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Abstract. Given the good persistence of sea surface temperature (SST) due to the slow-varying nature of the ocean, an

atmospheric model coupled with a Slab Ocean Model (SOM) instead of a 3-D dynamical ocean model is designed as an

efficient approach for extended-range predictions. The prediction experiments from July to December 2020 are performed

based on the Weather Research and Forecasting (WRF) model coupled to the SOM (WRF-SOM) with the initial and15
boundary conditions same as the WRF coupled to the Regional Ocean Model System (WRF-ROMS). The WRF-SOM is

verified to have better performance of SSTs in the extended-range predictions than WRF-ROMS since it avoids the

complicated model biases from the ocean dynamics and seabed topography when extended-range predictions are made using

a 3-D dynamical ocean model. The improvement of SSTs can lead to the remarkable impact on the response of the

atmosphere from the surface to the upper layer. Taking typhoon as an example of extreme events, the WRF-SOM can obtain20
comparable intensity predictions and slightly improved track predictions due to the improved SSTs in the initialized WRF-

SOM system. Overall, the WRF-SOM can ensure the stability of extended-range prediction and reduce the demand for

computing resources by roughly 50%.
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1 Introduction

Extended-range predictions fill the gap between weather and climate predictions. Recent research has demonstrated kinds of

sources of predictability for the extended period such as the Madden-Julian Oscillation (MJO), the evolution of El Niño-35
Southern Oscillation, soil moisture, snow cover, sea ice, stratosphere-troposphere interactions, ocean conditions, and

tropical-extratropical teleconnections (Wheeler and Hendon, 2004; Vitart and Robertson, 2018). As a growing demand from

the applications community and progress in identifying and simulating key sources of extended period (Vitart, 2014; White

et al., 2017), it is worthwhile improving forecast skills for monthly-scale extended period predictions to realize the social

security, disaster early warning, agricultural management, and water resource management (David, 2010).40
In the extended period prediction, sea surface temperature (SST) is one of the most important information provided by the

oceanic model to the atmospheric model in the air-sea interaction. For instance, tropical SST plays an important role in

controlling the weather/climate worldwide by various teleconnection effects (David, 2010). Dian et al. (2013) demonstrated

the importance of air-sea interaction to the atmospheric mesoscale processes by comparing the response of the precipitation

to the SST between the coupled and uncoupled models. Furthermore, Stan (2018) emphasized that the SST anomaly can45
directly lead to the change in the convection intensity.

The ocean-atmosphere coupling has an important impact on the extended-range prediction skills (Vitart and Molteni, 2010).

Rashid et al. (2019) adopted the Bureau of Meteorology unified atmospheric model (BAM) coupled with the Australia

Community Ocean Model (ACOM) to predict the MJO and proposed that actual MJO prediction skills may be further

improved through continued development of the dynamical prediction system. The coupled ocean-atmosphere models are50
mainly used for numerical simulation and prediction in the extended period (Saravanan and Chang, 2019).

However, there are some inherent defects for the specific problems in extended-range prediction using atmosphere-ocean

coupled models. For instance, the 3-D dynamical ocean model inevitably introduces unnecessary biases from the seabed

topography, which can transport from bottom to surface during prediction (Wu et al., 1997). Due to the existence of seabed

topography with finite amplitude, the wave models in a linear system are no longer independent of each other, resulting in55
coupling between models. This coupling effect between models acts on the circulation field in different ways, making the

simple linear superposition of models no longer truly reflect the oceanic circulation field structure. The effects of seabed

topography on the baroclinic model should be stronger. Therefore, the seabed topography can indirectly affect the SST

through the circulation field. The 3-D dynamical ocean model coupled to the atmospheric model can have cold drift during

the extended-range prediction period due to the overestimation of latent heat in the coupled model (Ren and Qian, 2010). In60
addition, the sensitivity of ocean thermodynamics to the ocean dynamics leads to the enhancement of mixing in the upper

ocean and indirectly reduces SST (Hu et al., 2017). In general, the errors of 3-D dynamical ocean models can be specific to

different system configurations. The model resolution is another way affecting the SST prediction, which is verified that the

biases can be slightly eliminated in the Kuroshio extension area with the increase in model resolution (Li et al., 2020).

Therefore, European Centre for Medium-Range Weather Forecasts (ECMWF) summarized and evaluated the results during65
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the extended period prediction, and proposed that the improvement of extended-range prediction should be accompanied by

the significant reduction of SST biases in a coupled model (Palmer et al., 1990). In total,based on the good persistence of

SST, we can simplify the SST evolution process to avoid biases from the ocean dynamics and seabed topography (Zuidema

et al., 2016).

Considering that SST is an important variable affecting air-sea interactions and 3-D dynamical ocean models have a70
deficiency in the SST prediction during the extended period, one possible way to improve this period prediction is that, we

only focus on the SST as the bottom boundary of atmospheric model for the extended-range prediction research. The SST

has good persistence in the extended period and only the thermal effect needs to be considered (the time scale of ocean

circulation is relatively long). According to that, the Slab Ocean Model (SOM) can be utilized as the ocean model for

extended-range prediction such that biases of SST are easier to manage (Zuidema, 2016). More importantly, the SOM can75
greatly reduce the computing expense and obtain the forecast results more quickly, which can provide a more economical

and efficient method for further study.

In this paper, we develop a new approach using atmospheric model coupled with a Slab Ocean Model (WRF-SOM) to do

monthly-scale extended-range predictions. For comparison of the prediction results of WRF-SOM, we also carry out the

forecast experiments using WRF coupled to the Regional Ocean Model System (ROMS) based on the regional coupled80
prediction system for the Asia-Pacific (AP-RCP) developed by Li et al. (2020). Firstly, by comparing the performances of

SST predictions in the WRF-SOM and WRF-ROMS, we show the rationality of WRF-SOM in the extended-range

predictions. WRF-SOM can avoid the influence of cold deviation at the subsurface in WRF-ROMS on SST in extended

period. Secondly, we discuss the response of atmosphere (e.g., the air temperature, and geopotential height) on SSTs to

identify the improvement of WRF-SOM compared with WRF-ROMS in the cold deviation area. Finally, taking typhoons as85
the representation of the extreme weather events, we track the differences of typhoon paths and maximum wind speed

(MWS) between WRF-ROMS and WRF-SOM and suggest that the performances of typhoon predictions are basically

consistent in the two models during the extended period.

The rest of the paper is organized as follows. Section 2 details the source of SST biases, the brief introduction of WRF-SOM

and WRF-ROMS, the experiment implementation, and the data sources. Section 3 evaluates the feasibility of SST90
predictions in WRF-SOM, compares the response of the atmosphere to SSTs in WRF-SOM and WRF-ROMS, and verifies

the rationality of WRF-SOM in typhoon predictions. Finally, the summary and discussion are given in Section 4.

2 Methodology

2.1 Brief introduction of WRF-ROMS coupled model

In this study, we use the high-resolution WRF-ROMS coupled system for comparison (Li et al., 2020). The system covers95
the area of the Asia-Pacific, which consists of 27 km WRF, 9 km ROMS, and observational information through

dynamically downscaling coupled assimilation. The vertical layers of WRF and ROMS are 28 and 33 respectively. The time
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step for both WRF and ROMS is 60 s, the coupled interval time between ocean and atmosphere is 600 s, and the forecast

lead time is 34 days for each case. The system is initialized from the Climate Forecast System Version2 reanalysis (CFSv2)

(Saha et al., 2014), on January first, 2016, and spun up for two years. For the ocean component, in model-based analysis100
products, the prediction system has similar quality with CFSv2 and HYCOM in temperature and salinity characteristics, and

has been verified by Argo observation. For the atmosphere component, the forecast system also has the similar forecast skills

as CFSv2, National Centers for Environmental Prediction-Global Ensemble Forecast system (NCEP-GEFS) and European

Centre for Medium-Range Weather Forecasts-Ensemble Prediction System (ECMWF-EPS), especially in precipitation

forecasting. The operational system has realized the extended-range prediction of atmospheric and oceanic environments and105
serves as an effective research platform to study the influence of model resolution on typical mesoscale atmospheric and

oceanic phenomena in the Asia-Pacific area. The high-resolution prediction system enhances the capability of atmosphere-

ocean coupled models to describe many local details, which is a necessary step to discuss the predictability in the extended

period.

2.2 Slab-Ocean scheme in a coupled model110

In order to describe the response of the upper ocean to the surface wind, a simple model—SOM is given (Raymond et al.,

1973). Compared with the 3-D dynamical ocean model, the ocean mixed layer temperature is the only prognostic state

variable for the SOM to represent the SST. Jia et al. (2019) adopted the SOM to study the ocean mesoscale variability. The

related prognostic equation is the first law of thermodynamics for the ocean mixed layer given by Eq.(1):
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where ρ is the ocean water density, Cp is the specific heat capacity of the ocean water, hmix is the depth of the mixed layer,

Tmix is the mixed layer temperature, Qatm is the net surface heat flux from the atmosphere to the mixed layer, and Qocn is the

net heat transfer from mixed-layer column to the subsurface, which is calculated by mixed layer depth and temperature lapse

rate. Eq.(2) shows the heat budget of the sea surface from the atmosphere:
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where Qsol is the net radiative heating of the ocean mixed layer by solar radiation, Ql is the net longwave radiative cooling of

the ocean mixed layer, Qsen is the net sensible heat flux from the ocean to the atmosphere, Qlatent is the net latent heat flux

from the ocean to the atmosphere. Qatm and Qocn are calculated synchronously with the prediction time in the model. Eq.(3)

shows the effect of Coriolis force and wind stress in the mixed layer:
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where hu (hv) is the τx-driven (τy-driven) momentum in the ocean mixed layer, f is Coriolis force, and τx and τy are respectively

the zonal and meridional components of wind stress at the surface. Eq.(3) is calculated by time-centering difference and

Eq.(4) shows the variations of ocean mixed layer depth, which is affected by the wind stress and heat flux:130

, (4)

where hmix is the mixed layer depth, g is the gravitational acceleration, Γ is the lapse rate of the water temperature, and α is

the thermal expansion coefficients.
135

Such basic driving processes of WRF-SOM and the relationship between the variables can be illustrated in Fig. 1. The SOM

is driven by the surface wind, sea surface heat flux, and heat conduction between the mixed layer and subsurface. The mixed

layer depth is determined by the surface wind stress (τx and τy) and the heat budget (Qatm and Qocn) in the mixed layer. Both

the enhancement of surface wind stress and heat flux to the mixed layer will lead to the deepening of the mixed layer depth.

When the ocean surface is heated, there will be a temperature gradient from sea surface to the areas beneath it. With the wind
140

stirring the upper layer, an almost uniform layer is formed, and there is a density gradient below the mixed layer. In the

upper mixed layer, the temperature is independent of depth. We assume that once the initial delamination is destroyed in this

layer, it will mix to a completely uniform state. It means that the ocean temperature is well-mixed and the SST is considered

the same as Tmix.

Although the SOM has the advantages of computational stability, easy control of error sources and low computational145
consumption, it is worth to mention that the SOM is driven only by surface wind and does not include the simulation of 3-D

ocean dynamical processes.

2.3 Implementation, data source (including model setting and initial condition sources), and data processing method

In this study, the WRF version WRF3.7.1 and the ROMS version ROMS3.8 is applied (Skamarock et al., 2008; Shchepetkin

and Mcwilliams, 2005). The boundary condition of the forecast is interpolated from the CFSv2 forecast data set. The WRF-150
ROMS is initialized from the CFSv2 reanalysis at 00 UTC on 1st January 2016, spun up for two years with the CFSv2

background boundary conditions, and applies the weakly coupled data assimilation approach (WCDA). The atmospheric and

oceanic components conduct their own data assimilation procedure within the coupled model framework. The WCDA begins

on 00 UTC 1 January 2018 after the 2-year spin up. The atmospheric model uses standard 3-dimensional variational data

assimilation (3D-Var) to further combine atmospheric observations and the oceanic model adopts multi-scale 3D-Var to155
assimilate the profiles of temperature and salinity. Then, the states are constrained by cycling through the real-time

operational data assimilation processes with updated observations every 6 hours for the atmosphere and 24 hours for the
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ocean, providing initial conditions for the routine forecasts. The simulation region covers the Asia-northwest Pacific and

North Indian Ocean (74° E-180° E, 18° S-60° N). The forecasts are made every day from July 19th to December 31st 2020.

Each case generates a 34-day forecast for the atmosphere and ocean environment.160
The WRF-SOM is completely consistent with WRF-ROMS in atmospheric model settings and the grid of SOM is consistent

with the atmospheric model. The forecast cases made by WRF-SOM are same to the WRF-ROMS expect for roughly 20

cases/days are missed, which is caused by hardware damage and untimely release of boundary information. Li and Ding

(2011) proposed that the linear relationship between the predictability limit and the logarithm of initial error holds only in

the case of relatively small initial errors. If the initial errors are large, the growth of mean error would directly enter into the165
nonlinear phase. Therefore, for each experiment, we keep the initial and boundary conditions of the WRF-SOM in the

atmosphere and ocean the same as those in the WRF-ROMS and assure that the forecast lead time of each experiment is over

one month.

The Hybrid Coordinate Oceanic Circulation Model (HYCOM) reanalysis (https://www.hycom.org) used in this study is

provided by Naval Research Laboratory (Cummings and Smedstad, 2013). The horizontal resolution of HYCOM reanalysis170
reaches 0.08° and the time interval is 6 hours, which is relatively stable and highly matched with our forecast system. In

addition, considering the HYCOM reanalysis being a mature and widely recognized analysis system, the global reanalysis

can be a good choice to verify the model prediction performances (Srinivasan et al., 2011; Chassignet et al., 2003). The

typhoon observations are from the National Meteorological Center (NMC) of China (http://typhoon.nmc.cn/web.html). The

validation data of the atmospheric component is from CFSv2 (https://rda.ucar.edu/datasets/ds094.1/). All the simulation175
experiments use the computing nodes configured with 24 central processing unit (CPU) cores, 2.6 GHz dominant frequency,

and 256 GB of global DDR4 memory.

The predictability of SST in WRF-ROMS and WRF-SOM is evaluated by the root mean square error (RMSE) and the

anomaly correlation coefficient (ACC), which is written as follows:

180

, (5)

, (6)185

where xi,j is the forecast value, fi,j is the reanalysis data,
——

x j is the spatial average of the forecast value,
——

f j is the spatial

average of the truth value, and i = 1,2,3...M and j = 1,2,3....N represent grid points and time series respectively.
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3 Comparing the forecast results of WRF-SOM with WRF-ROMS

3.1 Predictability of sea surface temperature and bias190

The prediction skills of SST in the WRF-SOM and WRF-ROMS have been assessed by calculating the RMSE averaged of

142 forecast cases from July to December. Figure 2a shows the RMSE of SSTs in the WRF-SOM is generally lower than

that in the WRF-ROMS and both forecast errors increase with the lead time. The maximum different value of the RMSEs

variation between the WRF-SOM and WRF-ROMS occurs in 20-25 days. The averaged values of the SST errors in both

models are within 1.4℃ during the forecast period and the RMSEs of 75% forecast cases in WRF-SOM are better than those195
in WRF-ROMS, as shown in Fig. 2b. Moreover, the bias in the WRF-SOM grows more slowly than that in the WRF-ROMS.

Only at the start of the forecasts, the errors of SST in WRF-ROMS are lower than that in WRF-SOM. It is because the errors

in the 3-D dynamical ocean model have not spread from subsurface to the surface and initial condition still plays a major

role (Lekshmi et al., 2022). Except for July and August, the SST error growth rate is faster in WRF-SOM over different

months in the second half of the year. From September to December, the prediction of SST in WRF-ROMs after 30 days200
begins to take advantage, which may be caused by the dynamic processes such as ocean circulation beginning to dominate

the factors of SST prediction as the time scale becomes larger, as shown in Fig. 2e. We also notice that the WRF-SOM

simulated SST has larger errors than the WRF-ROMS’ in July. Further analyses show that this large errors are associated

with the nature that the SOM lacks ocean 3-D dynamical and thermodynamical processes. For example, the major SST errors

distribute over the Large Meander of Kuroshio (Yang et al., 2012) and the lack of ocean dynamics could reduce the205
horizontal energy transport to a certain extent (Shell, 2013). The biggest difference of SST RMSEs in WRF-ROMS and

WRF-SOM occurs in September, October and November, which also shows that sea ice is not the main reason for the large

cold deviation in WRF-ROMS. In order to match the configuration in the ROMS without sea-ice component currently, in

this study we did not include sea-ice, although the sea-ice parameterization in the SOM is available. In the future study, it

may be necessary to include sea-ice in SOM, which may have influences on middle and high latitudes.210
To explore the spatial distribution of skills with different forecast periods in WRF-SOM, we use the ACC of SST anomaly to

characterize the temporal and spatial predictability of SST in the WRF-SOM and WRF-ROMS (Wu et al., 2016). Figure 2c

shows that their overall ACC can reach more than 0.75 during the 34-day forecasts and the performance of the WRF-SOM in

the whole domain is higher than that of WRF-ROMS. Meanwhile, the ACC in 74% forecast cases in WRF-SOM is better

than those in WRF-ROMS, as shown in Fig. 2b. Finally, Figure 3a and 3b show the forecast SSTs in WRF-ROMS have an215
obvious cold deviation in the area around the Kuril Islands and the Sea of Okhotsk (35° N-58° N, 140° E-160° E). Although

the cold deviation in WRF-ROMS exists every month in the second half of the year in this region, lack of sea-ice model and

inappropriate boundary conditions may aggravate the cold deviation in this area, which needs more experiments to validate.

In order to explore the spatial distribution of SST prediction skills in the two models, especially in the cold deviation area,

we calculate ACC of SSTs at each grid point. Through the spatial distribution of ACC displayed in Fig. 4 in different220
forecast periods, it is found that the mean biases of WRF-SOM and WRF-ROMS decreases with time in the whole area.
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Since the initial state of the ocean can be maintained for a period of time in the simulation, the main patterns of the ACC are

consistent in the two models, and the value increases with the latitude significantly. The higher skills of WRF-SOM are

mainly concentrated in the area north of 15°N compared with WRF-ROMS. Over 60% grid points in the simulation area

have higher ACC values of SST in WRF-SOM, and the proportion rises slightly with the prediction time (green dots in the225
right column of Fig. 4). Focused on the cold deviation area in the green rectangle, the proportion reaches more than 80% (red

dots in the right column of Fig. 4). In summary, the performance of SSTs in the WRF-SOM is more reasonable than the

WRF-ROMS in terms of temporal variation and spatial distribution of predictability.

In order to explore the causes of cold deviation area in WRF-ROMS, the variations of averaged error of SST and the water

temperature at the subsurface are shown. Figure 5a-5c identifies the comparison of averaged mixed layer depth during the230
prediction period. The mixed layer depth in WRF-ROMS and HYCOM are both calculated by the depth at which the

difference from SST is 0.2 ℃. The mixed layer depth in WRF-ROMS is significantly greater than that in WRF-SOM and the

reanalysis data from HYCOM. Moreover, the cold deviation of WRF-ROMS at the subsurface continues to conduct upward

with the forecast time, and finally the predicted value of SST is low in this area as shown in Fig. 5d and 5e. Lack of vertical

convection and Ekman pumping effect in the SOM can enhance this surface heat residence effect even more in WRF-SOM235
forecasts. The abnormal cold deviation at the subsurface may be caused by the imperfect data assimilation scheme, imprecise

ocean processes, and insufficient resolution of the coupled model (Benjamin and Daniel, 1993; Chen et al., 2013; Xu et al.,

2022). These issues require more research work to further clarify in the follow-up studies.

3.2 Impact on Extended-range Predictions

The SST differences between WRF-ROMS and WRF-SOM spread rapidly in all prediction cases and have obvious240
thermodynamic feedback to the atmosphere. For instance, the region with a large deviation of SST is expected to have a

great impact on the atmospheric process (Hao et al., 2016). The first mode of SST and air temperature at 850 hPa is verified

to be positively correlated in most of the East China Sea (Zeng et al., 2010). As shown in Fig. 6, the air temperature at the

surface is directly affected by the SSTs and there is a strong cold deviation of more than 5 ℃ in the WRF-ROMS in the Sea

of Okhotsk and Kuril Islands during the extended period. The errors of air temperature at the surface in the Sea of Okhotsk245
and Kuril Islands of WRF-SOM are within 3 ℃ in the extended period, which is much closer to the CFSv2 reanalysis

compared with WRF-ROMS.

Since the main deviation between WRF-ROMS and WRF-SOM mainly comes from the sea surface, in order to explore the

influence of SST on the whole atmosphere, we study the variation of RMSEs of air temperature and geopotential height

(GPH) with different heights to characterize the stability of the subtropical high and the upper atmosphere (Lu and Lin, 2009;250
Zhou and Yu, 2009). The RMSEs of air temperature increase with height, and the differences between the two models are

the biggest at the surface (Fig. 7a). The deviation of air temperature gradually disappears when reaching the height of 300

hPa (Fig. 6b). The RMSEs of the GPH also increase with the height (Fig. 8a). However, the differences between the two

models are opposite to the temperature and increases with the height (Fig. 8b). Compared with the WRF-ROMS, the WRF-

https://agupubs.onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Giese,+Benjamin+S
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SOM performs better in the forecast of the GPH field in the high, middle, and low atmosphere, as shown in Fig. 8. The255
difference between the RMSEs of GPH in the two models are increasing from the lower level to the upper level, which

means that the deviation between the WRF-SOM and the WRF-ROMS is generated from the surface and propagates to the

upper layer. Therefore, combined with the results of air temperature and GPH, the response of variables with different

physical properties to SST will also appear in different states. In terms of the extended-range prediction, WRF-SOM has

obvious advantages in the areas around the Kuril Islands and the Sea of Okhotsk, where WRF-ROMS has large deviation in260
SSTs.

3.3 The prediction of tropical cyclones in extended-range scales

Typhoon is an important extreme weather phenomenon in the extended-range forecast, and the typhoon in the Western

Pacific has a profound impact on coastal countries (Webster et al., 2014). The typhoon processes are deeply affected by the

air-sea interaction, which can cover timescales from days to weeks. Therefore, typhoons are selected as an example of the265
extreme weather to discuss the atmospheric predictability in the extended period. Following previous studies (Webster et al.,

2014), we use track and intensity as the key prediction parameters. As the typhoon simulation from August to October 2020

(Fig. 9a-9j), the WRF-SOM can also obtain slightly better prediction paths than the WRF-ROMS after abandoning the ocean

dynamics framework during the typhoon season. The results of typhoon tracking in the WRF-SOM are better than those in

the WRF-ROMS within 72 hours during the processes of typhoons, as shown in Table 1. The simulation of typhoon tracks is270
mainly dominated by steering flow in the atmosphere model, and the improvement of SST can only slightly optimize the

path (Anthes, 1982; Hollland, 1983) such that the forecast results are similar in WRF-SOM and WRF-ROMS. Figure 10a-

10j show the performances of MWS of 11 typhoons from August to October in 2020, both in WRF-SOM and WRF-ROMS.

Both systems are unable to achieve accurate simulation for super typhoons exceeding 40 m/s. However, BAVI has better

MWS performances in WRF-SOM than in WRF-ROMS, as shown in Fig. 10e. We find that in the process of model275
simulation, the typhoon MWS is positively correlated with the SST, which can be caused by the surface heat flux and the

surface water vapor. Among the eleven typhoons including three super ones, there is little difference in typhoon MWS

between the WRF-SOM and the WRF-ROMS, which means that both the 3-D dynamical ocean model and the SOM have

defects on the simulation of high-intensity typhoons. As for typhoon simulation, WRF-SOM can obtain comparable

prediction results with WRF-ROMS. The analyses in section 3.1 show that the SST in SOM has large errors in July. It could280
cause the corresponding deviation in the air-sea interaction, and may have influence on typhoon activities (Potter et al.,

2017). Since no typhoon is found in the examined July, adverse impacts of such SST errors on typhoons need to be paid

particular attention.

4 Summary and discussion

In this study, to improve the numerical model predictability of monthly extended-range scales, we use the simplified SOM to285
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restrict the SST bias. It is because the 3-D dynamical ocean model inevitably introduces complex biases from the dynamics

and seabed topography. Therefore, the experiments are implemented with the WRF-ROMS and WRF-SOM to investigate

the SST deviation in the extended-range period and the associated atmosphere responses. We systematically evaluate the

SST prediction effect of the WRF-SOM and the WRF-ROMS against the HYCOM reanalysis. As for SST prediction, WRF-

SOM can manage with the more specific errors than 3-D dynamical ocean models in some regions with complex and diverse290
heat budget, because it can effectively avoid the deviation from deep layers in 3-D dynamical ocean models. Furthermore,

the reduction of SST biases in the WRF-SOM has a significant impact on the atmosphere at the surface, which not only

affects the air temperature but also indirectly changes the GPH field in the middle and upper layer of the atmosphere. The

WRF-SOM can obtain the compatible typhoon path and maximum wind speed predictions with WRF-ROMS and reduce the

consumption of computing resources by roughly 50%.295
It is shown by our experiments that the subsurface modeling errors in the 3-D dynamical ocean model could propagate to the

surface with the forecast lead time and make a large deviation in SST. To improve the predictability in the extended period,

it is of vital importance to constrain the deviation of SST. Based on the good persistence of SST, it is verified that using the

SOM instead of the 3-D dynamical ocean model can relieve the problem of rapid error growth in the prediction of SST in

some regions, and save a lot of computing resources. For the extreme weather event such as typhoons, the predictions of300
WRF-SOM are in good agreement with WRF-ROMS. However, the WRF-SOM also has its own limitations. The overall

simulation of SST in WRF-SOM is relatively stable. Due to the abandonment of the dynamical framework, the WRF-SOM

may not be able to obtain ideal prediction results in some areas dominated by local dynamic processes (e.g., surface currents,

vortex, Ekman pumping, and turbulence).

Considering the SST characteristics in the extended-range predictions and the limitation of available computing resources,305
our method provides a new idea for exploring the predictability in the extended period. At present, our prediction

experiments cover summer, autumn, and the first half of winter, which leads to the lack of representation of other seasons.

Moreover, we do not pay too much attention to the underlying surface temperature before typhoon generation in this study,

but it is an important driving factor for typhoon generation predictions. In the future, it is useful to expand the number of

prediction examples to cover a longer period such as one year, extend the forecast time of each case, and improve the model310
horizontal resolution, and further get insights on the WRF-SOM in the predictability of typhoon genesis. Finally, due to the

joint impact of the initial conditions and the external forcing on the extended-range predictability of the atmosphere, we need

to add the control experiments to quantitatively evaluate the effect of nonlinear errors growth in the atmosphere and external

forcing differences from the ocean on the extended-range predictions.

Code and data availability315
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450

455

460

Figure 1: Schematic illustration of a Slab Ocean Model (SOM) coupled to the Weather Research and Forecasting model (WRF). τx465
τy are respectively the zonal and meridional component of wind stress at the surface, hu (hv) is the τx-driven (τy-driven) momentum
in the ocean mixed layer, f is Coriolis force, C0 is the specific heat capacity of the ocean water, and hmix is the mixed layer depth.
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475

480

485

Figure 2: Time series of a) averaged root mean square errors (RMSEs), c) anomaly correlation coefficients (ACCs), and e)
averaged RMSEs over different seasons of simulated sea surface temperatures (SSTs) against Hybrid Coordinate Ocean Model
(HYCOM) reanalysis of total 142 forecast cases from July 19th to December 31st, 2020. The comparison of the b) RMSEs, and d)
ACC between WRF-SOM and WRF-ROMS for each case.490
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525

Figure 3: The spatial distributions of the SST errors of a) WRF-SOM, and b) WRF-ROMS against the HYCOM reanalysis of total
142 forecast cases from July 19th to December 31st, 2020 averaged in the 34-day forecast period. The region in green rectangle (35°
N-58° N, 140° E-160° E) is the cold deviation area in WRF-ROMS.
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570

Figure 4: The spatial distributions of ACC of forecasted SSTs in the WRF-SOM (left column, panels adg), WRF-ROMS coupled
models (middle column, panels beh) and their comparisons of each grid (right column, panels cfi) in the model domain (green dots)
including cold deviation area (red dots) against HYCOM reanalysis, averaged in the first 10 days (upper panels abc), days 11-20
(middle panels def), days 21-30 (bottom panels ghi) forecasts of total 142 forecast cases from July 19th to December 31st, 2020.575
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590

595

600

605

Figure 5: The spatial distribution of the mixed layer depth in the cold deviation area in the a) Ocean Reanalysis, b) WRF-SOM,
and c) WRF-ROMS of total 142 forecast cases from July 19th to December 31st, 2020 averaged in the 34-day forecast period. The
time-series of averaged water temperature errors at the d) surface in WRF-SOM (red) and WRF-ROMS (blue), and the e)610
subsurface (300m-400m) in WRF-ROMS (green) against HYCOM reanalysis in the cold deviation area.
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Figure 6: The spatial distribution of air temperature errors in the cold deviation area at the surface in the a) WRF-SOM, and b)640
WRF-ROMS against Climate Forecast System versions 2 (CFSv2) reanalysis of total 142 forecast cases from July 19th to December
31st, 2020 averaged in the 34-day forecast period.
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660

665

670

Figure 7: The a) variations of RMSE of air temperature with air pressure between the WRF-SOM and WRF-ROMS against the
CFSv2 reanalysis averaged in the 34-day of total 142 forecast cases from July 19th to December 31st, 2020, and the b) variation of
the difference of RMSEs in two models with the air pressure.

675

680

685

Figure 8: The a) variations of RMSEs of the geopotential height (GPH) with air pressure in the WRF-SOM (red) and WRF-ROMS
(blue) against CFSv2 reanalysis of total 142 forecast cases from July 19th to December 31st, 2020, and the b) variation of the690
difference of RMSEs in two models with the air pressure.
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695

700

Figure 9: The typhoon tracks simulated in the WRF-SOM (red) and WRF-ROMS (blue) compared with National Meteorological
Center (NMC) (green) during typhoon season (NMC data, http://typhoon.nmc.cn/web.html).

705

710

715

Figure 10: The maximum wind speed (MWS) of typhoon simulated in the WRF-SOM (red) and WRF-ROMS (blue) compared720
with National Meteorological Center (NMC) (green) during typhoon season (NMC data, http://typhoon.nmc.cn/web.html).
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Table 1: Typhoon track errors in different simulation periods compared with observations from NMC725

Lead time (hour) Model The distance of typhoon center against observations (km)

24 WRF-SOM 171

WRF-ROMS 187

48 WRF-SOM 188

WRF-ROMS 204

72 WRF-SOM 224

WRF-ROMS 247
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