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Abstract. Geoscientific models are based on geoscientific data, hence building better models, in the sense of attaining better 12 

predictions, often means acquiring additional data. In decision theory questions of what additional data is expected to best 13 

improve predictions/decisions is within the realm of value of information and Bayesian optimal survey design. However, these 14 

approaches often evaluate the optimality of one additional data acquisition campaign at a time. In many real settings, certainly 15 

in those related to the exploration of Earth resources, possibly a large sequence of data acquisition campaigns need to be 16 

planned. Geoscientific data acquisition can be expensive and time consuming, requiring effective measurement campaign 17 

planning to optimally allocate resources. Each measurement in a data acquisition sequence has the potential to inform where 18 

best to take the following measurements, however, directly optimizing a closed-loop measurement sequence requires solving 19 

an intractable combinatoric search problem. In this work, we formulate the sequential geoscientific data acquisition problem 20 

as a Partially Observable Markov Decision Process (POMDP). We then present methodologies to solve the sequential problem 21 

using Monte Carlo planning methods. We demonstrate the effectiveness of the proposed approach on a simple 2D synthetic 22 

exploration problem. Tests show that the proposed sequential approach is significantly more effective at reducing uncertainty 23 

than conventional methods. Although our approach is discussed in the context of mineral resource exploration, it likely has 24 

bearing on other types of geoscientific model questions. 25 

1 Introduction 26 

As the world weans itself off fossil fuels over the next decades, new forms of energy will heavily rely on Earth materials, in 27 

particular minerals. Rare earth elements are used in a variety of clean-energy technologies (Hague et al., 2014). Fully 28 

electrifying the light-duty auto fleet requires discovering new ore deposits of critical electric vehicle (EV) materials: copper, 29 

nickel, cobalt, and lithium (Savacool et al., 2020). Increasing the required supply of these critical minerals requires a yet 30 

unattained discovery rate of new deposits. Mineral exploration is slow, requiring extensive guidance from human experts. As 31 
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a result, the rate of new discoveries has declined over the last decades, since deposits with sections visible at the surface have 32 

mostly been discovered (Davies et al., 2021). At the same time, the demand will continue to increase, making minerals a 33 

targeted commodity subject to international conflict (National Research Council, 2008), social, and environmental concerns 34 

(Agusdinata et al., 2018). Enhancing and speeding up mineral exploration at a planet-wide scale is required. Our approach, 35 

using Artificial Intelligence for effective planning of exploration endeavors, aims to contribute to this challenge. 36 

 37 

Mineral exploration requires making sequential decisions about what type of data to acquire, where to acquire it, and at what 38 

resolution with the goal of detecting an economically mineable deposit. In other words, mineral exploration is a sequential 39 

decision-making problem under uncertainty. These types of problems have previously been studied under several non-40 

sequential frameworks in various areas of the geosciences. Optimizing spatial designs of experiments is a well-studied topic. 41 

McBratney et al. (1981) described a method for designing optimal sampling schemes based on the theory of regionalized 42 

variables (Matheron, 1971) by modeling spatial dependence with semi-variograms. The 1990s saw a significant debate arising 43 

in the soil sciences community (Brus & Gruijter, 1997; Van Groeningen et al., 1999; Lark, 2002, Heuvelink et al., 2006) 44 

around adaptation of geostatistics and its role in optimal survey design. Likewise, geostatistics-based optimal design of 45 

environmental monitoring has been significantly developed (De Gruijter et al., 2006; Melles et al., 2011). Geostatistical 46 

methods are often not Bayesian, which may be a disadvantage when the spatial structures (e.g., variograms) are uncertain 47 

themselves. A method for Bayesian optimal design in spatial analysis was developed by Diggle & Lophaven (2006). 48 

 49 

Optimal placement of drill-holes for mineral exploration and mining (resource delineation) has received significant attention. 50 

Some methodologies aim to minimize the uncertainty on spatial properties through use of geostatistical algorithms that model 51 

the effect of measured data on spatial uncertainty (Pilger et al., 2001; Koppe et al., 2011; Koppe et al., 2017; Caers et al., 2022; 52 

Hall et al., 2022). Others rely on decision theoretic concepts of value of information to quantify the dollar value of gathered 53 

information to reduce uncertainty on an economic property of interest (Froyland et al., 2004; Eidsvik, & Ellefmo, 2013; 54 

Soltani-Mohammadi & Hezarkhani, 2013). Bickel et al. (2008) recognizes the sequential nature of the problem and illustrate 55 

that sequential information gathering is superior to non-sequential schemes, a concept that goes back to the 1970s (Miller, 56 

1975).  57 

 58 

The above methodologies evaluate the performance of a given spatial survey design, but do not address the combinatorial 59 

problem of creating optimal survey plans. In general, the number of sequences to evaluate grows exponentially with the number 60 

of surveys. For example, when planning a sequence of 10 surveys at 100 possible locations, there are more than 17 billion 61 

possible sequences that could be evaluated. Many problems will likely require more than 10 data acquisition actions to discover 62 

a mineral deposit that is economically feasible. Therefore, methodologies (like Emery et al., 2008) that use optimization in 63 

combination with geostatistics are likely intractable for many practical problems.  64 

 65 
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Sequential planning methods solve for each action in a sequence only after observing the results of each previous action. 66 

Planning is typically done in either an open-loop or closed-loop fashion. Open-loop methods solve for each action in the 67 

sequence that gives the best immediate return according to some metric, without considering how the information learned from 68 

taking that action is likely to impact future decisions. Closed-loop methods solve for actions that maximize the expected return 69 

of all remaining actions in a sequence. Closed-loop methods tend to outperform open-loop methods, especially on tasks in 70 

which a lot of information is learned each step (Russell and Norvig, 2020: p.120-122). Closed-loop methods, however, tend to 71 

require significantly more computational effort than open-loop approaches.  72 

 73 

Recent work has applied Bayesian optimization to develop open-loop solutions to sequential experiment design (Shahriari et 74 

al., 2016). Marchant et al. (2014) specifically consider the application of Bayesian optimization to spatial-temporal 75 

measurement sequences. Receding horizon control has been used in sequential resource development (Grema et al., 2013) in 76 

conjunction with general particle swarm optimization. While these methods may be tractable, they are likely sub-optimal over 77 

the entire measurement sequence, since each action only optimizes its own return.  78 

 79 

Closed loop methods solve for optimal conditional sequences of actions. Common closed-loop methods include reinforcement 80 

learning, dynamic programming, and Monte Carlo planning. These methods search for optimal actions through extensive 81 

interaction with a simulation of the target environment. Because of the large amounts of data required, these methods were 82 

initially developed on virtual domains such as video games (Chaslot et al., 2008). Recently learning-based approaches have 83 

achieved state-of-the-art performance in several real-world domains including autonomous driving (Brechtel et al, 2014) and 84 

robotic control (Grigorescu, 2020). Little work has been done, however, in applying these approaches to resource exploration. 85 

Torrado et al. (2017) proposed a Monte Carlo planning method for a similar task of optimal sequential reservoir development. 86 

This work, to the authors knowledge, is the first proposal for a general approach to optimal closed-loop decision making for 87 

geoscientific sequential data acquisition planning.  In this work, we propose an approach based on Monte Carlo planning. 88 

 89 

2 Illustration case for sequential data acquisition planning in resource exploration 90 

Our development will be illustrated on an analogue case set-up that contains many elements common to resource exploration 91 

planning.  In that sense we aim for modularity in the development where several components (inverse modelling, geological 92 

modelling, data forward modelling) can be changed out without changing the sequential data acquisition methodology.  93 

 94 

Specifically, we will focus on the exploration of one or more orebodies in the subsurface. The elements of the problem 95 

definition consists of 1) a description of the state of knowledge of the physical world, 2) a description of data that exists or is 96 

planned to be acquired on the physical world, 3) rewards and costs associated with the exploration endeavor.  97 
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 98 

Knowledge and uncertainty about the subsurface is commonly represented by probability distributions over the parameters of 99 

the subsurface system. Gridded models describing parametric distributions over geological, geophysical, and geochemical 100 

properties may be too high dimensional for practical use in decision making. A realization (in geostatistical jargon) generated 101 

from a probability distribution over the subsurface represents a plausible representation of the physical world. An ensemble of 102 

plausible realizations is a tractable method to represent the distribution over the subsurface. The variation between multiple 103 

realizations is an empirical representation of uncertainty (lack of knowledge).  104 

 105 

A subsurface orebody may be hard to identify in a real setting for various reasons. In geophysical surveys, many other 106 

geological features may act as ore bodies. An orebody is also not necessarily a perfect anomaly in a homogenous geological 107 

setting. Tectonic, metamorphic, sedimentary, and other alteration processes may have changed the nature of the original 108 

orebody. In Figure 1, we show how we created an analogue situation that mimics many of these elements. Figure 1 represents 109 

a simplified 1D depiction, though the methodology will be applied to 2D and 3D settings. Figure 1 should only be referenced 110 

as a template containing the challenges present in mineral exploration.  111 

 112 

First, we represent the mineralization by the function in Figure 1A. The example shows a unimodal function, however a 113 

multiple of these mineralization bumps may be present. Second, we introduce a “geological background variation” as shown 114 

in Figure 1B. This represents all geological processes that have altered the original ore-body shape. This variation is not entirely 115 

random and has some structure. In our setting, we model it as a Gaussian process with known correlation structure (variogram). 116 

In practice, a much more complex model of the background geology may be used with the presented methods. By adding the 117 

“mineralization field” to the “geological background field”, we obtain the “measurable variation” shown in Figure 1C. When 118 

a threshold 𝑡  is exceeded in the 𝑧(𝑥) field, we get the target which we will term “massive ore”. The massive ore is shown in 119 

Figure 1D and is the part of the orebody that would be considered for mining. In this example, this results in a single economic 120 

parameter: volume. We do not consider concentration, grade, or other economic parameters in this paper, though the 121 

methodology does not prevent including them. 122 

 123 

The next element is the set of measurements that are available to be taken. Measurements are indirect indicators of what is 124 

desired: the economic parameters of the orebody, which in our setting is the orebody volume. Measurements generally do not 125 

directly observe this value; however, they may reduce the uncertainty on it. Such uncertainty quantification is generally 126 

conducted with Bayesian approaches. Bayesian methods require stating measurement likelihood functions and prior 127 

distributions. In our setting, the various alternative realizations constitute samples of the prior. In this work, we consider taking 128 

point measurements of the total variational field, as shown in Figure 1C. We also consider taking only one measurement at a 129 

time because measuring may be expensive, and the results may inform where to best take the next measurement. Note that in 130 

this work, we will not perform traditional geostatistical conditional simulation using the measurements as hard data, because 131 
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the function 𝑚(𝑥) is stochastic as well. Instead, we will solve Bayesian inverse problems that aims to infer 𝑚(𝑥) and 𝑟(𝑥) 132 

jointly from data. 𝑧(𝑥) represents the exhaustive set of observations that could be acquired. In the real world, measurements 133 

may have various degrees of noise (e.g. geophysical survey vs. borehole data). In this work, we assume that the noise on the 134 

point measurements is negligible, but that only a small area is directly observed. Measurement noise can be integrated into the 135 

Bayesian inverse problem, but our paper does not focus on it.  136 

 137 

 138 

Figure 1. Example 1D Mineralization. Sub-figure (A) shows a mineralization that is altered by geological background variation (B), 139 
resulting in the measurable variation (C). The massive orebody (D), whose volume is the economic parameter of interest, exists at 140 
locations where z(x) exceeds a threshold value.  141 

 142 

We test the presented methodology on a 2D case that is analogous to the 1D example. The 2D case set-up is shown in Figure 143 

2 and Figure 3. We define the mineralization 𝑚(𝑥) using a single uncertain parameter 𝜎 that determines the width. We assume 144 

𝜎 has a uniform distribution with known bounds. Geological variation is modeled using a Gaussian process with known mean 145 

and variogram. We generate the measurable fields 𝑧(𝑥) by adding various realizations of 𝑚(𝑥) to realizations of 𝑟(𝑥), as 146 

shown in Figure 2. Then after defining a threshold 𝑡, we obtain the massive ore field 𝑖(𝑥) with the volume 𝑣, as shown in 147 

Figure 3.  148 

 149 
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 150 

Figure 2. Two-dimensional exploration problem. The mineralization field 𝑚(𝑥) (left), the background field 𝑟(𝑥) (center) are summed 151 
to create the measurable field 𝑧(𝑥) (right). 152 

 153 

 154 

Figure 3. Two-dimensional economic field. The massive ore field 𝑖(𝑥) shows where the measurable field 𝑧(𝑥) exceeds the economic 155 
threshold 𝑧𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. 156 

 157 

The question we will address is: what is the optimal sequence of data acquisition that best informs “mine” vs “do not mine” 158 

decision? 159 

 160 

 161 
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3 Notational aspects 162 

 163 

In this paper, we will need to merge nomenclature and mathematical notations of two different domains: 164 

geosciences/geostatistics and artificial intelligence (AI). Here we list some nomenclature from each field that describe the 165 

same concept (see also Table 1). 166 

 167 

● A state = an instantiation of a set of parameters describing the world. For example, a geostatistical realization is a set 168 

of geological parameters representing the “state” of the subsurface in a gridded model. A state is referred to as 𝑠. 169 

● Belief over a state = probability distribution of instantiations of a set of parameters. In probability theory, one defines 170 

over all possible outcomes of a geological model a probability density. This density is very high-dimensional in our 171 

setting. In AI ones uses 𝑏(𝑠), while in probability parlor, this is referred to as 𝑓(𝑠). 172 

● Belief update = Bayesian update. A belief update requires stating the prior and the likelihood model.  The likelihood 173 

in AI is termed the observation model 𝐿(𝑜|𝑠, 𝑎), while in Bayesian terminology one uses 𝑓(𝑜|𝑠). Note that in AI an 174 

additional “conditioning” is added as 𝑎, which represents the action by an AI agent. This is accounts for the fact that 175 

actions are taken in sequences. 𝐿(𝑜𝑡+1 ∣ 𝑠𝑡+1, 𝑎𝑡) is the likelihood of the observation at measurement 𝑡 + 1 , given 176 

the state at 𝑡 + 1 and action at 𝑡. 177 

● Observation space: the set of all possible outcomes of the measurements. In AI observations are denoted as 𝑜, while 178 

in Bayesian nomenclature these are termed data 𝑑. 179 

AI 

Terminology 

Geosciences 

Terminology 
Definition 

State: s Realization: 𝑧(𝑥) 
The (possibly unknown) 
subsurface geological 

parameters 

Action: 𝑎 Take measurement 
Measure 𝑧(𝑥) at 𝑥 

 

Observation: 𝑜 Measurement Measured value of 𝑧(𝑥)  

Belief: 𝑏(𝑠) 
Probability density over 
 𝑧(𝑥) 

A probability distribution over 
the possible geological 

parameter realizations 



8 

 

Belief Update Bayesian Posterior 

Updating the distribution over 

geological parameters given 

new information according to 
Bayes’ rule 

 180 

Table 1: comparison between AI and geostatistical nomenclature 181 

 182 

4 Methodology 183 

4.1 Partially observable Markov decision processes 184 

 This work frames mineral exploration as a sequential decision process. In a sequential problem, a decision-making 185 

agent must take a sequence of actions to reach a goal. Information gained from each action in the sequence can inform the 186 

choice of subsequent actions. An optimal action sequence will account for the expected information gain from each action and 187 

its impact on future decisions. This type of conditional planning may be referred to as closed-loop or feedback control. We 188 

will use the mineral-exploration problem outlined above as a working example for the remainder of this section. 189 

 190 

 A sequential decision problem can be modeled formally as a Markov decision process (MDP). An MDP is a 191 

mathematical description of a sequential decision process defined by a collection of probability distributions, spaces, and 192 

functions. The full MDP is typically defined by the tuple (𝑆, 𝐴, 𝑇, 𝑟, 𝛾).  The state space 𝑆 is the space of all states that the 193 

decision-making problem may take at any step. In the mineral exploration process, the state is defined by the geological model 194 

of the subsurface deposit as well as the locations of measurements. The action space 𝐴 defines the set of all actions that the 195 

agent may take. In the mineral exploration problem, this would be the set of all locations that the agent may acquire 196 

measurements (data). The transition model 𝑇(𝑠𝑡+1 ∣ 𝑠𝑡 , 𝑎𝑡), is the probability distribution over the next time step state 𝑠𝑡+1, 197 

conditioned on the current state and action. The step 𝑡 refers to the sequential actions and belief updates. The MDP formulation 198 

assumes that the state transition is fully informed by the immediately preceding state and action, which is the Markovian 199 

assumption. The transition model may be deterministic.  200 

 The reward function 𝑟(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1): 𝑆 × 𝐴 × 𝑆 → 𝑅 gives a measure of how taking an action from a state contributes 201 

to the utility of the total action sequence which the agent seeks to maximize. The objective of an agent in an MDP is to 202 

maximize the sum of all rewards accumulated over an action sequence. To preference rewards earlier in the process, a time 203 

discount factor 𝛾 ∈ (0,1] is used. The goal of solving an MDP is to maximize the sum of discounted rewards accumulated 204 

from a given state, defined as  205 

∑𝑡=1
𝑇𝛾𝑡−1𝑟(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) 206 
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for a decision process with T steps. The sum of discounted rewards expected from a state is defined as the value of the state 207 

𝑉(𝑠). Given that the exact state transitions are not generally known in advance, the optimization target of solving an MDP is 208 

to maximize the expected value.  209 

 210 

 In many decision-making problems, such as all subsurface problems, the state at each time step (the geological model) 211 

is not fully known. In this case, agents make decisions based on imperfect observations of the relevant states of their 212 

environments. Sequential problems with state uncertainty are modeled as partially observable Markov decision processes 213 

(POMDPs). POMDPs are defined by the MDP tuple plus an observation space 𝑂 and an observation model 𝐿(𝑜𝑡+1 ∣ 𝑠𝑡+1, 𝑎𝑡). 214 

The observation space defines all the observations that the agent may make after taking an action. Observations are generally 215 

noisy measurements of a subset of the state. The observation model defines the conditional distribution of the observation 216 

given the state and action. In the mineral exploration problem, an observation would be the mineral content of the core sample 217 

taken at that time step.  218 

 219 

 To solve a POMDP, an agent must account for all the information gained from the sequence of previous observations 220 

when taking an action. It is common to represent the information gained from an observation sequence as a belief. A belief is 221 

a probability distribution over the unknown state of the world at a given time step. At the beginning of the decision-making 222 

process, the agent will start with a belief that is defined by all prior knowledge of the state available before making any 223 

observations. With each observation made, the belief is updated, typically using a Bayesian update as  224 

 225 

𝑏′(𝑠𝑡+1) ∝ 𝐿(𝑜𝑡+1 ∣ 𝑠𝑡+1, 𝑎𝑡)𝑏(𝑠𝑡+1). 226 

A belief may be an analytically defined probability distribution or an approximate distribution, such as a state ensemble updated 227 

with a particle filter. 228 

 Each decision in the sequence is made using the belief updated from the preceding observation. The process is 229 

depicted in Figure 4. An optimal choice in a sequential problem should consider all subsequent steps in the sequence. However, 230 

the number of trajectories of actions and observations reachable from a given state grows exponentially with the length of the 231 

sequence. As a result, optimizing conditional plans exactly is generally intractable. Instead, most POMDPs are solved 232 

approximately using stochastic planning and learning methods. 233 
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 234 

Figure 4: Exploration Markov Decision Process. Each decision step, the agent selects an action 𝑎𝑡based on its current belief over the 235 
world state using a planner (π). The agent takes the action in the world and observes some new data 𝑜𝑡+1. This data is used to update 236 
the belief 𝑏𝑡+1 for the next step. Each action results in a reward. 237 

 238 

 Monte Carlo tree search (MCTS) is a class of stochastic planning algorithms that is commonly used to solve MDPs 239 

and POMDPs. MCTS methods solve for actions each time a decision is made by simulating the potential outcome of available 240 

action sequences. It uses the simulations to estimate the expected value of each available action and then recommends the 241 

action with the highest expected value. Each simulated trajectory is recorded in a tree graph, as shown in Figure 5.. Each time 242 

a simulation is generated, the trajectory is added to the tree. Future action sequence trials are guided by the information in the 243 

tree at the start of that trial. MCTS algorithms are considered online planners, since they solve for an optimal action from a 244 

given starting state, and therefore require computation every time a decision is made.  245 
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 246 

Figure 5: Monte Carlo search tree. Each simulation in an MCTS algorithm is encoded into a search tree. The example tree is rooted 247 
at the belief, 𝑏(𝑠𝑡) given at the start of search. Paths from the root to a leaf of the tree represent a simulated trajectory of alternating 248 
actions, ai

t and observations, oi
t. An example trajectory in the tree is shown in bold. 249 

 250 

4.2 A POMDP for resource exploration 251 

 We propose formulating the mineral exploration problem as a sequential decision problem. A sequential plan allows 252 

information from each measurement in the sequence to inform the choice of subsequent measurements. 253 

 254 

     We now return the template example introduced in Figure 1 and state the elements of the POMDP. 255 

 256 

State Space (𝑆):  The state is a combination of a realization of the unknown subsurface geology (a geostatistical model) and 257 

any other environment factors that may constrain or affect the outcome of the measurements to be taken and the rewards 258 

gained. 259 

• Example POMDP: The state space is the combination of the sub-surface state space and the measurement state space. 260 

The subsurface state in the case of Figure 2 is the combination of 𝑚(𝑥) and 𝑟(𝑥). The measurement state defines the 261 

location of all previously acquired measurements. 262 
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Action Space (𝐴): The action space defines the set of measurement actions that can be taken at every step. The action space 263 

should also include MINE, and ABANDON (do not mine) actions. These actions allow the agent to terminate the measurement 264 

campaign.  265 

• Example POMDP: The action space is the set of all locations at which a measurement may be acquired in the 266 

exploration area, along with the MINE and ABANDON actions. Each measurement action is defined by the target 267 

measurement location. Taking an action 𝑎 signifies measuring 𝑧(𝑥) at 𝑥 = 𝑎. Available measurement locations are 268 

defined on a regular cartesian grid, and two measurements may not be drilled closer than some minimum distance 269 

from one another. The minimum distance may be set to zero to represent an unconstrained set.  270 

Observation Space (𝑂): The set of measurements values that may be observed from an action. The observation space may be 271 

composed of heterogeneous observation types to account for different measurements that may be taken; for example, to account 272 

for geochemical surface data and drill-core sample data.  273 

• Example POMDP: The mineralization 𝑧(𝑥) measured at a targeted location is defined as a scalar value. 274 

Observation Model (𝐿): the observation model defines the effect of sensor and other noise on the data generated by 275 

measurements. In the case that observations can be treated as noiseless, the conditional distribution can be defined by the Dirac 276 

as 𝐿(𝑜 ∣ 𝑠′, 𝑎) = 𝛿(𝑜 − 𝑔(𝑠′, 𝑎)), where 𝑔(𝑠′, 𝑎) is a deterministic function mapping the state and action to the observation. 277 

In Bayesian literature 𝑔 is also termed the data forward model. 278 

Transition Model (𝑇): The transition model defines how the state evolves as a result of actions. In our setting, the sub-surface 279 

state does not change because of measuring actions, and only measurement state elements will be updated. The transition 280 

model can also be used to constrain the actions that are available at each step, by setting the transition probabilities to 0 for 281 

disallowed actions.  282 

• Example POMDP: The measurement state is updated with newly selected action locations. Later, we will test two 283 

different transition models. One model does not constrain the available actions and a second constrains the action 284 

space to measurement locations that are no further than a distance 𝛿 away from the previous measurement. The 285 

purpose of doing so is to illustrate that the methodology allows for action constraints. 286 

Reward Function (𝑟): The reward function defines a cost for each measurement action taken and a reward for the final MINE 287 

or ABANDON decision. The reward function takes the following form  288 

𝑟(𝑠, 𝑎) = −𝐶𝑜𝑠𝑡(𝑠, 𝑎)  𝑖𝑓  𝑎 ∈ 𝐴𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠  289 

𝑟(𝑠, 𝑎) = 0   𝑖𝑓 𝑎 =  𝐴𝐵𝐴𝑁𝐷𝑂𝑁 290 

𝑟(𝑠, 𝑎) = 𝑃𝑟𝑜𝑓𝑖𝑡(𝑠)  𝑖𝑓 𝑎 = 𝑀𝐼𝑁𝐸 291 
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where 𝐶𝑜𝑠𝑡(𝑠, 𝑎) defines the cost of taking a measurement, 𝑃𝑟𝑜𝑓𝑖𝑡(𝑠) defines the profit from mining a deposit, and 292 

𝐴𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠 is the set of measurement actions. 293 

• Example POMDP: Each measurement has a fixed cost, and the profit is a simple function of the amount of ore 294 

present v(s) (Figure 1D) and a fixed extraction cost, as shown below.  295 

𝐶𝑜𝑠𝑡(𝑠, 𝑎) = 𝑐𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡  296 

𝑃𝑟𝑜𝑓𝑖𝑡(𝑠) = 𝑣(𝑠) − 𝑐𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛  297 

 298 

 299 

Discount Rate (𝛾): The discount rate defines a time discount rate for the costs and and profits and is used to calculate the net 300 

present value (NPV) of the measurement campaign. 301 

• Example POMDP: We use a discount rate of 0.99  302 

 303 

4.3 Solving the POMDP 304 

 In this section, we present a method to solve the example 2D mineral exploration POMDP. The methods presented 305 

may be generalized to additional mineral exploration problems. Algorithms to solve POMDPs can typically be applied to any 306 

valid POMDP model, though with differing effectiveness. The remaining subsections are divided into the tasks required to 307 

solve the POMDP: belief updating and searching over the large, combinatorial space of possible action sequences.  308 

The proposed solver is based on Monte Carlo tree search (MCTS), which is a class of stochastic planning algorithms 309 

that is commonly used to solve MDPs and POMDPs. MCTS methods solve for actions each time a decision is made by 310 

simulating the potential outcome of available action sequences. It uses the simulations to estimate the expected value of each 311 

available action and then recommends the action with the highest expected value. Each simulated trajectory is recorded in a 312 

tree graph, as shown in Figure 5. Each time a simulation is generated, the trajectory is added to the tree. Future action sequence 313 

trials are guided by the information in the tree at the start of that trial. MCTS algorithms are considered online planners, since 314 

they solve for an optimal action from a given starting state, and therefore require computation every time a decision is made.  315 

Reinforcement learning based approaches may also be used to solve POMDP, though they are likely not as well suited 316 

as the presented Monte Carlo method. Reinforcement learning methods learn the optimal action for each possible encountered 317 

state offline before any actions are taken. Because offline methods learn policies for the entire space of experiences that may 318 

be encountered, they tend to require significantly more training data than online methods and can struggle to generalize to 319 

experiences outside the training set. Reinforcement learning methods are typically formulated for fully observable problems, 320 

and do not explore partially observable domains as effectively as MCTS.  321 
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 322 

4.3.1 Belief Modeling and Updating 323 

Belief updating in AI is the equivalent of inverse modeling in the geosciences. In our setting, we have indirect 324 

measurements 𝑜 (𝑧(𝑥)) of the state variables 𝑚(𝑥) and 𝑟(𝑥). We have assumed that 𝑚(𝑥) can be modeled with a single 325 

parameter, σ that is distributed uniformly over a known range. We also assume that 𝑟(𝑥) can be modeled as a Gaussian process 326 

with known mean 𝜇𝑟 and covariance 𝐶𝑟. The subscript 𝑡 denotes the step (iteration) of the decision-making process. After step 327 

𝑡, a total of 𝑡 measurements have been taken and we denote the set of all measurements taken up to that point as 328 

𝑜1:𝑡 = {𝑜(𝑥𝛼), 𝑥𝛼 = 1, … 𝑡}   329 

The observed measurements are dependent upon both random functions, 𝑚(𝑥) and 𝑟(𝑥), hence a traditional conditional 330 

simulation cannot be directly applied. Instead, we formulate this problem as a hierarchical Bayes’ problem by factoring the 331 

joint distribution into  332 

𝑓(𝑜1:𝑡) =  𝑓(𝑜1:𝑡) × 𝑓(𝑚(𝑥), 𝑜1:𝑡) 333 

Samples are generated from this distribution hierarchically by first drawing a sample from the distribution over 𝑚(𝑥) 334 

and then using the resulting sample to draw from the conditional distribution over 𝑟(𝑥). We model the belief 𝑓(𝑚(𝑥)|𝑜1:𝑡) as 335 

a particle set and update it using an importance resampling particle filter (Del Moral 1996, Liu et al. 1997). The conditional 336 

belief 𝑓(𝑚(𝑥), 𝑜1:𝑡) is modeled as a conditional Gaussian process.  337 

 A particle set is an ensemble of realizations of the state variable with a sample distribution approximating the true 338 

state distribution. The initial particle set is generated by first sampling an ensemble from the uniform prior distribution. For an 339 

n particle set, this corresponds to an ensemble of  (𝑚𝑖(𝑥), 𝑟𝑖(𝑥)) , 𝑖 = 1, … 𝑛 where each particle is equiprobable.  340 

 When new information 𝑜𝑡 is observed, the particle filter updates the belief by updating the ensemble such that the 341 

new particles are sampled according to the posterior distribution 𝑓(𝑜1:𝑡). To do this, a posterior weight is calculated for each 342 

particle according to Bayes’ rule as 343 

𝑤𝑖 ∝ 𝑓(𝑜𝑡|𝑚(𝑥), 𝑜1:𝑡−1) 344 

Note that each particle is treated as equiprobable in the particle set, so the prior probability is dropped in the above expression. 345 

The observed measurement 𝑜𝑡 is determined by the sum of 𝑚(𝑥) and 𝑟(𝑥) at the location of the measurement.  We denote 346 

these values as 𝑜𝑡
𝑚 and 𝑜𝑡

𝑟, respectively, such that 𝑜𝑡 = 𝑜𝑡
𝑚 + 𝑜𝑡

𝑟 . Using this notation, we can decompose the particle weight 347 

function into 348 

𝑤𝑖 ∝ 𝑓(𝑚(𝑥)) × 𝑓(𝑚(𝑥), 𝑜1:𝑡−1) 349 

Because the value of 𝑜𝑚
𝑡  is completely determined by 𝑚(𝑥), we can simplify this further to  350 

𝑤𝑖 ∝ 𝑓(𝑜1:𝑡−1 − 𝑚(𝑥)) 351 

which is given by the Gaussian process model conditioned on the difference between the previous measurements and the 𝑚(𝑥) 352 

values at their corresponding locations. 353 
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 Once a weight has been calculated for each particle in the set, a new ensemble is generated. The new set is generated 354 

by sampling 𝑛 particles from the weighted set, with each particle being sampled with probability given by its weight. For each 355 

particle sampled, a new 𝑟(𝑥) field is generated with conditional Gaussian simulation, conditioning on the residual of the 356 

observed measurements and the sampled 𝑚(𝑥) field as  357 

𝑟(𝑥) ∼ 𝑁(𝜇𝑟 , 𝐶𝑟  |𝑜1:𝑡 − 𝑚(𝑥)) 358 

Sampling a particle ensemble with replacement in this way can lead to degeneracy, in which only a few values of 359 

𝑚(𝑥) are represented in the filtered ensemble. To prevent this, particles that are duplicated in the ensemble are perturbed 360 

slightly by adding zero-mean Gaussian noise to the 𝜎 parameter generating 𝑚(𝑥). The complete belief update is summarized 361 

in pseudocode in Algorithm 1 (Table 2) and described in text below. 362 

 363 

  364 

 365 

Algorithm 1 UPDATEBELIEF 

function UPDATEBELIEF(b, a, o) 

 

O ← bo ∪{o} 
A ← ba ∪ {a} 
W ← () 

for pi in b                                 Calculate Particle 

Weights 

  

ri ← o - mi(xa)  

wi ← N(ri; μi(xa), σ i(xa)) 

APPEND wi to W  

 

η ← 1/sumi wi 

for wi in W                                      Normalize 

Weights 

  wi ← η wi  

 

D ← {} 

P ← {} 

while |P| < |b|                          Resample Particles 

  
p ← SAMPLE(b, W) 

if d in D 



16 

 

   d ← d + e, e ~ N(0, σ2n)  

  

m(x) ← f(x; d) forall x 

R ← O(xa) - m(xa) forall xa in A  

r(x) ~ GP(A, R)               Conditional Gaussian process 

z(x) ← m(x) + r(x) 

p’ ← (d, z(x)) 

P ← P ∪ {p’} 

 
b’ ← (P, O, A) 

return b’  

Table 2: pseudo algorithm for model inversion (belief update) using a hierarchical particle filter 366 

4.3.2 Online Monte Carlo Planning 367 

 To solve the POMDP, we search for the optimal action at each step using a variant of POMCPOW (Partially 368 

Observable Monte Carlo Planning with Observation Widening; Sunberg and Kochenderfer, 2018), a Monte Carlo tree search 369 

algorithm for POMDPs. Each time step 𝑡, the POMCPOW algorithm builds a tree of possible trajectories, with the root node 370 

of the tree representing the belief 𝑏𝑡 . The full tree is constructedThe tree construction process completes before taking 371 

any action at that step. The action with the highest estimated value is then returned from the search process. 372 

 POMCPOW generates a fixed number of trial trajectories 𝑚, by sampling 𝑚 states from the root belief. For each 373 

sampled state, POMCPOW simulates taking a series of actions 𝑎𝑡 , … , 𝑎𝑡+𝑘, and encodes the resulting series of observations as 374 

a branch of the tree. For each action visited along the branch, POMCPOW updates the estimate of the expected value of taking 375 

that action in the sequence using the rewards simulated in that trial. We modified the baseline POMCPOW algorithm by 376 

replacing the Monte Carlo value estimation with generalized mean estimation. The value of an action node in a tree is then 377 

given as  378 

�̄�(𝑏, 𝑎)  =  
1

𝑛
∑

𝑏′ ∈𝐶ℎ

�̄�(𝑏′) 379 

where Ch is the set of n child belief nodes of action node, a. The 𝑉(𝑏) term gives the estimated value of each belief node, 380 

defined as   381 

�̄�(𝑏)  =  (
1

𝑛
∑

𝑎∈𝐶ℎ

�̄�(𝑏, 𝑎)𝛼)

1/𝛼

 382 

where Ch is the set of child action nodes of the estimated belief node. The value 𝛼 > 0 is a parameter, where values of 𝛼 > 1 383 

more heavily weight actions with higher estimated values. We used 𝛼 =  ∞, which resulted in backing up the maximum action 384 

node estimate at each belief node.  385 
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Each step of a simulated trial, POMCPOW simulates taking the action with the highest upper confidence bound on 386 

its estimated value. In this way, POMCPOW optimistically explores the action space. This strategy has been proven to 387 

converge to the optimal action in the limit of infinite samples. After all 𝑚 trials have been generated, POMCPOW returns the 388 

root node child action with the highest estimated value.  389 

 For POMDPs with large action spaces, POMCPOW limits how often new actions can be added to the search tree 390 

through a progressive widening rule. Under progressive widening, the total number of child action nodes that a given belief 391 

node may have, is defined as a function of the total number of times that node has been visited in previous trials. The limit is 392 

defined as 𝐶𝑚𝑎𝑥 = 𝑘𝑛𝛼 , where 𝑛 is the total number of previous visits. Actions added to the tree are sampled according to a 393 

stochastic policy. We defined the k-σ upper confidence bound for each point in the exploration area as 𝑈𝐶𝐵(𝑥) = 𝑚(𝑥) +394 

𝜇(𝑥) + 𝑘𝜎(𝑥), where 𝜇 and 𝜎 are given by the distribution of the parent node belief. Actions were then sampled in proportion 395 

to the UCB value at the target location. Intuitively, this guided POMCPOW to search actions that had both high expected 396 

value, and high uncertainty.   397 

 398 

4.4 Illustration Case  399 

 In this section, we present the result of solving the problem for the mineral field shown in Figure 6, below. In all 400 

problems, rewards are measured in units of massive ore, where one pixel in the massive ore map (Figure 3) represents one unit 401 

of ore. In all the problems studied, the massive ore threshold was set to 0.7 and the extraction cost was set to 150 units. This 402 

example case has a total volume of 158 units massive ore, making it a marginally profitable case. The measurement cost was 403 

0.1 units per measurement taken. In this example, we constrained the measurements to be taken a maximum distance of 10 404 

distance units away from the previous measurement, where each pixel is one distance unit.  405 

Figure 7 shows the mean and standard deviation mineralization 𝑧(𝑥) at each point in the exploration area calculated 406 

from the initial belief ensemble before any measurements have been taken. The histogram in Figure 8 shows the distribution 407 

of massive ore quantities for the realizations in the ensemble. The vertical line shows the 158 massive ore volume of the 408 

illustration case realization. 409 

 410 



18 

 

 411 

Figure 6: Illustration case. The left figure shows the mineralization 𝑧(𝑥) of the example case. The right figure shows the massive ore 412 
mass of the mineral field 𝑖(𝑥).  413 

 414 

 415 

Figure 7: Initial ore belief. The left figure shows the mean mineralization from the prior belief at each point in the exploration area. 416 
The figure on the right shows the marginal standard deviation of mineralization at each point.  417 

 418 
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 419 

Figure 8: Initial belief ore histogram. The figure shows the distribution of massive ore volumes in the initial belief ensemble. The 420 
vertical line shows the actual volume of ore in the illustration case. 421 

 We ran POMCPOW for 10,000 simulations per-step. The resulting actions taken in the first five steps are shown in 422 

Figure 9, below. As can be seen, the deviation of the belief over the ore quantities decreases as measurements are taken, and 423 

the expected value tends toward the true value. The agent tends to take an “extent finding” approach, where it alternates taking 424 

actions closer and then farther from the expected center of the orebody. This pattern may be interpreted as searching for the 425 

maximum extent of the ore-body edge.  426 
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 428 

 429 
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 430 

 431 

Figure 9: Initial measurement trajectory. Each figure shows the belief resulting from the measurements taken by the agent. The 432 
circles show the locations at which measurements were taken. The arrows indicate the sequence in which actions were taken. 433 

 The complete 22 measurement trajectory is shown in Figure 10 below along with the final histogram. At the 434 

conclusion of the measurements, the algorithm correctly decided to mine the deposit. As can be seen, at the time it made its 435 

decision, the expected value of the ore-quantity was approximately one standard deviation above the extraction cost threshold 436 

of 150. The agent did not stop exploring once the expected value exceeded the threshold, but only once it had exceeded by a 437 

significant threshold. This suggests that the agent would stop only when the value of the information gained by a measurement 438 

was exceeded by the cost of the measurement.  439 
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  440 

Figure 10: Complete measurement trajectory. The figure on the left shows the complete trajectory of all measurements taken in the 441 
illustration case. The figure on the right shows the resulting histogram.  442 

 443 

5 Experiments and Comparison with Baseline Methods 444 

5.1 Overview of Test Cases 445 

 To test the proposed approach, we conducted experiments on a variety of problem configurations. For these 446 

experiments, we tested three different ore-settings. 447 

1. Single body, fixed position: A single mineralization process generated an ore body with a known centroid location at 448 

the center of the exploration domain.  449 

2. Single body, variable-position: A single mineralization process generated an ore body with an unknown centroid 450 

location somewhere in the exploration domain.  451 

3. Two body, variable-positions: Two mineralization processes generated orebodies, both with unknown centroid 452 

locations within the exploration domain.   453 

The illustration case previously presented was from the single body, fixed-position problem configuration. Examples of the 454 

single body, variable-position and two body cases are shown in Figure 11. For each problem configuration we tested the 455 

POMCPOW agent with measurements constrained to a distance of 10 units from the previous location and without constraints 456 

on measurement location.   457 
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 458 

 459 

 460 

Figure 11: (Top row): Single body, variable location realization. The left figure shows the mineral field generated by a primary 461 
process with a randomly selected centroid location. The right figure is the corresponding massive-ore map. (bottom row) Two body 462 
realization. The left figure shows the mineral field generated by two primary processes, each with a randomly selected centroid 463 
location. The right figure is the corresponding massive-ore map.  464 

 465 

We also tested the performance of POMCPOW against a baseline grid-pattern approach. In this method, 466 

measurements were taken at locations defined by k-by-k grids, as shown in Figure 12. Each grid pattern covers a square area 467 

located at the center of the exploration domain, with measurement coordinates taken at regularly spaced intervals along the 468 

cartesian directions of the grid. We solved for the optimal grid area for a 3-by-3 measurement grid by minimizing the expected 469 

standard deviation of the resulting belief. We solved for this value by first optimizing with Nelder-Mead simplex search (Nelder 470 
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1965) on the continuous range [5, 50] and then rounding the resulting value. The grid area was set to 30-by-30 for all grid 471 

patterns.  472 

We tested grids with 4, 9, and 16 measurements, as well as a single point fixed at the center of the exploration area. 473 

We also tested a baseline in which measurement locations were selected at random at each step. This allows us to understand 474 

the improvement of the approaches relative to an achievable lower-bound.  475 

 476 

 477 

Figure 12: Baseline grid patterns. The figures show the baseline grid patterns for 2-by-2, 3-by-3 and 4-by-4 grids, each with a total 478 
of 4, 9, and 16 measurements respectively. The grids cover the extent of a w-by-w area in the center of the exploration domain. A 479 
single measurement at the center of the domain is also shown in the leftmost figure.  480 

 481 

We ran Monte Carlo tests on the problem configurations described. For each case, we generated a set of 100 mineral-482 

field realizations, each one assumed as a possible truth. For each realization, measurements were taken according to the 483 

constrained and unconstrained POMCPOW solvers, the grid policy, and the random policy. The change in mean error and 484 

standard deviation for all the approaches was calculated. For the POMCPOW solver, we also measured the expected number 485 

of measurements as a function of the total deposit size, and the accuracy of the final MINE or ABANDON decision.  486 

The data from the tests suggested that different behavior emerged through POMCPOW for cases that were non-487 

economic, highly economic, and borderline economic. To investigate this, we solved one of each economic level for the three 488 

deposit settings using POMCPOW with action constraints. At the end of this section, we present the results of these trials and 489 

a plot of the observed trend in the Monte Carlo data.  490 

5.2 Single Body, Fixed Location 491 

 In this section, we present the results for the Monte Carlo tests on the case with a single, unimodal mineralization 492 

process located at the center of the exploration domain. For every solver, we measured the belief accuracy by calculating the 493 

relative mean absolute error (RMAE) of the estimated deposit volume resulting from each measurement. The relative MAE is 494 

the estimate error relative to the true deposit volume and is defined as 495 

𝑅𝑀𝐴𝐸 =
1

𝑛
∑

𝑛

𝑖=1

|𝑣𝑖
̄  −  𝑣𝑖|

𝑣𝑖

 496 
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where 𝑣�̄� and 𝑣𝑖 are the estimated and true deposit volumes for trial i, respectively. We calculated the RMAE after each 497 

measurement was taken by the POMCPOW policies and the random baseline. We also calculated the RMAE after all 498 

measurements were taken for the grid patterns with one, four, nine, and sixteen measurements. The resulting trends are shown 499 

in Figure 13 with one standard error bounds.  500 

 501 

Figure 13: Relative MAE single mineralization, fixed location. The plot shows the mean relative absolute error after a given number 502 
of measurements taken under each tested method. The mean absolute error is shown along with one standard error bounds for each 503 
trend.  504 

 505 

 We also measured the change in uncertainty (belief) by calculating the standard deviation resulting from each 506 

measurement. After each measurement, we calculated the ratio of the resulting volume standard deviation relative to the initial 507 

belief standard deviation (the Bayesian prior of volume). After measurement t in the sequence, the standard deviation ratio is 508 

given by 
𝜎𝑡

𝜎0
, where 𝜎𝑡 is the belief standard deviation after the measurement (posterior standard deviation of volume), and 𝜎0 509 

is the standard deviation of the initial belief. We calculated this ratio after each measurement was taken by the POMCPOW 510 

policies and the random baseline. We also calculated the ratio after all measurements were taken for the grid patterns with one, 511 
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four, nine, and sixteen measurements. The mean standard deviation ratios over the Monte Carlo trials for each of the solvers 512 

is shown in Figure 14 along with one standard error bounds.  513 

 514 

Figure 14: Single Body, fixed location standard deviation ratios. The plot shows the mean standard deviation ratio after a given 515 
number of measurements taken under each tested method. The mean ratio is shown along with one standard error bounds for each 516 
trend.  517 

 518 

 In addition to the belief trends shown above, we also further analyzed the behavior of the POMCPOW methods 519 

with and without action distance constraints. For each, we examined the accuracy of the algorithm in making its final MINE 520 

or ABANDON decision, as well as how many measurements it took before reaching a decision. We also looked at the 521 

general trend in where it took measurements relative to the mineralization centroid location. These are presented in the 522 

following sub-sections.  523 

 524 
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5.2.1 POMCPOW, Constrained Actions 525 

 The final decision results for the POMCPOW solver with constraints on the maximum distance between measurement 526 

locations is shown in Table 3, below. This table presents the proportions of profitable and unprofitable deposits that 527 

POMCPOW decided to MINE or ABANDON at the end of each trial. A deposit is profitable if the ore volume exceeds the 528 

extraction threshold. A decision to MINE a profitable deposit or to ABANDON an unprofitable deposit is considered correct. 529 

The total amount of ore in profitable deposits that was mined is also presented. The average number of measurements taken 530 

before making a decision is shown for each deposit type, and for all cases.  531 

 532 

 Mined Abandoned Total  Accuracy 

Profitable 28 4 32 87.5% 

Unprofitable 2 66 68 97.1% 

Total 30 70 100 94.0% 

Profitable Ore 1097 57 1154 95.0% 

Mean 
Measures 

7.8 5.9 6.5 – 

Table 3: Single Body, fixed location POMCPOW results with action constraints. 533 

 534 

 Among the assumed “true” deposits, 32% are profitable. Among all the profitable cases, there is a total of 1154 units 535 

of ore, with POMCPOW deciding to mine 1097 units corresponding to 95% of profitable ore correctly extracted. On average, 536 

POMCPOW took 1.8 more measurements in profitable cases than in unprofitable cases. 537 

 538 

 POMCPOW was able to decide when to terminate taking measurements at any point during the campaign. If it did 539 

not decide to terminate, it was limited to a total of 25 measurements.  Figure 15 below shows the histogram of the number of 540 

measurements before termination taken by POMCPOW over the Monte Carlo trials.  541 

 542 

 543 

 544 

 545 

 546 

 547 
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 548 

 549 

Number of Measurements 550 
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 552 

Figure 15: Measurement histogram, POMCPOW with action constraints, single body with fixed location. This figure shows 553 
histogram of the number of measurements taken by the POMCPOW solver over all Monte Carlo trials. The trials were limited to a 554 
maximum of 25 measurements.  555 

 556 

We recorded the distance between each measurement in the sequence and the center of the mineralization. The average distance 557 

for each point in the sequence is shown for ten measurements in Figure 16, along with one standard error bars. One notice how 558 

the agent starts away from the center of the orebody, then steps in toward the center, then gradually steps away from the center. 559 

 560 
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 561 

Figure 16: Measurement distance to center, POMCPOW with action constraints, single body with fixed location. The plot shows the 562 
average distance between the measurement location and the mineralization center for the measurements at each time step. One 563 
standard error bars are also presented. 564 

 565 

5.2.2 POMCPOW, Unconstrained Actions 566 

The final decision results for the POMCPOW solver with no constraints on measurement locations is shown in Table 567 

4, below. The same set of trial deposits were used to test both the constrained and unconstrained cases. The same results as 568 

presented in the constrained case are presented here for the unconstrained case.   569 

 570 

 Mined Abandoned Total  Accuracy 

Profitable 27 5 32 84.4% 

Unprofitable 5 63 68 92.6% 

Total 30 70 100 90.0% 

Profitable Ore 1058 96 1154 91.6% 

Mean 7.6 5.9 6.4 – 
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Measures 

Table 4: Single Body, fixed location POMCPOW results without action constraints. 571 

 572 

Among all the profitable cases, there is a total of 1154 units of ore, with POMCPOW deciding to mine 1058 units 573 

corresponding to 91.6% of profitable ore correctly extracted. On average, POMCPOW took 1.7 more measurements in 574 

profitable cases than in unprofitable cases. 575 

As in the constrained test, we plot the number of measurements taken before making the final decision in Figure 17, 576 

below. We also present the average distance from the deposit center in Figure 18.  577 

 578 

Number of Measurements579 

 580 
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 581 

Figure 17: Measurement histogram, POMCPOW without action constraints, single body with fixed location. This figure shows 582 
histogram of the number of measurements taken by the POMCPOW solver over all Monte Carlo trials. The trials were limited to a 583 
maximum of 25 measurements.  584 

 585 
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 586 

Figure 18: Measurement distance to center, POMCPOW without action constraints, single body with fixed location. The plot shows 587 
the average distance between the measurement location and the mineralization center for the measurements at each time step. One 588 
standard error bars are also presented. 589 

 590 

5.3 Single Body, Variable Location 591 

In this section, we present the results for the Monte Carlo tests on the case with a single, unimodal mineralization 592 

process located at a variable, unknown point in the exploration domain. For every solver, we measured the belief accuracy by 593 

calculating the relative mean absolute error (RMAE) of the estimated deposit volume resulting from each measurement. The 594 

resulting trends are shown in Figure 19 with one standard error bounds.  595 

 596 
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 597 

Figure 19: Relative MAE single mineralization, variable location. The plot shows the mean relative absolute error after a given 598 
number of measurements taken under each tested method. The mean absolute error is shown along with one standard error bounds 599 
for each trend.  600 

 601 

We also measured the change in belief uncertainty by calculating the standard deviation ratios of the belief volume 602 

estimate resulting from each measurement. The mean standard deviation ratios over the Monte Carlo trials for each of the 603 

solvers is shown in Figure 20 along with one standard error bounds.  604 

 605 
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 606 

Figure 20: Single Body, variable location standard deviation ratios. The plot shows the mean standard deviation ratio after a given 607 
number of measurements taken under each tested method. The mean ratio is shown along with one standard error bounds for each 608 
trend.  609 

 610 

5.3.1 POMCPOW, Constrained Actions 611 

The final decision results for the POMCPOW solver with distance constraints on measurement locations is shown in 612 

Table 5, below. The same set of trial deposits were used to test both the constrained and unconstrained cases.  613 

 614 

 Mined Abandoned Total  Accuracy  

Profitable 18 1 19 94.7%  

Unprofitable 3 78 81 96.3%  
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Total 21 79 100 96.0%  

Profitable Ore 778 36 814 95.6%  

Mean 

Measures 
9.6 5.6 6.5 –  

Table 5: Single Body, variable location POMCPOW results with action constraints. 615 

 616 

For the deposits tested, 19% were profitable. Among all the profitable cases, there was a total of 814 units of ore, 617 

with POMCPOW deciding to mine 778 units corresponding to 95.6% of profitable ore correctly extracted. On average, 618 

POMCPOW took 4.0 more measurements in profitable cases than in unprofitable cases. 619 

We plotted the number of measurements taken before making the final decision in Figure 21, below. We also 620 

present the average distance from the deposit center in Figure 22.  621 

 622 

Number of Measurements 623 
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624 
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 625 

Figure 21: Measurement histogram, POMCPOW with action constraints, single body with variable location. This figure shows 626 
histogram of the number of measurements taken by the POMCPOW solver over all Monte Carlo trials. The trials were limited to a 627 
maximum of 25 measurements.  628 

 629 
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 630 

Figure 22: Measurement distance to center, POMCPOW with action constraints, single body with variable location. The plot shows 631 
the average distance between the measurement location and the mineralization center for the measurements at each time step. One 632 
standard error bars are also presented. 633 

 634 

5.3.2 POMCPOW, Unconstrained Actions 635 

The final decision results for the POMCPOW solver with no constraints on measurement locations is shown in Table 636 

6, below.  637 

 638 

 Mined Abandoned Total  Accuracy 

Profitable 17 2 19 89.4% 

Unprofitable 4 77 81 95.1% 

Total 21 79 100 94.0% 

Profitable Ore 754 60 814 92.6% 

Mean 8.6 4.2 5.1 – 
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Measures 

Table 6: Single Body, variable location POMCPOW results without action constraints. 639 

 640 

Among all the profitable cases, there was a total of 814 units of ore, with POMCPOW deciding to mine 754 units 641 

corresponding to 92.6% of profitable ore correctly extracted. On average, POMCPOW took 4.4 more measurements in 642 

profitable cases than in unprofitable cases. 643 

As in the constrained test, we plotted the number of measurements taken before making the final decision in Figure 644 

23, below. We also present the average distance from the deposit center in Figure 24.  645 

 646 

Number of Measurements 647 
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648 

 649 

Figure 23: Measurement histogram, POMCPOW without action constraints, single body with variable location. This figure shows 650 
histogram of the number of measurements taken by the POMCPOW solver over all Monte Carlo trials. The trials were limited to a 651 
maximum of 25 measurements.  652 
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 653 

 654 

Figure 24: Measurement distance to center, POMCPOW without action constraints, single body with variable location. The plot 655 
shows the average distance between the measurement location and the mineralization center for the measurements at each time step. 656 
One standard error bars are also presented. 657 

5.4 Multiple Bodies 658 

In this section, we present the results for the Monte Carlo tests on the case with two mineralization processes located 659 

at variable, unknown points in the exploration domain. For every solver, we measured the belief accuracy by calculating the 660 

relative mean absolute error (RMAE) of the estimated deposit volume resulting from each measurement. The resulting trends 661 

are shown in Figure 25 with one standard error bounds.  662 

 663 
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 664 

Figure 25: Relative MAE, two mineralization processes. The plot shows the mean relative absolute error after a given number of 665 
measurements taken under each tested method. The mean absolute error is shown along with one standard error bounds for each 666 
trend.  667 

 668 

We also measured the change in belief uncertainty by calculating the standard deviation ratios of the belief volume 669 

estimate resulting from each measurement. The mean standard deviation ratios over the Monte Carlo trials for each of the 670 

solvers is shown in Figure 26 along with one standard error bounds.  671 
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 672 

Figure 26: Two mineralization process standard deviation ratios. The plot shows the mean standard deviation ratio after a given 673 
number of measurements taken under each tested method. The mean ratio is shown along with one standard error bounds for each 674 
trend.  675 

 676 

5.4.1 POMCPOW, Constrained Actions 677 

The final decision results for the POMCPOW solver with no constraints on measurement locations is shown in Table 678 

5, below. The same set of trial deposits were used to test both the constrained and unconstrained cases.  679 

 Mined Abandoned Total  Accuracy 

Profitable 13 6 19 68.4% 

Unprofitable 1 80 81 98.8% 

Total 14 86 100 93.0% 
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Profitable Ore 713 95 808 88.2% 

Mean 

Measures 
10.1 5.4 6.2 – 

Table 7: Multi-body POMCPOW results with action constraints. 680 

 681 

For the deposits tested, 19% were profitable. Among all the profitable cases, there was a total of 808 units of ore, 682 

with POMCPOW deciding to mine 713 units corresponding to 88.2% of profitable ore correctly extracted. On average, 683 

POMCPOW took 4.7 more measurements in profitable cases than in unprofitable cases. 684 

We plotted the number of measurements taken before making the final decision in Figure 27, below.  685 

 686 

Number of Measurements 687 
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688 
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 689 

Figure 27: Measurement histogram, POMCPOW with action constraints, multiple ore-bodies. This figure shows histogram of the 690 
number of measurements taken by the POMCPOW solver over all Monte Carlo trials. The trials were limited to a maximum of 25 691 
measurements. 692 

 693 

5.4.2 POMCPOW, Unconstrained Actions 694 

The final decision results for the POMCPOW solver with no constraints on measurement locations is shown in Table 695 

8, below.  696 

 Mined Abandoned Total  Accuracy 

Profitable 13 6 19 68.4% 
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Unprofitable 1 80 81 98.8% 

Total 14 86 100 93.0% 

Profitable Ore 764 44 808 94.6% 

Mean 

Measures 
8.9 6.1 6.5 – 

Table 8: Multi-Body POMCPOW results with action constraints. 697 

 698 

Among all the profitable cases, there was a total of 814 units of ore, with POMCPOW deciding to mine 764 units 699 

corresponding to 93.0% of profitable ore correctly extracted. On average, POMCPOW took 3.8 more measurements in 700 

profitable cases than in unprofitable cases. 701 

As in the constrained test, we plotted the number of measurements taken before making the final decision in Figure 702 

28, below.  703 

Number of Measurements704 

 705 
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 706 

Figure 28: Measurement histogram, POMCPOW without action constraints, multiple ore-bodies. This figure shows histogram of 707 
the number of measurements taken by the POMCPOW solver over all Monte Carlo trials. The trials were limited to a maximum of 708 
25 measurements. 709 

 710 

5.5 Deposit Size Sensitivity Studies 711 

The POMCPOW solver was allowed to terminate the measurement campaign at any point before the maximum of 25 712 

measurements were taken. We hypothesized that the size of the deposit being measured would impact how many measurements 713 

POMCPOW decided to take. To test this, we ran POMCPOW on three different deposit sizes for each of the three problem 714 

configurations.  715 

1. Sub-Economic: The total massive ore was below the economic cutoff threshold by more than 30% of the threshold 716 

value.  717 
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2. Borderline-Economic: The total massive ore was within 10% of the economic cutoff threshold value.  718 

3. Economic: The total massive ore was above the economic cutoff threshold by at least 20% of the economic threshold 719 

value.  720 

The resulting trajectory of measurements taken by POMCPOW for each of these configurations is shown in figure 29, figure 721 

30, and figure 31 for the single body with fixed location, single body with variable location, and multi-body cases, respectively. 722 

 723 

 724 

 725 

 726 

Figure 29: Deposit size study results for the single body with fixed centroid location case. The sub-economic, borderline, and 727 
economic cases are shown in the left, center, and right columns, respectively. The top row shows the massive ore present in the tested 728 
case. The center row shows the trajectory taken by POMCPOW and the standard deviation of the resultant belief. The bottom row 729 
shows the histogram of the ore volumes in the final belief along with the true massive ore volume. 730 

 731 
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 732 

 733 

 734 

Figure 30: Deposit size study results for the single body with variable centroid location case. The sub-economic, borderline, and 735 
economic cases are shown in the left, center, and right columns, respectively. The top row shows the massive ore present in the tested 736 
case. The center row shows the trajectory taken by POMCPOW and the standard deviation of the resultant belief. The bottom row 737 
shows the histogram of the ore volumes in the final belief along with the true massive ore volume. 738 

 739 
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 740 

 741 

 742 

Figure 31: Deposit size study results for multi-body case. The sub-economic, borderline, and economic cases are shown in the left, 743 
center, and right columns, respectively. The top row shows the massive ore present in the tested case. The center row shows the 744 
trajectory taken by POMCPOW and the standard deviation of the resultant belief. The bottom row shows the histogram of the ore 745 
volumes in the final belief along with the true massive ore volume. 746 

 747 

 The number of measurements taken in each tested configuration are summarized in table 9. In all three problem 748 

configurations, POMCPOW made significantly fewer measurements on the sub-economic deposits than it did on the borderline 749 

or economic deposits. In the single-body cases, POMCPOW measured the borderline-economic deposits more than the 750 

economic case. In the multi-body case, POMCPOW reached the maximum of 25 measurements for both the borderline, and 751 

economic cases.  752 

 753 

 Sub-Economic Borderline Economic 
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Single-Body, Fixed Location 4 22 10 

Single-Body, Variable Location 5 25 23 

Multi-Body 13 25 25 

Table 9: Deposit size study summary. The total number of measurements taken by POMCPOW before terminating the measurement 754 
campaign is shown in for each test configuration and deposit size. Cases in which the maximum 25 measurements were taken are 755 
shown in bold.  756 

 757 

 We examined the results of the Monte Carlo studies for a trend in the measurement campaign length. There was a 758 

positive correlation between the size of the mineral deposit and the number of measurements taken in the single-body cases. 759 

This trend is shown in Figure 32. The multi-body cases did not have a significant number of trials with fewer than ten 760 

measurements.  761 

 762 

Figure 32: Measurement campaign length and deposit size. The mean deposit size is shown for different measurement campaign 763 
lengths, along with one standard-error bounds. 764 

 765 
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6 Discussion 766 

 In all three deposit configurations tested in the Monte Carlo studies, the measurements taken by POMCPOW tended 767 

to improve the RMAE and the standard deviation ratio of the resulting belief significantly more quickly than the grid pattern 768 

and the random methods. In all cases, POMCPOW tended to reach the accuracy and precision of the full sixteen measurement 769 

grid after just seven to ten measurements. With increasing complexity of the problem (more uncertainty, more bodies) the 770 

difference in performance between the AI and the grid pattern method increases.  771 

 In the single-body cases, the performance of the POMCPOW solver with and without action constraints was not 772 

generally significantly different. In several cases, the constrained trajectories outperformed the unconstrained trajectories in 773 

terms of both belief accuracy and variance. This suggests the POMCPOW solver did not completely converge in the 774 

unconstrained cases, since the constrained trajectories are necessarily a subset of those reachable in the unconstrained case. 775 

This is likely a result of the unconstrained problem having significantly more locations for POMCPOW to select from at each 776 

step. Converging on larger search spaces tends to require more trial simulations in POMCPOW to converge. In the presented 777 

experiments, the POMCPOW trials were run with the same number of rollouts in both the constrained and unconstrained cases. 778 

In the multi-body cases, the unconstrained solver did tend to outperform the constrained solution. This suggests that the 779 

constraints pose a more significant limitation to the solution in the multi-body case than in the single-body case.  780 

 In the single-body cases, the final MINE or ABANDON decisions made by POMCPOW were accurate in both 781 

economic and non-economic cases, choosing the correct decision in over 90% of cases in most test configurations. The 782 

accuracy in non-economic cases tended to be slightly higher than in economic cases. This is likely the result of sub-economic 783 

deposits being more common in the prior distribution than economic deposits, and the initial belief expected ore volume 784 

starting below the economic threshold. The percentage of profitable ore mined tended to be higher than the ratio of correct 785 

mining decisions. For example, in the single-body fixed location case with measurement constraints, POMCPOW correctly 786 

identified approximately 89% of the profitable cases, though it mined 95% of all the profitable ore. This suggests that the 787 

economic cases which POMCOW failed to correctly identify were only marginally economic.  788 

The accuracy of the final POMCPOW decisions decreased significantly in the multi-body cases. In approximately 32% 789 

of profitable cases, the algorithm incorrectly decided to abandon the prospect. Inspection of the test results suggested that this 790 

was due to the belief model (Bayes model) failing to correctly resolve one of the two ore bodies before making a decision. An 791 

example of this is shown in Figure 32, where the algorithm incorrectly abandoned the marginally economic deposit after seven 792 

measurements before resolving both bodies. This behavior is likely caused by the belief incorrectly concentrating probability 793 

on a sub-economic, single body cases, not by the POMCPOW algorithm. The observed belief behavior was likely a result of 794 

the particle ensemble failing to retain a sufficient number of multi-body instances. Many methods have been proposed to 795 

monitor and prevent this type of particle filter degeneracy (Thrun, 2005), hence, future research will focus on including better 796 

particle filter methods for these types of problems  797 

 798 
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 799 

Figure 33: Multi-Body Failure Example. This figure shows an example of an incorrect ABANDON decision made on the multi-body 800 
case. In this trial, the belief converged too quickly to a sub-economic case with a single ore-body before resolving the second ore 801 
body in the south west.  802 

 803 

Interesting emergent behavior was observed in the single-body cases. The initial measurement was not typically taken at 804 

the center of the belief distribution but was instead offset slightly. The subsequent measurements tended to step-in towards the 805 

center before gradually moving outward. This behavior can be understood as intuitive extent-finding methodology. Each 806 

measurement is taken to try to locate the edge of the deposit, where the most information about the deposit size can be learned. 807 

As more information is gained near the center, where positive observations are more likely, the measurements tend to move 808 

outward toward more informative, but higher variance data may be gathered. 809 

 One important feature of the defined POMDP is that it allows the solver to make a variable number of measurements 810 

before concluding. In each case studied, a wide variety of trajectory lengths were observed. Because there is a cost per-811 

measurement and a time discount on the eventual reward, POMCPOW tended to prefer shorter measurement campaigns, when 812 

possible, with fewer than five measurements being the mode in most cases. However, clear evidence of truncation at the upper 813 

end can be seen in the measurement histograms, suggesting that in some cases, more than the maximum allowed 25 814 

measurements would have been taken had the limit not been imposed. In general, it was observed that POMCPOW took more 815 

measurements on cases that we would consider more difficult. On cases that were borderline economic, in which resolving the 816 

deposit size with good fidelity was necessary to make the correct final decision, POMCPOW tended to take more 817 

measurements. For clearly sub-economic cases, POMCPOW abandoned after just a few measurements. For clearly economic 818 

cases, POMCPOW took more measurements than in clearly sub-economic cases. This is likely caused by the initial belief 819 

starting with an expected sub-economic value. This would require more Bayesian updates to converge toward an economic 820 

value than a sub-economic value. We also noted that fewer measurements were taken in the fixed-location cases than in the 821 

variable location cases. This is likely the result of the latter cases requiring the POMCPOW solver to localize the deposit in 822 

addition to measuring its extent. 823 

The hyperparameters of the POMCPOW were set through a basic grid search over widening and search parameters. 824 

To limit the computational expense, the total number of trial trajectories was fixed at 10,000, which allowed the study to be 825 

run with tractable computational limits. Changing progressive widening parameters also changed the computational expense 826 

and depth of search and therefore the greediness of the resultant policy. Overly aggressive widening tended to result in short-827 
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sighted policies that are one-step greedy, since the Monte Carlo estimates for each action will tend to be dominated by very 828 

short horizon trajectories. In our problem, this would tend to result in the degenerate policy of always abandoning the prospect 829 

on the first step, since that was the only action with a non-negative expected one-step return. 830 

7 Conclusion 831 

In this work, we presented a Bayesian sequential decision-making approach to improving geoscientific model through 832 

sequential data acquisition planning, with application to mineral exploration. We presented a framework to model challenges 833 

like mineral exploration problems by means of partially observable Markov decision processes (POMDPs). We demonstrated 834 

the general method with a specific example case in which we solved a 2D mineral exploration problem with a known 835 

exploration area. To solve this problem, we developed a hierarchical Bayesian belief using a particle filter and Gaussian process 836 

regression and the Monte Carlo search algorithm POMCPOW.  837 

The results of our studies demonstrate that a closed-loop sequential decision-making approach significantly 838 

outperforms a typical fixed-pattern grid approach. The measurements recommended by POMCPOW improved the accuracy 839 

and variance of the belief over the deposit extent significantly faster than the baseline methods. The resulting behavior that 840 

emerged from POMCPOW was intuitive and tended to result in shorter measurement campaigns than a fixed pattern resulting 841 

in comparable accuracy.  842 

The methods presented in this work are general to many areas of resource exploration. The belief and solver presented 843 

for the test case are not necessarily required to implement this approach. Future work should apply these methods to higher 844 

fidelity exploration problems using more realistic geological models and measurement simulations, such as geophysical 845 

surveys. The POMCPOW solver was chosen because it is generally applicable to many POMDPs without modification. 846 

However, as seen in the unconstrained cases, POMCPOW may have not converged to an approximately optimal solution. 847 

Future work should investigate modifications to the baseline POMCPOW algorithm to improve its performance in exploration 848 

tasks. Extensions to POMCOW should be explored to use the fact that the deposit state underlying the belief is static to reduce 849 

the variance of the value estimates and the required sample complexity of the search. Future work should also investigate other 850 

solver types, such as point-based value iteration (PBVI), that may handle high-variance beliefs more efficiently.  851 

 852 
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