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Abstract.

We present a deep neural network based single site stochastic precipitation generator (SPG), capable of producing realistic

time series of daily and hourly precipitation. The neural network outputs a wet day probability and precipitation distributions in

the form of a mixture model. The SPG was tested in four different locations in New Zealand, and we found it accurately repro-

duced the precipitation depth, the autocorrelations seen in the original data, the observed dry-spell lengths and the seasonality5

in precipitation. We present two versions of the hourly and daily SPGs: (i) a stationary version of the SPG that assumes that the

statistics of the precipitation are time independent (ii) a non-stationary version that captures the secular drift in precipitation

statistics resulting from climate change. The latter was developed to be applicable to climate change impact studies, especially,

studies reliant on SPG projections of future precipitation. We highlight many of the pitfalls associated with the training of a

non-stationary SPG on observations alone, and offer an alternative method that replicates the secular drift in precipitation seen10

in a large-ensemble regional climate model. The SPG runs several orders of magnitude faster than a typical regional climate

model, and permits the generation of very large ensembles of realistic precipitation time series under many climate change

scenarios, these ensembles will also contain many extreme events not seen in the historical record.
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1 Introduction

The effects of climate change are often most acutely felt in the form of changes in the severity, or in frequency, of extreme15

precipitation events (EPEs) (van der Wiel and Bintanja, 2021; Li et al., 2021; Lewis et al., 2019).

Modelling expected changes in EPEs is challenging. They often occur on spatial scales of several kilometres, an order of

magnitude smaller than the spatial scales simulated by regional climate models (RCMs) and perhaps two orders of magnitude

smaller than the scales typically simulated by global climate models (GCMs; Wedi et al. (2020)). Furthermore, EPEs are, by

definition, rare. As a result, modelling expected changes in the frequency and severity of EPEs requires dynamical downscaling20

of GCMs, and the generation of very large ensembles of simulations. State-of-the-art GCMs are needed to correctly simulate

expected changes in the dynamics underlying the synoptic conditions that lead to EPEs (Fahad et al., 2020b, a) while dynamical

downscaling (Monjo et al., 2016; Castellano and DeGaetano, 2016), using an RCM, is required to capture scales typical of

EPEs. Very large ensembles (hundreds of members) of simulations are required to allow sufficiently large populations of

EPEs to derive robust statistics of expected changes in their frequency and their severity. Achieving these two requirements, at25

sufficient resolution, is prohibitively computationally expensive using currently available GCMs and RCMs.

Stochastic precipitation generators (SPGs) (Ahn, 2020; Iizumi et al., 2012; Wilks, 2010), can be designed and trained to

emulate the precipitation of one or more sites simulated by GCMs containing nested regional climate models (RCMs). SPGs

provide less computationally demanding approaches to generating the large ensembles required to adequately represent the

statistics of EPEs.30

SPGs can be trained on historical observations of daily or hourly precipitation to learn the statistical characteristics of the

precipitation at that site. However, if the intent is to develop a non-stationary SPG – one capable of capturing climate-induced

secular changes in the statistical nature of the precipitation – extracting this climate signal from historical precipitation records

is itself challenging. Inhomogeneities in those records (Venema et al., 2012; Toreti et al., 2012; Peterson et al., 1998) resulting

from, for example, changes in instrumentation, can hide the underling climate induced signal. Further, a rather weak climate35

signal in the past makes it difficult to learn the strong signal expected in the future. To avoid these challenges of measurement

series inhomogeneity and the brevity of historical records, an alternative is to train the SPG on RCM simulations of past

and future precipitation. However, GCMs and their nested RCMs have well identified short-comings in the simulation of

precipitation (Li et al., 2014; Haerter et al., 2015; Piani et al., 2010). As such, without careful bias correction, the SPG would

learn from biased RCM data, and therefore its simulations would be biased and it would not produce a realistic precipitation40

distribution.

As alluded to above, the statistics of precipitation, and in particular the statistics of EPEs, are expected to evolve under

climate change. Developing an SPG architecture that is capable of capturing that non-stationarity, but avoids errant behaviour

when applied outside the limits of the training data, is a particular challenge. These, and other methodological choices, have

been explored in the construction of the SPGs described in this paper.45

SPGs are a subset of the broader class of stochastic weather generators (SWGs) and, as with SWGs, they come in two

broad types: parametric and non-parametric. Non-parametric SWGs simply resample the data, while parametric generators
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fit a distributions to the data (Ailliot et al., 2015), and then use these distributions to create events outside the training data.

Therefore, while non-parametric SWGs cannot create an entirely new event outside of their training data, they can however

generate a unique sequence of such events.50

Typically, parametric SWGs and SPGs simulate precipitation in two stages. The first stage decides whether precipitation

occurs, while the second stage models the precipitation amount (Richardson, 1981). The material presented here focuses

entirely on precipitation and follows from the class of SWGs first introduced by (Katz, 1977), where a gamma distribution

was used to describe the precipitation amount. Because a single distribution is often insufficient to fully capture precipitation

extremes, a mixture of different distributions was adopted in Carreau and Vrac (2011) who introduced a conditional mixture55

model for precipitation downscaling. Imperatives for the work presented herein were to build an SPG that learns the nature of

the statistics of precipitation from observations alone (and is therefore not subject to the biases of GCMs or RCMs in training),

including the inference of non-stationarity in the signal, and which only resorts to auxiliary model simulations where the

observation record is found to be inadequate. An additional imperative was to have the non-stationarity described by a single

annual mean hemispheric covariate time series that can be quickly and robustly simulated by a simple climate model for a wide60

range of future greenhouse gas emission scenarios. This makes the SPGs reported on below easily applicable to a wide range

of climate impact studies that benefit from very large ensembles of precipitation projections.
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Table 1. Stations providing daily observations of precipitation. Where more than one station was used per to construct the historical record

for the location, the stations appear in priority order.

City Station name Latitude Longitude

Auckland Henderson North −36.85539 174.62383

Albert Park −36.853 174.767

Tauranga Tauranga Aero Aws −37.67068 176.19660

Tauranga Aero −37.67242 176.19635

Christchurch Christchurch Gardens −43.531 172.619

Dunedin Dunedin, Btl Gardens −45.860 170.522

2 Data

The following data sets were used for training, validating, or transforming the SPGs presented below. Both daily resolution

and hourly resolution SPGs are presented here. Daily SPGs benefit from the availability of longer measurement series being65

available for their training as, prior to the development of automatic weather stations, precipitation data were typically recorded

once each day. However, for many applications, especially for highly damaging extreme precipitation events, the distribution

of precipitation over the course of a day can be important to resolve. As such, hourly resolution SPGs can have wider utility

than daily SPGs. They suffer, however, from a paucity of data for their training. The benefits of the SPGs at both daily and

hourly resolution are presented below.70

2.1 Daily precipitation observations

Daily weather station precipitation data were obtained from CliFlo, NIWA’s National Climate Database1 for four cities in

New Zealand: Auckland, Tauranga, Christchurch, and Dunedin. Each data point was the cumulative amount of precipitation

measured each day. These four locations were selected as they represented a range of climatic regimes around New Zealand

and are large population centres. The selected locations also had sufficiently long time series of hourly and daily precipitation75

available.

In some cases, data from two weather stations were combined in order to generate records of longer duration. When com-

bining sites, we prioritized one site over the other. The secondary site’s data were used only where data were not available from

the primary preferred site. CliFlo details for the six stations used for daily data are listed in Table 1. Table 2 details the data,

after combination, for the four cities.80

Additional data points were dropped if the data point’s features (see Sect. 3.1.1) could not be calculated, due to the features

requiring precipitation measurements from days with missing data. This treatment of missing data was required to ensure that

the neural network (see Sect. 3) saw only valid data. Specifically, this meant that for one day of missing data we would drop

1https://cliflo.niwa.co.nz/
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Table 2. Key attributes of the combined time series of daily precipitation observations.

City Duration Dates Missing data Effective missing data

Auckland 159 years 1863–2022 3.5% 3.5%

Tauranga 112 years 1910–2022 0.2% 0.7%

Christchurch 159 years 1863–2022 11.2% 11.5%

Dunedin 109 years 1913–2022 4.2% 8.7%

Table 3. Stations providing hourly observations of precipitation. Where more than one station was used to construct the historical record for

the location, the stations appear in priority order.

City Station Name Latitude Longitude

Auckland Auckland Aero −37.00813 174.78873

Tauranga Tauranga Aero Aws −37.67068 176.19660

Christchurch Christchurch Aero −43.493 172.537

Dunedin Dunedin Aero −45.929 170.196

Dunedin Aero Aws −45.92675 170.19684

the eight following days, and thus the effective amount of missing data was greater than the amount missing in the source

observation time series.85

2.2 Hourly precipitation observations

Hourly weather station precipitation data for the same four cities were obtained from CliFlo (see Table 3). Each data point

was the cumulative amount of precipitation seen in the hour before the timestamp.

Additional data points were dropped if the data point’s features (see Sect. 3.1.2) could not be calculated, due to the features

requiring precipitation measurements from hours with missing data. Specifically, this meant that for one hour of missing data90

we would drop the 144 following hours, and thus the effective amount of missing data was greater than the amount missing in

the source observation time series. Table 4 list the volume of effective missing hourly data for the four locations.

2.3 Global-scale temperature anomalies

To describe the non-stationarity in the precipitation time series at each location, we sought a climate change covariate that

would be absent of small-scale temporal and spatial variability, would be easy to calculate for a range of greenhouse gas95

emission scenarios, and broadly applicable. We settled on the annual mean Southern Hemisphere mean surface temperature

over land anomaly, (hereafter T ′SH−land). Time series of T ′SH−land for a range of different RCP and SSP greenhouse gas
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Table 4. Key attributes of the combined time series of hourly precipitation observations.

City Duration Dates Number of values Missing data Effective missing data

Auckland 54 years 1965–2019 395,000 19.3% 28.2%

Tauranga 24 years 1995–2019 214,000 0.7 % 7.6%

Christchurch 59 years 1960–2019 519,000 0.2% 5.5%

Dunedin 57 years 1962–2019 441,000 12.8% 18.7%

emission scenarios were obtained from the MAGICC simple climate model (Meinshausen et al., 2009, 2011, 2020). These

annual time series extended from 1765 to 2150, and are anomalies with respect to 1765.

MAGICC is a probabilistic reduced complexity model, which was used to produce hemispherical land and ocean surface100

temperature time series for selected Shared Socio-economic Pathways (SSPs Riahi et al., 2017). MAGICC version 7.5.1 sim-

ulations were constrained using a set of historical assessed ranges representative of the IPCC AR5 assessment with some

additional updates (Nicholls et al., 2020) as part of the Reduced Complexity Model Intercomparison Project, RCMIP. A sim-

ilar generation of MAGICC7 was used in various other studies, including IPCC AR6 WG1 and WG3 to assess the warming

for a given pathway of emissions or concentrations (Meinshausen et al., 2022). From a 600 member MAGICC ensemble, the105

ensemble member with the median equilibrium climate sensitivity was used in this study, instead of calculating percentiles

across the ensemble. This was done to ensure the results were internally consistent – such that the hemispherical mean annual

mean surface temperatures were consistent with global mean annual mean surface temperatures.

We use T ′Global and T ′SH−land in Sect. 5 and 2.4.

2.4 Regional climate model precipitation simulations110

While RCM simulations cannot generate precipitation time series that are unbiased with respect to historical observations

and are seldom available at an hourly resolution, they do provide a means of quantifying the non-stationarity in precipitation,

especially if observational records are too short to reliably extract the secular climate signal. These RCM simuations can

provide a useful validation standard for a non-stationary SPG. To this end we obtained RCM simulations for the New Zealand

region from the weather@home project (Massey et al., 2015; Black et al., 2016; Rosier et al., 2015). The weather@home115

project provided ensembles with many thousands of members, permitting the calculation of statistics with a high degree of

confidence, even in the extremes. The resolution of these weather@home simulations was 0.44◦and the closest land-based grid

cell was selected for each of the stations when data. Selecting a single weather@home grid cell may not be best practice when

using the precipitation data directly as single grid cells may not be representative of the location as a result of, e.g., inadequately

resolved topography, or due to the inability of a climate model to represent weather at this scale. In this study, however, the120

raw precipitation data are not used, but rather the sensitivities of precipitation to a climate covariate (in this case T ′SH−land); the

field of such sensitivities is expected to be less spatially variable than the precipitation field itself. As to whether a single cell
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or several neighbouring cells should be used to best quantify the sensitivity of precipitation to T ′SH−land for a given location,

is beyond the scope of this analysis but will be a focus of future work.

Three HAPPI (Half a degree Additional warming, Prognosis and Projected Impacts2) ensembles were used, representing125

climates states of 1.5 K, 2.0 K, and 3.0 K above pre-industrial. Only members with simulations spanning the full 600 day

period were used. There were approximately 2,500 complete members for each ensemble, each 20 months long, of which we

selected the last 12 months. In total, this provided approximately 7,500 years of daily precipitation data for each location.

The T ′Global values were converted to T ′SH−land using the MAGICC scenarios (see Sect. 2.3). The mean of all T ′Global entries

was found, across all scenarios (RCP2.6, RCP4.5, RCP6.0, RCP8.5, SSP119, SSP126, SSP245, SSP370, SSP434, SSP460,130

SSP585), for each year from 1765 to 2150. The mean of all T ′SH−land entries was also found across all scenarios and for each

year. The 1.5 K, 2.0 K, and 3.0 K T ′Global values were interpolated to T ′SH−land values, the results are shown below, in Table

2.4. We then use the interpolated T ′SH−land values as opposed T ′Global in Sect. 5, when using weather@home.

T ′Global T ′SH−land Complete members

1.5 K 1.728 K 2,543

2.0 K 2.277 K 2,496

3.0 K 3.384 K 2,549

3 Model description135

Both the hourly and daily SPG use the same neural network and were assessed in a similar manner. The key difference between

the hourly and daily SPGs were the number of inputs to the neural network. Using a neural network based approach allows for

a simpler implementation, as seasonality and autocorrelation can be learnt without the need to explicitly account for them. In

Sect. 3.6 we compare the neural network to a more simple linear model.

3.1 Input features140

For every hourly or daily observation in the data sets, we calculated the following features. These features were combined with

the observed precipitation for the period, effectively giving (X,y) training pairs, where X was a vector of features, and y the

observed precipitation amount for the period.

3.1.1 Daily features

The following ten features were calculated for every day of observed daily station data sets.145

– Average precipitation in the prior 1, 2, 4, and 8 days.

– Average proportion of days with precipitation above a threshold (1 mm per day), in the previous 1, 2, 4, and 8 days.

– An annual cycle of variable phase, expressed as a first order Fourier series, that is one pair of sine and cosine terms.
2See https://www.happimip.org/
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3.1.2 Hourly features

The following sixteen features were calculated for every hour of observed hourly station data sets.150

– Average precipitation in the prior 1, 3, 8, 24, 48, and 144 hours

– Average proportion of hours with rain above a threshold (0.1 mm per hour), over 1, 3, 8, 24, 48, and 144 hours

– An annual cycle and diurnal cycle, each expressed as a first order Fourier series as above.

3.1.3 Preprocessing features

The features were normalized by subtracting their mean and scaling them by their standard deviation before they were fed as155

input to the neural network. If any of the prior days or hours were missing, then this data point was removed from the training

data set.

While the precipitation data, y, were scaled by the standard deviation, the mean was not subtracted, as we wanted to ensure

the precipitation remained positive. This scaling was revered after producing a synthetic precipitation value in Sect. 3.5.

3.2 Neural network structure160

Artificial neural networks (Krose and Smagt, 2011), typically comprise may thousands of neurons, each of which calculate a

weighted sum of all their inputs, then are transformed using an activation function. The neurons are arranged into layers: an

input layer (with the number of neurons equal to the number of inputs), a number of intermediate – known as “hidden” – layers,

and a final output layer (with the number of neurons equal to the number of desired outputs).

The neural networks underlying the SPGs took the features (described in Sect. 3.1) as inputs. The outputs of the network165

were used to specify parameters of precipitation distribution functions (described in Sect. 3.3). The internal structure of the

network was arranged in three repeating blocks (see Fig. 1), where the hidden layers within the network were all 256 neurons

wide.

Each block consisted of a fully connected layer, activation, then another fully connected layer, this was followed by a

ResNet (He et al., 2016) connection, then activation and finally applies layer normalization. ResNets, known as residual neural170

networks, are typically arranged in blocks, where the input to a block is added back to the output of a block, giving an alternative

path (the identity path) for gradients to flow and forcing the neural network block to learn a residual on top of the input. ResNets

are widely used within deep learning, as they are easier to optimize and allow the training of deeper neural networks. Layer

normalization is a technique to normalize the activations of intermediate layers (Ba et al., 2016), which helps stabilize the

learning process and preforms some regulation. We used the GELU function, introduced by Hendrycks and Gimpel (2016),175

as the activation function for the intermediate layers. Within the ResNet layer, the output before the addition with the identity

path was multiplied by a very small weight close to zero, similar to the ReZero a technique introduced by Bachlechner et al.

(2021), this ensures that after the initialisation the intermediate layers of the neural network essentially just replicate their input,

reducing the signal-to-noise ratio, and aiding convergence.
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Figure 1. The neural network architecture used in the daily and hourly SPGs.

As the dimensionality of the input was not 256 (it was between 10 and 17; see Sect. 3.1 and 5), an extra fully connected layer180

was added across the top of the identity path of the network to increase the dimensionality to 256. The extra fully connected

layer is shown on the top left of Fig. 1. The neural network outputs a collection of real numbers; in Sect. 3.3 we discuss how

these numbers are used to model precipitation. The neural networks underlying the SPGs were implemented using the machine

learning libraries JAX (Bradbury et al., 2018) and Flax (Heek et al., 2020). Each neural network comprises approximately

200,000 parameters, although the actual number of parameters differs slightly across SPG simulations, depending on the185

number of input features and the number of output values.

3.3 Neural network outputs: precipitation distribution

For each period (either daily or hourly), the precipitation is simulated in two stages. The first stage selects whether precipitation

occurs. Then, in the second stage, if precipitation did occur, the depth of precipitation is selected. The outputs from the neural

network are used as parameters for both stages.190

The first two network outputs (pd and pw) are used as parameters to model the probability of precipitation occurrence. Soft-

max, also known as the normalized exponential function, was applied to these first two parameters to ensure they represented

probabilities (and always summed to one, thus pw = 1− pd). The first parameter, pd, represents the probability that the period

was dry, and the second parameter, pw, represented the probability of a wet period.
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If precipitation occurred, another distribution is used to model the depth of the precipitation. Katz (1977) previously em-195

ployed a gamma distribution to model precipitation. We found that a mixture of two gamma distributions and two generalized

Pareto distributions provided a superior fit; a single gamma distribution significantly underestimated extreme precipitation.

Some parameters learned by the model are required to be positive, such as the scale and shape parameter of the gamma

distributions. To ensure such constraints, they were passed through elu(x) + 1, where elu(x) is the exponential linear unit

function (Clevert et al., 2015). For the generalized Pareto distribution, the location parameter was set to zero, and both the shape200

and scale were forced to be positive. While the shape can conceivably be negative for a generalized Pareto distribution, allowing

it to be negative led to training instabilities. This resulted in two parameters being used for each of the four distributions, with

a further four parameters being used to weight the distributions within the mixture, for a total of 12 parameters used to model

the amount of precipitation. Again, we applied softmax to the weightings of the mixture model to ensure they summed to one.

Equation (1) shows the log probability density function used within the loss function (see Sect. 3.4). The probability of a205

dry period (either day or hour) is given by pd, and pw is the probability of a wet period, while r is the rain period threshold,

which is the threshold under which the period is considered dry. The rain period threshold was set to 1.0 mm per day for the

daily data set and 0.1 mm per hour for the hourly data set. A threshold of 0.1 mm per day for the daily data was found to lead

to poor performance in the precipitation extremes. The variable y is the precipitation from the training data set and Pi is the

probability density function of distribution i in the mixture model and wi is the weighting of the corresponding component in210

the mixture model. In this case, n is set to four, as there are four distributions in the mixture model. For each distribution in the

mixture, y− r + ϵ is passed to the corresponding probability density function. This is because each distribution is designed to

model positive values starting from zero. We add r back to the precipitation depth when sampling (see Sect. 3.5), and we set ϵ

to 10−8 for numerical stability.

log_pdf(y) =





ln(pd) if y < r

ln(pw) + ln(
∑n

i=1(wiPi(y− r + ϵ)) if y >= r
(1)215

3.4 Training

A single station’s observed precipitation data was used every training run. In training the daily SPG, the last 1,000 entries

(not quite three years) were kept aside for validation. In training the hourly SPG, the last 10,000 entries (slightly more than a

year) were used for validation. The remainder of the data were used for training. The batch size was set to 256, this means 256

samples from the training data set were evaluated every training step. The mean negative log-likelihood (the negative, mean220

of Eq. (1) across a batch) was used as the training loss function, we trained for up to 40 epochs. Although minimising the

negative log-likelihood is equivalent to maximising the likelihood, using the log-likelihood results in better numerical stability.

The training process can be thought of as the neural network trying to produce the parameters for Eq. (1), that maximize the

probability of observing the precipitation in the training data sets given the corresponding features (see, Sect.3.1).

The neural network was optimized using Lookahead (Zhang et al., 2019), with AdamW (Loshchilov and Hutter, 2017) as the225

inner optimizers, a weight decay of 0.01, b1 of 0.9 and b2 of 0.999. Lookahead was configured with slow weight step of 0.5,

10

https://doi.org/10.5194/gmd-2022-163
Preprint. Discussion started: 18 July 2022
c© Author(s) 2022. CC BY 4.0 License.



and synchronization period of 5 steps. A cosine learning rate scheduler was used, with a maximum learning rate of 10−3 and a

minimum learning rate of 10−7, with a warm-up from 10−6 to 10−3 for the first 300 training steps. The maximum number of

decay training steps, after which the learning rate would stay at the minimum, was set to 5,000 for training the daily SPG and

50,000 for training the hourly SPG. We used the implementation from the Optax library (Hessel et al., 2020) to configure our230

optimizer.

3.5 Generating precipitation time series

To validate the SPGs through comparisons with the observed station data, precipitation series were generated by the SPGs over

the same time range as the historical data set, but without any gaps. To initiate the simulation, the first eight days of precipitation

for the daily SPG or the first 144 hours for the hourly SPG, were extracted from the observations. These were used to calculate235

the inputs for the neural network (as per Sect. 3.1), which then iteratively generates the next day or hour of precipitation. This

next data point is then appended to the precipitation series. The extended time series is then used to calculate the input features

for the next hour or day, in a sliding window manner.

Recall that the neural network generates 14 parameters, which are then used to generate the precipitation distribution (see

Eq. (2)). In order to generate a precipitation time series, we sample from this distribution using two random uniform numbers,240

u1 and u2. u1 is used to sample from the dry-day part of the distribution. If u1 is smaller than pd, (the probability of a dry day

– the first parameter from the neural network), the precipitation is set to zero. If u1 ≥ pd, the precipitation depth is sampled

from the mixture using u2, i.e. we sample from the mixture of size n (in this case four), by summing the quantile function

(also known as the percentage point function), Qi, at u2 of each mixture and multiplying it by its corresponding weight (wi).

The mixture model distributions were constructed as described in Sect. 3.3. Finally, we added r back to the precipitation as we245

had previously subtracted it, as described in Sect. 3.3. Therefore, the daily SPG does not produce non-zero precipitation below

1 mm per day, and the hourly SPG does not produce non-zero precipitation below 0.1 mm per hour.

ypred =





0 if u1 < pd

r +
∑n

i=1(wiQi(u2) if u1 ≥ pd

(2)

Very rarely the SPG produces invalid precipitation values or precipitation values much too high. We used expert judgment

to give an upper bound on the maximum daily and hourly precipitation accumulations for each location (see Table 5). If the250

precipitation accumulation exceed the bound for the given location, or if the precipitation was invalid then the precipitation

was sampled from the mixture model again.
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Table 5. Maximum daily and hourly precipitation for the given locations, for the daily SPG and hourly SPG respectively.

City Maximum daily precipitation Maximum hourly precipitation

Auckland 250 mm 80 mm

Tauranga 300 mm 80 mm

Christchurch 180 mm 40 mm

Dunedin 220 mm 40 mm
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3.6 Neural network versus linear model

A common question that arises when creating a neural network based SWGs is whether using a neural network actually

improves the performance of the model. To investigate this, the neural network within each of the SPGs was replaced with255

a single linear layer, including a bias, with everything else left the same. Despite replacing the neural network with a single

linear layer akin to multiple linear regression, the problem is still formulated as a non-linear optimization problem due to the

complex distributions used within the mixture model. Both the linear and neural network based SPG were trained on the hourly

and daily Auckland data sets, with five different random seeds. The results were then averaged.

The mean validation loss, and training loss, for the daily and hourly SPGs using the linear model and the neural network260

based model are shown in Fig. 2. For the daily SPG, the neural network achieves a minimum average validation loss of 0.926,

while the linear model achieved 0.932 showing the superior performance of the neural network based SPG. For the hourly

SPG, the neural network achieved a loss of 0.369 while the linear model achieved a loss of 0.378, again showing the superior

performance of the neural network based SPG. The neural network also converges much faster than the linear model. After

about 10 epochs, the neural network begins to overfit as the validation loss starts increasing while the training loss continues to265

decrease. It is therefore important to employ early stopping when training the neural network. Hereafter, we report only results

generated by the neural network based SPGs.
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Figure 2. (a) Mean validation loss for the daily SPG, (b) Mean training loss for the daily SPG, (c) Mean validation loss for the hourly SPG,

(d) Mean training loss for the hourly SPG. All SPGs were trained for Auckland. The mean over five training runs are shown with 95%

confidence intervals displayed as shading; the confidence intervals are not always visible as the uncertainties are very small.
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4 Stationary quality assessment

4.1 Quantile-quantile comparisons

Quantile-quantile (QQ) plots of SPG simulated precipitation against station observed precipitation provide an initial useful270

measure of any biases in the magnitude of the precipitation simulated by the SPG. Ideally, points on the QQ plot should lie on

the y = x line but due to the stochastic nature of the SPGs, some variance from this line is to be expected. QQ plots for the four

sites are shown in Fig. 3 for the daily resolution SPG and in Fig. 4) for the hourly resolution SPG. For most days, there is no

precipitation – for the cities studied, on average, it is dry (less than 1.0 mm per day) 68% of the time. For hourly precipitation,

it is dry (less than 0.1 mm per hour) 96.9% of the time. As a result, the 25th percentile and 50th percentile (equivalent to the275

median) are usually zero as shown by the orange dots in Fig. 3 and Fig. 4.

The QQ plots in Fig. 3 and Fig. 4 show that the SPGs approximate very well the original distributions of precipitation

intensity. The daily SPG overestimates the extremely high precipitation (>50mm per day) values over Auckland, Tauranga

and Christchurch by 10±14% but shows little, if any, bias for Dunedin. For the hourly SPG, at all four sites, the there is no

significant bias against the observations.280

For both the daily and hourly SPG, it is clear that precipitation depths outside the range of the training data can be simulated.

4.2 Autocorrelation

While the QQ plots are useful for assessing the extent to which the SPGs can simulate the correct distribution of precipitation

intensity, they are agnostic to the sequence of the precipitation and provide no assessment as to whether the cadence of pre-

cipitation is simulated correctly. To that end, we first consider the extent to which the SPGs can simulate the autocorrelation285

observed in the precipitation time series. Correlation coefficients for the daily SPG for all fours sites for a range of lags (in

days) are shown in Fig. 5. The equivalent for the hourly SPG are shown in Fig. 6).

In general, the daily SPG does an excellent job in replicating the observed autocorrelation, and slightly underestimates

the autocorrelation in the hourly SPG. At Auckland, the daily precipitation observations show low but non-zero levels of

autocorrelation all the way out to about 70–80 days lag (Fig. 5a). This is likely caused by the strong seasonality in precipitation290

seen in Auckland (see Sect. 5.4). The daily SPG appears to simulate well that structure in the autocorrelation.

4.3 Dry-spell duration and cadence

Another precipitation cadence attribute which is important for the SPGs to simulate correctly is the dry spell length, i.e. the

number of consecutive days where precipitation is less than 1.0 mm per day. This is essential if the SPG is to be used to simulate

drought conditions for any location. To that end, Fig. 7 shows QQ plots of dry spell length for all four locations. The daily SPG295

shows an excellent ability to simulate correctly the frequency of dry spell lengths at all four locations. The deviations from 1:1

correspondence at the longer dry spell lengths (the rightmost few data points of the 10,000 data points describing the quantiles)
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Figure 3. Quantile-quantile plots of simulated precipitation produced by the daily SPG against observed precipitation. Orange point indicate

quartiles.

most likely result from the stochastic nature of the SPGs. This suggests that this SPG could form the basis for drought-based

studies if more variables describing key drought parameters, such as temperature and solar radiation, were added.

To produce the dry-spell QQ plots for the hourly SPG shown in Fig. 8, both the station data and the SPG simulated data300

were first resampled to daily frequency prior to calculating the dry spell lengths. The hourly SPG also shows strong skill in

simulating dry spell lengths with perhaps a small underestimation for Tauranga and overestimations at the very longest dry

spell lengths for Auckland, Christchurch and Dunedin.

4.4 Seasonality

To assess whether the SPGs simulate the seasonality of the precipitation correction, dry-day seasonality was calculated as the305

proportion of days in a given week of the year that had less than 1.0 mm per day of precipitation. The dry-hour seasonality was
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Figure 4. Quantile-Quantile plots of simulated precipitation produced by the hourly SPG against observed precipitation. Orange point

indicate quartiles, these are generally too close to zero to distinguish.
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Figure 5. Autocorrelation plots for precipitation simulated by the daily SPG and for observed precipitation.

calculated similarly, but with a threshold of 0.1 mm per hour. We focused on dry-day seasonality as there was little seasonality

in the wet day precipitation depths.

Auckland displays the strongest seasonality in dry day proportions, and the daily SPG simulates this seasonality extremely

well (see Fig. 9a). The dry hour proportions from the observations for Auckland (Fig. 10a) showed a weaker, more noisy signal310

compared to the daily observations, this was likely caused by the far shorter hourly observation period (around half the number

of years). The hourly SPG somewhat underestimates the seasonality in the proportion of dry hours for Auckland (Fig. 10a).

Tauranga also shows a strong daily seasonal cycle in the proportion of dry days, which was also excellently simulated by

the daily SPG (Fig. 9b). The hourly SPG captures to some extent the weak seasonal cycle in the proportion of dry hours in

Tauranga.315

While neither Christchurch (Fig. 9c) nor Dunedin (Fig. 9d) show strong seasonality, the daily SPG simulates their weak

seasonality well.
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Figure 6. Autocorrelation plots for precipitation simulated by the hourly SPG and for the observed precipitation.

Christchurch appears to have a more clear seasonality in proportion of dry hours (Fig. 10c), that was simulated well by the

hourly SPG, albeit with a small offset. The hourly SPG, simulates well the lack of seasonality in Dunedin’s proportion of dry

hours, although also with a slight offset (Fig. 10d).320

4.5 Discussion

The neural network approach produces good results for both daily and hourly data sets when measured by the reproduction

of the original distribution (QQ plots), the reproduction of the original distribution’s autocorrelations, by reproduction of the

original distribution’s dry-spell lengths, and by acceptable reproduction of the seasonality of the proportion of dry periods.

19

https://doi.org/10.5194/gmd-2022-163
Preprint. Discussion started: 18 July 2022
c© Author(s) 2022. CC BY 4.0 License.



Figure 7. Quantile-quantile plots for simulated dry-spell lengths produced by the daily SPG against observed dry-spell lengths. Orange

points indicate quartiles.
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Figure 8. Quantile-quantile plots for simulated dry-spell lengths produced by the hourly SPG against observed dry-spell lengths. Orange

points indicate quartiles.

21

https://doi.org/10.5194/gmd-2022-163
Preprint. Discussion started: 18 July 2022
c© Author(s) 2022. CC BY 4.0 License.



Figure 9. Dry day proportion (proportion of days in a given calendar week of the year with precipitation less than 1 mm per day) against the

week number of the year.
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Figure 10. Dry hour proportion (proportion of hours in a given calendar week of the year with precipitation less than 0.1 mm per hour)

against the week number of the year.
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5 Non-stationary extensions325

The SPG described in Sect. 3 and whose results are presented in Sect. 4 is a stationary SPG, i.e., the statistics of the precipitation

that it generates are time invariant. As such, the SPG is insensitive to climate change and will represent the mean precipitation

climate over the period of data on which it was trained. The purpose of this section is to describe extensions to the SPG that

make it non-stationary and therefore amenable to simulating climate-induced changes to the statistics of the precipitation.

Daily (and hourly) values of T ′SH−land were obtained by repeating the annual value for that year, and were fed as an extra330

feature to both the daily and hourly SPGs to create daily and hourly non-stationary SPGs. This resulted in the daily, non-

stationary SPG having 11 input features and the hourly, non-stationary SPG having 17 input features (see Sect. 3.1.1 and Sect.

3.1.2 for a discussion of the other features). Other than the addition of the new input futures based on T ′SH−land, the model

architecture and training were the same as for the stationary SPG.

A similar set of validation plots, as for the daily and hourly stationary SPG, were created for the non-stationary SPGs. Since335

there were no substantive differences between the stationary and non-stationary validation plots, they are not included here.

5.1 Assessing the validity of the non-stationarity in precipitation

To quantify the non-stationarity in precipitation, both in the observational record and in the SPG simulations, we considered,

within each of 100 quantiles of precipitation (percentiles) the percentage change in precipitation per Kelvin change in T ′SH−land.

This arose from expectations of the application of the Clausius–Clapeyron equation of a 7% change in atmospheric water340

vapour loading for every 1 K change in temperature. We recognize that the same sensitivity cannot be expected for precipitation,

but that a similar functional dependence (but with different rates) may be expected. A comparison of rates extracted from SPG

simulations with rates extracted from observations and/or RCM simulations comprises our assessment of the validity of the

non-stationarity in precipitation simulated by the SPG. Within each percentile, the precipitation data were averaged over each

calendar year to create 100 annual mean precipitation time series. Where this method was applied to the weather@home RCM345

simulations containing many ensemble members, the annual mean ensemble mean was calculated for each calendar year. To

each of these time series we fitted p(T ) = p0e
rT , where p(T ) is the precipitation at a T ′SH−land value of T , p0 is the expected

precipitation when T ′SH−land is zero, i.e., in 1765, and r is the rate of change per K. An example of the fit of this function to

the 75th percentile of precipitation extracted from the weather@home simulations for Auckland is shown in Sect.5.3, Fig. 14.

5.2 Quality assessment350

The rates described in Sect. 5.1 were calculated across all 100 quantiles for both the daily SPG (see Fig. 11) and for the hourly

SPG (Fig. 12).

For the daily SPG these are compared with equivalent rates derived from the observations and from the weather@home

simulations. Because the weather@home simulations provide output only at daily resolution, for the hourly SPG the derived

rates are compared only with observationally determined rates in Fig. 12.355
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Figure 11. The percentage precipitation change per Kelvin change in T ′SH−land for the daily SPG across all four sites over the same period

as the historical observations (orange) together with comparable rates derived from the historical observational record (blue) and from

weather@home simulations provided at daily resolution (green). Shading indicates 95% confidence intervals (note the smaller uncertainties

resulting from the large ensembles available from weather@home). All three data sets are truncated to precipitation above 1.2 mm per day.

Because weather@home simulates many days with extremely low precipitation, i.e., below an observable detection limit, there are fewer

percentiles exceeding 1.2 mm per day.
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Figure 12. As for Fig. 11 but for the hourly SPG. Results for weather@home are not included as hourly precipitation data were not saved

for the weather@home simulations.

The precipitation sensitivities to T ′SH−land simulated by the daily SPG are generally not statistically distinguishable from

those derived from the observational record (although the uncertainties on both are large). They are, however, often statistically

significantly different from those derived from the weather@home simulations. There are also significant inter-site differences:

consider Auckland and Tauranga which are just 150km apart. Auckland shows large positive precipitation sensitivities to

changes in T ′SH−land while Tauranga shows large negative sensitivities. At both sites the sensitivities are quite different from360

those derived from the weather@home simulations.

For the hourly SPG (Fig. 12), however, there are statistically significant differences in the precipitation sensitivities derived

from the observational record and simulated by the SPG. Unlike the precipitation sensitivities derived from daily station

data, the sensitivities derived from the hourly resolution observational record are never statistically different from zero at all

four sites. This is perhaps not surprising given the shorter historical record of hourly station observations compared to daily365
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observations and the likelier noisier hourly precipitation time series. The SPG, however, simulates statistically significant

precipitation sensitivities at all sites except Dunedin.

Given the results presented in Figs. 11 and 12, and noting the likely inhomogeneities in the historical precipitation records,

e.g., due to changes in instrumentation and standard observing practices (Venema et al., 2012; Toreti et al., 2012; Peterson

et al., 1998), and the challenges of splicing together measurement series from multiple nearby location to represent a single370

site, we conclude that extracting the sensitivity of precipitation to a climate signal such as T ′SH−land is unlikely to be robust

for these four stations. It is beyond the scope of this work to detect and correct for any inhomogeneities in the precipitation

observational records before training the SPGs.

Not withstanding this conclusion, and to further explore the utility of SPGs trained exclusively on historical records, we

generated 10-member ensembles of simulations based on projections of T ′SH−land for several RCP and SSP greenhouse gas375

emissions scenarios (RCP2.6, RCP4.5, RCP6.0, RCP8.5, SSP119, SSP126, SSP245, SSP370, SSP434, SSP460, SSP585)

for the period 1980 to 2100. Precipitation sensitivities derived from these ensembles of projections (Fig. 13), are not only

inconsistent themselves over different ranges of T ′SH−land, including the historical range sensitivities seen in Fig.11 (which is

unexpected), but also show significant differences from the sensitivities derived from observations.

The results shown in Fig. 13 are for the daily SPG but those for the hourly SPG (not shown) are not substantively different.380

This reinforces that projections using a non-stationary SPG trained only on historical observations are unlikely to be reliable.

To this end, in Sect. 5.3, we discuss an alternative approach to incorporating non-stationarity into both the daily and hourly

SPGs.

5.3 Post hoc addition of non-stationarity

Here we consider an approach where, given a time series of hourly precipitation generated by the stationary SPG, a post hoc385

correction is applied to encapsulate non-stationarity in such a way that the SPG can be used to simulate expected future changes

in precipitation. First, the three weather@home ensembles described in Sect. 2.4 were used to establish a relationship between

precipitation and T ′SH−land. The hourly precipitation time series simulated by the hourly SPG were scaled to ensure that their

correlation to T ′SH−land was the same as the correlation between the weather@home time series and T ′SH−land at each location.

This scaling was done independently across percentiles to avoid any potential biases between the weather@home data and390

the observed precipitation on which the SPG was trained. Each of the weather@home ensembles is associated with a specific

T ′SH−land value (Table 2.4) and the mean precipitation within each ensemble, at each location, was analysed to extract the

sensitivity of the precipitation to T ′SH−land. Approximately 900,000 daily precipitation values were available for each site for

each of the three values of T ′SH−land. An example of the fit of the equation described in Sect. 5.1 to extract this sensitivity is

shown in Fig. 14. Because weather@home precipitation values below 0.1mm/day were omitted from this analysis as these395

were considered to be dry days, this often resulted in these sensitivities not being available below the 50th percentile.

The p0 values derived from the equation fits within each percentile are shown in Fig 15. Plots for all cities were very similar

in shape. They all showed believable values for the quantile range, from about 0.1 mm per day to about 200 mm per day. The

rates/sensitivities of precipitation to T ′SH−land, in %/K are plotted for each quantile in Fig. 16. plots the fitted values for the
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Figure 13. SPG-derived precipitation rates/sensitivities in % per Kelvin for each quantile with daily change (per K) versus quantiles, 95%

confidence intervals shown as filled areas. Only precipitation quantiles with more than 1.2 mm per hour were plotted. We focus on the

projected changes of difference range of T ′SH−land. The minimum and maximum historical T ′SH−land values are also shown for each station.

These plots demonstrate that the Daily, Non-Stationary SPG does not perform as expected when predicting values into the future (1.7–6 K).

Some temperature values for the station data were just below 0 K because there were years that were cooler than the reference year, due to

temperature fluctuations.
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Figure 14. Ensemble mean, weather@home precipitation at the 75th percentile in Auckland and the fit used to extract the sensitivity of

precipitation to T ′SH−land. In this case a sensitivity of -10.4%/K is derived suggesting that, at this percentile, a drying in Auckland is

expected over the future.

Figure 15. The p0 values, i.e. the precipitation when T ′SH−land is zero (1765), derived from the weather@home HAPPI ensembles as a

function of percentile.
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Figure 16. The sensitivities of precipitation (rates) to changes in T ′SH−land, in % per K and for each percentile, extracted from the

weather@home simulations at each of the four cities.

rate against quantiles. While Auckland and Tauranga show drying tendencies for all but the highest percentiles of precipitation,400

for Christchurch and Dunedin the weather@home simulations suggest increases in precipitation across almost all percentiles

with increases in T ′SH−land. To use the results presented in Fig. 16 to add non-stationarity to the hourly SPG, the time series

generated by the SPG were first summed to daily time series to ensure temporal resolution alignment with the weather@home

simulations. These daily resolution SPG time series were then indexed by T ′SH−land. T ′SH−land anomalies were then calculated

with respect to the period over which the hourly SPG was trained, hereafter referred to as ∆x) based on the assumption the405

neural network’s output was aligned with the average T ′SH−land value it saw during training. Each value in any daily SPG

precipitation time series is then also indexed by its associated quantile. The associated rate for that quantile (Fig. 16 was then

used to calculate a scaling for the precipitation as 1 + p(x2)−p(x1)
p(x1)

= er(x2−x1) = er∆x, where x1 is the T ′SH−land mean over

the training period and x2 is the T ′SH−land value for the specified day in the non-stationary time series. The application of

this scaling to the absolute hourly precipitation generated the non-stationary hourly precipitation. The utility of this post hoc410

approach is assessed in Sect. 5.4 below.
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Figure 17. Rate of change of precipitation (% per K) by quantile for the post hoc corrected SPG and the weather@home data set

5.4 Post hoc addition results

An ensemble of hourly stationary SPG simulations, to which the post hoc non-stationarity correction described above was

applied, were analysed for their sensitivity to T ′SH−land. In total 110 ensembles were generated over the time period from 1980

to 2100, using the stationary hourly SPG for each location, which is of course invariate T ′SH−land and therefore the year. For415

each of the RCP and SSP greenhouse gas emissions scenarios (RCP2.6, RCP4.5, RCP6.0, RCP8.5, SSP119, SSP126, SSP245,

SSP370, SSP434, SSP460, SSP585), 10 of the ensembles were transformed using the post hoc non-stationary correction with

the corresponding values of T ′SH−land from the scenario over the time period, 1980 to 2100. These sensitivities of the trans-

formed simulations are compared to those derived from the weather@home simulations in Fig. 17. The agreement between the

sensitivities is very good, though this is not too surprising given that the post hoc transformation applied to the SPG hourly420

precipitation values were themselves derived from the weather@home simulations as described in Sect. 5.3. The agreement

is not perfect since the multipliers, derived from daily precipitation, are applied to hourly values. These post hoc corrected

simulations show similar validation results to the stationary simulations presented in Sect. 4 (not shown).
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6 Discussion and conclusions

We have demonstrated the utility of a deep neural network-based mixture model as the basis for a single site stochastic precip-425

itation generator (SPG). Stationary versions of a daily and hourly resolution SPG were shown to generate precipitation time

series that matched several key attributes derived from observed precipitation time series including the probability density of

precipitation depth, the seasonal cycle in precipitation, the auto-correlation in precipitation, and dry-period frequency.

Furthermore, it was shown that a neural network is capable of learning the non-stationarity in the precipitation from data,

provided the climate signal in the data is strong and that the data are free of any inhomogeneities. Unfortunately, observational430

records are unlikely to meet these prerequisites such that attempting to learn the non-stationarity from observational records

and projecting that non-stationarity outside of the training domain is likely to lead to unreliable projections of expected future

changes in precipitation. To ameliorate such deficiencies in our non-stationary SPGs a post hoc correction was developed using

sensitivities of precipitation to T ′SH−land derived from weather@home simulations (a regional climate model) to create daily

and hourly non-stationary SPGs suitable for projecting expected changes in precipitation into the future.435

While the SPGs presented here are significantly computationally faster (by many orders of magnitude) than typical regional

climate models (RCMs) they should not be seen as universal alternatives to climate models – the SPG simulations of expected

changes in precipitation over the near future (next 2-3 decades) are likely to be robust as the climate of the next few decades

is unlikely to be significantly different from that of the last century on which the SPGs were trained. Non-linearities in the

climate system, absent in the historical record on which the SPGs were trained, may be adequately simulated by RCMs which440

encapsulate much of our understanding of the physics of the climate system, but are very unlikely to be well simulated by the

SPGs since the SPGs had no opportunity to learn of these non-linearities. We also emphasise that the SPGs presented here

are single site SPGs and simulated precipitation time series from two nearby sites will lack the temporal correlation observed

in reality and simulated by RCMs, i.e., the spatial morphology of precipitation fields cannot be simulated by these SPGs.

That said, these SPGs have several advantages over RCMs, the main being their ability to generate very large ensembles of445

simulations for a wide range of future greenhouse gas emissions scenarios, including simulating events that were not seen in the

training data set. This would include many rare but extreme precipitation events sufficient to describe potential changes in their

frequency or severity with a statistical robustness that would not be achievable with a small ensemble of RCM simulations.

Our intention is to use these SPGs to simulate hourly precipitation time series with the SPGs, for the next few decades, with a

view to quantifying the impacts of expected changes in the frequency and severity of extreme precipitation events at selected450

single sites.

Code availability. The latest version of the code is available on GitHub, under the following url, github.com/bodekerscientific/SPG, the v1.0

release used within this paper can be found on zenodo, doi.org/10.5281/zenodo.6801733
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Data availability. The station data used to train the SPG are available from cliflo, https://cliflo.niwa.co.nz/ due to licence restrictions we

cannot directly provide this station data. The MAGIC global, and hemispheric, annual mean temperature anomalies are located with the455

code.
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