 
process with a randomly selected centroid location. The right figure is the corresponding massive-ore map. (bottom row) Two body 461 
realization. The left figure shows the mineral field generated by two primary processes, each with a randomly selected centroid 462 
location. The right figure is the corresponding massive-ore map.  463 

 464 

We also tested the performance of POMCPOW against a baseline grid-pattern approach. In this method, 465 

measurements were taken at locations defined by k-by-k grids, as shown in Figure 12. Each grid pattern covers a square area 466 

located at the center of the exploration domain, with measurement coordinates taken at regularly spaced intervals along the 467 

cartesian directions of the grid. We solved for the optimal grid area for a 3-by-3 measurement grid by minimizing the expected 468 

standard deviation of the resulting belief. We solved for this value by first optimizing with Nelder-Mead simplex search (Nelder 469 
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1965) on the continuous range [5, 50] and then rounding the resulting value. The grid area was set to 30-by-30 for all grid 470 

patterns.  471 

We tested grids with 4, 9, and 16 measurements, as well as a single point fixed at the center of the exploration area. 472 

We also tested a baseline in which measurement locations were selected at random at each step. This allows us to understand 473 

the improvement of the approaches relative to an achievable lower-bound.  474 

 475 

 476 

Figure 12: Baseline grid patterns. The figures show the baseline grid patterns for 2-by-2, 3-by-3 and 4-by-4 grids, each with a total 477 
of 4, 9, and 16 measurements respectively. The grids cover the extent of a w-by-w area in the center of the exploration domain. A 478 
single measurement at the center of the domain is also shown in the leftmost figure.  479 

 480 

We ran Monte Carlo tests on the problem configurations described. For each case, we generated a set of 100 mineral-481 

field realizations, each one assumed as a possible truth. For each realization, measurements were taken according to the 482 

constrained and unconstrained POMCPOW solvers, the grid policy, and the random policy. The change in mean error and 483 

standard deviation for all the approaches was calculated. For the POMCPOW solver, we also measured the expected number 484 

of measurements as a function of the total deposit size, and the accuracy of the final MINE or ABANDON decision.  485 

The data from the tests suggested that different behavior emerged through POMCPOW for cases that were non-486 

economic, highly economic, and borderline economic. To investigate this, we solved one of each economic level for the three 487 

deposit settings using POMCPOW with action constraints. At the end of this section, we present the results of these trials and 488 

a plot of the observed trend in the Monte Carlo data.  489 

5.2 Single Body, Fixed Location 490 

 In this section, we present the results for the Monte Carlo tests on the case with a single, unimodal mineralization 491 

process located at the center of the exploration domain. For every solver, we measured the belief accuracy by calculating the 492 

relative mean absolute error (RMAE) of the estimated deposit volume resulting from each measurement. The relative MAE is 493 

the estimate error relative to the true deposit volume and is defined as 494 

𝑅𝑀𝐴𝐸 =
1

𝑛
∑

𝑛

𝑖=1

|𝑣𝑖
̄  −  𝑣𝑖|

𝑣𝑖

 495 
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where 𝑣�̄� and 𝑣𝑖 are the estimated and true deposit volumes for trial i, respectively. We calculated the RMAE after each 496 

measurement was taken by the POMCPOW policies and the random baseline. We also calculated the RMAE after all 497 

measurements were taken for the grid patterns with one, four, nine, and sixteen measurements. The resulting trends are shown 498 

in Figure 13 with one standard error bounds.  499 

 500 

Figure 13: Relative MAE single mineralization, fixed location. The plot shows the mean relative absolute error after a given number 501 
of measurements taken under each tested method. The mean absolute error is shown along with one standard error bounds for each 502 
trend.  503 

 504 

 We also measured the change in uncertainty (belief) by calculating the standard deviation resulting from each 505 

measurement. After each measurement, we calculated the ratio of the resulting volume standard deviation relative to the initial 506 

belief standard deviation (the Bayesian prior of volume). After measurement t in the sequence, the standard deviation ratio is 507 

given by 
𝜎𝑡

𝜎0
, where 𝜎𝑡 is the belief standard deviation after the measurement (posterior standard deviation of volume), and 𝜎0 508 

is the standard deviation of the initial belief. We calculated this ratio after each measurement was taken by the POMCPOW 509 

policies and the random baseline. We also calculated the ratio after all measurements were taken for the grid patterns with one, 510 
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four, nine, and sixteen measurements. The mean standard deviation ratios over the Monte Carlo trials for each of the solvers 511 

is shown in Figure 14 along with one standard error bounds.  512 

 513 

Figure 14: Single Body, fixed location standard deviation ratios. The plot shows the mean standard deviation ratio after a given 514 
number of measurements taken under each tested method. The mean ratio is shown along with one standard error bounds for each 515 
trend.  516 

 517 

 In addition to the belief trends shown above, we also further analyzed the behavior of the POMCPOW methods 518 

with and without action distance constraints. For each, we examined the accuracy of the algorithm in making its final MINE 519 

or ABANDON decision, as well as how many measurements it took before reaching a decision. We also looked at the 520 

general trend in where it took measurements relative to the mineralization centroid location. These are presented in the 521 

following sub-sections.  522 

 523 
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5.2.1 POMCPOW, Constrained Actions 524 

 The final decision results for the POMCPOW solver with constraints on the maximum distance between measurement 525 

locations is shown in Table 3, below. This table presents the proportions of profitable and unprofitable deposits that 526 

POMCPOW decided to MINE or ABANDON at the end of each trial. A deposit is profitable if the ore volume exceeds the 527 

extraction threshold. A decision to MINE a profitable deposit or to ABANDON an unprofitable deposit is considered correct. 528 

The total amount of ore in profitable deposits that was mined is also presented. The average number of measurements taken 529 

before making a decision is shown for each deposit type, and for all cases.  530 

 531 

 Mined Abandoned Total  Accuracy 

Profitable 28 4 32 87.5% 

Unprofitable 2 66 68 97.1% 

Total 30 70 100 94.0% 

Profitable Ore 1097 57 1154 95.0% 

Mean 
Measures 

7.8 5.9 6.5 – 

Table 3: Single Body, fixed location POMCPOW results with action constraints. 532 

 533 

 Among the assumed “true” deposits, 32% are profitable. Among all the profitable cases, there is a total of 1154 units 534 

of ore, with POMCPOW deciding to mine 1097 units corresponding to 95% of profitable ore correctly extracted. On average, 535 

POMCPOW took 1.8 more measurements in profitable cases than in unprofitable cases. 536 

 537 

 POMCPOW was able to decide when to terminate taking measurements at any point during the campaign. If it did 538 

not decide to terminate, it was limited to a total of 25 measurements.  Figure 15 below shows the histogram of the number of 539 

measurements before termination taken by POMCPOW over the Monte Carlo trials.  540 

 541 

 542 

 543 

 544 

 545 

 546 
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 547 

 548 

Number of Measurements 549 

     550 

 551 

Figure 15: Measurement histogram, POMCPOW with action constraints, single body with fixed location. This figure shows 552 
histogram of the number of measurements taken by the POMCPOW solver over all Monte Carlo trials. The trials were limited to a 553 
maximum of 25 measurements.  554 

 555 

We recorded the distance between each measurement in the sequence and the center of the mineralization. The average distance 556 

for each point in the sequence is shown for ten measurements in Figure 16, along with one standard error bars. One notice how 557 

the agent starts away from the center of the orebody, then steps in toward the center, then gradually steps away from the center. 558 

 559 
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 560 

Figure 16: Measurement distance to center, POMCPOW with action constraints, single body with fixed location. The plot shows the 561 
average distance between the measurement location and the mineralization center for the measurements at each time step. One 562 
standard error bars are also presented. The dotted line is the maximum orebody radius, the dash-dotted line the mean orebody 563 
radius. Note that the intelligent agent steps further out because of the imperfect measuring of the orebody size. 564 

 565 

5.2.2 POMCPOW, Unconstrained Actions 566 

The final decision results for the POMCPOW solver with no constraints on measurement locations is shown in Table 567 

4, below. The same set of trial deposits were used to test both the constrained and unconstrained cases. The same results as 568 

presented in the constrained case are presented here for the unconstrained case.   569 

 570 

 Mined Abandoned Total  Accuracy 

Profitable 27 5 32 84.4% 

Unprofitable 5 63 68 92.6% 

Total 30 70 100 90.0% 
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Profitable Ore 1058 96 1154 91.6% 

Mean # of 

Measurements 
7.6 5.9 6.4 – 

Table 4: Single Body, fixed location POMCPOW results without action constraints. 571 

 572 

Among all the profitable cases, there is a total of 1154 units of ore, with POMCPOW deciding to mine 1058 units 573 

corresponding to 91.6% of profitable ore correctly extracted. On average, POMCPOW took 1.7 more measurements in 574 

profitable cases than in unprofitable cases. 575 

As in the constrained test, we plot the number of measurements taken before making the final decision in Figure 17, 576 

below. We also present the average distance from the deposit center in Figure 18.  577 

 578 

 579 
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Figure 17: Measurement histogram, POMCPOW without action constraints, single body with fixed location. This figure shows 580 
histogram of the number of measurements taken by the POMCPOW solver over all Monte Carlo trials. The trials were limited to a 581 
maximum of 25 measurements.  582 

 583 

 584 

Figure 18: Measurement distance to center, POMCPOW without action constraints, single body with fixed location. The plot shows 585 
the average distance between the measurement location and the mineralization center for the measurements at each time step. One 586 
standard error bars are also presented. 587 

 588 

5.3 Single Body, Variable Location 589 

In this section, we present the results for the Monte Carlo tests on the case with a single, unimodal mineralization 590 

process located at a variable, unknown point in the exploration domain. For every solver, we measured the belief accuracy by 591 

calculating the relative mean absolute error (RMAE) of the estimated deposit volume resulting from each measurement. The 592 

resulting trends are shown in Figure 19 with one standard error bounds.  593 

 594 
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 595 

Figure 19: Relative MAE single mineralization, variable location. The plot shows the mean relative absolute error after a given 596 
number of measurements taken under each tested method. The mean absolute error is shown along with one standard error bounds 597 
for each trend.  598 

 599 

We also measured the change in belief uncertainty by calculating the standard deviation ratios of the belief volume 600 

estimate resulting from each measurement. The mean standard deviation ratios over the Monte Carlo trials for each of the 601 

solvers is shown in Figure 20 along with one standard error bounds.  602 

 603 
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 604 

Figure 20: Single Body, variable location standard deviation ratios. The plot shows the mean standard deviation ratio after a given 605 
number of measurements taken under each tested method. The mean ratio is shown along with one standard error bounds for each 606 
trend.  607 

 608 

5.3.1 POMCPOW, Constrained Actions 609 

The final decision results for the POMCPOW solver with distance constraints on measurement locations is shown in 610 

Table 5, below. The same set of trial deposits were used to test both the constrained and unconstrained cases.  611 

 612 

 Mined Abandoned Total  Accuracy 

Profitable 18 1 19 94.7% 

Unprofitable 3 78 81 96.3% 
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Total 21 79 100 96.0% 

Profitable Ore 778 36 814 95.6% 

Mean # of 

Measurements 
9.6 5.6 6.5 – 

Table 5: Single Body, variable location POMCPOW results with action constraints. 613 

 614 

For the deposits tested, 19% were profitable. Among all the profitable cases, there was a total of 814 units of ore, 615 

with POMCPOW deciding to mine 778 units corresponding to 95.6% of profitable ore correctly extracted. On average, 616 

POMCPOW took 4.0 more measurements in profitable cases than in unprofitable cases. 617 

We plotted the number of measurements taken before making the final decision in Figure 21, below. We also 618 

present the average distance from the deposit center in Figure 22.  619 

 620 



35 

 

 621 

Figure 21: Measurement histogram, POMCPOW with action constraints, single body with variable location. This figure shows 622 
histogram of the number of measurements taken by the POMCPOW solver over all Monte Carlo trials. The trials were limited to a 623 
maximum of 25 measurements.  624 

 625 
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 626 

Figure 22: Measurement distance to center, POMCPOW with action constraints, single body with variable location. The plot shows 627 
the average distance between the measurement location and the mineralization center for the measurements at each time step. One 628 
standard error bars are also presented. 629 

 630 

5.3.2 POMCPOW, Unconstrained Actions 631 

The final decision results for the POMCPOW solver with no constraints on measurement locations is shown in Table 632 

6, below.  633 

 634 

 Mined Abandoned Total  Accuracy 

Profitable 17 2 19 89.4% 

Unprofitable 4 77 81 95.1% 

Total 21 79 100 94.0% 

Profitable Ore 754 60 814 92.6% 
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Mean # of 
Measurements 

8.6 4.2 5.1 – 

Table 6: Single Body, variable location POMCPOW results without action constraints. 635 

 636 

Among all the profitable cases, there was a total of 814 units of ore, with POMCPOW deciding to mine 754 units 637 

corresponding to 92.6% of profitable ore correctly extracted. On average, POMCPOW took 4.4 more measurements in 638 

profitable cases than in unprofitable cases. 639 

As in the constrained test, we plotted the number of measurements taken before making the final decision in Figure 640 

23, below. We also present the average distance from the deposit center in Figure 24.  641 

 642 

      643 

Figure 23: Measurement histogram, POMCPOW without action constraints, single body with variable location. This figure shows 644 
histogram of the number of measurements taken by the POMCPOW solver over all Monte Carlo trials. The trials were limited to a 645 
maximum of 25 measurements.  646 
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 647 

 648 

Figure 24: Measurement distance to center, POMCPOW without action constraints, single body with variable location. The plot 649 
shows the average distance between the measurement location and the mineralization center for the measurements at each time step. 650 
One standard error bars are also presented. 651 

5.4 Multiple Bodies 652 

In this section, we present the results for the Monte Carlo tests on the case with two mineralization processes located 653 

at variable, unknown points in the exploration domain. For every solver, we measured the belief accuracy by calculating the 654 

relative mean absolute error (RMAE) of the estimated deposit volume resulting from each measurement. The resulting trends 655 

are shown in Figure 25 with one standard error bounds.  656 

 657 
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 658 

Figure 25: Relative MAE, two mineralization processes. The plot shows the mean relative absolute error after a given number of 659 
measurements taken under each tested method. The mean absolute error is shown along with one standard error bounds for each 660 
trend.  661 

 662 

We also measured the change in belief uncertainty by calculating the standard deviation ratios of the belief volume 663 

estimate resulting from each measurement. The mean standard deviation ratios over the Monte Carlo trials for each of the 664 

solvers is shown in Figure 26 along with one standard error bounds.  665 
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 666 

Figure 26: Two mineralization process standard deviation ratios. The plot shows the mean standard deviation ratio after a given 667 
number of measurements taken under each tested method. The mean ratio is shown along with one standard error bounds for each 668 
trend.  669 

 670 

5.4.1 POMCPOW, Constrained Actions 671 

The final decision results for the POMCPOW solver with no constraints on measurement locations is shown in Table 672 

5, below. The same set of trial deposits were used to test both the constrained and unconstrained cases.  673 

 Mined Abandoned Total  Accuracy 

Profitable 13 6 19 68.4% 

Unprofitable 1 80 81 98.8% 

Total 14 86 100 93.0% 
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Profitable Ore 713 95 808 88.2% 

Mean # of 

Measurements 
10.1 5.4 6.2 – 

Table 7: Multi-body POMCPOW results with action constraints. 674 

 675 

For the deposits tested, 19% were profitable. Among all the profitable cases, there was a total of 808 units of ore, 676 

with POMCPOW deciding to mine 713 units corresponding to 88.2% of profitable ore correctly extracted. On average, 677 

POMCPOW took 4.7 more measurements in profitable cases than in unprofitable cases. 678 

We plotted the number of measurements taken before making the final decision in Figure 27, below.  679 

 680 

Figure 27: Measurement histogram, POMCPOW with action constraints, multiple ore-bodies. This figure shows histogram of the 681 
number of measurements taken by the POMCPOW solver over all Monte Carlo trials. The trials were limited to a maximum of 25 682 
measurements. 683 

 684 
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5.4.2 POMCPOW, Unconstrained Actions 685 

The final decision results for the POMCPOW solver with no constraints on measurement locations is shown in Table 686 

8, below.  687 

 Mined Abandoned Total  Accuracy 

Profitable 13 6 19 68.4% 

Unprofitable 1 80 81 98.8% 

Total 14 86 100 93.0% 

Profitable Ore 764 44 808 94.6% 

Mean # of 
Measurements 

8.9 6.1 6.5 – 

Table 8: Multi-Body POMCPOW results with action constraints. 688 

 689 

Among all the profitable cases, there was a total of 814 units of ore, with POMCPOW deciding to mine 764 units 690 

corresponding to 93.0% of profitable ore correctly extracted. On average, POMCPOW took 3.8 more measurements in 691 

profitable cases than in unprofitable cases. 692 

As in the constrained test, we plotted the number of measurements taken before making the final decision in Figure 693 

28, below.  694 
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 695 

Figure 28: Measurement histogram, POMCPOW without action constraints, multiple ore-bodies. This figure shows histogram of 696 
the number of measurements taken by the POMCPOW solver over all Monte Carlo trials. The trials were limited to a maximum of 697 
25 measurements. 698 

 699 

5.5 Deposit Size Sensitivity Studies 700 

The POMCPOW solver was allowed to terminate the measurement campaign at any point before the maximum of 25 701 

measurements were taken. We hypothesized that the size of the deposit being measured would impact how many measurements 702 

POMCPOW decided to take. To test this, we ran POMCPOW on three different deposit sizes for each of the three problem 703 

configurations.  704 

1. Sub-Economic: The total massive ore was below the economic cutoff threshold by more than 30% of the threshold 705 

value.  706 

2. Borderline-Economic: The total massive ore was within 10% of the economic cutoff threshold value.  707 

3. Economic: The total massive ore was above the economic cutoff threshold by at least 20% of the economic threshold 708 

value.  709 
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The resulting trajectory of measurements taken by POMCPOW for each of these configurations is shown in figure 29, figure 710 

30, and figure 31 for the single body with fixed location, single body with variable location, and multi-body cases, respectively. 711 

 712 

 713 

 714 

 715 

Figure 29: Deposit size study results for the single body with fixed centroid location case. The sub-economic, borderline, and 716 
economic cases are shown in the left, center, and right columns, respectively. The top row shows the massive ore present in the tested 717 
case. The center row shows the trajectory taken by POMCPOW and the standard deviation of the resultant belief. The bottom row 718 
shows the histogram of the ore volumes in the final belief along with the true massive ore volume. 719 

 720 
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 721 

 722 

 723 

Figure 30: Deposit size study results for the single body with variable centroid location case. The sub-economic, borderline, and 724 
economic cases are shown in the left, center, and right columns, respectively. The top row shows the massive ore present in the tested 725 
case. The center row shows the trajectory taken by POMCPOW and the standard deviation of the resultant belief. The bottom row 726 
shows the histogram of the ore volumes in the final belief along with the true massive ore volume. 727 

 728 
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 729 

 730 

 731 

Figure 31: Deposit size study results for multi-body case. The sub-economic, borderline, and economic cases are shown in the left, 732 
center, and right columns, respectively. The top row shows the massive ore present in the tested case. The center row shows the 733 
trajectory taken by POMCPOW and the standard deviation of the resultant belief. The bottom row shows the histogram of the ore 734 
volumes in the final belief along with the true massive ore volume. 735 

 736 

 The number of measurements taken in each tested configuration are summarized in table 9. In all three problem 737 

configurations, POMCPOW made significantly fewer measurements on the sub-economic deposits than it did on the borderline 738 

or economic deposits. In the single-body cases, POMCPOW measured the borderline-economic deposits more than the 739 

economic case. In the multi-body case, POMCPOW reached the maximum of 25 measurements for both the borderline, and 740 

economic cases.  741 

 742 

 Sub-Economic Borderline Economic 
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Single-Body, Fixed Location 4 22 10 

Single-Body, Variable Location 5 25 23 

Multi-Body 13 25 25 

Table 9: Deposit size study summary. The total number of measurements taken by POMCPOW before terminating the measurement 743 
campaign is shown in for each test configuration and deposit size. Cases in which the maximum 25 measurements were taken are 744 
shown in bold.  745 

 746 

 We examined the results of the Monte Carlo studies for a trend in the measurement campaign length. There was a 747 

positive correlation between the size of the mineral deposit and the number of measurements taken in the single-body cases. 748 

This trend is shown in Figure 32. The multi-body cases did not have a significant number of trials with fewer than ten 749 

measurements.  750 

 751 

Figure 32: Measurement campaign length and deposit size. The mean deposit size is shown for different measurement campaign 752 
lengths, along with one standard-error bounds. 753 

 754 
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6 Discussion 755 

 In all three deposit configurations tested in the Monte Carlo studies, the measurements taken by POMCPOW tended 756 

to improve the RMAE and the standard deviation ratio of the resulting belief significantly more quickly than the grid pattern 757 

and the random methods. In all cases, POMCPOW tended to reach the accuracy and precision of the full sixteen measurement 758 

grid after just seven to ten measurements. With increasing complexity of the problem (more uncertainty, more bodies) the 759 

difference in performance between the AI and the grid pattern method increases.  760 

 In the single-body cases, the performance of the POMCPOW solver with and without action constraints was not 761 

generally significantly different. In several cases, the constrained trajectories outperformed the unconstrained trajectories in 762 

terms of both belief accuracy and variance. This suggests the POMCPOW solver did not completely converge in the 763 

unconstrained cases, since the constrained trajectories are necessarily a subset of those reachable in the unconstrained case. 764 

This is likely a result of the unconstrained problem having significantly more locations for POMCPOW to select from at each 765 

step. Converging on larger search spaces tends to require more trial simulations in POMCPOW to converge. In the presented 766 

experiments, the POMCPOW trials were run with the same number of rollouts in both the constrained and unconstrained cases. 767 

In the multi-body cases, the unconstrained solver did tend to outperform the constrained solution. This suggests that the 768 

constraints pose a more significant limitation to the solution in the multi-body case than in the single-body case.  769 

 In the single-body cases, the final MINE or ABANDON decisions made by POMCPOW were accurate in both 770 

economic and non-economic cases, choosing the correct decision in over 90% of cases in most test configurations. The 771 

accuracy in non-economic cases tended to be slightly higher than in economic cases. This is likely the result of sub-economic 772 

deposits being more common in the prior distribution than economic deposits, and the initial belief expected ore volume 773 

starting below the economic threshold. The percentage of profitable ore mined tended to be higher than the ratio of correct 774 

mining decisions. For example, in the single-body fixed location case with measurement constraints, POMCPOW correctly 775 

identified approximately 89% of the profitable cases, though it mined 95% of all the profitable ore. This suggests that the 776 

economic cases which POMCOW failed to correctly identify were only marginally economic.  777 

The accuracy of the final POMCPOW decisions decreased significantly in the multi-body cases. In approximately 32% 778 

of profitable cases, the algorithm incorrectly decided to abandon the prospect. Inspection of the test results suggested that this 779 

was due to the belief model (Bayes model) failing to correctly resolve one of the two ore bodies before making a decision. An 780 

example of this is shown in Figure 32, where the algorithm incorrectly abandoned the marginally economic deposit after seven 781 

measurements before resolving both bodies. This behavior is likely caused by the belief incorrectly concentrating probability 782 

on a sub-economic, single body cases, not by the POMCPOW algorithm. The observed belief behavior was likely a result of 783 

the particle ensemble failing to retain a sufficient number of multi-body instances. Many methods have been proposed to 784 

monitor and prevent this type of particle filter degeneracy (Thrun, 2005), hence, future research will focus on including better 785 

particle filter methods for these types of problems  786 

 787 
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 788 

Figure 33: Multi-Body Failure Example. This figure shows an example of an incorrect ABANDON decision made on the multi-body 789 
case. In this trial, the belief converged too quickly to a sub-economic case with a single ore-body before resolving the second ore 790 
body in the south west.  791 

 792 

Interesting emergent behavior was observed in the single-body cases. The initial measurement was not typically taken at 793 

the center of the belief distribution but was instead offset slightly. The subsequent measurements tended to step-in towards the 794 

center before gradually moving outward. This behavior can be understood as intuitive extent-finding methodology. Each 795 

measurement is taken to try to locate the edge of the deposit, where the most information about the deposit size can be learned. 796 

As more information is gained near the center, where positive observations are more likely, the measurements tend to move 797 

outward toward more informative, but higher variance data may be gathered. 798 

 One important feature of the defined POMDP is that it allows the solver to make a variable number of measurements 799 

before concluding. In each case studied, a wide variety of trajectory lengths were observed. Because there is a cost per-800 

measurement and a time discount on the eventual reward, POMCPOW tended to prefer shorter measurement campaigns, when 801 

possible, with fewer than five measurements being the mode in most cases. However, clear evidence of truncation at the upper 802 

end can be seen in the measurement histograms, suggesting that in some cases, more than the maximum allowed 25 803 

measurements would have been taken had the limit not been imposed. In general, it was observed that POMCPOW took more 804 

measurements on cases that we would consider more difficult. On cases that were borderline economic, in which resolving the 805 

deposit size with good fidelity was necessary to make the correct final decision, POMCPOW tended to take more 806 

measurements. For clearly sub-economic cases, POMCPOW abandoned after just a few measurements. For clearly economic 807 

cases, POMCPOW took more measurements than in clearly sub-economic cases. This is likely caused by the initial belief 808 

starting with an expected sub-economic value. This would require more Bayesian updates to converge toward an economic 809 

value than a sub-economic value. We also noted that fewer measurements were taken in the fixed-location cases than in the 810 

variable location cases. This is likely the result of the latter cases requiring the POMCPOW solver to localize the deposit in 811 

addition to measuring its extent. 812 

The hyperparameters of the POMCPOW were set through a basic grid search over widening and search parameters. 813 

To limit the computational expense, the total number of trial trajectories was fixed at 10,000, which allowed the study to be 814 

run with tractable computational limits. Changing progressive widening parameters also changed the computational expense 815 

and depth of search and therefore the greediness of the resultant policy. Overly aggressive widening tended to result in short-816 
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sighted policies that are one-step greedy, since the Monte Carlo estimates for each action will tend to be dominated by very 817 

short horizon trajectories. In our problem, this would tend to result in the degenerate policy of always abandoning the prospect 818 

on the first step, since that was the only action with a non-negative expected one-step return. 819 

7 Conclusion 820 

In this work, we presented a Bayesian sequential decision-making approach to improving geoscientific model through 821 

sequential data acquisition planning, with application to mineral exploration. We presented a framework to model challenges 822 

like mineral exploration problems by means of partially observable Markov decision processes (POMDPs). We demonstrated 823 

the general method with a specific example case in which we solved a 2D mineral exploration problem with a known 824 

exploration area. To solve this problem, we developed a hierarchical Bayesian belief using a particle filter and Gaussian process 825 

regression and the Monte Carlo search algorithm POMCPOW.  826 

The results of our studies demonstrate that a closed-loop sequential decision-making approach significantly 827 

outperforms a typical fixed-pattern grid approach. The measurements recommended by POMCPOW improved the accuracy 828 

and variance of the belief over the deposit extent significantly faster than the baseline methods. The resulting behavior that 829 

emerged from POMCPOW was intuitive and tended to result in shorter measurement campaigns than a fixed pattern resulting 830 

in comparable accuracy.  831 

The methods presented in this work are general to many areas of resource exploration. The belief and solver presented 832 

for the test case are not necessarily required to implement this approach. Future work should apply these methods to higher 833 

fidelity exploration problems using more realistic geological models and measurement simulations, such as geophysical 834 

surveys. The POMCPOW solver was chosen because it is generally applicable to many POMDPs without modification. 835 

However, as seen in the unconstrained cases, POMCPOW may have not converged to an approximately optimal solution. 836 

Future work should investigate modifications to the baseline POMCPOW algorithm to improve its performance in exploration 837 

tasks. Extensions to POMCOW should be explored to use the fact that the deposit state underlying the belief is static to reduce 838 

the variance of the value estimates and the required sample complexity of the search. Future work should also investigate other 839 

solver types, such as point-based value iteration (PBVI), that may handle high-variance beliefs more efficiently.  840 

 841 

Code/data availability 842 

The current version of Intelligent Prospector is available from the project 843 

website: https://github.com/sisl/MineralExploration under the MIT License. The exact version of the model used to produce 844 

the results used in this paper is archived on Zenodo (Mern, 2022 10.5281/zenodo.6727378), as are input data and scripts to run 845 
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