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Abstract. As one of the major carbon sinks in the global ocean, the North Atlantic is a key player in mediating the ongoing

global warming. However, projections of the North Atlantic carbon sink in a high-CO2 future are highly uncertain due to

greatly varying model results. A previous study analysed an ensemble of 11 CMIP5-models and identified two indicators of

contemporary model behavior that are highly correlated with a model´s projected future carbon-uptake in the North Atlantic:

::
In

:::::
recent

:::::
years,

:::
the

:::::::
growing

:::::::
number

::
of

:::::::
available

:::::::
climate

::::::
models

:::
and

::::::
future

:::::::
scenarios

::::
has

::
led

::
to
::::::::
emergent

:::::::::
constraints

:::::::::
becoming5

:
a
:::::::
popular

:::
tool

::
to

::::::::
constrain

::::::::
uncertain

:::::
future

::::::::::
projections.

::::::::
However,

:::::
when

::::::::
emergent

:::::::::
constraints

:::
are

:::::::
applied

::::
over

::::
large

:::::
areas,

::
it

::
is

::::::
unclear

:
(i) the high latitude winter pCOsea

2 -anomaly, which is tightly linked to winter mixing and nutrient supply and
::
if

:::
the

:::::::::::::
well-performing

:::::::
models

:::::::
simulate

:::
the

::::::
correct

:::::::::
dynamics

:::::
within

:::
the

::::::::::
considered

::::
area,

:
(ii) the fraction of the anthropogenically

altered carbon-inventory stored below 1000m depth, indicating the efficiency of dissolved inorganic carbon transport into and

within the deep ocean. Both relationships build so-called emergent constraints, where observed contemporary indicators can be10

used to improve future North Atlantic carbon sink estimates.
:::::
which

:::
key

:::::::::
dynamical

:::::::
features

::
the

::::::::
emerging

:::::::::
constraint

:
is
:::::::::
stemming

::::
from,

::::
and

:::
(iii)

::
if

:::
the

:::::::::::
observational

:::::::::
uncertainty

::
is
::::
low

::::::
enough

::
to

:::::
allow

:::
for

::::::::::
considerable

::::::::
reduction

::
in

:::
the

:::::::::
projection

:::::::::::
uncertainties.

:::
We

::::::
propose

::::::::
therefore

::
to

:::::::::
regionally

:::::::
optimize

::::::::
emergent

:::::::::::
relationships

::::
with

:::
the

:::::::
two-fold

::::
goal

::
to

:::
(a)

:::::::
identify

:::
key

::::::
model

::::::::
dynamics

::
for

:::
the

::::::::
emergent

:::::::::
constraint

:::
and

::::::
model

:::::::::::::
inconsistencies

::::::
around

:::::
them

:::
and

:::
(b)

:::::::
provide

:::
key

:::::
areas

::::::
where

:
a
::::::
narrow

::::::::::::
observational

:::::::::
uncertainty

::
is

::::::
crucial

:::
for

::::::::::
constraining

:::::
future

::::::::::
projections.

:
15

In this study, we apply a genetic algorithm to optimize these emergent relationships by constraining the spatial extent of

the indicators, i.e. to identify key regions that maximise the cross-correlations between the indicators and
::::
Here,

:::
we

::::::::
consider

:::
two

:::::::::
previously

:::::::::
established

::::::::
emergent

::::::::::
constraints

::
of

:
the future carbon uptake . We pre-define the shape of the desired regions

as (i) rectangles and ellipses of different sizes for the first surface-2D indicator and (ii) cuboids and ellipsoids of different

volumes for the second water column-3D indicator
:
in

:::
the

:::::
North

:::::::
Atlantic

::::::::::::::::
(Goris et al., 2018)

:
.
:::
For

:::
the

:::::::
regional

:::::::::::
optimisation,

:::
we20

:::
use

:
a
:::::::
genetic

::::::::
algorithm

::::
and

:
a
:::::
suite

::
of

::::::::::
pre-defined

::::::
shapes

:::
and

:::::
sizes

:::
for

:::
the

::::::
desired

:::::::
regions. Independent on shape and size,

the genetic algorithm persistently identifies the Gulf Stream region as optimal for the first indicator
::::::
centered

:::::::
around

::::
30◦N

:::
as

::::::
optimal

:
as well as the pathway of the

:::::
region

::::::::
associated

::::
with

:
broad interior southward volume transport for the second indicator.

This is further confirmed with high correlations between the North Atlantic future carbon uptake and volume transport values

extracted for the central latitudes and depths of these optimal regions. Though the importance of volume transport for the25
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carbon uptake is well known, our results go beyond traditional knowledge and identify which depth-ranges and latitudes of

this
:::::::
centered

::::::
around

::::::
26◦N.

:::::
Close

::
to

:::
and

::::::
within

:::
our

::::::
optimal

:::::::
regions,

::::::::::::
observational

:::
data

:::
of volume transport are consistently of

importance across the multi-model ensemble. Our study shows that regional optimisations of emergent constraint can isolate

key drivers responsible for multi-model spread and furthermore provide information on where observations are most crucial to

constrain future projections. Moreover, a comparison of the model performance in the identified key regions and the large-scale30

North Atlanticindicates that models whose mean values are in good agreement with observations within one key area
:::::::
available

::::
from

:::
the

:::::::
RAPID

::::
array

:::::
with

::::::
relative

::::
low

:::::::::::
observational

::::::::::
uncertainty.

::::
Yet,

:::
our

:::::::::
regionally

:::::::::
optimised

::::::::
emergent

:::::::::
constraints

:::::
show

:::
that

:::::::::
additional

:::::::
measures

:::
of

::::::
specific

:::::::::::::
biogeochemical

::::::::
variables

:::::
along

:::
the

:::::
array

:::
will

::::::::::::
fundamentally

:::::::
improve

::::
our

::::::::
estimates

::
of

:::
the

:::::
future

::::::::::::
carbon-uptake

::
in

:::
the

:::::
North

:::::::
Atlantic.

:::::::::
Moreover,

:::
our

:::::::::
regionally

::::::::
optimised

::::::::
emergent

::::::::::
constraints

::::::::::
demonstrate

:::
that

:::::::
models

:::
that

:::::::
perform

::::
well

:::
for

:::
the

:::::
upper

:::::
ocean

:::::::
volume

:::::::
transport

::::
and

::::::
related

:::
key

:::::::::::::
biogeochemical

:::::::::
properties do not necessarily perform35

wellwhen looking at another key area.
::::::::
reproduce

:::
the

::::::
interior

::::::
ocean

::::::
volume

::::::::
transport

::::
well,

:::::::
leading

::
to

::::::::::
inconsistent

::::::::
gradients

::
of

:::
key

:::::::::::::
biogeochemical

:::::::::
properties.

:
This hampers the applicability of emergent constraints and highlights the need to additionally

evaluate spatial model features.

1 Introduction and Motivation

At the heart of current investigations of the impact of possible future emissions pathways is the Coupled Model Intercom-40

parison Project (CMIP). CMIP gathers the output of state-of-the-art climate models to a set of given experiments, designed

to understand the drivers of climate change in a multi-model context. The CMIP-archive is commonly refer
::::::
referred

:
to in

reports of the Intergovernmental Panel on Climate Change (e.g., IPCC, 2013, 2018) and has hence become fundamental for

the creation of climate policies.

The first phase of CMIP, CMIP1, began in 1996, including 21 global coupled climate models and a handful of experiments45

(Meehl et al., 1997, 2000). In contrast, the sixth and latest phase of CMIP (CMIP6, Eyring et al., 2016a) includes 312 exper-

iments (Petrie et al., 2021) and anticipated output-data from at least 100 models hosted by 40 modelling centres (Balaji et al.,

2018), though not every model participated in every experiment. Moreover, the model resolution has increased substantially

over the years, additional Earth system processes and components have been introduced and an increased number of variables

are required for each experiment (Petrie et al., 2021). Accordingly, the size of CMIP-data is increasing rapidly with a volume50

of 40TB related to CMIP3, 2PB for CMIP5 and an estimated 20PB for CMIP6 (Balaji et al., 2018).

Despite many progresses
::::
much

:::::::
progress

:
in climate modelling, model bias and uncertainty (i.e. spread across models) have

not necessarily decreased . For example
::::::::
decreased

::
in

::::
many

:::
of

:::
the

::::::::
simulated

::::::::
variables.

::::
Most

:::::::::::
prominently, the model-generation

of CMIP6 reveals the highest range
:::::
model

::::::::::
uncertainty in equilibrium climate sensitivity when compared to other CMIP model-

generations (Meehl et al., 2020). The
::::::::
Similarly,

:::::::::::::::::::
Tagliabue et al. (2021)

:::::
found

::::
that

:::
the

:::::::
absolute

::::::::::
uncertainty

::
in

:::::::::
projections

:::
of55

:::::
global

:::::
ocean

::::
net

:::::::
primary

::::::::::
productivity

::::
has

::::::::
increased

:::::
from

::::::
CMIP5

::
to
::::::::

CMIP6.
:::::::::::
Additionally,

::::
their

:::::
study

::::::
points

:::
out

::::
that

::::
this

::::::
growth

::
in

:::::::::
uncertainty

:::::::::::
substantially

:::::
differs

::
at

:::::::
regional

:::::
scale.

:::::::::
Contrarily,

:::::::::::::::::
Terhaar et al. (2021)

:::::::
identify

:::
that

:::
the

:::::
model

::::::::::
uncertainty

::
in

::::::
surface

::::::
density

::
in
::::

the
:::::
Arctic

:::
has

:::::::::
decreased

::
in

::::::::::::
CMIP6-ESMs

:::::
when

:::::::::
compared

::
to

:::::::
CMIP5,

::::::
leading

::
to
::
a
:::::::
reduced

::::::::::
inter-model
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::::
range

:::
of

:::
the

::::::::::::
anthropogenic

::::::
carbon

::::::
uptake

::
in

:::
the

::::::
Arctic.

::::
This

:::::
result

::
is
:::::::

echoed
::
by

:::::::::::::::::::
Bourgeois et al. (2022)

:
,
::::
who

::::
find

:
a
:::::::
smaller

::::::
CMIP6

::::
than

::::::
CMIP5

::::::
model

:::::::::
uncertainty

:::
in

::::
both

:::
the

:::::::::::
contemporary

::::::
ocean

::::::::::
stratification

::::
and

:::
the

::::::::::::
anthropogenic

::::::
carbon

::::::
uptake

::
in60

::
the

::::::::
Southern

::::::
Ocean

:::::::
between

::::
30◦S

::::
and

:::::
55◦S.

:::
Yet,

:::
the

:
combination of large data volume and partially high model uncertainty in

CMIP6 makes a comprehensive evaluation of associated models and simulations highly challenging. Moreover, while obser-

vational estimates inform about present and past dynamics, it is often unclear how past and contemporary model biases affect

their simulated climate change signal (Eyring et al., 2019). The emergent constraint approach (e.g., Hall et al., 2019) addresses

this problem by identifying a relationship between observable characteristics of the current climate (predictor) and a certain65

aspect of future change (predictand) that emerge within a multi-model ensemble. Based on this relationship, it is possible to

constrain the model ensemble, assuming that alignment with the observational estimate of the predictor is key to correctly

simulate the predictand. Emergent constraints offer an attractive way of evaluating uncertain future projections. In the realm of

Earth system projections, more than 50 emergent constraints have been found so far (Williamson et al., 2021). However, there

are several concerns denoted when it comes to the usefulness of emergent constraints, including that a high cross-correlation70

between predictor and predictand can potentially reflect (i) the simplicity of a commonly used model parametrization and

(ii) spurious relationships (Eyring et al., 2019). Hence, a physical explanation behind the emergent constraint is key for its

plausibility (Williamson et al., 2021; Hall et al., 2019).

Given a physically-plausible emergent constraint
:
In

:::::
ocean

::::::::::::::
biogeochemistry,

::::::::
emergent

:::::::::
constraints

:::
are

:::::
often

::::::
applied

::
to

:::::::
variables

:::
that

:::
are

::::::::
averaged

::::
over

::::
large

:::::
areas,

::
as

:::::
large

::::
scale

:::::
ocean

::::::::
dynamics

:::
are

::::::
crucial

:::
for

:::::
many

:::::::::::::
biogeochemical

::::::::
processes

::::
like

:::
the

:::::
ocean75

:::::
carbon

::::::
uptake

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Kessler and Tjiputra, 2016; Goris et al., 2018; Bourgeois et al., 2022; Terhaar et al., 2021)

:
.
::::::
Though

:::::
these

::::::::
emergent

:::::::::
constraints

:::
are

:::::::::
physically

::::::::
plausible,

:::
we

::::
note

::::
that

::::
they

:::::
deem

::
a

:::::
model

:::
to

::
be

:::
the

:::::
fittest

::::
due

::
to

:::
its

::::::
ability

::
to

:::::::
simulate

::::::::
spatially

:::::::
averaged

::::::
values

::
of

:::
the

::::::::
predictor

:::::
within

::::::::::::
observational

:::::::::
uncertainty.

::::::
There

:
is
:::
no

:::::::::
inspection

:
if
:::
the

:::::::
models

::::::
deemed

:::
to

::
be

:::
’fit’

:::::
have

:
a
::::::::::
dynamically

:::::::::
consistent

::::::::
predictor

:::::::
gradient

::::::
within

:::
the

::::::::::
considered

::::::
region

:::
and

:::
we

:::
are

::::
not

:::::
aware

::::
that

:::
this

::::::::
problem

:::
has

:::::
been

::::::::
discussed

:::
yet.

::::
Yet,

::::
this

::
is

::::::::
especially

::::::::
relevant

::
in

:::::
cases

:::::
where

:::
the

::::::::
predictor

::
is
:::::::

closely
:::::
linked

:::
to

:::::::::
dynamical

::::::::
processes

::::
such

:::
as80

:::::::::
meridional

:::::::::
advections.

:::::::::
Moreover, the yielded constrained predictand is highly dependent on the observational estimate and a

correct estimate of its uncertainty (Williamson et al., 2021). A highly uncertain observational constraint of the predictor will

lead to a less tight estimate of the predictand. In the marine biogeochemical realm, in-situ observations are often too sparse

in space and time to fully capture spatial and temporal variability, including fine-scale mixing, seasonal, interannual, decadal

variability, long-term trends and short-term natural variability (Wang et al., 2019). Only few platforms reach the deep ocean,85

though its continuous observations are necessary e.g., to confidently capture the oceanic heat and carbon storage (Weller et al.,

2019). The error occurring from the interpolation of sparse data is typically less well quantified than the observational error

itself (Landschützer et al., 2020). Though the advent of biogeochemical ARGO floats gives the option to a substantial contribu-

tion to the goal of a 3-dimensional image of ocean biogeochemistry (Claustre et al., 2010), this potential is still far from being

fully explored. While case-studies for selected regions exists (e.g., D’Ortenzio et al., 2020), emergent constraints that focus on90

ocean biogeochemistry are often applied on larger ocean areas (Kessler and Tjiputra, 2016; Goris et al., 2018). Estimates
::::
exist

::::::::::::::::::::::::
(e.g., D’Ortenzio et al., 2020)

:
,
::::::::
estimates of observational uncertainty are hence

::::
often

:
uncertain for emergent constraints in the
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realm of ocean biogeochemistry
:::
due

::
to

:::
the

:::::
large

:::
area

:::::::
covered

:::
by

:::
the

::::::::
emergent

::::::::
constraint and might hamper ongoing efforts to

achieve a proper constraint for climate sensitivities of ocean biogeochemical variables.

It was pointed out before that emergent constraints
:::
Due

::
to

:::::
these

:::::::::
limitations

::
of

::::::::
emergent

:::::::::
constraints

::
in

::
the

:::::
realm

::
of

::::::::::::::
biogeochemistry,95

:::
our

:::::
study

::
is

::::::::
concerned

:::::
with

:::
the

::::::::
regionally

:::::::::::
optimization

:::
of

::::::::
emergent

::::::::::
relationships

:::::
with

:::
the

:::::::
two-fold

::::
goal

:::
to

::
(a)

:::::::
identify

::::
key

:::::
model

::::::::
dynamics

:::
for

:::
the

::::::::
emergent

::::::::
constraint

::::
and

:::::
model

:::::::::::::
inconsistencies

::::::
around

::::
them

::::
and

::
(b)

:::::::
provide

:::
key

:::::
areas

:::::
where

::
a

::::::
narrow

:::::::::::
observational

:::::::::
uncertainty

::
is
:::::::

crucial
:::
for

::::::::::
constraining

::::::
future

::::::::::
projections.

:::::
These

::::
key

:::::
areas can be used to guide observational

strategies(Eyring et al., 2019). Given that there is a clear need for this in the realm of ocean biogeochemistry.
:

::
In

:::
this

:::::
study, we utilised two existing emergent constraints and applied a genetic algorithm to regionally optimise the area100

of the predictor, i. e., the observed variable. Our regional optimization explores different shapes and sizes of the sought-after

area as an input and hence can be adapted for specific observational campaigns such as cruises.
::::::::
Moreover,

:::
the

:::
use

::
of

::::::::
different

:::::
shapes

::::
and

::::
sizes

:::::
helps

::
to
:::::::

identify
::::
key

:::::
model

:::::::::
dynamics

:::
for

:::
the

::::::::
emergent

::::::::
constraint

::::
and

::::::
model

::::::::::::
inconsistencies

:::::::
around

:::::
them.

Both emergent constraints that we regionally optimise are related to the future carbon uptake of the North Atlantic and use

(i) the seasonality of the oceanic partial pressure pCO2 and (ii) the deep ocean storage of anthropogenically altered carbon105

as predictors (Goris et al., 2018). Both predictors could highly gain from an improved observational strategy as data is sparse

on both seasonal timescales and in the deep ocean.
::::::::::
Additionally,

::::
both

:::::::::
predictors

:::
are

::::::
highly

:::::::::
dependent

:::
on

:::
the

:::::
large

:::::
scale

:::::
ocean

:::::::::
circulation

::::
such

::::
that

::
it

::
is

::
of

::::::::::
importance

::
to

::::
not

::::
only

:::::
study

::::
their

::::::::
averaged

::::::
values

::::
over

:::::
large

:::::
areas

:::
but

::::
also

:::
the

::::::
model

::::::::::
performance

::::::
within

::::
key

::::::
regions

::::
and

::
its

:::::::::
dynamical

:::::::::::
consistency.

:
We therefore consider this as the optimal test case for our

regional optimisation. We note, however, that our study is primarily a showcase to illustrate the effectiveness of the genetic110

algorithm and to demonstrate the usefulness of a regionally optimised emergent constraint
:::::::::
constraints. Our selection of the

North Atlantic basin is motivated by its critical role for the long-term anthropogenic carbon sink and as the gateway to transport

carbon from surface to the deep ocean (Tjiputra et al., 2010). Further, the North Atlantic carbon uptake and dynamical features

are relatively well studied such that the plausibility of our results can readily be confirmed.

This paper is organised as follows: In Section 2, we introduce the
::::::
concept

::
of

::::::::
emergent

::::::::::
constraints,

:::
the emergent constraints115

that we use as the base for our regional optimisation as well as the genetic algorithm used for the regional optimisation and its

experimental set up. When describing our results and discussing them in Section 3, we first describe the efficiency and perfor-

mance of the genetic algorithm. Subsequently, we present the optimal regions for both predictors and discuss their plausibility

. Finally, we present all newly found Emergent Constrains and discuss spatial differences in model performance
::
as

::::
well

::
as

:::
the

::::::::
associated

:::::::::
regionally

::::::::
optimised

::::::::
emergent

::::::::::
constraints;

::::
and

::::::
analyse

:::
the

::::::::::
plausibility

::
of

:::
our

::::::
results

::
as

::::
well

:::
as

::::
their

:::::::::::
implications.120

:::
We

::::::
discuss

:::
our

::::::::
approach

::::
and

:::
the

:::::::::
additional

::::::::::
information

:::
that

::
it
:::::::
provides

:::
in

::::::
Section

::
4. Our summary and conclusions can be

found in Section 5.

2 Background and experimental set-up
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::
In

:::
this

:::::::
Section,

:::
we

::::
give

:
a
:::::
short

::::::::
overview

::::
over

:::
the

:::::::
concept

::
of

::::::::
emergent

::::::::
constraint

::
to

::::::::
constrain

:::::
future

::::::::::
projections

:::::::
(Section

::::
2.1)

:::
and

::::::::
introduce

:::
the

::::::::
emergent

::::::::
constraint

::::
that

:::
we

:::::
apply

:::
the

:::::::
regional

::::::::::
optimisation

:::
on

:::::::
(Section

::::
2.2).

:::
We

::::::::::
furthermore

:::::::::
introduce

:::
our125

:::::
set-up

:::
for

:::
the

:::::::
regional

::::::::::
optimisation

:::::::
(Section

::::
2.3)

:::
and

:::
the

:::::::
genetic

::::::::
algorithm

::
as

:::
our

:::::::::::
optimisation

:::
tool

::::::::
(Section

::::
2.4).

2.1
:::

The
:::::::::
Emergent

:::::::::
Constraint

:::::::::
approach

:::
The

::::::::
emergent

::::::::
constraint

::::::::
approach

::::::::
identifies

::
an

::::::::
emerging

::::::::::
quasi-linear

::::::::::
relationship

:::::::
between

:::::::::::
characteristics

:::
of

::
the

::::::
current

:::::::
climate

:::::::::
(predictor)

:::
and

::
a

::::::
certain

:::::
aspect

:::
of

:::::
future

::::::
change

:::::::::::
(predictand)

::::
that

::::::
emerge

::::::
within

:
a
:::::::::::
multi-model

::::::::
ensemble

::::
and

:::::::::::
subsequently

::::::
utilises

::::::::::
observations

:::
of

:::
the

:::::::
predictor

::
to
::::::::
constrain

:::
the

:::::::::
predictand

:::::::::::::::::::::::::::::::::::::::
(e.g., Cox et al., 2013; Williamson et al., 2021).

::::
Our

:::::::
method130

::
of

:::::::::
calculating

:::
the

::::::::::
constrained

:::::::
estimate

:::::::
follows

:::
the

::::::::
approach

:::
of

::::::::::::::
Cox et al. (2013).

:::::
Here,

:::
the

::::::::::::
unconstrained

::::::::
estimate

::
is

:::::
given

::
by

:::
the

::::::
model

::::
mean

::::
and

::
its

::::::::::
uncertainty

:::
by

:::
the

::::::::::
multi-model

:::::::
standard

:::::::::
deviation.

:::::::::
Assuming

:::
that

:::
all

::::::
models

:::
are

::::::
equally

::::::
likely

::
to

:::::::
simulate

:::
the

:::
true

::::
state

::
of

:::
the

:::::::::
predictand

::::
and

::
are

::::::::
sampled

::::
from

:
a
::::::::
Gaussian

::::::::::
distribution,

:
a
::::::::::
probability

::::::
density

:::::::
function

::::::
(PDF)

:::
can

::
be

:::::::::
calculated

:::
for

:::
the

:::::::::::
unconstrained

::::::::
estimate

:::::
using

:::::
model

:::::
mean

::::
and

:::::::
standard

:::::::::
deviation.

::::::::
Similarly,

:::::
PDFs

::
of

:::
the

::::::::::::
observational

:::::::
estimate

:::
and

:::
of

:::
the

:::::
linear

:::::::::
regression

:::::::
between

::::::::
predictor

::::
and

:::::::::
predictand

:::
are

::::::::::
established.

::::
For

:::
the

:::::::::::::
observationally

::::::::::
constrained135

:::::::::
predictand,

:
a
::::::::::

conditional
::::
PDF

::
is
:::::::::
calculated

:::
by

:::::::::
integrating

::::
over

:::
the

:::::::
product

::
of

:::
the

::::
PDF

:::
of

:::
the

:::::::::::
observational

:::::::
estimate

::::
and

:::
the

::::
PDF

::
of

:::
the

::::::
linear

:::::::::
regression.

::::
The

:::::::::::::
observationally

::::::::::
constrained

:::::::
estimate

::::::
equals

:::
the

:::::
mean

:::::
value

:::
of

:::
the

::::::::::
conditional

::::
PDF

::::
and

::
the

::::::::::
uncertainty

::
of

:::
the

::::::::
estimate

::
is

:::::
given

::
by

:::
its

:::::::
standard

:::::::::
deviation.

:::
We

::::
note

::::
that

::::::::
emergent

:::::::::
constraints

:::::
come

::::
with

::
a
::::::
number

:::
of

::::::
caveats,

::::::
among

:::::
them

:::
the

::::
fact

::::
that

::::
they

:::
are

:::::
often

::::::
applied

::::
over

:::::
large

:::::
areas

:::
and

::::::
hence

::::::::
constrain

:
a
:::::::
model’s

::::::
ability

::
to

::::::::
simulate

:::::::
spatially

:::::::
averaged

::::::
values

::::::
within

:::::::::::
observational

:::::::::
uncertainty

::::
(see

:::::::
Section

::
1).

:
140

2.2 Emergent constraints of the North Atlantic future carbon uptake

As basis for our regional optimization, we utilise two emergent constraints that both constrain the future North Atlantic carbon

uptake for an ensemble of 11 CMIP5-models under a high CO2 future. Here, we give a short summary of these emergent

constraints, for details the reader is referred to Goris et al. (2018). We note that the study of Goris et al. (2018) is concerned

with the “anthropogenically altered” component of the carbon cycle, defined as the outcome of the RCP8.5 experiment minus145

that of the piControl experiment. All variables calculated in this manner are henceforth marked by the subscript “ant*” and can

be equated to the anthropogenic component of the carbon cycle plus climate change–induced differences of the carbon cycle.

Goris et al. (2018) found that the selected model-ensemble agrees fairly well on the North Atlantic Cant∗-uptake of the

1990s
:::::::
(defined

::
as

:::
an

:::::::
average

::::
over

:::
the

:::::
years

::::::::::
1990-1999), yet the simulated future North Atlantic Cant∗-uptake

:
of

:::
the

::::::
2090s

:::::::
(defined

::
as

::
an

:::::::
average

::::
over

:::
the

:::::
years

:::::::::::
2090-2090s) is highly uncertain. Here, some models simulate a future Cant∗-uptake of150

the same magnitude as that of the 1990s and other models project a future Cant∗-uptake that is 2-3 times higher than that of the

1990s (Fig. 1a). Goris et al. (2018) identified that discrepancies in the modelled North Atlantic future Cant∗-uptake arise due

to differences in the efficiency of the high latitude transport of Cant∗-storage from the surface to the deep ocean. This transport

is fuelled by deep mixed layer depths, high biological production and subsequent particle export to the deep as well as deep

convection and subsequent interior ocean southward transport of Cant∗-storage out of the high latitudes.155
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Two predictors associated with the contemporary efficiency of the surface-to-depth carbon transport were identified by

Goris et al. (2018). The first predictor is the mid-to-high latitude winter (November to April
::::::
summer

:::::
(May

::
to

:::::::
October) pCOsea

2 -

anomaly(Fig. 1b-c), which is tightly linked to winter mixing, nutrient supply and biological production, but also to deep con-

vection (e.g., Olsen et al., 2008; Tjiputra et al., 2012). We note that
:::::::::::::::
Goris et al. (2018)

:::::
partly

::::::
utilised

:::
the

:::::::
negative

:::::
mean

:::::::
summer

::::::::::::::
pCOsea

2 -anomaly
::
in

::::
order

::
to

:::
be

:::
able

::
to

::::::
depict

::::::
positive

:::::::::::
correlations.

:::
We

:::::
follow

:::
this

::::::::
approach

:::
but

:::
opt

::
to

:::
use

:::
the

::::
term

:::::
mean

::::::
’winter160

::::::::::::::
pCOsea

2 -anomaly’
::::::::::
(November

::
to

::::::
April)

::::::
instead

::::
(Fig.

::::
1b),

:::::::
defining

:
it
:::
to

::
be

:::
the

::::::::
deviation

::
of

:::
the

::::::::
averaged

:::::
winter

:::::::::::::
pCOsea

2 -values

::::
from

:::
the

:::::
mean

::::::
annual

:::::::::::::
pCOsea

2 -values
:::
and

::::::
hence

::
to

:::::
equal

:::
the

::::::::
negative

:::::
mean

:::::::
summer

:::::::::::::::
pCOsea

2 -anomaly.
::::::::::::::::
Goris et al. (2018)

:::::
found

:::
that

:
models with a low future Cant∗-uptake have a negative mid-to-high latitude winter pCOsea

2 -anomaly. Their pCOsea
2

seasonal cycle is driven by temperature meaning that their Cant∗-uptake is strongest in winter when surface temperatures are

cold. Contrarily, models with a high future Cant∗-uptake have a positive mid-to-high latitude winter pCOsea
2 -anomaly, indicat-165

ing that their seasonal cycle of pCOsea
2 is dominated by variations of dissolved inorganic carbon (DIC) via biology and mixed

layer depth.
::
As

:::
the

::::
here

::::::::::
considered

::::::
models

::::
have

::::::::
differing

::::::
timings

:::
for

::::
their

:::::
peak

::
in

::::::::
biological

::::::::::
production

:::::::
(ranging

::::
from

:::::
May

::
to

::::
July)

::::
and

:::::::
seasonal

::::::::
warming

:::
and

:::::::::
biological

:::::::::
production

::
is
::::

not
::
in

:::::
phase

::::
(the

::::::::
modelled

::::
peak

::
in
::::::::

seasonal
::::::::
warming

::::::
occurs

::
in

:::::::
August),

:::
the

::::::
highest

::::::::::
correlations

::::
with

:::
the

::::::
future

:::::
North

:::::::
Atlantic

:::::::::::
Cant∗-uptake

:::
are

::::::
yielded

:::::
when

:::
the

:::::::
seasonal

:::::::::::::::
pCOsea

2 -anomaly

:::::
covers

:::
the

:::::::
months

::::
from

:::::
May

::
to

:::::::
October

:::
(or

:::::::::
November

::
to

:::::::
March)

:::
and

::::::
hence

:::::::
captures

:::
the

::::::::
different

:::::::
seasonal

::::::
drivers

::
at
:::::
play.170

While both a DIC- and a temperature-driven pCOsea
2 annual cycle leads approximately to the same contemporary Cant∗-

uptake for the considered models, a temperature-driven pCOsea
2 annual cycle leads to less Cant∗-uptake in the future. The

second predictor is the fraction of the North Atlantic Cant∗ stored below 1000m depth (Fig. 1d-e
:
d), indicating how efficient

Cant∗-storage is transported into the deep ocean. Here, models that project a high future Cant∗-uptake have the majority of

Cant∗-storage below 1000m depth, leading to a smaller fraction of Cant∗-storage at the surface and hence allowing for further175

Cant∗-uptake.
::
For

:::
the

:::::::
second

::::::::
predictor,

:::
we

::::
focus

:::
on

:::
the

:::::::::
time-frame

::
of
::::::::::
1997-2007

::::::::::
(hereinafter

::::::
referred

::
to
:::
as

:::
the

::::::
1997s)

::
as

:::
the

:::::::::::::::
observation-based

:::::::::::
data-product,

:::::
which

:::
we

::::::
utilise

::
to

::::::::
compare

::
to

:::
the

::::::::
simulated

:::::::::
fractional

::::::::::::
Cant∗-storage,

::
is

:::::::::
normalized

:::
to

:::
the

:::
year

:::::
2002

::::
(see

::::::::
Appendix

:::
A).

:

By comparison to the observational database, these predictors allowed to better constrain the model ensemble, and demon-

strated that the models with more efficient surface-to-deep transport are best aligned with current observations (Fig. 1c,e
:::
b,d).180

These models also show the largest future North Atlantic Cant∗-uptake, which is hence the more plausible future evolution

(Fig. 1c,e). We note that, within the selected model ensemble, the cross-correlation between the contemporary mid-to-high

latitude winter pCOsea
2 -anomaly and the future North Atlantic Cant∗-uptake is r = 0.79, while the cross-correlation between

the fraction of the North Atlantic Cant∗ stored below 1000m
::::
1000

::
m

:
depth and the future North Atlantic Cant∗-uptake is

r = 0.94. Though these
:::::
These

:
correlations are relatively high

:::
and

::::::
studies

:::::::::
concerned

::::
with

::::::::
emergent

:::::::::
constraints

:::
use

:::::::::
frequently185

::::::::::
relationships

::::
with

::::::::::
correlations

:::::
lower

::::
than

:::::::
r = 0.79

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Qu et al., 2018; Selten et al., 2020; Mystakidis et al., 2017; Tokarska et al., 2020)

:
.
:::
Yet, the study of Goris et al. (2018) includes no regional optimization. Instead, it focuses on the broad surface areas of

Mikaloff Fletcher et al. (2003) including the North Atlantic tropics (0.0◦N to 17.781◦N), low latitudes (17.781◦N to 35.563◦N),

midlatitudes (35.563◦N to 48.901◦N), and high latitudes (48.901◦N to 75.595◦N) and the depth-boundary of 1000m depth as
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an indication for deep convection as well as for the horizon that separates between the upper and lower limbs of the Atlantic190

meridional overturning circulation (AMOC). Here, we

2.3
:::::::::::

Experimental
::::::
set-up

:::
for

:::
the

::::::::
regional

:::::::::::
optimisation

:::
We apply a genetic algorithm (described in Section 2.4) to regionally optimise both predictors, i. e. to find a regionally con-

densed footprint of the already discovered relationship. This regional footprint might lead us even closer to the
:::::::::
dynamical

origin of the constraints
:::
and

::::::
expose

::::::::
potential

:::::::::
dynamical

::::::::::::
inconsistencies

::::::
within

:::
the

:::::
model

::::::::
ensemble

:
but also allows to focus on195

smaller and more concentrated regions, which ultimately can be utilised for observational strategies and to refine observational

uncertainties.

In our application of the regional optimisation to both predictors, we consider the whole North Atlantic for regional op-

timization of the winter pCOsea
2 -anomaly instead of focusing on the mid-to-high latitudes. Likewise, we consider all depth

ranges of the fractional North Atlantic Cant∗-storage for the regional optimisation, instead of focusing on the depth horizon200

below 1000m
::::
1000

::
m
:

depth. This way, the regional optimisation can confirm or reject the previously found latitudinal bound-

aries and depth-ranges.
:::::
Before

::::::::
applying

:::
the

:::::::
regional

:::::::::::
optimisation,

:::
we

:::::::::
re-gridded

:::::
both

:::
the

:::::
winter

:::::::::::::::
pCOsea

2 -anomaly
::::
and

:::
the

::::::::
fractional

:::::::::::
Cant∗-storage

::::::
values

::::
from

:::::
each

:::::
model

:::
on

:
a
::::::
regular

:::::
1◦x1◦

:::::
grid.

:::
We

::::::
further

::::::::::
interpolated

:::
the

::::::::
fractional

::::::::::::
Cant∗-storage

::
on

::::::::::
depth-levels

::
at

::::
100

::
m

::::::::
intervals.

::::
That

::::
way,

::
it

:
is
::::::::
possible

::
to

:::::::
construct

::::
new

:::::::
regions

:::
and

:::::
apply

:::::
them

::
to

:::
the

:::::
output

::
of

:::
the

::::::
whole

:::::
model

::::::::::
ensemble.205

:::
For

:::
our

:::::::::::
experimental

::::::
set-up,

::
we

:::::::::
pre-define

:::
the

::::::
desired

:::::::
optimal

::::::
regions

::
in

:::::
terms

::
of

::::::::::
geometrical

::::::
shape.

::::::::::
Specifically,

:::
we

:::::
select

:::
two

:::::::
different

::::::
shapes

:::
for

::::
both

:::::::::
predictors,

:::
i.e.

:::
the

:::::
winter

:::::::::::::::
pCOsea

2 -anomaly
::::::::
(2D-case)

:::
and

:::
the

::::::::
fractional

::::::::::::
Cant∗-storage

:::::::::
(3D-case).

:::
For

:::
the

:::::::
2D-case,

:::::
these

:::
are

::::::::
rectangles

:::::::
aligned

::::
with

:::
the

::::::::::
longitudinal

:::
and

:::::::::
latitudinal

:::::
axes,

::::::::::
respectively

:::
and

:::::::
arbitrary

:::::::
ellipses.

::::
For

::
the

::::::::
3D-case,

:::
we

:::::
chose

::::::::::
rectangular

::::::
cuboids

:::::::
aligned

::::
with

:::
the

:::::::::::
longitudinal,

:::::::::
latitudinal

:::
and

:::::
depth

:::::
axes,

::::::::::
respectively

:::
and

:::::::
general

::::::::
ellipsoids.

::::
Our

:::::
set-up

::
of
::::::

shapes
::
is
:::::::::
motivated

::
by

::::
two

:::::::
criteria:

::
(i)

:::
the

:::::::::
possibility

::
to

::::::
capture

:::::::
regions

::
of

::::::
interest

::::
and

:::
(ii)

::
to

::::
have

::
a210

:::
low

::::::::::
dimensional

::::::
search

:::::
space

:::::::
allowing

:::
for

::
a

:::
fast

:::::::::::
optimisation.

::::
The

:::::
search

:::::
space

::
is
::
of

:::::
lower

:::::::::
dimension

:::
for

:::::::::
rectangles

::::
than

:::
for

:::::::
arbitrary

::::::
ellipses

::::
and

::
of

:::::
lower

:::::::::
dimension

:::
for

:::::::
cuboids

::::
than

:::
for

::::::
general

:::::::::
ellipsoids.

::::
Yet,

:::::::
arbitrary

:::::::
ellipses

:::
and

::::::
general

:::::::::
ellipsoids

:::
can

::
be

:::::
tilted

::::::
within

:::
the

::::::
surface

:::::
water

:::::
plane

:::
and

:::
the

:::::
water

:::::::
volume,

:::::::::::
respectively,

::::
such

::::
that

:::
the

::::::::
associated

:::::::
optimal

::::::
regions

:::::
have

::
the

::::::
option

::
to
::::::

follow
:::::
water

:::::::
masses

::::
more

:::::::
closely

:::
and

:::
are

::::::
hence

::::::::
beneficial

::
to

::::::::
consider.

:::
We

::::
note

::::
that

:::::
other

::::::::::
geometrical

::::::
shapes

:::::
would

::::
have

::::::::
satisfied

::::
both

:::::::
criteria.

::::::
Among

:::::
them

::
is
:::
the

::::::
option

::
to
::::::::

optimize
::
a

::::
tube,

:::
so

::::
that,

:::
for

::::::::
example,

:::
the

::::
ship

:::::
track

::
of

:::
an215

::::::::
upcoming

::::::
cruise

::::
can

::
be

:::::::::
optimised.

:::
We

::::::::::
additionally

::::::::
prescribed

:::
the

:::::::::::
approximate

::::::
volume

::
or

::::
area

::::
size

:::
that

:::
the

::::::
optimal

::::::
region

::::::
should

::::
have.

:::::
Here,

:::
we

:::::
focus

::
on

:::::
areas

:::
and

:::::::
volumes

::
of

::
i)
:::::::
10-20%

:
,
::
ii)

:::::::
20-30%

:::
and

:::
iii)

:::::::
30-40%

::
of

:::
the

::::
total

::::
size

::
of

:::
the

:::::
North

:::::::
Atlantic

:::::::
surface

:::
area

::::
(for

:::
the

::::::::
2D-case)

::
or

::::
basin

:::::::
volume

:::
(for

:::
the

::::::::
3D-case),

:::::::::::
respectively.

::
In

:::::::::::
combination

::::
with

:::::::::
rectangles,

:::::::
ellipses,

::::::
cuboids

::::
and

::::::::
ellipsoids

:::
this

::::::
results

::
in

:::
12

::::::::::
applications

::
of

:::
the

::::::
genetic

:::::::::
algorithm.

:::
We

::::
note

::::
that

:::
the

::::::
desired

::::
area

:::
can

::::
also

::
be

:::::
given

::
as

::::
total

::::
area

::::::
instead

:::
of

:
a
:::::::::
percentage

::::
and220

:::::
could,

:::
for

::::::::
example,

::
be

:::
the

:::::::
distance

::::
that

:::
the

:::::
cruise

:::
can

:::::
cover

::::::
within

:
a
:::::
given

::::::::
duration.

::::
Our

:::::
choice

:::
of

:::::::::
considering

::::::::
different

::::
area

::::
sizes

::
is

::::::::
motivated

:::
by

:::
two

:::::::::::::
considerations:

:::::
firstly,

:::
we

::::
want

:::
to

::::
avoid

::::::::
spurious

:::::::::::
relationships,

:::
i.e.

:::
that

:::
the

::::
high

::::::::::
correlation

:::::::
between

::
the

::::::::
predictor

::::::::
spatially

:::::::
averaged

:::::
over

:::
the

::::::
optimal

::::
area

::::
and

:::
the

:::::::::
predictand

::::::
occurs

:::
by

::::::
chance.

::
If
:::::
areas

::
of

::::::::
different

::::::::::
geometrical
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:::::
shapes

::::
and

:::
area

:::::
sizes

::::
point

:::::::
towards

:::
the

:::::
same

:::
key

:::::::
regions,

:
it
::
is

:::
less

:::::
likely

::::
that

::::
these

:::::::
regions

::::::::
randomly

::::::
provide

::::
high

:::::::::::
correlations,

::::::::
especially

:::
for

::::::
diverse

::::
area

:::::
sizes.

::::::::
Secondly,

:
it
::
is
:::
our

::::
goal

::
to

:::::::
identify

:::
key

::::::
model

::::::::
dynamics

:::
for

:::
the

::::::::
emergent

::::::::
constraint

:::
and

::::::
model225

::::::::::::
inconsistencies

::::::
around

:::::
them.

:::
A

::
set

:::
of

:::::::
optimal

::::
areas

:::
of

:::::::
different

::::::
shapes

::::
and

::::::::::
geometrical

:::::
forms

::::::
allows

::
us

::
to
:::::::

inspect
::
in

:::::
more

::::
detail

::::::
where

:::
key

:::::::
regions

:::
for

:::
the

::::::
model

::::::::::
performance

:::
are

::::
and

::
if

:::
the

::::::::
simulated

::::::
results

:::
for

::::
each

:::
of

:::::
these

::::::
regions

:::
are

:::::::::
consistent

::::
with

::::
each

:::::
other.

:::::
Apart

::::
from

:::
the

::::
size

:::
and

:::::
shape

:::::::::
limitation,

:::
we

:::
are

::::
also

::::::::
interested

:::
in

:::::::
solutions

::::::
where

:::
the

::::::::::
inter-model

::::::
spread

::
in

:::
the

::::::::
predictor

:
is
:::::

high
::
as

:::
we

:::::
want

:::
our

:::::::::
regionally

::::::::
optimised

::::::::
emergent

:::::::::
constraint

::
to

::::
help

:::
us

::
to

::::::::
constrain

::::::
model

::::::
spread.

:::::::::
Therefore,

:::
we

:::::
only230

:::::::
consider

:::::::::
grid-point

:::::
within

::::
the

::::::
optimal

::::::
region

::::::
where

:::
the

:::::::::::
multi-model

:::::::
standard

::::::::
deviation

:::
of

:::
the

::::::::
predictor

::
is

:::::
larger

:::::
than

:::
the

::::::
average

:::::::::::
multi-model

:::::::
standard

::::::::
deviation

::
of

:::
the

::::::::
predictor

::
for

:::
the

::::::
whole

:::::
North

:::::::
Atlantic.

:

2.4 Genetic algorithm and experimental set-up
:::::::::::
optimisation

:::::::::
procedure

We utilize a genetic algorithm to conduct the regional optimization of the predictors
::::::::
described

::
in

:::::::
Section

:::
2.2. Genetic algo-

rithms are metaheuristics inspired by the process of natural selection that can be used to design flexible optimization algorithms.235

The algorithm goes back to Holland (1975), who created genetic algorithms drawing on the ideas from the field of biology.

Since then, genetic algorithms have been developed by a growing community. The algorithms are increasingly popular due to

their flexibility as they can be used in very general setting with non-differentiable or even discontinuous objective functions.

Genetic algorithms belong to the family of evolutionary algorithms and are inspired by Darwinian evolution (Sivanandam

and Deepa, 2007). They mimic natural evolution through mutation, reproduction and selection to find (close-to) optimal so-240

lutions for highly complex problems. Constitutive elements of genetic algorithms are a population formed by a number of

individuals (characterized by genes and equipped with phenotypical expressions and fitness), selection of parents and repro-

duction (creation of offspring), mutation and selection of surviving individuals. The original population is then replaced by all

or parts of the offspring. For a number of generations, the steps outlined above are repeated. In this way, the algorithm can ap-

proximate the (close-to) optimal solutions, determined by the fittest individuals. In
:::
our

::::
case,

:::::::::
individuals

::::::::::
correspond

::
to

:::::::
domains245

:::
and

:::
the

:::::
fittest

::::::::
individual

::
is
:::
the

:::::::
domain

:::
for

:::::
which

:::::::::::::::
spatially-averaged

::::::
values

::
of

:::
the

::::::::
predictor

::::
reach

:::
the

:::::::
highest

::::::::::
correlations

::::
with

::
the

::::::::::
predictand.

::
In

:
the following paragraphs, we describe the choices taken to perform the regional optimization of this study.

Before applying the genetic algorithm, we re-gridded both the winter pCOsea
2 -anomaly and the fractional Cant∗-storage

values from each model on a regular 1◦x1◦ grid. We further interpolated the fractional Cant∗-storage on depth-levels with a

distance of 100m. That way, it is possible to construct new regions and apply them to the output of the whole model ensemble.250

Furthermore, we pre-select the geometrical shape of the desired region, so that it is possible to characterize regions using only a

few continuous genes (i.e., parameters). For both (i) the winter pCOsea
2 -anomaly (2D-case) and (ii) the fractional Cant∗-storage

(3D-case), we selected two different shapes. For the 2D-case, these are rectanglesaligned with the longitudinal and latitudinal

axes, respectively and arbitrary ellipses. For the 3D-case, we chose rectangular cuboids aligned with the longitudinal, latitudinal

and depth axes, respectively and general ellipsoids . A rectangle is encoded by
::
As

:::
we

::::::::
regionally

::::::::
optimise

:::
the

::::::::
predictors

::
of

::::
two255

:::::::
emergent

::::::::::
constraints

:::
and

:::::
utilise

::::
two

:::::::::
pre-defined

:::::::::::
area/volume

::::::
shapes

:::
and

::::
three

::::::::::
pre-defined

::::::::::
area/volume

:::::
sizes

::::
(see

::::::
Section

::::
2.3)

::
for

:::::
each

::::::::
predictor,

:::
our

:::::::
genetic

::::::::
algorithm

::
is
:::::::

applied
:::
12

:::::
times

::
to

::
a

:::::::::
population

::
of

::::::::::
individuals.

::::
We

:::::
utilise

::
4
:::::::
different

:::::
types

:::
of
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:::::::::
individuals,

::::
that

::
is

:::::::::
rectangles,

:::::::
ellipses,

:::::::
cuboids

:::
and

::::::::
ellipsoids

::::
(see

:::::::
Section

::::
2.3).

:::::::
Genetic

:::::::::
algorithms

::::::
express

:::
an

::::::::
individual

::
as

::
a

::::::
specific

:::::::::::
combination

::
of

::::::
genes.

::::
Here,

:::
we

:::::::
express

:
a
::::::::
rectangle

::
as

:
four continuous genes, where the first two describe the south-

western point and the second two describe the north-eastern point of the rectangle in longitude-latitude coordinates (Fig. 2b).260

An ellipse is described by five genes (Fig. 2b), consisting of a shift vector (two genes) and a symmetric positive definite matrix

(encoded by three genes). The shift vector is the center of the ellipse and the eigenvectors of the symmetric positive definite

matrix are the principal axis of the ellipse. A cuboid is encoded by six genes. The first three genes describe the south-western

point at the shallowest ocean depth and the second three genes describe the north-eastern point at the deepest ocean depth

(Fig. 2b). Similar to the ellipse, an ellipsoid (Fig. 2b) is described by a shift vector (three genes) and a symmetric positive265

definite matrix (six genes). The shift vector is the center of the ellipsoid and the eigenvectors of the symmetric positive definite

matrix are the principal axis of the ellipsoid. Our set-up of shapes is motivated by two considerations: (i) the possibility to

capture regions of interest and (ii) to have a low dimensional search space allowing for a fast optimisation. However, other

options would have satisfied both criteria. Amongst them is the option to optimize a tube, so that, for example, the ship track

of an upcoming cruise can be optimised.270

For each of our applications of the genetic algorithm, we use a population of 1000 individuals evolving over 100 generations.

As initialization, a population of (i) 1000 rectangles or ellipses of varying area-sizes are placed randomly across the surface of

the North Atlantic ocean (2D-case) or of (ii) 1000 cuboids or ellipsoids of varying volume-sizes are placed randomly across the

water columns of the North Atlantic (3D-case). Each individual gets a fitness assigned through the so-called fitness function ,

which is to be maximisedover the course of 100 generations. For
::
In

::::
order

::
to
::::

find
:::
the

:::::
fittest

:::::::::
individual

::
or

:::
the

:::::::
optimal

:::::::
domain,275

:
a
::::::
fitness

:::::::
function

::
is

::::::::::
maximised.

::
In our study, the first part of the fitness function is the cross-correlation of two vectors. One

vector describes the future Cant∗-uptake of the North Atlantic (our predictand) and each entry of the vector corresponds to

one member out of our ensemble of climate models. The second vector describes our predictor, which is either the
:::::::
between

::
(i)

:::
the

:::::::::
simulated

:::::::::::::
predictor-values

:::
per

::::::
model

:
(contemporary winter pCOsea

2 -anomaly or the contemporary fractional Cant∗-

storagewithin )
::::::::
averaged

::::
over

:
the region specified by the considered individual

:::
and

:::
(ii)

:::
the

:::::::::
simulated

:::::::::
predictand

:::
per

::::::
model280

:::
(the

:::::
future

::::::::::::
Cant∗-uptake

::
of

:::
the

:::::
North

::::::::
Atlantic). The cross-correlation between first and second vector describes how tight the

relationship between predictor and predictand is and higher values corresponds to a higher fitness for an individual. We
::
As

::
we

:
additionally prescribed the approximate volume or area size that the optimal region should have. Our

:
,
:::
our fitness function

includes a penalization to ensure compliance with the
::::
area/volume-condition. If a

::
an

:::::
area/volume is not compliant with the

size condition, a negative value smaller than -1, which is decreasing with the
::::
area/volume-violation, is added. Here, we focus285

on areas and volumes of i) 10-20% , ii) 20-30% and iii) 30-40% of the total size of the North Atlantic surface area or basin

volume, respectively, leading in combination with rectangles, ellipses, cuboids and ellipsoids to 12

:::
For

::::
each

::
of

::::
our applications of the genetic algorithm. We note that the desired area can also be given as total area instead

of a percentage and could, for example, be the distance that the cruise can cover within a given duration. However, even when

choosing a total area instead of a percentage, a range of this total area has to be given as the model resolution does not allow290

to reach an exact area easily. Apart from the size limitation, we are only interested in solutions where the inter-model spread

in the predictor is high as we want our emergent constraint to help us to constrain model spread. Therefore, we only consider
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grid-point within the optimal region where the multi-model standard deviation of the predictor is larger than the average

multi-model standard deviation of the predictor for the whole North Atlantic .

:
,
::
we

:::
use

::
a

:::::::::
population

::
of

::::
1000

:::::::::
individuals

::::::::
evolving

::::
over

:::
100

::::::::::
generations.

:::
As

:::::::::::
initialization,

:
a
:::::::::
population

::
of

:::
(i)

::::
1000

:::::::::
rectangles295

::
or

::::::
ellipses

::
of
:::::::

varying
:::::::::
area-sizes

:::
are

:::::
placed

:::::::::
randomly

:::::
across

:::
the

::::::
surface

:::
of

:::
the

:::::
North

:::::::
Atlantic

:::::
ocean

:::::::::
(2D-case)

::
or

::
of

:::
(ii)

:::::
1000

::::::
cuboids

::
or

:::::::::
ellipsoids

::
of

::::::
varying

::::::::::::
volume-sizes

:::
are

:::::
placed

:::::::::
randomly

:::::
across

:::
the

:::::
water

:::::::
columns

:::
of

:::
the

:::::
North

:::::::
Atlantic

:::::::::
(3D-case).

:::::::::::
Subsequently,

::::
each

:::::::::
individual

::::
gets

::
a

:::::
fitness

::::::::
assigned

:::::
based

:::
on

:::
our

::::::::::::::
fitness-function. After our initialisation, we create a new

generation by applying three steps (see Fig. 2a): (1) We select a new population of 1000 individuals through a repeated

tournament selection. In the tournament selection process, 10 individuals are selected at random and the fittest of these is300

selected (Eiben and Smith, 2003). We note that the resulting population in general contains a number of identical individuals.

(2) We randomly chose 50% of the individuals of our new population (this equals a crossover probability of p= 0.5) as parents,

create two offspring for each pair of parents and use the offspring to replace their parents. This leads to a population of 500

selected individuals and 500 offspring. To create an offspring, we use a one point crossover with random position (see Fig. 2c),

i. e. within the sequence of genes of both parents, a crossover site is selected at random. If, for example, an individual is defined305

by 4 genes and the crossover site is between the first and the second gene, then the first gene of one offspring will be defined by

one parent, while the second to fourth gene is defined by the other parent (Sastry et al., 2005). (3) We mutate 20% of the revised

population (this equals a mutation probability of p= 0.2) and replace the corresponding individuals with their mutations. We

realise mutation using Gaussian mutation, where a vector of Gaussian noise is added to the vector of genes (Kramer, 2017). As

Gaussian noise we choose a mean of zero and a standard deviation of 0.05. After these three steps, we have a new generation310

consistent of selected copies, selected and mutated copies, offspring and mutated offspring. Subsequently, the fitness of each

individual of our new generation is evaluated. The assigned fitness is then utilised for creation of another new generation
::
as

:::::::
outlined

::
in

::::
steps

::::::
(1)-(3). This algorithmic sequence is illustrated in Fig. 2a. For the purpose of our study, we set the number of

iterations to be fixed to 100 and stop the algorithm afterwards. The fittest individual of all generations is then defined to be our

(close-to) optimal solution.315

3 Resultsand discussion

::
In

:::
this

::::::::
Section,

:::
we

::::
first

::::::::
describe

:::
the

::::::::
(close-to)

:::::::
optimal

:::::::::::::::
cross-correlations

::::::::
obtained

:::::::
through

::::::::
regional

:::::::::::
optimisation

::
of

::::
our

:::::::
emergent

::::::::::
constraints

::
as

::::
well

::
as

:::
the

::::::::
associated

:::::
speed

::
of

:::::::::::
convergence

::
of

:::
the

::::::
genetic

::::::::
algorithm

:::::::
(Section

:::::
3.1).

:::
For

::::
both

:::::::::
predictors,

::
we

:::::::::
separately

:::::::
illustrate

:::
the

:::::::
optimal

::::::
regions

:::
and

::::
their

::::::
related

::::::::
emergent

:::::::::
constraints

::::::::
(Sections

:::
3.2/

::::
3.3),

::::
their

:::::::::
plausibility

::::::::
(Sections

:::::
3.2.1/

:::::
3.3.1)

:::
and

::::
their

::::::::::
implications

:::
for

::::
both

:::::::
models

::::::::
dynamics

:::
and

:::::::::::
observational

::::::::
strategies

::::::::
(Sections

:::::
3.2.2/

::::::
3.3.2).

:
320

3.1 Towards an optimal solution in 100 iterations

Cross-correlations between the simulated values of the future North Atlantic Cant∗-uptake and values of both predictors within

the optimal regions identified by the genetic algorithm are significantly improved as compared to the original emergent con-

straints (see Fig. 3). In the 2D-case, the original cross-correlation of r=0.79 is improved to r=0.863, r=0.855 and r=0.848
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for the rectangle solutions with 10-20%, 20-30% and 30-40% of North Atlantic surface area, respectively and r=0.863,325

r=0.856 and r=0.852 for the ellipse solutions with corresponding area sizes. For the 3D-case, the already high original

cross-correlation of r=0.94 is still improved to r=0.972, r=0.966 and r=0.966 for the cuboid solutions with 10-20%, 20-

30% and 30-40% of North Atlantic volume size, respectively, and r=0.987, r=0.975 and r=0.968
::::::::
r=0.970 for the ellipsoid

solutions with corresponding volume sizes. We note that, in general, higher cross-correlations are achieved for smaller areas

or volumes due to more placement possibilities. While this is not surprising, this might lead to the desire to use shapes that330

are even smaller than our predefined volumes and area-sizes. For our application, however, we advice
:::::
advise

:
against using

shapes of very limited volume. This is based on the fact that we are searching for areas that provide a fingerprint of the original

emergent constraints for the North Atlantic future Cant∗-uptake, which are based on features that are associated with the large

scale ocean circulation. While the algorithm would be able to find high cross-correlations for shapes of smaller size, it would

be difficult to assign the desired outcome to those large-scale circulation features and to assign a dynamical interpretation to335

the so-obtained optimal regions.

For the rectangle solutions, the first iteration of the genetic algorithm reaches already cross-correlation of r=0.862, r=0.853

::::::::
r=0.863,

::::::::
r=0.854

:
and r=0.847 for area-sizes of 10-20%, 20-30% and 30-40%, respectively and only offers improvements

in the fourth decimal point afterwards (Fig. 3a). After four iterations, there is subsequently no improvement in the first 10 dec-

imal points. For the ellipse solutions, the first iteration yields cross-correlations of r=0.855
::::::::
r=0.857, r=0.849 and r=0.850340

::::::::
r=0.851 for area-sizes of 10-20%, 20-30% and 30-40% and only improvements in the third decimal point

::
or

::::::::::
subsequent

::::::
decimal

::::::
points are subsequently achieved. In contrast to the rectangle solutions, the genetic algorithm converges slower for the

ellipse solutions
::::
(Fig.

:::
3b)

:
and, for the area-size of 30-40%, no subsequent improvement in the first 10

::
16

:
decimal points is

only reached after the 90th
::::
66th iteration. In general, for the 2D-case, the fast speed of convergence can be traced back to the

limited area that the genetic algorithm operates in and the associated limited options for placement.345

The first iteration of the cuboid-application of the genetic algorithm reaches already cross-correlations of r=0.960, r=0.959

and
::::::::
r=0.962, r=0.964

::
and

:::::::::
r=0.962 for 10-20%, 20-30% and 30-40% of North Atlantic volume size (Fig. 3bc). Subse-

quently, only improvements in the third decimal place are achieved and after 10 iterations there is no improvement in the first

decimal points. Compared to the convergence of the rectangle solutions, the convergence of the cuboid-solutions is a bit slower

due to more placement options throughout the water column.350

In contrast to the cuboid solutions and all applications of the 2D-case, the smaller
::
all

:
ellipsoid solutions show a slightly

different convergence-behaviour
::::
(Fig.

:::
3d). Here, the cross-correlations are still significantly increasing at the end of our appli-

cation of the genetic algorithm. At the same time, the maximum cross-correlation of the smaller ellipsoids during our execution

of 100 iterations are 0.015 and 0.009 higher than those of the smaller cuboids. We assign both the slow speed of convergence as

well as the improved cross-correlations of the smaller ellipsoid to the higher degrees of freedom as well as to more placement355

options as the smaller-volume ellipsoids have the option to be tilted within the water column.
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3.2 Optimal regions for the winter pCOsea
2 -anomaly and their physical explanation

:::::::::
associated

::::
new

::::::::
emergent

:::::::::
constraints

The optimal regions found by the genetic algorithm for the winter pCOsea
2 -anomaly (2D-case) all have their southern boundary

at 28◦N or 29◦N, independent on predefined shape and size (Fig. 4). Their northern boundaries vary between 43◦N and 53◦N,360

with larger optimal areas reaching further north. Longitude-wise, all optimal areas are placed in the western part of the North

Atlantic. Here, their western and eastern boundaries vary dependent on the predefined size and shape of the optimal area. Yet,

the area between 73◦W and 30◦W and between 29◦N and 42◦N is enclosed by all optimal areas and is hence central for the

considered emergent constraint. This central area is very similar to the optimal rectangle and ellipse covering 10-20% of the

North Atlantic area size, which yield the highest cross-correlations when compared to the optimal rectangles and ellipses with365

larger surfaces, respectively (see Section 3.1). We note that
:
, for the optimal areas and their given size-requirements

:
, a placement

further south was not possible as only grid-points where the multi-model standard deviation of the predictor is larger than that

::
of the mean multi-model standard deviation of the predictor of the North Atlantic are eligible for our optimal regions (see

Section 2.4). Non-eligible points are illustrated with different shades of blue
::
It

:::
can

:::
be

::::::
readily

::::
seen

:
in Fig. 4b-d . It can be

readily seen that our requirements for eligible grid points excludes the lower latitudes of the North Atlantic from being chosen370

for placement of the optimal region. However, our eligibility criterion indicates that, for the lower latitudes, the multi-model

ensemble agrees relatively well on the seasonal forcing of

:::
We

:::::
utilise

:::
the

:::::::
optimal

::::::
regions

::
to
::::::::
spatially

::::::
average

:
the winter pCOsea

2 -anomaly , so that it is not necessary to constrain the

model ensemble here
::::
over

::::
each

::
of

:::::
them

::::::::::
individually

::::
and

::::::::
constrain

:::
our

:::::::::
predictand

::::
(Fig.

:::
5).

:::
For

::::::
details

:::
of

:::
the

::::::
method

::::
that

:::
we

:::::
utilise

::
to

::::::::
calculate

:::
the

:::::::::::
unconstrained

::::
and

:::::::::::::
observationally

:::::::::
constrained

::::::::
estimates

:::
of

:::
the

:::::
future

:::::
North

:::::::
Atlantic

::::::::::::
Cant∗-uptake,

:::
the375

:::::
reader

::
is

:::::::
referred

::
to

::::::
Section

::::
2.1.

:::
The

::::::::::::
unconstrained

:::::::
estimate

:::
of

:::
our

:::::
model

::::::::
ensemble

::::::
yields

:
a
:::::
mean

:::::
value

::
of

:::::::::
0.5±0.23

::::::
PgC/yr

::
for

:::
the

::::::
future

:::::
North

:::::::
Atlantic

::::::
Cant∗ ::::::

uptake,
:::::
while

:::
our

:::::::::::::
non-regionally

::::::::
optimised

::::::::
predictor

:::::
yields

::
a
:::::
mean

:::::
value

::
of

::::::::::
0.73±0.27

::::::
PgC/yr.

::::::
When

:::::::
applying

::::
our

:::::::::
regionally

::::::::
optimised

::::::::::
predictors,

:::
the

::::::::::::
observational

:::::::::
constraints

::::::
correct

::::
the

::::::::::::
unconstrained

:::::
mean

:::::
values

:::::::
towards

:::::
mean

:::::
values

:::::::
between

::::
0.72

:::::::
PgC/yr

:::
and

::::
0.79

::::::
PgC/yr

::::
(Fig.

::
5,
:::::
Table

::
1).

As noted in the introduction,
:::::::
outlined

::
in

::::::
Section

::
1,

:::
our

:::::::
regional

:::::::::::
optimization

::
of

::::::::
emergent

::::::::::
relationships

::::
has

:::
the

:::::::
two-fold

::::
goal380

::
to

::
(a)

:::::::
identify

::::
key

:::::
model

:::::::::
dynamics

:::
for

:::
the

::::::::
emergent

::::::::
constraint

::::
and

:::::
model

:::::::::::::
inconsistencies

::::::
around

:::::
them

::::
and

:::
(b)

::::::
provide

::::
key

::::
areas

::::::
where

:
a
::::::
narrow

::::::::::::
observational

::::::::::
uncertainty

::
is

::::::
crucial

:::
for

::::::::::
constraining

::::::
future

::::::::::
projections.

::::::::
However,

::::::
before

::::::::
following

:::
up

::::
with

:::
our

::::
goal,

:::
we

::::
need

:::
to

:::::
ensure

::::
that

:::
the

::::
high

::::::::::
correlations

:::::::
between

:::
our

:::::::::
regionally

::::::::
optimised

:::::::::
predictors

:::
and

:::
the

:::::::::
predictand

:::
do

:::
not

::::
come

::::
into

:::::
place

::::::::
randomly

:::
but

:::
that

:::::
there

::
is a physical explanation behind the emergent constraint is of high importance for

its plausibility (Williamson et al., 2021; Hall et al., 2019). Our predictor, the winter pCOsea
2 -anomaly, is a measure of seasonal385

features of pCOsea
2 , which are tightly related to our predictand (the future Cant∗-uptake), as the seasonal cycle of pCOsea

2

indicates through which processes Cant∗-uptake occurs in a given model (see Section 2.2 and Goris et al., 2018). Our
::::::
optimal

::::
areas

:::::
found

:::
as

:::
this

::
is
::::

key
:::
for

:::
the

::::::::::
plausibility

::
of

::::::::
emergent

::::::::::
constraints

::::::::::::::::::::::::::::::::::
(Williamson et al., 2021; Hall et al., 2019)

:
.
:::::::::
Therefore,

::
we

::::::
utilise

:::::::
Section

:::::
3.2.1

::
to

:::::::::
investigate

::::
the

::::::::::
plausibility

::
of

:::
the

:::::::
optimal

:::::
areas

::::::
found

::::::
before

:::::::::
examining

:::
our

::::::::
two-fold

::::
goal

:::
in
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::::::
Section

:::::
3.2.2.

:::
We

:::::
note

:::::::
however,

::::
that

:::
our

:::::::::::
investigation

:::
of

:::
the

::::::::::
plausibility

::
of

:::
the

:::::::
optimal

::::::
regions

::
is
:::::::

closely
::::::
related

::
to

::::::
model390

::::::::
dynamics

:::
and

:::::
hence

::
to

::::
part

::
of

:::
our

:::::
goal.

3.2.1
::::::::::
Plausibility

::
of

:::
the

:::::::
optimal

:::::
areas

:::
for

:::
the

::::::
winter

::::::::::::::::
pCOsea

2 -anomaly

::
As

:::
all

::
of

:::
our

:::
six

::::::
optimal

:::::
areas

:::::
cover

:::
the

::::
same

::::::
central

::::
area

:::::::
between

:::::
73◦W

::::
and

:::::
30◦W

:::
and

:::::::
between

:::::
29◦N

:::
and

::::::
42◦N,

::
we

::::::::
consider

:
it
::::
less

:::::
likely

::::
that

:::
the

::::
high

:::::::::::
correlations

:::::::
between

:::
the

::::::::
predictor

::::::::
spatially

::::::::
averaged

::::
over

:::
the

:::::::
optimal

:::::
areas

:::
and

::::
the

:::::::::
predictand

:::::
occurs

:::
by

::::::
chance.

:::::::::
Therefore,

:::
we

:::::::
proceed

::
to

:::::::::
investigate

:::
the

::::::::
physical

::::::::::
explanation

::
of

:::
the

::::::::
identified

:::::::
optimal

::::::::
domains.

::::
Here,

::::
our395

identified optimal regions for the predictor have the aim to point out key regions, where the simulated differences in the winter

pCOsea
2 -anomaly are especially well related to a model’s future North Atlantic Cant∗-uptake. Based on multi-model mean and

standard deviation of the contemporary winter pCOsea
2 -anomaly (Fig. 4), it is apparent that the model spread is increasing when

going further north and that the disagreement in the seasonal drivers of pCOsea
2 only appears in the mid-to-high latitude North

Atlantic. We note that the difference in contemporary seasonal cooling/warming between models is not as prominent as their400

contemporary difference in mixed layer depth and biological activity (Goris et al., 2018). We expect large scale circulation

features to be an important driver of these model differences
:::::
model

::::::::::
differences

::
in

:::
the

::::::
winter

:::::::::::::::
pCOsea

2 -anomaly as these are

directly related to nutrient supply,
::::

heat
::::::::
transport

:
and deep mixing

:::
and

:::::
hence

::::::::
determine

:::
the

:::::::::
simulated

:::::::
pCOsea

2 . Based on this

logic, the identified optimal regions seem reasonable as they all cover a major part of the Gulf Stream. The Gulf Stream is a key

part of the warm and upper branch of the Atlantic Meridional Overturning Circulation (AMOC), which transports waters from405

the low-latitude North Atlantic via the Gulf Stream, the North Atlantic Current (NAC) and the Irminger Current to the high

latitude North Atlantic, thereby releasing heat to the atmosphere (e.g. Rhein et al., 2011). Along this path, deep mixed layers

are formed via wind-driven velocity shears but also via heat-loss to the atmosphere, which becomes more prominent in higher

latitudes where it leads to deep convection (e.g. Rhein et al., 2011). The strength of the Gulf Stream and its extension is not

only an important driver of the amount of heat that is transported from low to high latitudes and the strength of deep convection410

in high latitudes but also for transporting high-nutrient thermocline waters from low to high latitudes (the so-called nutrient-

stream, see e.g. Williams et al., 2011) and hence for the strength of the winter pCOsea
2 -anomaly. In line with this, the

:::::
model

:::::
spread

::
is

:::::::::
increasing

::::::
further

::::
north

::::
and

:::
the highest multi-model standard deviation of the contemporary winter pCOsea

2 -anomaly

::::
(Fig.

:::
4b)

:
follows the path of the NAC, which is the immediate Gulf Stream extension.

In first instance, it seems surprising that not all optimal regions cover the path of this high standard-deviation, but that the415

smallest optimal regions are placed directly at the southwestern boundary of it, which coincides with the beginning of the

Gulf Stream. However, we note that high multi-model standard deviations might also indicate a slightly different placement of

currents between models and that the paths of Gulf Stream and NAC in the open ocean are influenced by decadal variations,

which might not be in phase within the model ensemble. The optimal regions cover those latitudes before and where the Gulf

Stream starts to separate from the coast and where the spatial path of the current is therefore less variable within models.420

Additionally, we note that such a placement seems reasonable as biological production becomes more dominant further north.

Here, different ecosystem model-parametrisations get a larger imprint on the simulated contemporary winter pCOsea
2 -anomaly,
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such that the cross-correlations between predictor and predictand are not only based on surface temperature, available nutrients

and mixed layer depth.

We use further calculations to support the argument that these
:::
our

::::::::::::::::::
plausibility-argument

::::
that

:::
our

:
optimal regions capture425

the influence of the upper branch of the AMOC, specifically the Gulf Stream, on the simulated contemporary winter pCOsea
2 -

anomaly and hence on our predictand, the future North Atlantic Cant∗-uptake. For this, we calculate the cross-correlation

between our predictand and the strength of the upper AMOC branch (see appendix
::::::::
Appendix B) at 30◦N, as this is a cen-

tral latitude in our identified optimal regions. As we consider this
:::
the

::::::
AMOC

:
volume transport only in terms of driving the

contemporary winter pCOsea
2 -anomaly, we expect the transport within the mixed layer depth to be key. Indeed, when calculat-430

ing cross-correlations between 10-year running averages of the accumulated northward volume transport between surface and

different depths at 30◦N and our predictand, we identify cross-correlations to be highest for the accumulated northward vol-

ume transport between surface and 500m
:::
500

::
m. The cross-correlations get worse for both shallower and deeper depths when

varying the lower boundary of the northward volume transport in depth-intervals of 100m
:::
100

::
m

:
(Fig. 6a). We note that cross-

correlations between 10-year running averages of our predictand and the northward volume transport between surface and435

500m
:::
500

::
m

::
at

:::::
30◦N

:
stay between r=0.845 and r=0.921 for all considered time-periods (Fig. 6

:
a), with a cross-correlation

of r=0.883 for the 1990s. This value is slightly above the cross-correlations between the modelled contemporary winter

pCOsea
2 -anomaly in our optimal regions and the predictand.

In order to quantify that these high cross-correlations between our predictor and the accumulated northward volume transport

between surface and 500m
:::
500

::
m

:
are a specific feature of our identified optimal regions, i.e. the Gulf Stream region, we440

further vary the latitude of the northward volume transport in our calculations in latitude-intervals of 5◦ (Fig. 6b). We find

that cross-correlations are highest when utilising 10-year running averages of the northward volume transport between surface

and 500m
:::
500

::
m

:
at 25◦N and 30◦N with cross-correlations getting worse for latitudes further north and south. Specifically

between 30◦N and 35◦N, the cross-correlations are decreasing rapidly. For most of the considered decades, cross-correlations

are slightly higher at 25◦N than at 30◦N. However, this latitudinal band contains no eligible grid-points in the Gulf Stream445

region, so that the genetic algorithm could not identify it to be part of an optimal region. We conclude that it is indeed in

the Gulf Stream region where cross-correlations between our predictor and the predictand are exceptionally high. We hence

deem the identified optimal regions for the contemporary winter pCOsea
2 -anomaly to be plausible and find these regions to be

characteristic of the northward volume transport of a model, governing its surface temperature distribution, available nutrients

and mixed layer depths not only at the specified latitudes of the optimal regions, but along the path of the Gulf Stream, NAC450

and Irminger currents from low-to-high latitudes.
:::
This

::::::::
confirms

:::
the

:::::::::
plausibility

:::
of

:::
our

:::::::
optimal

::::::
regions

:::
for

:::
the

::::::::::::
contemporary

:::::
winter

:::::::::::::::
pCOsea

2 -anomaly.

We would like to additionally denote that cross-correlations between our predictand and 10-year running averages of the

maximum northward volume transport at our central latitude of 30◦N stay between r=0.652 and r=0.870 for all considered

time-periods. A commonly used metric in modelling studies, i. e., the maximum northward volume transport at 40◦N yields455

cross-correlations with the future North Atlantic Cant∗-uptake between r=0.575 and r=0.790 for all considered time-periods.

Hence, when inferring from maximum AMOC-strengths to the North Atlantic carbon sink, the relationship might not be as
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strong as commonly assumed
:
in
:::::::::

modelling
:::::::

studies. We hence propose to instead focus on the northward volume transport

within the mixed layer at latitudes between 25◦N and 30◦N.

3.2.2
:::::::::::
Implications

::
of

:::
the

:::::::
optimal

:::::
areas

::
of

:::
the

::::::
winter

::::::::::::::::
pCOsea

2 -anomaly460

::::
After

::::::
having

:::::::
verified

:::
the

::::::::::
plausibility

::
of

:::
the

:::::::
optimal

::::
areas

:::
of

:::
the

:::::
winter

:::::::::::::::
pCOsea

2 -anomaly,
:::
we

::::::
follow

:::
up

::
on

:::
the

::::::::
two-fold

::::
goal

::
of

:::
our

:::::::
regional

::::::::::
optimization

:::
of

::::::::
emergent

:::::::::::
relationships.

:::
Our

:::::::
optimal

:::::
areas

::::::
directly

:::::
fulfill

::::
one

:::
part

::
of

:::
our

::::
goal

:::
by

::::::::
indicating

::::
key

::::
areas

:::::
where

::
a
::::::
narrow

:::::::::::
observational

:::::::::
uncertainty

::
is

::::::
crucial

:::
for

::::::::::
constraining

:::::
future

::::::::::
projections.

::::
With

:::::::
regards

::
to

:::
our

::::::
second

::::
goal

::
of

:::::::::
identifying

:::
key

:::::
model

:::::::::
dynamics

::
for

:::
the

::::::::
emergent

:::::::::
constraint,

:::
our

::::::::::::::::
plausibility-analysis

::::::::
identified

:::
the

:::::::::
northward

::::::
volume

::::::::
transport

::
of

:
a
::::::
model

::
to

:::
be

:::
the

::::
key

:::::
driver

::
of

:::
the

:::::::::
emergent

::::::::
constraint

::::::::
between

:::
the

::::::
winter

::::::::::::::
pCOsea

2 -anomaly
::::
and

:::::
future

::::::
North

:::::::
Atlantic465

:::::::::::
Cant∗-uptake,

:::
via

:::::::::
governing

:::
its

:::::::::::
distributions

::
of

:::::::::::
temperature,

::::::::
available

::::::::
nutrients

:::
and

::::::
mixed

:::::
layer

::::::
depths

:::::
from

::::::::::
low-to-high

:::::::
latitudes.

::::::
Based

::
on

::::
this,

:::
we

:::::::
examine

:::
the

::::::::
emergent

:::::::::
constraints

::
of

:::
our

:::::::::
regionally

::::::::
optimised

::::::
winter

::::::::::::::
pCOsea

2 -anomaly
:::::
(Fig.

::
5)

:::
for

:::::
model

::::::::::::::
inconsistencies

::::::
around

::::
these

::::
key

:::::
model

:::::::::
dynamics.

:::
We

:::
find

::::
that

:::
all

::::::
newly

:::::::
obtained

::::::::::
constrained

::::::
values

:::
for

:::
the

::::::
future

:::::
North

:::::::
Atlantic

::::::
Cant∗::::::

uptake
:::
are

:::::::::
consistent

::::
with

:::::
each

:::::
other,

:::
i.e.

:::
the

:::::::::
differences

::
in

:::
the

:::::
mean

::::::
values

:::
are

:::::
small

:::
and

:::
the

:::::::::::
uncertainties

::::::
around

:::
the

:::::
mean

::::::
values

:::::
ensure

::::
that

:::
the

::::::::
solutions470

::
do

:::
not

:::::::::
contradict

::::
each

:::::
other

::::
(Fig.

::
5,
:::::

Table
:::

1).
::::::::::::
Nevertheless,

:::
the

::::::::::
constrained

:::::
mean

:::::
values

:::
of

:::
the

:::::
future

:::::
North

:::::::
Atlantic

::::::
Cant∗

:::::
uptake

::::::
based

::
on

::::
the

:::::::
smallest

:::::::
optimal

::::::
ellipse

::
or

::::::::
rectangle

:::
are

:::::::::::
consistently

::::::
smaller

:::::
than

:::::
those

:::::
based

:::
on

:::
the

::::::
largest

:::::::
optimal

:::::
ellipse

::
or

::::::::
rectangle

::::
(Fig.

:::
5),

:::::
which

:::::
reach

::::::
further

:::::
north

::::
(Fig.

:::::
4c,d).

::::::::
Similarly,

:::::
areas

:::::::::
positioned

:::::
further

:::::
south

::::
(Fig.

:::::
5a,c)

::::::::
generally

::::
have

::::::
models

::::
with

:::::
lower

::::::
future

:::::
North

:::::::
Atlantic

:::::
Cant∗::::::

uptake
::::::
closer

::
to

::::
their

:::::
mean

:::::::::::
observational

:::::
value

::
of

:::
the

:::::::::::::::
pCOsea

2 -anomaly

:::
than

:::::
those

:::::::::
positioned

:::::::
further

::::
north

:::::
(Fig.

:::::
5b,d),

:::::
equal

:::
to

:::
the

:::::::::::
observational

:::::::::
constraint

::::::
shifting

:::::::
further

::::
right

::::::
within

:::
the

::::::
model475

::::::::
ensemble

:::::
(from

:::
Fig.

::::
5a,c

::
to
::::
Fig.

:::::
5b,d).

::::
The

:::::::::::
observational

:::::
mean

:::::
value

::
of

:::
the

::::::
winter

::::::::::::::
pCOsea

2 -anomaly
::::::::
increases

:::
by

::::
5.85

:::::
µatm

::::
(7.18

::::::
µatm)

:::::::
between

:::
the

::::::
smaller

::::
and

:::
the

::::::
largest

::::::::
rectangles

:::::::::
(ellipses),

:::::
while

:::
the

:::::::
average

::::
value

:::
of

:::
the

:::::
winter

:::::::::::::::
pCOsea

2 -anomaly

::
of

:::
the

::::
four

::::::
models

::::
that

:::
are

::::::
within

:::::::::::
observational

::::::::::
uncertainty

:::
for

::
all

:::::::
optimal

:::::
areas

::::
only

::::::::
increased

:::
by

::::
1.89

:::::
µatm

:::::
(3.99

::::::
µatm).

:::
The

:::::
seven

:::::::::
remaining

::::::
models

:::::
show

:::
an

::::
even

:::::::
smaller

:::::::
increase

::
of

::::
0.01

:::::
µatm

::::::::
(decrease

:::
of

::::
0.73

::::::
µatm).

::::
This

:::::
could

:::::::
indicate

::::
that

::
the

::::::::::
south-north

::::::::
gradient

::
of

:::
the

::::::
winter

:::::::::::::::
pCOsea

2 -anomaly
::
is

:::
not

:::::
steep

::::::
enough

:::
in

:::
the

::::::
model

::::::::
ensemble,

::::
i.e.

:::
that

::::
the

::::::::
modelled480

:::::::::::::::::::
northwards-propagation

:::
of

::::::
related

:::::::::
properties

::
is
::::

too
:::::
weak

::::
(this

::::::::::
relationship

:::
is

:::::::::
visualised

:::
for

:::
the

::::::
winter

:::::::::::::::
pCOsea

2 -anomaly

:::::::
gradient

:::::::
between

::
the

::::::::::::
southernmost

:::
and

:::::::::::
northernmost

:::::::
latitudes

::
of

:::
the

:::::::
smallest

::::::::
rectangle

::
in

::::::::::::
supplementary

:::
Fig.

::::
S2).

::::::::
However,

:::
the

::::::::::
uncertainties

::::::
around

:::
the

:::::::::::
observational

::::::::
estimates

::
of

:::
the

::::::
winter

::::::::::::::
pCOsea

2 -anomaly
:::
are

::::
large

:::
and

:::
do

:::
not

:::::
allow

::
us

::
to

::
be

::::::
certain

:::::
about

::
the

::::::::
observed

::::::::::
south-north

:::::::
gradient

:::
and

:::::
hence

:::::::
potential

::::::::::::
discrepancies

::
in

::
the

::::::::
modelled

::::::::::
south-north

:::::::
gradient.

:::
We

::::
use

:::::::::::
observational

:::::::
estimates

:::
of

:::
the

:::::
upper

::::::
(0-500

:::
m)

::::::
North

:::::::
Atlantic

:::::::::
northward

:::::::
volume

::::::::
transport

::
to

::::::
further

:::::::::
investigate

::
a
:::::::::
potentially

::::
too

:::::
weak485

::::::::
northward

::::::::::
propagation

::::::::::
(confirmed

::
to

::
be

::
a
::::::::
plausible

:::::::
predictor

:::
in

::::::
Section

::::::
3.2.1),

:::
due

:::
to

::::::
limited

:::::::::::
observational

::::::::::
availability

::::
only

:::::::::
considered

::
at

::::::
26.5◦N

::::
and

:::
for

:::
the

:::::
time

:::::
period

::::::::::
2005-2014

::::
(see

::::::::
Appendix

::::
A).

:::
The

::::::::
transport

::::::
values

:::::
show

::::
that

:::
the

:::::::::
northward

::::::::::
propagation

::
of

:::
the

:::::
seven

::::::
models

::::
with

:::
the

::::::
lowest

:::::
future

:::::
Cant∗::::::

uptake
::
is
:::::::
notably

:::
too

:::::
weak,

:::
but

::::
that

:::
the

:::::
upper

:::::
ocean

:::::::::
northward

:::::::
transport

::
of
::::

the
::::
four

::::::
models

::::
with

::::
the

::::::
highest

::::::
future

:::::
Cant∗::::::

uptake
::
is

::::::
within

:::::::::::
observational

:::::::::::
uncertainties

::::
(see

:::::::::::::
supplementary

:::
Fig.

::::
S1).

::::
Yet,

::
the

::::::
model

::::::::
ensemble

:::::
shows

:::::::
diverse

::::::
changes

:::
of

:::
this

::::::::
transport

:::::::
between

:::::
26◦N

:::
and

:::
the

:::::::
latitudes

::
of

:::
the

:::::::
optimal

:::::
areas.490

::::
Here,

::::
the

:::::::
transport

:::
of

:::
the

::::
four

::::::
models

::::
with

::::
the

::::::
highest

:::::
future

::::::
Cant∗::::::

uptake
:::::
shows

:::
an

:::::::
average

:::::::
increase

::
of

:::::
1.86

::
Sv

::::::::
between
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::::
26◦N

::::
and

:::::
30◦N,

::::
and

:::
we

:::
find

:::
an

::::::
average

:::::::
increase

:::
of

::::
0.65

::
Sv

:::
for

:::
the

:::::::::
remaining

::
7

::::::
models.

:::::::
Without

:::
an

::::::::
additional

::::::::::::
observational

:::::::
estimate

::
at

::::
30◦N

:::
(or

:::::::
another

::::::
latitude

::
of

:::
the

:::::::
optimal

::::::
areas),

::
we

::::::
cannot

:::::::
confirm

::
or

::::
deny

::
if
:::
the

:::::::::
northward

::::::::::
propagation

::
of

:::
the

::::
four

:::
best

::::::
models

::
is
::::::
within

:::::::::::
observational

::::::
bounds

:::
for

:::
our

:::::::
optimal

:::::::
regions.

3.3 Optimal regions for the fractional Cant∗-storage and their physical explanation
:::::::::
associated

::::
new

::::::::
emergent495

:::::::::
constraints

In the case of cuboids-solutions, all optimal areas identified by the genetic algorithm for the contemporary fractional North

Atlantic Cant∗-storage (3D-case) are placed in the western part of the North Atlantic (Fig. 7c) with a common western boundary

at 96◦W and southern boundaries at 19◦N (smallest cuboid) or 18◦N (larger cuboids). Their northern and eastern boundaries

vary between 34◦N-50◦N and
:
N
::::
and

:::::
50◦N

::
as

::::
well

::
as

:
61◦W-31

::
W

::::
and

::
31◦W, respectively, with larger cuboids reaching both500

further north and east. With the given size-requirements and the fact that only grid-points where the multi-model standard

deviation of the predictor is larger than the mean standard deviation of the North Atlantic are eligible for our optimal regions

(see Section2.4
:::
2.3), a placement of the optimal cuboids further south is unlikely. We note that the eligibility of grid-points is

considered per depth-layer, such that the illustrated depth-integrated values of the multi-model standard deviation (Fig. 7b) only

give a first indication of eligible points
::::::::::
(non-eligible

::::::
points

:::
are

::::::::
visualised

:::
per

:::::
depth

:::::
layer

::
in

::::::::::::
supplementary

:::::
Figs.

::
S5

::::
and

:::
S6).505

The genetic algorithm identified the optimal depth-ranges for the cuboids to be 700-4700m
::::::::
700 - 4700

::
m
:
for the smallest cuboid

as well as 800-4900m
:::::::::
800 - 4900

::
m

:
for the larger cuboids. Hence

:::::
Apart

::::
from

::::
the

:::::
depth

:::::
range

::::
from

::::::::
700 - 800

::
m, the optimal

cuboids of larger volumes are enclosing the optimal cuboids of smaller volumes, such that the smallest cuboid is enclosed by all

cuboids.
:
. As the cross-correlations between the simulated future North Atlantic Cant∗-uptake and the fractional Cant∗-storage

within the optimal cuboids is also highest for the smallest cuboid (see Section 3.1), we consider its enclosed volume to be510

central for our emergent constraint.

For the ellipsoids, the optimal depth-ranges identified by the genetic algorithm are 0-4700m
:::::::
0 - 4800

::
m

:
for the smallest,

0-5000m
:::::::
0 - 5000

::
m

:
for the medium-sized and 500-5000m for the largest ellipsoid. The surface positions of the vertical

principal axis of the smallest and the medium-sized ellipsoids are in the eastern North Atlantic around 25◦W/ 40◦N and they

tilt in south-west direction with depth until being positioned in the western North Atlantic at around 75◦W/ 25◦N for their515

deepest points (Fig. 7d-e). While
::::::::
Contrarily,

:
the vertical principal axes of the largest ellipsoid also tilts in direction south-west

with depth ,
::::::::
north-east

::::
with

:::::
depth

:::
and

:
its position is already in the western North Atlantic for its shallowest point (Fig. 7f).

Our predictor,
::
We

::::::
utilise

:::
the

::::::
optimal

::::::
regions

::
to
::::::::
spatially

::::::
average

:::
the

::::::::
fractional

::::::::::::
Cant∗-storage

::::
over

::::
each

::
of

:::::
them

::::::::::
individually

:::
and

::::::::
constrain

:::
our

:::::::::
predictand

::::
(Fig.

:::
8).

::::::
Details

:::
of

:::
the

::::::
method

::::
that

::
we

::::::
utilise

::
to

::::::::
calculate

:::
the

:::::::::::
unconstrained

::::
and

:::::::::::::
observationally

:::::::::
constrained

::::::::
estimates

:::
of

:::
the

:::::
future

:::::
North

:::::::
Atlantic

::::::
Cant∗::::::

uptake
:::
can

:::
be

:::::
found

::
in

:::::::
Section

::::
2.1.

:::
The

::::::::::::
unconstrained

:::::::
estimate

:::
of520

:::
our

:::::
model

::::::::
ensemble

::::::
yields

:::
0.5

::
±

::::
0.23

::::::
PgC/yr

:::
for

:::
the

:::::
future

:::::
North

:::::::
Atlantic

::::::
Cant∗ ::::::

uptake,
:::::
while

:::
our

::::::::::::
non-regionally

:::::::::
optimised

:::::::
predictor

:::::
yields

::::
0.64

::
±

::::
0.26

:::::::
PgC/yr.

:::::
When

:::::::
applying

:::
our

:::::::::
regionally

::::::::
optimised

:::::::::
predictors,

:::
the

:::::::::::
unconstrained

:::::::
estimate

::
is

::::::::
corrected

::::::
towards

:::::
mean

::::::
values

:::::::
between

::::
0.55

::::::
PgC/yr

:::
and

::::
0.79

:::::::
PgC/yr

::::
(Fig.

::
8,

:::::
Table

::
1).

:

:::::
Before

:::
we

::::::
follow

:::
up

:::
on

:::
our

:::
two

:::::
goal

::::::::
associated

:::::
with

:::
the

:::::::
regional

:::::::::::
optimization

::
of

:::
this

::::::::
emergent

:::::::::::
relationship,

:::
we

:::::
want

::
to

:::::
ensure

::::
that

::::
there

::
is
::
a

:::::::
physical

::::::::::
explanation

::::::
behind

:::
the

::::::
optimal

:::::
areas

::::::
found.

:::::::::
Therefore,

::
we

::::::
follow

:::
the

:::::
same

::::::::
approach

::
as

:::
for

:::
the525
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:::::::
2D-case

:::
and

:::::::::
investigate

:::
the

::::::::::
plausibility

::
of

:::
the

:::::::
optimal

:::::
areas

:::::
found

::::
first

:::::::
(Section

::::::
3.3.1)

:::
and

::::
only

:::::::::::
subsequently

::::::
report

::
on

::::
our

:::::::
two-fold

::::
goal

:::::::
(Section

::::::
3.3.2).

::::::::
However,

:::::
there

::
is

::
a

::::
close

:::::::
relation

:::::::
between

::::
our

:::::::::::
investigation

::
of

:::
the

::::::::::
plausibility

::
of

:::
the

:::::::
optimal

::::::
regions

:::
and

:::
our

::::
goal

:::
of

:::::::::
identifying

:::
key

::::::
model

::::::::
dynamics

:::
for

:::
the

:::::::
emergent

:::::::::
constraint.

:

3.3.1
::::::::::
Plausibility

::
of

:::
the

:::::::
optimal

:::::
areas

:::
for

:::
the

:::::::::
fractional

:::::::::::::
Cant∗-storage

::
As

:::
all

::
of

::::
our

::::
three

:::::::
optimal

:::::::
cuboids

:::::
cover

:::
the

:::::
same

::::::
central

::::
area

:::::::
between

::::::
96◦W

:::
and

::::::
61◦W,

:::::
19◦N

::::
and

:::::
34◦N

:::
and

::::
800

::
m

::::
and530

::::
4700

:::
m,

:
it
:::::::
appears

::
to

::
be

::::
less

:::::
likely

:::
that

:::
the

::::
high

::::::::::
correlation

:::::::
between

:::
the

:::::::
predictor

::::::::
spatially

:::::::
averaged

::::
over

:::
the

:::::::
optimal

:::::::
cuboids

:::
and

:::
the

:::::::::
predictand

::::::
occurs

:::
by

::::::
chance.

:::::::::
Similarly,

::
all

:::::::
optimal

:::::::::
ellipsoids

::::::
appear

::
to

:::::
cover

:::
the

::::::::
relatively

::::
slow

::::
and

:::::
broad

:::::::
interior

:::::::
pathway

::::
west

::
of

:::
the

:::::
North

:::::::
Atlantic

:::
for

:::::
ocean

::::::
depths

:::::
below

::::
1000

:::
m,

:::
yet

:::
the

::::::::
similarity

::
of

:::
the

::::::
optimal

:::::::::
ellipsoids

:
is
:::::
more

:::::::
difficult

::
to

::::::::
establish.

:::
To

:::::::
confirm

:::
the

:::::::::
plausibility

:::
of

:::
our

:::::::
optimal

:::::
areas,

:::
we

::::::::::::
subsequently

:::::::::
investigate

:::
the

:::::::
physical

::::::::::
explanation

::::
for

:::
the

::::::::
regionally

::::::::
optimised

::::::::
emergent

:::::::::
constraint.

:
535

:::
Our

::::::::
identified

:::::::
optimal

:::::::
regions

::
for

::::
the

:::::::
predictor

:::::
have

:::
the

:::
aim

:::
to

::::
point

::::
out

:::
key

:::::::
regions,

::::::
where

:::
the

::::::::
simulated

::::::::::
differences

::
in

::
the

:::::::::
fractional

:::::
North

:::::::
Atlantic

::::::::::::
Cant∗-storage

:::
are

:::::::::
especially

::::
well

::::::
related

::
to

::
a
:::::::
model’s

:::::
future

:::::
North

::::::::
Atlantic

:::::::::::
Cant∗-uptake.

::::
We

:::::
expect

:::::
large

:::::
scale

:::::::::
circulation

:::::::
features

::
to

:::
be

::
an

:::::::::
important

:::::
driver

:::
of

:::::
these

:::::
model

::::::::::
differences

::
as

:
the contemporary fractional

North Atlantic Cant∗-storage is a measure for the efficiency of carbon sequestration (see Goris et al., 2018)
:::::::::::::::
(Goris et al., 2018),

which reflects not only the strength of high latitude deep convection and sinking organic particles, but also of southward volume540

transport of Cant∗ in deeper ocean depths. This feature is tightly related to our predictand, the future North Atlantic Cant∗-

uptake, as these
::
the

:
pathways of carbon sequestration ultimately determine how much Cant∗-storage is efficiently removed

from the high latitude North Atlantic ocean surface and hence how much Cant∗ can subsequently be taken up across the air-sea

interface. Here, a more efficient carbon sequestration, i. e. less storage of Cant∗ in shallower depths and more storage in the

deeper ocean leads to the potential for more Cant∗ uptake in a high CO2 future.545

As the ellipsoids can be tilted within the water volume, the associated optimal regions have the option to follow water

masses more closely. Their optimal solutions allow us to visually quantify if the reasoning of the predictor being a measure

of pathways of carbon sequestration (see Goris et al., 2018)
::::::::::::::::
(Goris et al., 2018) holds. While the placements of the optimal

ellipsoids in shallower ocean layers are still influenced by mixed layer dynamics and the pathways of carbon sequestration

are difficult to identify, the optimal ellipsoids are placed in central areas of the simulated fractional Cant∗-storage pathways550

for deeper layers. We note that the spatial gradients of the fractional Cant∗-storage multi-model mean (displayed for different

depth in supplementary Figs. S01 and S02
::
S3

::::
and

:::
S4) are consistent with the theory that the deeper and southward branch of

the North Atlantic volume transport can be divided into (i) a fast and narrow boundary pathway and (ii) a relatively slow and

broad interior pathway west of the North Atlantic ridge (Gary et al., 2011, and references therein). However, the multi-model

standard deviation of the fractional Cant∗-storage as displayed in Fig. 7b (and additionally displayed for different depths in555

supplementary Figs. S03 and S04
::
S5

:::
and

:::
S6) indicates that the models do not agree on the strength of this southward transport,

neither for its slow nor for its fast component. For ocean depths below 1000m
::::
1000

::
m, the optimal ellipsoids consistently point

towards the areas of the relatively slow and broad interior pathway west of the North Atlantic ridge with both high fractional

Cant∗-storage multi-model mean values and standard deviations. We hence deem
:::::::
consider

:
the optimal ellipsoids to be in
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accordance with the previous reasoning of Goris et al. (2018),
::::::
though

:::
we

::::
note

::::
that

:
it
::::
was

::::::
difficult

:::
to

::::
relate

:::
the

::::::::::::::
ellipsoid-shapes560

::
to

:::::::
physical

:::::::
meaning.

The cuboid-solutions are implemented in a way that prevents them from being tilted within the water volume and they hence

can not follow the Cant∗ sequestration pathway as closely as the ellipsoid solutions. We note, however, that all
:::
All

:
optimal

cuboids seem to point roughly towards the southernmost points that the relatively slow and broad interior southward transport

of Cant∗ reaches to, though the narrow and fast southward transport of Cant∗ reaches further south (both are indicated through565

the horizontal gradient in the fractional Cant∗-storage multi-model mean as illustrated in Fig. 7b and supplementary Figs. S01

and S02
::
S3

:::
and

:::
S4). This placement seems to support our argument that the optimal cuboids-solutions capture the influence of

the transport pathways of the carbon sequestration.

As previously done in the 2D-case, we use further calculations to support our argument with respect to the optimal cuboids. In

detail, we calculate cross-correlations between our predictand and the streamfunction volume transport at 26◦N (see appendix570

::::::::
Appendix

:
B), as this is the latitudinal mid-point of the smallest cuboid and hence a central latitude in

::
of

:
our identified

optimal cuboids. To validate the depth-boundaries identified by the smallest and central cuboid, we set one boundary of

the volume transport to be one of the identified depth-boundaries of the cuboid, while we vary the other depth-boundary

(Fig. 9a-b
::
a,b). Cross-correlations between 10-year running averages of the accumulated volume transport in different depth-

ranges at 26◦N and our predictand show that cross-correlations are highest for the accumulated southward volume transport575

between 900-4700m
:::::::::
900 - 4700

::
m

:
when varying the upper depth boundary (Fig. 9a) and between 700-5300m

:::::::::
700 - 5300

::
m

(or even deeper) when varying the lower depth boundary (Fig. 9b). While this seems to indicate that the depth-boundaries of

the cuboids are not optimal, we note that the cross-correlations obtained for upper depth boundaries of 900m and 700m
:::
900

::
m

:::
and

::::
700

::
m are relatively similar and a strong decline in cross-correlations only appears for an upper depth boundary above

500m
:::
500

::
m. Moreover, the Cant∗ southward transport is strongly influenced by the amount of Cant∗ that is available for trans-580

port in a specific depth-layer and while the lower depth boundary of 5300m
::::
5300

::
m reaches higher cross-correlations between

10-year running averages of the southward volume transport and the predictand, the amount of Cant∗ that can be transported

in these deep depth layers is negligible. Additionally, there are no eligible grid-points in these very deep layers.

When considering the streamfunction volume transport within the depth-boundaries given by the smallest optimal cuboid

and varying its latitudes (Fig. 9c), we find that the 10-year running averages of volume transport at the identified mid-latitude585

of the smallest cuboid offers significantly higher cross-correlations with our predictand than the volume transport further north.

This points towards the optimal cuboids capturing an important latitude of the southward interior Cant∗-transport. However,

the volume transport south of the cuboid’s placements offers slightly higher cross-correlations with the predictand. Yet, in

these latitudes south of our cuboids, the amount of deep Cant∗-storage available for southward transport is small and there are

moreover very few eligible grid-points in these latitudes. Under the conditions given to the genetic algorithm, the identified590

depth ranges and latitudes hence seem plausible. Cross-correlations between our predictand and 10-year running averages of

the southward volume transport at the identified depth-ranges and latitudinal mid-point of the smallest cuboid are between

r=0.690 and r=0.859 for all time-periods and r=0.771 for the analysed time-period 1997-2007. While the
::::
The identified

cross-correlations indicate a strong link between southward volume transport and our predictand, we notethat our original
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predictor,
:::
and

::::::
hence

:::::
verify

:::
its

::::::::::
plausibility.

:::
We

:::::
note,

:::::::
however,

::::
that

:
the fractional Cant∗-storage offers an better relationship595

with our predictand
:::
than

:::
the

:::::::::
southward

:::::::
volume

:::::::
transport. This comes as no surprise as the depth-distribution of the Cant∗-

storage plays a big role in its southward transport.

3.4 Newly identified emerging relationships and their implications

Based on the high cross-correlations between our indicators in the identified optimal areas and the future North Atlantic Cant∗

uptake and due to the dynamical plausibility of these relationships, we identify the values of our indicators in the optimal areas600

as new and additional predictors. Furthermore, we found the upper (0-500m) North Atlantic northward volume transport at

30◦N (2D-case) and the deep (700-4700m) North Atlantic southward volume transport at 26◦N (3D-case) to be powerful and

plausible predictors. Now, we use observational estimates of our new predictors to constrain our predictand. This procedure is

based on the assumption that a correct simulation of our new predictors is fundamental for being able to correctly simulate the

future North Atlantic Cant∗ uptake and can be used as a necessary condition for its estimation. For details of the method that605

we utilise to calculate the unconstrained and observationally constrained estimates of the future North Atlantic C

3.3.2
:::::::::::
Implications

:::::
based

:::
on

:::
the

:::::::
optimal

:::::
areas

::
of

:::
the

:::::::::
fractional

:::::::::::::
Cant∗-storage

::::
After

::::::
having

:::::::::
examined

:::
and

:::::::
verified

:::
the

:::::::::
plausibility

::
of

::::
our

::::::
optimal

:::::
areas

:::
for

:::
the

::::::::
fractional

::
Cant∗uptake, the reader is referred

to Bourgeois et al. (2022). We note that, for the volume transport, the spatially closest observations available are those from

the RAPID array (see Appendix A) at 26.5◦N, starting from April 2004. In order to be able to use these observations as a610

constraint, we consider both volume transport related predictors at 26◦N and for the time period 2005-2014. Both our dynamical

explanation of the emergent relationship and
:::::::
-storage,

:::
we

::::
now

:::::::
consider

:::
the

:::::::::
associated

::::::::::
implications

:::
for

:::
both

:::
the

::::::
model

::::::::
dynamics

:::
and

:::::::::::
observational

::::::::::
uncertainty

::
in

::::
line

::::
with

:::
our

::::::::
two-fold

::::
goal.

:::::::
Again,

:::
the

::::::
optimal

:::::
areas

:::::
point

::
us

:::::::
directly

:::::::
towards

:::
the

:::::::
regions

:::::
where

:
a
::::::::
reduction

:::
of

:::
the

:::::::::::
observational

:::::::::
uncertainty

::
is
:::::
most

:::::
useful

::
to

:::::::
increase

:::
our

::::::::::
knowledge

::
on

:::
the

:::::
future

:::::::::::
Cant-uptake.

::::
Yet,

::
it

:::::
might

::
be

:::::::::::
operationally

:::::
more

::::::::::
challenging

::
to

:::::::::
encompass

:::
the

::::::
optimal

:::::::::
ellipsoids

:::::
during

::
a

:::::
cruise,

:::::
while

:::
the

:::::::
optimal

:::::::
cuboids

:::::
might615

::
be

::::::::::
represented

::::
with

::::::::::
observations

:::::
more

:::::
easily.

:

:::::
Based

::
on

:::
the

::::::::
identified

::::::
model

::::::::
dynamics

:::::::
relating

::
to the associated high cross-correlations are not fundamentally changed by

this (
::::::
optimal

:::::::
regions,

:::
our

:::::::::
optimised

::::::::
emergent

:::::::::
constraints

:::
can

::::::
inform

:::
us

:::::
about

:::::
model

:::::::::::::
inconsistencies

::::::
around

:::::
those

:::::::::
dynamical

:::::::
features.

:::
For

::::
the

:::::::
smallest

::::
and

::::::::::::
medium-sized

:::::::::
ellipsoids,

:::
the

::::::::::::
observational

::::::::::
uncertainty

::::
does

:::
not

::::::
allow

:::
for

::::::::::
constraining

::::
the

::::::
solution

::::::
further

::::
(see

:
Fig. 6).620

The unconstrained estimate of our model ensemble yields a mean value of 0.5±0.25 PgC/yr for the future North Atlantic

Cant∗ uptake. When applying our regionally optimised predictors, the observational constraints correct the unconstrained mean

values towards higher mean values between 0.57 PgC/yr and 0.79 PgC/yr (see Table 1). We note
::
8c

:::
for

:::
the

:::::::
smallest

:::::::::
ellipsoid).

:::
For

:::
the

:::::
largest

::::::::
ellipsoid

:::
and

:::
the

::::::
optimal

:::::::
cuboids,

:::
we

::::
find that all newly obtained constrained values for the future North Atlantic

Cant∗ uptake are consistent which
::::
with

:
each other, i.e. the

:::::::
solutions

:::
do

:::
not

:::::::::
contradict

::::
each

:::::
other

:::
due

::
to

:::::
small

::::::::::
differences

::
in625

::::
their

:::::
mean

:::::
values

::::
and

::::
large

::::::
enough

:
uncertainties around the

::::
mean

::::::
values

::::
(Fig.

::::::
8a,b,d,

:::::
Table

:::
1).

:::::::::::
Nevertheless,

:::
the

:
constrained

mean values are large enough for the solutions to not contradict each other. In line with this , there is one model that satisfies
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the observational constraint of all our predictors , that is CESM1-BGC (Fig. ??). Nevertheless, it can readily be seen that

our observational constraints for the upper ocean predictors are systematically identifying models with a higher future North

Atlantic C
::
of

:::
the

:::::
future

:::::
North

:::::::
Atlantic

::
Cant∗ uptake to be dynamically ’correct’ than those for the deep ocean predictors. This is630

also reflected in our constrained mean values, which are 0.09-0.22PgC/yr higher for the upper ocean predictors ((see Table 1).

Moreover, we note that
:::::
uptake

:::::
based

:::
on

:::
the

:::::::
optimal

:::::::
cuboids

::::
and

:::
the

::::::
largest

:::::::
ellipsoid

::::
are

::::::::::
consistently

::::::
smaller

:::::
than

:::
that

:::
of

::
the

:::::::
original

::::::::
emergent

:::::::::
constraint

:::
and

::::
offer

::
a
:::::::
reduced

::::::::::
uncertainty.

::::::::
Especially

:::
for

:::
the

:::::::
optimal

:::::::
cuboids,

:::
the

:::::::
regional

:::::::::::
optimisation

::::
leads

::
to

:
a
:::::::::
narrowing

:::::
down

::
of

:::
our

::::::::
ensemble

::
of

::::::::::::::
well-performing

::::::
models

::::
from

::::
five

::::::
models

:::::::
(original

::::::::
emergent

:::::::::
constraint)

::
to

:::::
three

::::::
models

::::::
(largest

:::::::
optimal

::::::
cuboid)

::::
and

:::::
finally

:::::
down

::
to
::::
two

::::::
models

::::::::
(smallest

:::::::
optimal

:::::::
cuboid).635

4
:::::::::
Discussion

::::
With

::
a

::::::::
multitude

::
of

::::::::::::::::
model-projections

::::::::
available

::::
from

:::::::
several

::::::::
scenarios

::::
and

::::::::::::::::
model-generations,

:::
the

::::::
desire

::
to

::::::::
decrease

:::
the

:::::
related

::::::::::
uncertainty

:::::
based

::
on

::
a

:::::::::::
process-based

::::::::::::
understanding

:::
has

::::::::
increased.

:::
In

:::
this

:::::::
context, the upper ocean predictors positioned

further south have models with lower
::::::
concept

::
of

::::::::
emergent

::::::::
constraint

:::::::
appears

::
to

::
be

:::::
highly

::::::::
valuable

:::
and

:::
has

:::::::
become

::::::::::
increasingly

::::::
popular

::
in

::::::
recent

:::::
years.

::::
Yet,

::
the

:::::::
method

:::
has

::::
also

:::::::
attracted

::
a

::
lot

::
of
:::::::::
criticisms

::::::
relating

:::
to,

::::::
among

::::::
others,

:::
the

::::::::
non-valid

::::::::
Gaussian640

:::::::::
assumption

:::
for

:::
the

:::::
model

:::::::::
ensemble,

::::::::::
relationships

::::::::
between

::::::::
predictors

:::
and

::::::::::
predictands

:::
that

:::::
occur

:::::::
without

:::
any

:::::::
physical

::::::::
meaning

:::::
behind

:::::
them

::::::::::::::::::
(Caldwell et al., 2014)

:
,
:::::::::
non-robust

:::::::
emergent

:::::::::
constraints

::::
that

:::
are

:::
not

::::
valid

:::::
across

::::::::
different

:::::::
scenarios

::::
and

:::::::::::::::
model-ensembles,

::
the

::::::::::
assumption

::
of

:::::::
linearity

:::::::
between

::::::::
predictor

:::
and

:::::::::
predictand

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Williamson and Sansom, 2019, who include a solution for testing the linearity assumption)

:::
and

:::::
most

::::::::::
prominently

::::
that

:::
the

::::::
linear

::::::::::
relationship

::
of
::::::::

averaged
::::::

values
::::::

overly
:::::::::

simplifies
:::
the

::::::::
complex

::::::::::
interactions

::
of
::::::

many

::::::::::
components

:::
and

:::::::::
feedbacks

:::::::::::::::::::::::::::::::::::::::::::
(Schlund et al., 2020; Williamson and Sansom, 2019)

:
.
::::
Our

:::::
study

:::::
relates

:::
to

:::
the

:::
last

:::::
point,

::::
but

:::
yet645

::
in

:
a
::::::::::::
not-previously

:::::::::
discussed

:::::::
manner:

:::
we

:::::::
advance

:::
the

::::
view

::::
that

::
it

::
is

::::::
overly

::::::::
simplified

::
to

::::::::
compare

:
a
::::::::

regional
::::::
average

:::
of

:::
the

:::::::
predictor

:::
(as

:::::
often

:::::
done

::
in

::::::::
emergent

::::::::::
constraints)

::
to

::
a

::::::::
regionally

::::::::
averaged

:::::::::::
observational

::::::
value.

:::
We

:::
use

:::::::::
regionally

:::::::::
optimised

:::::::
emergent

::::::::::
constraints

::
to

::::
show

::::
that

:::
this

::::::
course

::
of

::::::
action

:::::
might

:::::
deem

:
a
:::::
model

:::
to

::
be

:::
’fit’

:::
in

::
the

:::::::
context

::
of

::
an

::::::::
emergent

:::::::::
constraint

:::
but

::::::::
disregards

::::
that

:::::
some

:::::::
aspects

::
of

:::
the

:::::::
model’s

::::::
spatial

::::::::::
distribution

::
of

::::
the

::::::::
predictor

:::::
within

::::
the

:::::::::
considered

::::::
region

:::::
might

:::
be

:
a
::::::
misfit.

::::
Yet,

:::
the

::::::
spatial

:::::::::
distribution

::
is
:::

of
::::
high

::::::::::
importance

:::
for

:::::::::
dynamical

:::::::::
predictors

:::
that

:::::::
capture

::
or

::::
rely

:::
on,

:::
for

::::::::
example,

::
a650

:::::::
transport

:::::
from

:::::
north

::
to

::::::
south.

:::::
Here,

:::
the

::::::::::
north-south

::::::::::
distribution

::
of

::::
the

::::::::
predictor

::
is

::
in

::::
fact

::
an

::::::::::
expression

::
of

:::
its

:::::::::
dynamical

:::::::::
correctness.

::::
The

::::::
spatial

::::::::::
distribution

:
is
::::::::
moreover

:::::::::
especially

::::::::
important

:::
for

::::::::::
predictands

:::
that

:::
are

:::
not

::::::
evenly

:::::::::
distributed

::::::
within

:::
the

:::::::::
considered

:::::
region

::::
like

:::
the

:
future North Atlantic Cant∗ uptakeclosest to their mean observational value than those positioned

further north. The observational mean value
:
.
::::
This

::::::::
predictand

::::
has

::::::::::
substantially

::::::
higher

:::::
Cant∗ ::::::

uptake
:
in
::::::
higher

:::::::
latitudes

::::
such

::::
that

:
a
:::::
misfit

::
in

:::
the

::::::::::
north-south

:::::::
gradient of the winter pCOsea

2 -anomaly increases by 5.85µatm (7.18µatm)between the smaller and655

the largest rectangles (ellipses) . However, the average value of the winter pCOsea
2 -anomaly of the four models that are closest

to the observational mean values only increased by 1.89µatm (3.99µatm) . This indicates that the south-north gradient of
:::
will

::::
have

:::::::::::
consequences

:::
for

:::
the

:::::::::
correctness

::
of

:::
the

::::::::::
constrained

:::::
value.

::::::
While

:
it
:::
can

:::
be

::::::
argued

:::
that

:
a
:::::::::
potentially

::::
easy

::::::::
approach

::
to

:::::
solve

:::
this

:::::::
problem

::
is

::
to

::::::::::
additionally

:::::::
evaluate

:::
the

::::::
spatial

:::::::
gradient

::
of

:::
the

:::::::
predictor

::::::
within

:::
the

:::::::::
considered

::::
area

::::
(not

::::
done

:::::
here),

:::
we

::::
note

:::
that

:::
not

:::
all

::::
parts

:::
of

:::
the

:::::::::
considered

:::::
region

::::::
might

::
be

:::::::
equally

::::::::
important

:::
for

:::
the

:::::::::
considered

::::::::
emergent

:::::::::
constraint.

::::
Our

:::::::::
regionally660
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::::::::
optimised

::::::::
emergent

:::::::::
constraints

:::::
point

:::::::
towards

:::
key

:::::
areas

:::
for

:::
the

::::::::
emergent

:::::::::
constraints

:::
(in

:::::
terms

::
of

:::
the

::::::::
predictor)

::::
and

:::::
hence

:::
do

:::::
reveal

:::::::
potential

::::::
spatial

::::::::::
mismatches

::::
only

:::
for

:::::
highly

:::::::::
important

::::
areas

:::
for

:::
the

::::::::
emergent

:::::::::
constraint.

:::::::::
Moreover,

:::
the

:::::::::::
identification

::
of

::::
these

:::
key

:::::
areas

::::
also

:::::
allows

::
us

::
to
:::::::
uncover

::::
key

::::::::
dynamics

::::::
behind

::
the

::::::::
emergent

:::::::::
constraint.

:::
We

:::::
hence

::::
find

:::
our

::::::::
regionally

:::::::::
optimised

:::::::
emergent

::::::::::
constraints

:::::::
superior

::::::
towards

::
a
::::::
simple

::::::::::::::
gradient-analysis

:::
and

::::::::::
recommend

:::::
using

::
it.

:

:::::::::
Regionally

::::::::
optimised

::::::::
emergent

:::::::::
constraint

:::
can

:::
be

::::::
applied

:::
to

:::::
create

::::
new

::::::::
estimates

::
of

:::
the

::::::::::
predictand,

:::::
which

::::
are

:::::::::
potentially665

::::::::::
inconsistent

:::
with

:::::
those

::
of

:::
the

:::::::
original

:::::::
emergent

:::::::::
constraint

::
or

::::
with

::::
each

:::::
other.

::
In

:
a
::::::
review

::
of

:::::::
emergent

:::::::::
constraint,

:::::::::::::::::::::
Williamson et al. (2021)

::::
noted

::::
that

::::::
highly

::::::
related

:::::::::
predictors

::::
with

:::::::
different

:::::::::::::::::
predictand-estimates

:::::::
indicate

:::
(i)

::::::::
persistent

:::::::::::
measurement

::::::
biases

::::::
and/or

:::
(ii)

:::
that

:
the modelled

:::
real

:::::
world

::::
may

::::
not

::
be

:::::::
sharing

:::
the

:::::
same

::::::::
responses

::
as

::::
the

::::::
models

::::
and

:::::
hence

::::
that

:
a
::::::::
persistent

:::::
error

::::::
across

::
the

::::::
model

::::::::
ensemble

::::::
exists.

::::
Our

:::::::
analysis

::::
does

:::
not

::::::::
consider

:::
the

:::::::::
possibility

::
of

::::::::::::
measurement

:::::
biases

::
as

::::
this

::
is

:::::::
beyond

:::
the

::::
goal

::
of

:::
our

:::::
study.

::::
Yet,

:::
we

::::::
restrict

::::::::::::
measurement

:::::
biases

:::::
from

:::::::
playing

:
a
:::
big

::::
role

:::
by

::::::::
assuming

:::::::::::
measurement

::::::
errors

:::::::::
generously.

::::
We670

:::::
hence

:::
use

:::
our

:::::::::
regionally

::::::::
optimised

::::::::
emergent

:::::::::
constraints

::
to

:::::::::
investigate

:::::::
potential

:::::::::::::
inconsistencies

::::::
within

:::
the

:::::
model

:::::::::
ensemble.

::
In

:::
our

::::
case

:::::
study,

:::
we

::::
note

:
a
::::::::
potential

::::::
model

:::::::::::
inconsistency

:::
for

:::
our

::::
first

::::::::
predictor,

:::
the

:
winter pCOsea

2 -anomaly
::::::::
indicating

:::
that

:::
its

:::::::::
south-north

:::::::
gradient

:
is not steep enough, i.e. that the modelled northwards-propagation of related properties is too weak

:::
(see

::::::
Section

:::::
3.2.2). However, the uncertainties around the observational estimates of the winter pCOsea

2 -anomaly are large and do

not allow us to be certain about thissouth-north gradient
:
.
:::
We

::
do

:::
not

::::::
detect

:::::
model

:::::::::::::
inconsistencies

::
for

::::
our

::::::
second

::::::::
predictor,

:::
the675

::::::::
fractional

:::::::::::
Cant∗-storage

::::
(see

:::::::
Section

:::::
3.3.2).

:

::
In

:::
our

::::
case

::::::
study,

::::
both

:::::::::
considered

:::::::::
predictors

:::
are

::::
also

::::::
highly

::::::
related

:::
to

::::
each

:::::
other,

::::
and

:::
can

::::::::
therefore

::::::
further

:::
be

::::
used

:::
to

:::::
inform

:::::
about

:::::::::::::
inconsistencies

:
in the upper ocean model performance. We note that , in this study, the uncertainties around the

observational estimates of
:::
and

::::::
interior

:::::
ocean

:::
in

:::::
terms

::
of

::::::
Cant∗.

::::
This

::
is

:::
due

:::
to

:::
the

:::
fact

::::
that

::
(i)

:::
the

::::::::
strength

::
of

:::
the

:::::::::
northward

::::::
AMOC

::::::
volume

::::::::
transport

::
in

:::
the

:::::
upper

:::::
500m

:::::
drives

:::
the

:::::
upper

:::::
ocean

:::::::::
properties

::
in

:::
the

::::
high

::::::
latitude

:::::
North

:::::::
Atlantic

::::
and

:::::
hence the680

winter pCOsea
2 -anomaly have been estimated very roughly and generously. Assuming that we had utilised our identified optimal

areas to gain new and narrower observational uncertainties, then our new observational constraints could be utilised to identify

a comparatively weak northward propagation of the winter pCOsea
2 -anomaly within our model ensemble. Interestingly, some

of the deep ocean predictors are also placed slightly further south than
:::
(see

::::::
Section

::::::
3.2.1);

::::
and

:::::::::::
concurrently,

:::
(ii)

:::
the

:::::::
strength

::
of

:::
the

::::::::
southward

:::::::
AMOC

::::::
volume

::::::::
transport

::
in

:::
the

::::::
interior

:::::
ocean

:::::
drives

:::
the

:::::::::::
effectiveness

::
of

:::::::::::::
surface-to-deep

:::::::::::::
Cant∗-transport

::::
(see685

::::::
Section

::::::
3.3.1).

::::
Both

:::::
parts

:::
are

:::::::::
connected

::
as

:::
the

:::::::
strength

::
of

:::
the

:::::::::
northward

:::::::
AMOC

::::::
volume

::::::::
transport

::::
(i.e.,

:::
the

:::::
upper

::::::
branch

:::
of

::
the

::::::::
AMOC)

:
is
::::::
highly

::::::
related

::
to

:::
the

:::::::
strength

::
of

:::
the

:::::::::
southward

::::::
AMOC

::::::
volume

::::::::
transport

::::
(i.e.,

::
its

:::::
lower

::::::::
branch).

::::::::::
Specifically,

:::
the

:::::
upper

:::::
branch

:::
of

:::
the

::::::
AMOC

::::::::
transports

:::::
warm

::::::
waters

:::::
from

::
the

::::
low

::::::
latitude

::
to
:::
the

::::
high

:::::::
latitude

:::::
North

::::::::
Atlantic,

::::::
thereby

::::::::
releasing

:::
heat

::
to
:::
the

::::::::::
atmosphere

::::::::::::::::::::
(e.g., Rhein et al., 2011)

:
.
:::::
Upon

:::::
losing

:::
its

::::
heat,

:::
the

:::::
water

:::::::
becomes

::::::
denser

::::
and

:::::
sinks.

::::
This

:::::::::::
densification

::::
links

:::
the

::::::
warm,

::::::
surface

::::::
branch

::::
with

:::
the

:::::
cold,

::::
deep

::::::
return

::::::
branch

::
at

:::::::
regions

::
of

::::
deep

::::::::::
convection

::
in

:::
the

::::::
Nordic

::::
and

::::::::
Labrador690

::::
Seas.

:::
For

:::
the

:::::::
Atlantic

:::::
north

::
of

:::::
26◦N,

:::::::
volume

:::::::::::
conservation

::::::
dictates

::::
that,

:::
for

:::::::
constant

:::
sea

:::::
level,

:::
the

:::
net

:::::::::
northward

::::
flow

::
of

:::::
upper

:::::
waters

::::::::
balances

:::
the

::::::::
southward

::::
flow

::
of
::::::
deeper

::::::
waters

::::
with

:
a
::::::::
tolerance

::
of

::::
1Sv

::::::::::::::::::::
(McCarthy et al., 2015)

:::
such

::::
that

::::
there

::
is
::
a

:::::
direct

:::
link

:::::::
between

:::::
upper

::::
and

:::::
lower

::::::
branch

::
of

:::
the

:::::::
AMOC,

::::::
driving

::::
both

:::
our

:::::::::
predictors

:::
and

::::::::::
predictand.

:
A
::::::::::
comparison

:::::::
between

:::
the

::::::::::
constrained

::::::::
estimates

::
of

:::
the

:::::::::
predictand

:::::::
achieved

:::::
using

:::::
these

:::::
highly

::::::
related

:::::::::
predictors

:::
can

::::
help

::
to

:::::
further

::::::::::
disentangle

::::::
model

:::::::::::::
inconsistencies.

:::::
When

:::::::
dividing

:::
the

::::::::::
constrained

::::::::
estimates

::
of

:::
the

::::::::
regionally

:::::::::
optimised

:::
area

::::
into

:::::
those695
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::::::::
associated

::::
with

:
the upper ocean predictors, which can partly explain that they identify models with lower

:::::
(0-500

::
m

::::::
depth,

:::
i.e.

::
all

:::::::::
regionally

::::::::
optimised

:::::::::
rectangles

:::
and

:::::::
ellipses)

::::
and

::::
those

:::
of

:::
the

::::
deep

:::::
ocean

::::::
(below

::::
500

::
m

:::::
depth,

:::
i.e.

:::
all

::::::::
regionally

:::::::::
optimised

:::::::
cuboids),

::
it
:::
can

::::::
readily

:::
be

::::
seen

:::
that

::::
our

:::::::::::
observational

:::::::::
constraints

:::
for

:::
the

:::::
upper

:::::
ocean

:::::::::
predictors

::
are

::::::::::::
systematically

::::::::::
identifying

::::::
models

::::
with

:
a
::::::

higher
:
future North Atlantic Cant∗ uptake to be correct (when compared to the upper ocean predictors ). The

difference between the upper ocean predictors and the deep ocean predictors reduces from 0.09-0.22PgC/yr to
:::::::::::::
well-performing700

:::
than

:::::
those

:::
for

::::
the

::::
deep

:::::
ocean

:::::::::
predictors

:::::
(Figs.

:::
5,

::::
8a,b

:::
and

:::::
Table

:::
1).

::::
This

::
is
::::

also
::::::::

reflected
::
in

::::
our

:::::::::
constrained

:::::
mean

:::::::
values,

:::::
which

:::
are

:
0.09-0.16PgC

::::
PgC/yr when only considering the southern upper

::
yr

::::::
higher

:::
for

:::
the

:::::::::
regionally

:::::::::
optimised

::::::
winter

::::::::::::::
pCOsea

2 -anomaly
::::
than

:::
for

:::
the

:::::::::
regionally

::::::::
optimised

:::::::
cuboids

::::
(see

:::::
Table

::
1)

::::
and

:::::::
indicates

::
a
::::::::
mismatch

:::::::
between

::::
the

::::::::::
propagation

::::
from

:::
the

:::::
upper

:::::
ocean

:::
to

:::
the

::::
deep

:
ocean predictors (smallest ellipse/rectangle and

::
for

:::::
some

::
of

:::
the

:::::::
models.

:::
We

:::::
note

:::
that

::::
this

:
is
::::

also
:::::::::
confirmed

:::
for

:::
the

:::::::
optimal

:::::::::
ellipsoids,

:::::
where

:::::
both

:::::::
smallest

::::
and

::::::::::::
medium-sized

::::::::
ellipsoids

::::
have

::
a
::::::
higher

::::::
volume

:::
in

:::
the705

:::::
upper

:::::
ocean

:::::
(25%

:::
and

::::
19%

:::
of

::::
their

::::::
volume

::
is
:::::
above

:::::
1000

::
m

::::::
depth,

::::::::::
respectively)

::::
and

::::
lead

::
to

:::::
higher

::::::::::
constrained

:::::
mean

::::::
values

::
of

:::
the

:::::
future

:::::
North

:::::::
Atlantic

::::::
Cant∗ ::::::

uptake
::::
than

:::
the

::::::
largest

:::::::
ellipsoid

::::
with

::::
only

::::
6%

::
of

::
its

:::::::
volume

:::::
above

:::::
1000

:::
m.

:::::
Based

:::
on

:::
the

:::
our

:::::::::
plausibility

:::::::
analysis

:::
for

:::
the

:::::::
optimal

:::::
areas

:::
for

:::
the

:
upper ocean northwards

:::
and

::::
deep

:::::
ocean

::::::::
(Section

::::
3.2.1

::::
and

::::::
3.3.1),

:::
we

:::::
found

:::
that

:::
the

:::::
upper

::::::
(0-500

::
m)

:::::
North

:::::::
Atlantic

:::::::::
northward

::::::
volume

::::::::
transport

::
at

:::::
30◦N

::::::::
(2D-case)

:::
and

:::
the

::::
deep

:::::::::
(700-4700

:::
m)

:::::
North

::::::
Atlantic

:::::::::
southward

:::::::
volume transport at 26◦N ).710

Emergent constraints of larger regions like the North Atlantic might deem a model to be the fittest due to its ability to

simulate values within the observational uncertainties. Yet, we show that this model’s gradient of the observed quantity within

the considered region might be a misfit. This is of high importance for dynamical predictors that capture, for example, a

transport from north to south.Here, the north-south distribution of the predictor is in fact an expression of its dynamical

correctness. It is moreover especially important for predictands that are not evenly distributed within the considered region.For715

example, the future
::::::::
(3D-case)

:::
are

::::
also

::::::::
plausible

:::::::::
predictors

:::
for

:::
the

:::::
future

:::::
North

:::::::
Atlantic

::::::
Cant∗ ::::::

uptake
:::
and

::::
can

::
be

:::::::
utilised

::
to

::::::
confirm

::::
this

::::::::
potential

:::::::::
mismatch.

::::
Due

::
to

:::
the

::::::
limited

::::::::::::
observational

::::::::::
availability,

:::
we

::::
only

::::::::
consider

::::
these

:::::::
volume

:::::::::
transports

::
at

::::::
26.5◦N

:::
and

:::
for

:::
the

::::
time

::::::
period

::::::::::
2005-2014.

::::
The

:::::::
resulting

::::::::
emergent

::::::::::
constraints

:::
(see

:::::::::::::
supplementary

::::
Figs.

:::
S1

::::
and

:::
S7)

:::::::
confirm

::
the

::::::::
assumed

::::::::
mismatch

:::::::::
identifying

::::::
several

:::::::
models

:::::
which

:::
are

::::
only

::::::::::::::
well-performing

::
for

::::
one

::
of

:::
the

::::::::::::::
volume-transport

::::::::::
constraints.

::::
Only

:::
one

::::::
model

::
is

::::
able

::
to

:::::::
perform

::::
well

:::
for

::
all

:::::::::
considered

:::::
upper

::::
and

::::
deep

:::::
ocean

::::::::
emergent

:::::::::
constraints

:::::::::::::
(CESM1-BGC,

:::::
Figs.

::
5,720

::
8,

::
S1

::::
and

:::
S7).

:

:::
For

::::
both

:::::
upper

:::::
ocean

::::
and

::::
deep

:::::
ocean

::::::::::
constraints,

:::
the

:::::::::::::::::
AMOC-observations

:::::
come

::::
with

:::::
lower

::::::::::::
observational

::::::::::
uncertainty,

:::
yet

::
the

:::::::
AMOC

::::::::
represent

:
a
::::::
purely

:::::::
physical

::::::::
constraint

::::
such

::::
that

:::
we

:::::::
consider

:::
the

:::::::::::::
biogeochemical

:::::::::
constraints

::
as

:::::
more

::::::
closely

::::::
related

::
to

:::
the

:::::
North

:::::::
Atlantic

:
Cant∗ uptake is not uniformly distributed over

:::
and

::::::
hence

:::::
more

::::::::
plausible.

::::
This

::
is
::::::::
reflected

::
in

:::
the

::::
fact

:::
that

::::
they

::::
also

::::
offer

::::
very

:::::::
similar

::
or

::::::
higher

::::::::::
correlations

::::
with

:
the North Atlantic but there is substantially higher Cant∗ uptake725

in higher latitudes such that a misfit in the north-south gradient of the winter pCOsea
2 -anomaly will have consequences for the

correctness of the constrained value. Whenever spatial distributions are important for the dynamic of the emergent constraint,

we propose therefore to always additionally evaluate the spatial gradient of the bias of the predictor within the considered area.

We note that the temporal robustness of an emergent constraint is also of importance, but this information is frequently analysed
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in studies concerned with emergent constraints (see Bourgeois et al., 2022).
::::
when

::::::::
compared

:::
to

:::
the

::::::::::::::::
AMOC-constraints

::
in

:::
the730

::::
same

:::::
ocean

:::::::::::
depth-range.

::
A

:::::
lower

:::::::::::
observational

:::::::::
uncertainty

:::
in

::
the

::::::::::::::
biogeochemical

:::::::::
constraints

:::::
would

:::::
hence

:::
be

::
of

::::
high

:::::
value.

:

5 Summary and conclusions

We applied a genetic algorithm to regionally constrain the predictors of two emergent constraintsin the realm of the ocean

carbon cycle, with the objective to enhance our understanding of key processes driving the uncertainties in the projected future

anthropogenically altered carbon (Cant∗) uptake
:::::::
optimize

::::::::
emergent

:::::::::::
relationships

::::
with

:::
the

::::::::
two-fold

::::
goal

::
to
:::

(a)
:::::::
identify

::::
key735

:::::
model

::::::::
dynamics

:::
for

:::
the

::::::::
emergent

::::::::
constraint

::::
and

:::::
model

:::::::::::::
inconsistencies

::::::
around

::::
them

::::
and

::
(b)

:::::::
provide

:::
key

:::::
areas

:::::
where

::
a

::::::
narrow

:::::::::::
observational

:::::::::
uncertainty

::
is
::::::
crucial

:::
for

::::::::::
constraining

::::::
future

::::::::::
projections.

:::
We

::::
base

:::
the

::::
need

:::
for

:::::::
regional

:::::::::::
optimisation

::
on

:::
the

::::
fact

:::
that

::::::::
emergent

::::::::::
constraints

:::
are

:::::
often

::::::
related

::
to

:::::::::
dynamical

:::::::
features

:::::::::
inherently

:::::::
coupled

::
to
::::::

spatial
::::::::::::

distributions.
::::::
Hence,

::::::
model

::::::::::
performance

::
of

::::
this

:::::::
dynamic

::::
can

:::
not

::
be

::::::::
captured

:::
by

:::
one

:::::
single

::::::::
averaged

:::::
value

::
as

:::::::
usually

::::
done

:::
for

::::::::
emergent

::::::::::
constraints.

:::
As

:
a
::::
case

:::::
study

::
to

:::::::
illustrate

:::
the

:::::::::
usefulness

::
of

:::::::
regional

::::::::::::
optimisation,

::
we

::::::::
consider

:::
two

:::::::::
previously

::::::::::
established

::::::::
emergent

:::::::::
constraints740

::
of

:::
the

:::::
future

::::::::::::
carbon-uptake

:
in the North Atlantic

:::::::::::::::
(Goris et al., 2018). The predictors of these emergent constraints are (i) the

contemporary winter pCOsea
2 -anomaly, which is a surface quantity (2D-case) and (ii) the fraction of the North Atlantic Cant∗-

storage, which is a surface-to-interior ocean quantity (3D-case). Both predictors relate to a model’s ability to efficiently remove

Cant∗ from the ocean’s surface into the deep ocean.

The genetic algorithm was primarily adopted to find optimal regions for both predictors, such that cross-correlations between745

the regionally-optimized predictor-values and predictand-values are maximised. As emergent constraints are utilised to con-

strain the model spread, we only allowed the genetic algorithm to consider grid-points where the multi-model standard devia-

tion of the simulated predictors was larger than average. For the regional optimisation, we pre-defined a suite of different shapes

and sizes, such that the genetic algorithm had to identify optimal ellipses and rectangles for the 2D-case and optimal ellipsoids

and cuboids for the 3D-case with different size
::::
sizes

:
and volumes, respectively.

:::
Our

::::::::::::
consideration

::
of

::::::::
different

::::::::::
geometrical750

:::::
shapes

::::
and

::::
area

::::
sizes

::::::
allows

::
us

::
to

::::::
inspect

::
in

:::::
more

:::::
detail

:::::
where

::::
key

::::::
regions

:::
for

:::
the

:::::
model

:::::::::::
performance

:::
are,

:::
to

::::::::
determine

::
if

:::
the

::::::::
simulated

:::::
results

:::
for

::::
each

:::
of

::::
these

:::::::
regions

:::
are

::::::::
consistent

::::
with

::::
each

:::::
other

:::
and

::
to

:::::
avoid

:::::::
spurious

::::::::::::
relationships.

Our results indicate that the genetic algorithm converges quickly
::
for

:::::::::
rectangles,

:::::::
ellipses

:::
and

:::::::
cuboids

:::
and

::::::
slower

:::
for

::::::::
ellipsoids.

After 100 iterations, the optimal solutions of the genetic algorithm provided higher cross-correlations than the original emer-

gent constraints. With multi-model
:::
The

:::::::
regional

::::::::
solutions

:::
of

:::
the

:::::::
2D-case

::::
have

:
cross-correlations between 0.848 and 0.863,755

the regional solutions of the 2D-case were at least
:::
that

::
is
:
0.058

::::::
- 0.093

:
higher than those of the original emergent constraint

::
of

::::
0.79. The regional solutions of the 3D-case had

:::
have

:
cross-correlations between 0.966 and 0.987 and offered an improvement

of 0.026-0.047
::::::
- 0.047

:
in comparison to those of the original emergent constraint

::
of

::::
0.94. The optimal predictor regions pointed

::::
point

:
towards the Gulf Stream area at around 30◦N to be central for our emergent constraint (2D-case) as well as the

::::::
region

::
of

::
the

:
interior ocean pathway of the southward volume transport (3D-case). Both identified areas are plausible

:::::
Before

:::::::::
following760

::
up

:::
on

:::
our

::::::::
two-fold

::::
goal

::
of

:::
the

:::::::
regional

:::::::::::
optimisation,

:::
we

:::::::::::
investigated

:::
the

:::::::::
plausibility

:::
of

:::
the

:::::
newly

:::::::::
identified

::::::
optimal

:::::
areas.

The Gulf Stream is fundamental in transporting heat and nutrients to the north and is therefore key in determining a model’s
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mixed layer depth as well as its productivity in high latitudes and hence its Cant∗-uptake. The interior ocean southward volume

transport is fundamental for transporting Cant∗-saturated surface watermasses to the deep ocean and hence allowing for further

high latitude Cant∗-uptake. These dynamical justifications led to the detection of two additional qualified predictors of the765

future North Atlantic Cant∗ uptake: the upper ocean northward volume transport between surface and 500m
:::
500

:::
m depth at

30◦N and the deep ocean southward volume transport between 700m and 4700m
:::
700

::
m

:::
and

:::::
4700

::
m

:
at 26◦N. We note that

the commonly used depth range of the northward maximum volume transport (surface to depth of maximum) did not allow

for such high cross-correlations, neither at 26◦N nor at 40◦N. This indicates that the relation of maximum northward volume

transport to the ocean carbon sink is not as robust as often assumed
::
in

::::::::
modelling

::::::
studies.770

To our knowledge, this is the first time that a regional optimisation of emergent constraints has been carried out. The results

are of high value as the use of emergent constraints in the realm of climate projections has gained a lot of momentum in the

last decade (see Williamson et al., 2021, for a review of existing emergent constraints for climate sensitivites) due to the fast

growing number of models taking part in coordinated model exercises associated with future projections (e.g. Balaji et al., 2018)

. Though invaluable progress has been made through automated observational platforms like Argo (Argo, 2000) and analysis775

tools like ESMvaltool (Eyring et al., 2016b), observational networks and analyses of these future projections are not growing

in the same speed. Here, our regional optimisation of existing emergent constraints can be used to guide future monitoring

strategies. We show this for the North Atlantic, where our results point towards the already employed RAPID array and

prove that the algorithm is able to provide meaningful results. We note, however, that the RAPID array takes purely physical

observations, though our localised emergent constraints show that additional measures of carbon-storage would fundamentally780

improve our understanding of the Cant∗-uptake in the North Atlantic. For other ocean basins, we foresee that a similar

application of our regional optimisation on existing emergent constraints could be of fundamental value for the employment of

further observational instruments. Our regional optimisation of two existing emergent constraints of the future North Atlantic

Cant∗ uptake allowed moreover for a better understanding of
::::
After

:::
this

:::::::::::
confirmation

::
of

:::
the

:::::::::
plausibility

::
of

:::
the

:::::::
optimal

:::::
areas,

:::
we

::::
used

:::
the

::::::::
regionally

:::::::::
optimised

::::::::
emergent

:::::::::
constraints

::
to

:::::
better

:::::::::
understand

:::
the

:
modelled dynamics of the predictors

:::
and

::::::::
potential785

::::::::::::
inconsistencies

::::::
around

:::::
them. Though a typical emergent constraint should already have a solid physical background, its predic-

tor is usually averaged aver
::::
over a large area such that the optimal areas found by the algorithm help to refine this knowledge.

Our regional optimisation and the newly identified emergent constraints pointed
::::
point

:
us towards the fact that dynamical

features are often inherently coupled to spatial distributions. Hence, model performance of this dynamic can not be captured

by one single averaged value as usually done for emergent constraints. In our case, the regional optimisation confirmed that a790

correct simulation of the upper ocean and interior ocean volume transport is fundamental for a correct estimate of the future

North Atlantic Cant∗ uptake. However, our results indicate that
::::
most

:
models that perform well for the upper ocean volume

transport might
::
do not perform well for the interior ocean volume transport and that

::::
most

::
of

:::
the

:::::::::
considered

:
models do not cap-

ture the south-north gradient of the upper ocean northward volume transport well. It is questionable if a model that simulates

the average upper ocean northward volume transport within observational constraints but not the related dynamical features795

like the south-north
:
or

:::::::
vertical

:
gradient of that transport can be considered a well-performing model. In future studies, we

henceforth advise to combine the average values of the emergent constraint with a measure of spatial performance relating to
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the dynamical feature in question.

::::::
Though

:::::::::
invaluable

::::::::
progress

:::
has

::::
been

:::::
made

:::::::
through

:::::::::
automated

:::::::::::
observational

:::::::::
platforms

:::
like

:::::
Argo

::::::::::::
(Argo, 2000)

:::
and

:::::::
analysis

::::
tools

:::
like

:::::::::::
ESMValTool

::::::::::::::::::
(Eyring et al., 2016b),

::::::::::::
observational

:::::::
networks

::::
and

:::::::
analyses

::
of

:::::
model

::::::::::
projections

:::
are

:::
not

:::::::
growing

::
in

:::
the800

::::
same

::::::
speed.

::::
Here,

::::
our

:::::::
regional

::::::::::
optimisation

::
of

:::::::
existing

::::::::
emergent

:::::::::
constraints

:::
can

:::
be

::::
used

::
to

:::::
guide

:::::
future

:::::::::
monitoring

:::::::::
strategies.

:::
We

:::::
show

:::
this

:::
for

::::
the

:::::
North

::::::::
Atlantic,

:::::
where

::::
our

::::::
results

:::::
point

:::::::
towards

:::
the

:::::::
already

::::::::
employed

:::::::
RAPID

:::::
array

::::
and

:::::
prove

::::
that

::
the

:::::::
genetic

::::::::
algorithm

::
is
::::

able
:::

to
::::::
provide

::::::::::
meaningful

:::::::
results.

:::
We

:::::
note,

:::::::
however,

::::
that

:::
the

:::::::
RAPID

:::::
array

:::::
takes

:::::
purely

::::::::
physical

:::::::::::
observations,

::::::
though

:::
our

:::::::
localised

::::::::
emergent

:::::::::
constraints

:::::
show

:::
that

:::::::::
additional

::::::::
measures

::
of

::::::::::::
carbon-storage

::::::
would

::::::::::::
fundamentally

:::::::
improve

:::
our

::::::::::::
understanding

::
of

:::
the

:::::::::::
Cant∗-uptake

::
in

:::
the

:::::
North

::::::::
Atlantic.805

::
To

:::
our

::::::::::
knowledge,

::::
this

::
is

:::
the

:::
first

::::
time

::::
that

::
a

:::::::
regional

::::::::::
optimisation

:::
of

::::::::
emergent

:::::::::
constraints

:::
has

::::
been

:::::::
carried

:::
out.

::::
The

::::::
results

::
are

:::
of

::::
high

:::::
value

::
as

:::
the

:::
use

::
of
::::::::

emergent
::::::::::

constraints
::
in

:::
the

:::::
realm

::
of

:::::::
climate

:::::::::
projections

::::
has

:::::
gained

::
a
:::
lot

::
of

::::::::::
momentum

::
in

:::
the

:::
last

::::::
decade

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(see Williamson et al., 2021, for a review of existing emergent constraints for climate sensitivities)

:::
due

::
to

:::
the

::::
fast

:::::::
growing

::::::
number

::
of

::::::
models

::::::
taking

:::
part

::
in

::::::::::
coordinated

:::::
model

::::::::
exercises

:::::::::
associated

::::
with

:::::
future

:::::::::
projections

:::::::::::::::::::
(e.g. Balaji et al., 2018)

:
.
::::
Here,

::
a
:::::::
regional

:::::::::::
optimisation

:::
can

::
be

::::::::
valuable

::
to

::::::
identify

::::::
model

:::::::::::::
inconsistencies

::
in

:::::
terms

::
of

::::::
spatial

::::::::
gradients

:::
and

::
at

:::
the

:::::
same810

::::
time

::::
point

:::::::
towards

:::::
areas

:::::
where

:
a
::::::::
reduction

:::
of

:::::::::::
observational

::::::::::
uncertainties

::
is
:::::
most

::::::
useful.

Code and data availability. The code of the genetic algorithm including the relevant input and output data for our 2D North Atlantic case

study is available through Johannsen (2022a, https://doi.org/10.5281/zenodo.7037947) . The genetic algorithm code and the relevant input

and output data for our 3D North Atlantic case study is available through Johannsen (2022b, https://doi.org/10.5281/zenodo.7037981).

Appendix A: Observational Estimates815

For observational estimates of the contemporary winter pCOsea
2 -anomaly (depicted in Fig. 1b-c

:
b
:
and Fig. ??a-b

:
5), we utilised a

neural-network-based interpolated pCOsea
2 product provided by Landschützer et al. (2017)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Landschützer et al., 2017, https://doi.org/10.7289/v5z899n6, version 2.2)

. Specifically, we calculated the contemporary winter pCOsea
2 -anomaly as a decadal average based on the ’spco2_smoothed’-

variable for the years 1990-1999. We note that it would have been possible to focus on other time-frames. However, we decided

to consider the same time-frames as in Goris et al. (2018), so that an easy comparison of previous and new results is possi-820

ble. As the utilised pCOsea
2 database does not include an error-estimate, we utilise the error-estimate of the supplementary

information of Landschützer et al. (2018), where the neural-network product is analysed for seasonal mean biases for 4 broad

latitudinal bands. Results for summer and winter biases of the data-product for the latitudinal bands of 10-40◦N and 40-65◦N

show that the biases are randomly spread around 0, but do show substantial variability. We apply the largest detected seasonal

bias of these latitudinal bands of about ±14µ
::
µatm as our uncertainty range of the observational estimate of the contemporary825

winter pCOsea
2 -anomaly.

For observational estimates of the contemporary fractional Cant∗-storage (depicted in Fig. 1d-e
:
d
:
and Fig. ??d-e), the

::
8),

::
a

mapped climatology of anthropogenic carbon (Cant) from GLODAPv2.2016b has been used (Lauvset et al., 2016)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Lauvset et al., 2016, https://doi.org/10.7289/v5kw5d97, version GLODAPv2.2016, mapped)
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. We note that there is a difference between this data-product and our modelled estimates as the data product describes Cant and

the modelled estimates Cant∗, i. e. a combination of the anthropogenic component of the carbon cycle combined with climate830

change–induced differences. Yet, for the time span of the historical simulation, the climate-change induced differences are

small and it is possible to use Cant as an approximation of Cant∗ (Frölicher et al., 2015). The observation-based data-product

of the Cant-storage is normalized to the year 2002. We therefore compare it to the simulated fractional Cant∗-storage in the

time-frame 1997-2007, abbreviated as 1997s. For conversion of the data product from µmol/kg to PgC, we utilised a mean

ocean standard density of 1036kg
::::
1036

::
kg/m3 (Pawlowicz, 2013). Furthermore, we linearly interpolated the data-product onto835

the considered depth-levels. Though the data-product includes estimates of a mapping error, a comprehensive error estimate

containing observational, methodological and mapping error is not available. In lack of such an estimate, we follow the ap-

proach of Goris et al. (2018) and use an error estimate of ±10% for the observational estimate of the fractional Cant-storage

below 1000m
::::
1000

:::
m accumulated over the whole North Atlantic (Fig. 1e). In order to get an error estimate for the fractional

Cant-storage within our optimal cuboids and ellipsoids, we utilise the error-estimate of ±29% for the Cant-storage of the North840

Atlantic (Steinfeldt et al., 2009). The simple assumption of an error of 29% for every grid point leads to the same factor in

numerator and denominator and results in an error estimate of zero for the fractional Cant-storage. Only a spatially heteroge-

neously distributed error of the Cant-storage leads to a non-zero error estimate for the fractional Cant-storage. As such an error

estimate is missing, we simply assume an error of ± 29% within our optimal areas but assume no error for other grid points

of the North Atlantic, which are taken into account to build the fractional measure. When assuming an error of ±29% for the845

Cant-values within our largest optimal cuboid, we obtain an error of +3.78% and -4.12% for the fractional Cant-storage. In

order to obtain an evenly distributed error around the mean value, we always chose the error-value larger in absolute values,

yielding an error of e. g. ±4.12% for the largest cuboid. We follow the same procedure for the other optimal volumes.

For observational estimates of the contemporary strength of northward and southward volume transport (depicted in Fig. ??c,f
::::
Figs.

::
S1

:::
and

:::
S7), data from the RAPID-Meridional Overturning Circulation and Heatflux Array-Western Boundary Time Series array850

at 26◦N have been employed (Frajka-Williams et al., 2021)
::::::::::::::::::::::::::::::::::::::::::::
(Frajka-Williams et al., 2021, https://doi.org/10/gwqg). RAPID-

observations are only available from April 2004 onward, though our application of the genetic algorithm considers the years

1990-1999 (2D-case) and 1997-2007 (3D-case) for our regional optimisation. Due to lacking observations in the time-frames

of interest, we build a decadal average of the observations of the AMOC streamfunction profile for the years 2005-2014. When

needing to access accumulations of the streamfunction over differing depth ranges with boundaries at surface, 500m, 700m and855

4700m
:::
500

::
m,

::::
700

::
m

:::
and

:::::
4700

::
m, we are utilising the observed depths that are closest to these boundaries, i.e. surface, 496m,

694m and 4696m
:::
496

::
m,

::::
694

::
m

:::
and

:::::
4696

::
m. We consider these depth-values to be close enough to the desired boundaries such

that no interpolation is necessary. Annual error estimates between 0.9 and 1.3
:
Sv are given for maximum northward transport

estimates of the years 2004 to 2014 (https://rapid.ac.uk/rapidmoc/rapid_data/README_ERROR.pdf, accessed in November

2021). We employ the estimate of 1.3Sv as our observational error estimate. We note, however, that we are not utilising the860

maximum northward volume transport estimate directly but are accumulating differing depths of the streamfunction profile.

This might lead to the error-estimate being imprecise.
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Appendix B: Streamfunction values for our CMIP5 ensemble

Several of the here considered models did not provide the Atlantic Meridional Overturning Circulation to the CMIP5 database.

Therefore, we utilised AMOC streamfunction values calculated with monthly mean meridional currents as described in Meck-865

ing et al. (2017).
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Figure 1. Illustration of two emergent constraints of the future North Atlantic Cant∗-uptake, both considering an ensemble of 11 CMIP5-

models under a high CO2 future. The color-coding of the ensemble is indicated in the legend. Panels (a,b,d) illustrate the temporal
:::::::
Temporal

evolution in
:
(10-year running averages)

:
for the (a) North Atlantic Cant∗-uptake (predictandY),

:
.
:::::::
Projected

:::::
North

::::::
Atlantic

:::::::::::
Cant∗-uptake

::
for

:::
the

::::
years

:::::::::
2090-2099

::::::
against (b)

::
the

:
mid-to-high latitude (35.5◦N-75.5◦N) winter pCOsea

2 -anomaly
:
,
::::::::
1990-1999

:
(predictor X1:

1) and

its observational estimate (black error-bar in year 1995), (d) fraction of the North Atlantic Cant∗ stored below 1000m
:::
1000

:::
m depth

:
,

::::::::
1997-2007

:
(predictor X2) and its observational estimate (black error-bar in year 2002

:
2). Panels (c

:
b,e

:
c)

::::::::::
Scatter-plots

::
of

:::::
model

::::::
results

::::
(color

::::::
coding

::
of

::::::
models

:::::::
indicated

::
in
::::::

legend)show scatter-plots, best fit linear regression , and cross-correlations between
::::
(grey

::::::
dashed

::::
lines)

:::::::
including

:
the predictors during

:::::
interval

::
of

:
the

::::
68%

::::::::
projection

::::::::
uncertainty

:::::
(grey

::::::
shading)

::
as
::::
well

::
as

:
observational period

::::::::
constraints

:::
and

::::
their

:::::::::
uncertainties

:
(1990-1999 for X1 ::::

brown
::::::
dashed

::::
lines and 1997-2007 for X2:::

light
:::::
brown

:::::::
shading)

:
.
::::
(c,e)

::::
Prior-

:
and future values

:::::::::::
after-constraint

::::::::
probability

::::::
density

:::::::
functions

:::
and

::::
their

::::::::
associated

:::
new

:::::::
estimates

:
of the predictand. Here,

:::::
future

::::
North

:::::::
Atlantic

::::::::::
Cant∗-uptake

::
for

:
the mean observational constraint and its uncertainty are indicated by black

:::
years

:::::::::
2090-2099 (box-)lines parallel to the y-axis, while

::
on

the observationally constrained mean value
::::
right

:::
side

:
of the predictand and its uncertainty range are indicated by black (box-

:::::
panels)lines

parallel to the x-axis. See Appendix A for a detailed description of the considered observational estimates.

Illustration of emergent constraints between different regionally optimised predictors and the future North Atlantic Cant∗-uptake

(predictand) for our model ensemble. All panels show scatter-plots, best fit linear regression, and cross-correlations between

the predictors during the observational period and future values of the predictand. Here, the mean observational constraints and880

their uncertainties (see appendix A) are indicated by (box-)lines parallel to the y-axis, while the observationally constrained

mean values of the predictand and their uncertainty ranges are indicated by (box-)lines parallel to the x-axis. Upper ocean
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Figure 2. Schematic illustration for the experimental set-up of our application of the genetic algorithm. The panels illustrate a) one iteration

of the algorithm, b) genes chosen to represent rectangles, ellipses, cuboids and ellipsoids as well as c) visualisation of a crossover for a

population of rectangles.

predictors are visualised in the top panels including the winter pCOsea
2 -anomaly for different optimal areas (panels a-b, years

1990-1999) and the upper ocean northward volume transport (panel c, years 2005-2014). Bottom panels show water-column

and deep ocean predictors, that is the fractional Cant∗-storage (panels d-e, years 1997-2007) and the deep ocean southward885

volume transport (panel f, years 2005-2014). In panels a-b and d-e, different sizes of the optimal areas are indicated with

numbers (1: area-size of 10-20% and 3: area-size of 30-40% of the considered area) and associated coloring (coral lines for

the smaller area and grey lines for the larger areas). Model-results are visualised via dots, following the same color code as the

associated observational constraints.
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Figure 3. Iteration (population) versus cross-correlations for our application of the genetic algorithm. The correlation coefficients are calcu-

lated between contemporary values of the predictor within the regions identified by the genetic algorithm and future values of the predictand.

:::::::
Illustrated

:::
are

:::
the

::::::::
individuals

::::
with

::
the

::::::
highest

::::::::::::
cross-correlation

::
of

::::
each

::::::::
population

::::
(i.e.,

:::
per

:::::::
iteration). The color-coding of the lines point to-

wards the shapes
:::
area

:
and

:::::
volume sizes that characterise these regions. Continuous/dashes lines identify the individual with the highest/lowest

cross-correlation of each population, dotted lines identify the mean cross-correlation of each population
:::::::
identified

::::::
regions. The green

:::
gray

lines illustrates
:::::::
illustrate the cross-correlation without regional optimisation of the predictor.
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Figure 4. Contemporary winter pCOsea
2 -anomaly and associated optimal regions as identified by the genetic algorithm. For the contemporary

winter pCOsea
2 -anomaly of our considered model-ensemble, panel (a) illustrates the multi-model mean, while panel (b) displays the multi-

model standard deviation. Panels (c,d) display the optimal regions identified by the genetic algorithm on top of the multi-model standard

deviation
::::
(here

::::
with

::
an

:::::
added

::::::::::
transparency

::
of

:::::
70%) with non-eligible points colored in different shades of blue (separated with a black

contour line in panel (b)). Optimal regions are visualised according to shapes, with panel (c) visualising rectangles and panel (d) visualising

ellipses. The color-coding of the lines indicate different area-conditions that were imposed on the optimal areas (black
:::
dark

:::
lilac

:
lines: area-

size of 10-20%, blue
::::
light

:::
lilac

:
lines: area-size of 20-30% and green

::::
pink lines: area-size of 30-40% of the surface of the North Atlantic).
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Figure 5.
::::::::
Illustration

::
of

:::::::
emergent

:::::::::
constraints

::::::
between

:::::::
different

::::::::
realisations

::
of
:::

the
::::::::
regionally

:::::::
optimised

::::::
winter

:::::::::::::
pCOsea

2 -anomaly
::::::::
(predictor)

::
for

:::
the

::::
years

::::::::
1990-1999

:::
and

:::
the

:::::
future

::::
North

::::::
Atlantic

:::::::::::
Cant∗-uptake

:::::::::
(predictand)

::
for

:::
the

::::
years

::::::::
2090-2099

:::
for

:::
our

:::::
model

:::::::
ensemble.

::::::::
Emergent

::::::::
constraints

:::
for

::::::
optimal

::::::
regions

::
of

::::::
different

:::::::
area-size

:::::::::
conditions

::
in

::::
shape

::
of
::::::::

rectangles
:::

are
::::::::
visualised

::
in

:::
the

:::
top

:::::
panels

::::
(R1:

:::::::
10-20%,

:::
R3:

::::::
30-40%

::
of

:::
the

::::::::
considered

:::::
area),

:::::
while

::::
those

::
in
:::::

shape
::
of
::::::

ellipses
:::

are
::::::::

visualised
::

in
:::

the
::::::

bottom
:::::
panels

::::
(E1:

:::::::
10-20%,

:::
E3:

:::::::
30-40%

::
of

:::
the

::::::::
considered

::::
area).

:::
All

:::::
panels

:::::
show

:::::::::
scatter-plots

:::::
(color

:::::
coding

::
of

::::::
models

::
as

::
in

:::::
Figure

:::
1),

:::
best

::
fit

:::::
linear

::::::::
regression

::::::
(R1/E1:

:::
lilac

::::
line,

::::::
R3/E3:

:::
pink

::::
line)

:::::::
including

:::
the

::::::
interval

::
of

:::
the

::::
68%

:::::::
projection

:::::::::
uncertainty

::::::
(R1/E1:

::::
lilac

::::::
shading,

::::::
R3/E3:

::::
pink

:::::::
shading),

:::::::::::::
cross-correlations

:::::::
between

:::::::
simulated

:::::::
predictor

:::
and

::::::::
predictand

:::
as

:::
well

::
as

:::::
mean

::::::::::
observational

::::::::
constraints

::::
and

:::
their

::::::::::
uncertainties

::::::
(brown

::::::
dashed

::::
lines

:::
and

::::
light

:::::
brown

:::::::
shading).

::::::::
Associated

::::::
estimate

:::
for

:::
the

::::::::::
unconstrained

:::::
model

:::::::
ensemble

:::::
(grey

:::::
dashed

::::
bars),

:::
the

::::::
original

:::::::
emergent

::::::::
constraint

::::
(grey

::::
bars)

:::
and

:::
the

:::::::
regionally

::::::::
optimised

:::::::
emergent

::::::::
constraint

::::::::
(lilac/pink)

:::
are

:::::
shown

::
on

:::
the

::::
right

:::
side

::
of

::
the

::::::
panels.

:::
See

::::::::
Appendix

:
A
:::
for

:
a
::::::
detailed

:::::::::
description

::
of

::
the

::::::::
considered

:::::::::::
observational

:::::::
estimates.
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Figure 6. Time series of cross-correlations between 10-year running averages of the simulated upper branch of the Atlantic Meridional

Overturning Circulation (AMOC) and the future North Atlantic Cant∗-uptake (2090s) for our model ensemble. The upper branch of the

AMOC is expressed as accumulated northward volume transport between surface and a lower depth boundary at a certain latitude. Panel (a)

shows results for 30◦N and a varying lower depth boundary, while panel (b) shows results for a lower depth boundary of 500m
:::
500

::
m and

varying latitudes.
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Figure 7. Contemporary fraction of the North Atlantic Cant∗ and associated optimal regions as identified by the genetic algorithm. For the

depth-integrated contemporary fraction of the North Atlantic Cant∗ of our considered model-ensemble, panel (a) illustrates the multi-model

mean, while panel (b) displays the multi-model standard deviation. Panels (c,d,e,f) display the optimal regions identified by the genetic

algorithm on top of the multi-model standard deviation
::::
(here

:::
with

:::
an

::::
added

::::::::::
transparency

::
of

::::
70%). Optimal regions are visualised according

to shapes, with panel (c) visualising cuboids with volume-sizes of 10-20% (black
:::
dark

::::
lilac lines), 20-30% (blue

::::
light

:::
lilac

:
lines) and 30-40%

(green
:::
pink

:
lines) of the North Atlantic. Panels (d,e,f) visualise ellipsoids of different volumes via illustration of their mid-points (black dots)

and outlines for the depth-planes 500-660m
::::::
500-660

::
m
:
(black lines

:::
line), 2500-2600m

::::::::
2500-2600

::
m

:
(
:::
long

:
dashed dark grey lines

:::
line) and

4500-4600m
::::::::
4500-4600

:
m
:

(dashed light grey lines
:::
line) and their depth-following principal axis (black line connecting the mid-points). In

panels (d,e), the midpoint of the surface plane is additionally illustrated.
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Figure 8.
:::::::
Illustration

:::
of

:::::::
emergent

::::::::
constraints

:::::::
between

:::::::
different

::::::::
realisations

::
of
:::

the
::::::::
regionally

::::::::
optimised

:::::::::::
Cant∗-fraction

::::::::
(predictor)

:::
for

:::
the

::::
years

::::::::
1997-2007

::::
and

:::
the

:::::
future

:::::
North

::::::
Atlantic

:::::::::::
Cant∗-uptake

:::::::::
(predictand)

:::
for

:::
the

::::
years

:::::::::
2090-2099

:::
for

:::
our

:::::
model

::::::::
ensemble.

::::::::
Emergent

::::::::
constraints

::
for

:::::::
optimal

:::::
regions

:::
of

::::::
different

::::::::::
volume-size

::::::::
conditions

::
in

::::
shape

::
of
:::::::

cuboids
::
are

::::::::
visualised

::
in

:::
the

:::
top

:::::
panels

::::
(C1:

:::::::
10-20%,

:::
C3:

::::::
30-40%

::
of

::
the

:::::::::
considered

:::::::
volume),

::::
while

:::::
those

:
in
:::::

shape
::
of

::::::::
ellipsoids

::
are

::::::::
visualised

::
in

:::
the

:::::
bottom

:::::
panels

::::
(E1:

:::::::
10-20%,

:::
E3:

::::::
30-40%

::
of

:::
the

::::::::
considered

:::::::
volume).

::
All

:::::
panels

:::::
show

:::::::::
scatter-plots

::::
(color

::::::
coding

::
of

:::::
models

::
as

::
in

:::::
Figure

::
1),

::::
best

::
fit

::::
linear

::::::::
regression

::::::
(R1/E1:

::::
lilac

:::
line,

::::::
R3/E3:

:::
pink

::::
line)

:::::::
including

:::
the

::::::
interval

::
of

:::
the

::::
68%

:::::::
projection

:::::::::
uncertainty

::::::
(R1/E1:

::::
lilac

::::::
shading,

::::::
R3/E3:

::::
pink

:::::::
shading),

:::::::::::::
cross-correlations

:::::::
between

:::::::
simulated

:::::::
predictor

:::
and

::::::::
predictand

:::
as

:::
well

::
as

:::::
mean

::::::::::
observational

::::::::
constraints

::::
and

:::
their

::::::::::
uncertainties

::::::
(brown

::::::
dashed

::::
lines

:::
and

::::
light

:::::
brown

:::::::
shading).

::::::::
Associated

::::::
estimate

:::
for

:::
the

::::::::::
unconstrained

:::::
model

:::::::
ensemble

:::::
(grey

:::::
dashed

::::
bars),

:::
the

::::::
original

:::::::
emergent

::::::::
constraint

::::
(grey

::::
bars)

:::
and

:::
the

:::::::
regionally

::::::::
optimised

:::::::
emergent

::::::::
constraint

::::::::
(lilac/pink)

:::
are

:::::
shown

::
on

:::
the

::::
right

:::
side

::
of

::
the

::::::
panels.

:::
See

::::::::
Appendix

:
A
:::
for

:
a
::::::
detailed

:::::::::
description

::
of

::
the

::::::::
considered

:::::::::::
observational

:::::::
estimates.
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Figure 9. Time series of cross-correlations between 10-year running averages of the simulated lower branch of the Atlantic Meridional

Overturning Circulation (AMOC) and the future North Atlantic Cant∗-uptake (2090s) for our model ensemble. The lower branch of the

AMOC is expressed as accumulated southward volume transport between a higher depth boundary and a lower depth boundary at a certain

latitude. Panel (a) shows results for 26◦N, a lower depth boundary at 4700m
:::
4700

::
m
:
and a varying higher depth boundary, while panel

(b) shows results for 26◦N, a higher depth boundary at 700m
:::
700

::
m

:
and a varying lower depth boundary and panel (c) for a higher depth

boundary at 700m
:::
700

::
m, a lower depth boundary at 4700m

::::
4700

::
m and varying latitudes.
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Table 1. Constrained estimates of the future North Atlantic Cant∗-uptake based on regionally optimised predictors. Listed are the predictors,

their realms (upper ocean: above 500m
:::
500

::
m, deep ocean: below 500m

:::
500

::
m depth) and considered time-frames as well as the associated

constrained estimates of the future North Atlantic Cant∗-uptake. Different sizes of the optimal areas are indicated with numbers (1: area-size

of 10-20%, 2: area-size of 20-30% and 3: area-size of 30-40% of the considered area).

predictor realm time-frame constrained Cant∗-upt.

δpCOsea
2 (Ellipse E1) upper ocean 1990-1999 0.72

:
±
:
0.31 PgC/yr

δpCOsea
2 (Ellipse E2) upper ocean 1990-1999 0.72

:
±
:
0.28 PgC/yr

δpCOsea
2 (Ellipse E3) upper ocean 1990-1999 0.77 ± 0.27 PgC/yr

δpCOsea
2 (Rectangle R1) upper ocean 1990-1999 0.72

:
±
:
0.30 PgC/yr

δpCOsea
2 (Rectangle R2) upper ocean 1990-1999 0.73

:
±
:
0.31 PgC/yr

δpCOsea
2 (Rectangle R3) upper ocean 1990-1999 0.79

:
±
:
0.29 PgC/yr

∆AMOC, 26N (0-500m
::::
26◦N

:::::
(0-500

::
m) upper ocean 2005-2014 0.74

:
±
:
0.18 PgC/yr

Cant∗-fraction (Ellipsoid E1) water column 1997-2007 0.78
:::
0.79 ±0.57

::::
0.44 PgC/yr

Cant∗-fraction (Ellipsoid E2) water column 1997-2007 0.74
:::
0.73 ±0.39

::::
0.36 PgC/yr

Cant∗-fraction (Ellipsoid E3) deep ocean
::::
water

::::::
column 1997-2007 0.63

:::
0.55 ±0.17

::::
0.18 PgC/yr

Cant∗-fraction (Cuboid C1) deep ocean 1997-2007 0.63
:
±
:
0.18 PgC/yr

Cant∗-fraction (Cuboid C2) deep ocean 1997-2007 0.62
:
±
:
0.17 PgC/yr

Cant∗-fraction (Cuboid C3) deep ocean 1997-2007 0.62
:
±
:
0.18 PgC/yr

∆AMOC, 26N (700-4700m
::::
26◦N

::::::::
(700-4700

::
m) deep ocean 2005-2014 0.57

:
±
:
0.20 PgC/yr
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Figure S3. Contemporary fraction of the North Atlantic Cant∗ multi-model mean for our considered model-ensemble. Panels (a-x) displays

results for different depth planes between surface and 2400m.
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Figure S4. Contemporary fraction of the North Atlantic Cant∗ multi-model mean for our considered model-ensemble. Panels (a-x) displays

results for different depth planes between 2400m and 4800m.
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Figure S5. Contemporary fraction of the North Atlantic Cant∗ multi-model standard deviation for our considered model-ensemble. Panels

(a-x) displays results for different depth planes between surface and 2400m.
:::::::::
Non-eligible

:::::
points

:::
are

::::::
colored
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in
:::::::
different

:::::
shades

::
of

::::
blue.
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Figure S6. Contemporary fraction of the North Atlantic Cant∗ multi-model standard deviation for our considered model-ensemble. Panels

(a-x) displays results for different depth planes between 2400m and 4800m.
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Non-eligible

:::::
points

:::
are

:::::
colored

::
in
:::::::
different

:::::
shades

::
of
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blue.
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