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Abstract. 8 

An Oceanic Regional Circulation and Tide Model (ORCTM) including the nonhydrostatic dynamics 9 

module which can numerically reproduce the Internal Solitary Waves (ISWs) dynamics, is presented in 10 

this paper. The performance of baroclinic tidal simulation is also examined in the regional modelling 11 

with the open boundary conditions. 12 

The model control equations are characterized with the three-dimensional and fully nonlinear forms 13 

considering incompressible Boussinesq fluid in Z-coordinates. The pressure field is decomposed into the 14 

surface, hydrostatic, and nonhydrostatic components on the orthogonal curvilinear Arakawa-C grid. The 15 

nonhydrostatic pressure determined by the intermediate velocity divergence field is obtained via solving 16 

a three-dimensional Poisson equation based on a pressure correction method. Model validation 17 

experiments for ISWs simulations with the topographic change in the two-layer and continuously 18 

stratified ocean demonstrate that ORCTM has a considerable capacity for reproducing the life cycle of 19 

Internal Solitary Waves evolution and tide-topography interactions. 20 

1. Introduction 21 

 Internal Waves (also called Internal Gravity Waves) activities have been observed frequently across 22 

the stratified ocean and play a significant role in the multiscale energy cascade (Mtfller, 1976). 23 

Observations reveal that the Internal Waves, especially the high-frequency Internal Solitary Waves, could 24 

contain significant potential energy with strong vertical shear, mixing, and wave breaking, leading to a 25 

dramatic change of the currents and density structures (Ramp et al., 2004; Vlasenko et al., 2010; Huang 26 

et al., 2016), violent overturning bringing sediment and nutrient from the seafloor to the surface (Wang 27 

et al., 2007), even irretrievable damages to some underwater vehicles (Duda et al., 2006) and deep-water 28 
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drilling (Osborne et al., 1978). Basically, astronomical tides passing the abrupt topography can cause the 29 

generation of baroclinic tides (also called internal tides, hereafter ITs) with multi-modal structures then 30 

capable of propagation, disintegration, and dissipation in the ocean (Vlasenko et al., 2005; 2010). The 31 

low-mode of baroclinic tides can travel thousands of kilometers with long horizontal wavelengths about 32 

ten of kilometers (Baines, 1982). Furthermore, the inclusion of nonlinear and nonhydrostatic effects 33 

permits the evolution of the Nonlinear Internal Waves (hereafter NIWs), even the Internal Solitary Waves 34 

(hereafter ISWs) derived from the steepening of low-mode internal tides as the consequence of the ever-35 

changing terrain and background stratification (Gerkema and Zimmerman, 1995; legg and Adroft, 2003).  36 

 Numerical ocean models are one of the most effective tools to study Internal Waves compared to 37 

theoretical methods, in-situ observations, and laboratory investigations. The ocean models with the 38 

hydrostatic balance approximation have been used to explore the regional circulation and tide dynamics 39 

across the stratified ocean. The hydrostatic balance manages to take the large-to-mesoscale scales into 40 

consideration due to the fairly high accuracy (Marshall et al., 1997b; Chen et al., 2003; Shchepetkin and 41 

McWilliams, 2005; Ko et al., 2008). However, In the hydrostatic balance scheme, omitting some essential 42 

terms in the vertical momentum equation results in the inapplicability of the nonhydrostatic dynamics 43 

(Lai et al., 2010). For example, the subsequent steepening of the internal tides and the later high-44 

frequency nonlinear ISWs forming cannot be depicted by a hydrostatic modelling where only internal 45 

jumps are formed but no soliton appears (Li, 2010), because the strong vertical current with its order of 46 

magnitude equals the horizontal one via the scale analysis method (Marshall et al., 1997a). In other words, 47 

the three-dimensional Navier-Stokers equations should be considered thoroughly. It is indispensable for 48 

simulating the nonlinear and large amplitude ISWs to develop a nonhydrostatic ocean model in 49 

consideration of nonhydrostatic dynamics.  50 

 A robust ocean model with nonhydrostatic dynamics realizations should satisfy two requirements 51 

synchronously at least: 1) The high enough accuracy of meso-to-big scales simulation must be under 52 

guarantee, such as large-scale wind-induced circulation and mesoscale eddies reconstructed and mainly 53 

influenced by the hydrostatic balance; 2) Meanwhile, it is the concerned small-meso scales with the 54 

higher spatial and temporal resolution that are resolved finely under the nonhydrostatic balance, for 55 

instance, there is the simulation being able to describe the cradle-to-grave process for the tide-topography 56 

interactions, the dispersive effects and nonlinear steepening of baroclinic tides, and the breaking and 57 

dissipation of strong nonlinear ISWs. The nonhydrostatic simulation can apply to the small-to-big scales 58 
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across the stratified ocean simultaneously, which is identified as one of the main directions for research 59 

and development of the nonhydrostatic ocean model. In reality, there have been some nonhydrostatic 60 

ocean models or ones considering nonhydrostatic dynamics coming out in the past decades, such as 61 

MITgcm (Marshall et al., 1997a;1997b;1998), SUNTANS (Fringer et al., 2006), and ROMS (Kanarska 62 

et al., 2007). All above have been used to realize a series of two or three-dimensional nonhydrostatic 63 

numerical studies, including the instability of small-scale flows in the laboratory experiment (Lai et al., 64 

2010; Li et al., 2022), Internal Solitary Waves in the continental shelves (Vlasenko et al., 2010, Zeng et 65 

al., 2019) and the hydraulic Lee wave around the seamount (Kanarska et al., 2007; Liu et al., 2016). 66 

Nevertheless, the primary reason why there is still no widespread use for the nonhydrostatic ocean model 67 

is that the nonhydrostatic solution to an extensive sparse linear equation is too demanding to solve 68 

directly for the 3-D oceanic environment. That usually demands large amounts of iteration times, fast 69 

convergent speed, and PC storage occupation. For this reason, Ai and Ding (2016) employed a novel 70 

model grid arrangement to render the sparse linear equation discretized form simpler to solve where the 71 

bottom-fitted coordinate ensures the homogeneous boundary condition. Moreover, the numerical errors 72 

can be avoided via the immersed boundary method to treat uneven bottoms in the calculation of the 73 

baroclinic pressure force (Ai et al., 2021). Generally, whether the boundary conditions are matched with 74 

the whole nonhydrostatic algorithm can shape the performance of complex nonhydrostatic dynamics in 75 

the regional ocean model. In addition, the different kinds of sub-grid parameterization schemes have a 76 

profound impact on the model performance with a necessity for appropriate ones to be assessed, and 77 

most of these model codes are seldom shared or of open source. Supposing we develop a nonhydrostatic 78 

ocean model based on an original hydrostatic framework model. In that case, the nonhydrostatic 79 

dynamics module should involve a complete vertical momentum equation. Some terms associated with 80 

the vertical velocity are required to be complemented simultaneously in the other equation. Besides, 81 

based on the idea of the fractional step method (Press et al., 1988; Armfield and Street, 2002), the total 82 

pressure is to be decomposed into hydrostatics and nonhydrostatic components (Marshall et al., 1997a; 83 

Lai et al., 2010). The former corresponds to the result of hydrostatic balance, and the divergence for 84 

intermediate velocity limits the latter to correct the local velocity fields called the “pressure correction” 85 

method (Stansby and Zhou, 1998; Fringer et al., 2006; Kanarska et al., 2007; Lai et al., 2010). With these 86 

methods, the nonhydrostatic dynamics simulation can be fulfilled economically comparatively in 87 

harmony with the original physical framework as an extension of the hydrostatic ocean model. 88 
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 In this context, we have implemented the nonhydrostatic dynamic algorithm into an Oceanic 89 

Regional Circulation and Tide Model (hereafter ORCTM) and demonstrated its capability and 90 

performance of reproducing the life cycle of nonlinear internal solitary waves in distinct hydrodynamic 91 

environments. The rest of the paper is organized as follows. In Section 2, the basic framework of ORCTM 92 

including control equations, open boundary conditions, and nonhydrostatic algorithms is described. In 93 

Section 3, a series of numerical validation experiments results are presented, aiming at the simulation of 94 

the overall processes of the internal solitary waves. In the last section, we have some further discussions 95 

and come to conclusions. 96 

2. Model Development 97 

The Max Planck Institute Ocean Model (MPI-OM) is a global ocean circulation and tide model based 98 

on the ocean primitive equations discretized on the orthogonal curvilinear Arakawa-C grid with 99 

hydrostatic balance approximation (Marsland et al., 2003; Chen et al., 2005). Rooted from MPI-OM, in 100 

this paper, an oceanic regional circulation and tide model (ORCTM) has been developed to realize the 101 

simulation for nonhydrostatic internal solitary waves modelling, which will be referred to hereafter as 102 

ORCTM version 1.0. The z-level grid applied has the partial filled cell capability to adjust the distance 103 

of the vertical grid on seabed for fitting into the realistic terrain, and the tidal forcing flow can be 104 

implemented via a relaxation scheme at the open boundary with an area of sponge layers. It is under the 105 

laws of the Boussinesq, rotating and fully nonlinear Navier–Stokes fluid that ORCTM can be used to 106 

reproduce and explore the nonhydrostatic dynamics such as large-amplitude ISWs, nonlinear tidal 107 

internal waves, and downwelling and upwelling processes of real oceans. 108 

2.1. Control Equations 109 

The three-dimensional ocean primitive control equations involve the momentum, continuity, 110 

potential temperature, salinity, and density equations given as follows. 111 

𝜕𝑢
𝜕𝑡 + 𝑢

𝜕𝑢
𝜕𝑥 + 𝑣

𝜕𝑢
𝜕𝑦 + 𝑤

𝜕𝑢
𝜕𝑧 − 𝑓𝑣 + 𝑓

,𝑤 = −
1
𝜌!
𝜕𝑃
𝜕𝑥 − 𝑔

𝜕𝜍
𝜕𝑥 + 𝐹"# + 𝐹$# +ℱ# (1) 

𝜕𝑣
𝜕𝑡 + 𝑢

𝜕𝑣
𝜕𝑥 + 𝑣

𝜕𝑣
𝜕𝑦 + 𝑤

𝜕𝑣
𝜕𝑧 + 𝑓𝑢 = −

1
𝜌!
𝜕𝑃
𝜕𝑦 − 𝑔

𝜕𝜍
𝜕𝑦 + 𝐹"% + 𝐹$% +ℱ% (2) 

𝜕𝑤
𝜕𝑡 + 𝑢

𝜕𝑤
𝜕𝑥 + 𝑣

𝜕𝑤
𝜕𝑦 + 𝑤

𝜕𝑤
𝜕𝑧 − 𝑓

,𝑢 = −
1
𝜌!
𝜕𝑃
𝜕𝑧 −

𝜌
𝜌!
𝑔 + 𝐹"& + 𝐹$& +ℱ& (3) 
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𝜕𝑢
𝜕𝑥 +

𝜕𝑣
𝜕𝑦 +

𝜕𝑤
𝜕𝑧 = 0 (4) 

𝜕𝜃
𝜕𝑡 + 𝑢

𝜕𝜃
𝜕𝑥 + 𝑣

𝜕𝜃
𝜕𝑦 + 𝑤

𝜕𝜃
𝜕𝑧 = 𝐹"' + 𝐹$' + 𝑄' (5) 

𝜕𝑆
𝜕𝑡 + 𝑢

𝜕𝑆
𝜕𝑥 + 𝑣

𝜕𝑆
𝜕𝑦 + 𝑤

𝜕𝑆
𝜕𝑧 = 𝐹"( + 𝐹$( + 𝑄) (6) 

𝜌 = 𝜌(𝜃, 𝑆, 𝑃) (7) 

In the local cartesian framework of reference on the rotating earth for a geophysical flow, t is the 112 

time; 𝜕 𝜕𝑡⁄  is the time partial derivative; 𝑥, 𝑦 and 𝑧 axes direct eastward, northward, and upward 113 

respectively; The horizontal velocity vector is 𝒖𝒉 = (𝑢, 𝑣) ; 𝑤  is the vertical velocity. With the 114 

linearized kinematic boundary condition and the fresh water forcing term 𝑄+ from the evaporation and 115 

precipitation (Marsland et al., 2003), the free surface elevation equation can be proposed as follows. 116 

𝜕𝜍
𝜕𝑡 = −𝛻, ∙ @ 𝒖$𝑑𝑧

+

-$
+ 𝑄+ (8) 

𝜍  is the change of the free surface elevation; 		𝑃, 𝜃, and 𝑆  are pressure, potential temperature and 117 

salinity; 𝜌!  is the reference density of sea water. The first and second Coriolis parameters are	𝑓 =118 

2Ω sin𝜑 and 𝑓, = 2Ω cos𝜑, where Ω is the rotational angular speed and 𝜑 is the geographic latitude. 119 

∇$  is the horizontal divergence operator; 𝑄'  and 𝑄)	 are source or sink terms about potential 120 

temperature and salinity. The equation of seawater state is the polynomial form for the density 	𝜌 121 

advocated by the Joint Panel on Oceanographic Tables and Standards (Fofanoff and Millard, 1983). The 122 

additional forcing term vector 𝓕 = Mℱ# , ℱ%, ℱ&N can consider tidal potential forcing. The horizontal eddy 123 

viscosity vector is	𝑭$ = M𝐹$# , 𝐹$%, 𝐹$&N described with the scale-dependent biharmonic formulation 124 

(Wolff et al., 1997; Marsland et al., 2003), and the horizontal diffusivity terms of temperature and salinity 125 

are 𝐹$' and 𝐹$(	supporting the harmonic forms. Besides, the vertical eddy viscosity vector is	𝑭" =126 

M𝐹"# , 𝐹"%, 𝐹"&N and eddy diffusivity terms are 𝐹"' and 𝐹"(. Here, the vertical eddy turbulent frictions 127 

are specified to depend on the Richardson number 𝑅𝑖 via the modified PP81 parameterization scheme 128 

(Pacanowski and Philander, 1981). The viscous terms all above are expressed as  129 

𝑭$ = −∇, ∙ (𝐵$∇,∆𝒖), 			𝑭" =
𝜕
𝜕𝑧 T𝐴"

𝜕𝒖
𝜕𝑧V (9) 

𝐹.$ = 𝐷$∆𝛾, 					𝐹." =
𝜕
𝜕𝑧 T𝐷"

𝜕𝜒
𝜕𝑧V , 𝜒 = 𝜃, 𝑆 (10) 

𝐴"/01 = (1 − 𝜆)𝐴"/ + 𝜆(𝐴"2(1 + 𝛼 ∙ 𝑅𝑖)-3 + 𝐴4 + 𝐴5) (11) 

𝐷"/01 = (1 − 𝜆)𝐷"/ + 𝜆(𝐷"2(1 + 𝛼 ∙ 𝑅𝑖)-6 +𝐷4 +𝐷5) (12) 
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𝑅𝑖 =
𝑁(𝑧)3

(𝜕𝑢 𝜕𝑧⁄ )3 + (𝜕𝑣 𝜕𝑧⁄ )3 (13) 

where ∆= ∇, ∙ ∇, is the horizontal Laplace operator; 𝐵$ and 𝐷$ are parameterized with the horizontal 130 

grid resolution; 𝑁(𝑧) is the buoyancy frequency. 𝐴"/01 and 𝐷"/01 are updated on formulas (11) and (12) 131 

with the time relaxation coefficient λ at every time step. Apart from the background viscous coefficients 132 

𝐴5 and 𝐷5 due to internal waves breaking, the modified PP81 scheme also considers the wind-induced 133 

turbulent coefficients 𝐴4  and 𝐷4  associated with the local mixed layer depth and 10m wind speed 134 

(Marsland et al., 2003). Here, the constant number α is set to be 5. And the adjustable parameters 𝐴"2 135 

and 𝐷"2 can be determined by estimating energy flux at every grid point. As for the boundary condition, 136 

the slip conditions are specified at surface and bottom boundaries where the wind stress τw is based on 137 

the model input, and the bottom drags τb are described by linear and quadratic functions (Arbic and Scott, 138 

2008). The top and bottom boundary conditions can be written as 139 

𝝉4 𝜌!⁄ = 𝐴"
𝜕𝒖𝒉
𝜕𝑧 |&7+ ,											𝝉5 𝜌!⁄ = 𝐴"

𝜕𝒖𝒉
𝜕𝑧 |&7-$ = _𝛾 + 𝐶𝑑`𝑢3 + 𝑣3a 𝒖𝒉 (14) 

Where 𝛾 and 𝐶8  are the bottom friction and drag coefficients representing the linear and quadratic 140 

relation expressions, respectively.  141 

2.2. Settings of Open Boundary Condition 142 

It is fundamental for the regional model to be configured by an open boundary condition that avoids 143 

reflection waves effectively so that the outward waves can freely flow through the boundaries. 144 

Meanwhile, external inputs such as tidal waves can stably force the model domain through the boundaries, 145 

satisfying the need for consistency in hydrodynamics and computational mathematics. Here, we use the 146 

relaxation boundary conditions with sponge layers consulting Zhang et al. (2011) that can dampen the 147 

reflection waves back into the interior domain and refrain from the sharp gradients of water properties 148 

caused by the prescribed values on the boundaries. Specifically, we add a relaxation term 𝑀(𝑥, 𝑦, 𝑧, 𝑡) 149 

formularized with the exponential function in the specified sponge zones. At each time step, the model 150 

variables are updated with an explicit scheme expressed as 151 

𝑀(𝑥, 𝑦, 𝑧, 𝑡) = −d
𝑚(𝑥, 𝑦, 𝑧, 𝑡) − 𝑚5(𝑥, 𝑦, 𝑧, 𝑡)

𝜏 g ∙ 𝑒-9 ,			𝑚 = 𝑢, 𝑣, 𝑤, 𝜃, 𝑆 (15) 

𝑚 = (1 − 𝛽)𝑚∗ + 𝛽𝑚5 , 𝛽 =
∆𝑡𝑒-9

𝜏 , 𝛿 =
4𝑟(𝑥, 𝑦)
𝐿);

 (16) 

In the formulas (15) and (16), 𝑚5	is the boundary value of requisite model variable including 152 
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velocity, potential temperature, and salinity; 𝑚	is the corresponding relaxation result in the interiors; 153 

𝑚∗	is the intermediate variable; 𝑟	is the distance from the boundary; ∆𝑡 is the model time step. Here, it 154 

should be noted that	𝜏	and	𝐿);	are artificially prescribed adjustment parameters referring to the time-155 

scale coefficient and the thickness of the sponge relaxation layers. The model target variables over the 156 

sponge layer will relax exponentially to the boundary values through the relaxation term, where 157 

relaxation is modulated by	𝜏	and	𝐿);	in the exponential shape. To restrain the reflection of outflow 158 

current, 𝜏	and	𝐿);	need to be determined in advance via estimating the energy flux of internal signals 159 

through the boundaries. This open boundary relaxation condition is suitable for the numerical study of 160 

the large-amplitude ISWs so that the outward strong, nonlinear, and nonhydrostatic wave and current 161 

signals will dampen gradually. 162 

2.3. Implement of Nonhydrostatic Algorithms 163 

 According to the momentum equations (1) to (3), the total pressure P consists of sea surface 164 

pressure	𝑝), hydrostatic pressure	𝑝,, and nonhydrostatic pressure 𝑝/, given as follows. 165 

𝑃 = 𝑝)(𝑥, 𝑦) + 𝑝,(𝑥, 𝑦, 𝑧) + 𝑝/,(𝑥, 𝑦, 𝑧) (17) 

𝜕𝑝,
𝜕𝑧 = −𝜌𝑔 (18) 

It is negligible for the change of sea surface pressure term		𝑝)	to impact on the water column if the 166 

external atmospheric forcing is excluded. Hydrostatic pressure	𝑝,	can be calculated from the hydrostatic 167 

balance equation (18), and the vertical momentum equation (3) at this stage becomes 168 

𝜕𝑤
𝜕𝑡 = −

1
𝜌!
𝜕𝑝/,
𝜕𝑧 +

𝜕
𝜕𝑧 T𝐴"

𝜕𝑤
𝜕𝑧V − ∇, ∙

(𝐵$∇,∆𝑤) + 𝑓,𝑢 − 𝒖 ∙ (∇ ∙ 𝑤) (19) 

Where the left term refers to the local time rate of change, and the right term is the sum of the other forces 169 

without the additional forcing term vector. Compared with Eq. (18), the vertical momentum equation (19) 170 

can be also called nonhydrostatic balance equation. Furthermore, with the idea of the fractional step 171 

method (Press et al., 1988; Kanarska et al., 2007), the intermediate velocity field 𝒖o = (𝑢p, 𝑣p, 𝑤o) will be 172 

updated via the nonhydrostatic pressure 𝑝/,/  gradients, which can be obtained via the Eqs. (20) to (22) 173 

discretized as follows. 174 

𝑢p − 𝑢/

∆𝑡 = −𝐺# −
1
𝜌!
𝜕𝑝/,/

𝜕𝑥  (20) 

𝑣p − 𝑣/

∆𝑡 = −𝐺% −
1
𝜌!
𝜕𝑝/,/

𝜕𝑦  (21) 



 8 

𝑤o −𝑤/

∆𝑡 = −𝐺& −
1
𝜌!
𝜕𝑝/,/

𝜕𝑧  (22) 

Where the superscript n means the current time step and the vector	𝑮 = M𝐺# , 𝐺%, 𝐺&N	represents the sum 175 

of advection term, Coriolis term, eddy viscosity term, and hydrostatic pressure gradients term. The 176 

discretized partial equations (23) to (25) are established subsequently under the relationship between the 177 

nonhydrostatic pressure perturbation 𝑝/,<  gradients and the next time step	n+1 velocity field. Then 178 

nonhydrostatic pressure at next time step		is defined as equation (26) in the light of the pressure correction 179 

method. To acquire nonhydrostatic pressure perturbation the continuity equation (4) needs to be 180 

substituted into Eqs. (23) to (25) to eliminate the following time step n+1 velocity field with the three-181 

dimensional Poisson equation (27) left, which demonstrates that the nonhydrostatic pressure depends on 182 

the vanishes of the divergence‐free velocity fields. 183 

𝑢/01 − 𝑢p
∆𝑡 = −

1
𝜌!
𝜕𝑝/,<

𝜕𝑥  (23) 

𝑣/01 − 𝑣p
∆𝑡 = −

1
𝜌!
𝜕𝑝/,<

𝜕𝑦  (24) 

𝑤/01 −𝑤o
∆𝑡 = −

1
𝜌!
𝜕𝑝/,<

𝜕𝑧  (25) 

𝑝/,/01 = 𝑝/,/ + 𝑝/,<  (26) 

The Poisson equation (27) can be discretized into a linear matrix Eq. (28) where the right-hand side 184 

𝑩 is determined by the divergence of the intermediate velocity field. The adjoint matrix A represents the 185 

discrete three-dimensional Laplacian operator with a size of the number of model cells. Their specific 186 

discrete processes are introduced in Appendix A.  187 

𝜕3𝑝/,<

𝜕𝑥3 +
𝜕3𝑝/,<

𝜕𝑦3 +
𝜕3𝑝/,<

𝜕𝑧3 =
𝜌!
∆𝑡 (

𝜕𝑢p
𝜕𝑥 +

𝜕𝑣p
𝜕𝑦 +

𝜕𝑤o
𝜕𝑧 ) 

(27) 

𝑨𝑝/,< = 𝑩		 (28) 

∇𝑝/,< ∙ 𝒏 = 0		 (29) 

The proper boundary conditions need to be given to solve this Poisson equation (27). Here, the 188 

homogeneous Neumann boundary condition at the solid boundaries, also called the Zero-gradient 189 

condition (29), is used with good compatibility with the no flux normal to slope, where 𝒏 is the normal 190 

unit vector (Marshall et al., 1997a). We assume that nonhydrostatic dynamic processes are weak enough 191 

at the sea surface and open boundaries. In other words, the input signals through the boundaries are 192 

dominantly hydrostatic with nonhydrostatic pressure perturbation close to zero. The nonhydrostatic 193 
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dynamic framework is restricted to the interiors. Hence, the Zero-gradient condition is utilized to hold 194 

back sharp nonhydrostatic pressure gradients at the open boundaries. With the above boundary conditions, 195 

this linear system (28) can be solved via the Krylov subspace method with PETSc's assistance on parallel 196 

computers under the standard MPI-based framework (Balay et al., 2020). Besides, a highly efficient 197 

method need to be devised to precondition the huge and sparse matrix A. Here, the multigrid 198 

preconditioner (Smith et al., 1996) and flexible generalized minimal residual algorithm (Saad, 1993) are 199 

employed in numerical validation experiments in this paper to minimize computational costs. 200 

3. Model applications and assessments 201 

 In this section, we present a series of ideal numerical validation experiments to explore the 202 

correctness and compatibility of nonhydrostatic algorithms together with ORCTM. In allusion to the 203 

internal solitary wave dynamics, these test cases range from laboratory-scale cases in an enclosed tank 204 

to field-scale ones like the northern South China Sea with open boundaries. The first case is the lock-205 

exchange problem as the preliminary validation. The second to fourth cases are designed to explore the 206 

nonlinear evolution of internal solitary waves induced by their interactions with the changing terrain. 207 

The last one is the generated nonlinear internal waves case in a double-ridge environment analogous to 208 

the Luzon Strait, which aims at the generation and disintegration of nonlinear internal waves to examine 209 

the effectivity of open tidal forcing condition module under the nonhydrostatic algorithms. Analyses of 210 

all test experiments above indicate that ORCTM can reproduce nonlinear and nonhydrostatic internal 211 

solitary waves in different oceanic environments, which exhibits the robustness and reliability of this 212 

nonhydrostatic ocean model. 213 

3.1. The lock-exchange problem 214 

 When the shear currents flow between the two different density fluids, the Kelvin-Helmholtz 215 

instability (hereafter K-H instability) will appear to cause turbulent diapycnal mixing (Lawrence et al., 216 

1991; Cushman-Roisin, 2005). The perturbation on the interface gradually develops and stimulates 217 

numerous small eddies due to energy dissipation. The magnitude order of vertical flow is comparable to 218 

the horizontal one so the nonhydrostatic effect matters throughout the whole process. We set a rectangle 219 

enclosed tank separated by a vertical board in the middle at the x-axis origin. Both sides of the tank are 220 
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separately filled with two different density fluids in Fig. 1a. The gravitational adjustment will proceed 221 

when the central board is disengaged just like a lock gate. Here, we refer to the previous configurations 222 

(Härtel et al., 2000; Fringer et al., 2006; Lai et al., 2010) as a 2-D problem. The horizontal length L is set 223 

to 50 cm, and the static water height is 10 cm without topographic change in the tank. The grid resolution 224 

is 0.001 m in horizontal and vertical directions. Several sensitivity experiments were explored to reduce 225 

the dissipations out of solid boundary friction, so the bottom friction coefficients are finally set to zero; 226 

both 𝐴"2 and 𝐷"2 in formulas (11) and (12) are 2×10-6 m2 s-1. Besides, water density averages are 227 

calculated based on the prescribed salinity difference on the left and right sides of the tank 𝜌= = 1023.05 228 

kg m-3 and 𝜌> = 1026.95 kg m-3. 229 

 230 

Figure 1. (a) The initial density 𝜎 (hereafter the same expression) field of the lock-exchange case, and 231 

their contour plots of density at t = 4.5 s where the contour interval is 0.1 kg m-3 under the hydrostatic 232 

(a) and nonhydrostatic (b) model framework. 233 

 The K-H instability process grows rapidly with good eddies reconstruction and outstanding waves 234 

breaking. In contrast in that model configuration, we also run the same configuration experiment above 235 

but under the hydrostatic balance scheme. Figures 1b and 1c show the results of density 𝜎 (define 𝜎 =236 

𝜌 −1000 kg m-3) at the same time under the hydrostatics and nonhydrostatic balance framework. The 237 

comparison proves that the K-H instability cannot proceed resulting from the inapplicability of the 238 

hydrostatics balance. The perturbation on the density interface is so tiny that the density fronts cannot 239 

evolve in the upper and lower layer, so the mixing caused by the overturning and shear is too weak to be 240 

seen. On the contrary, via the nonhydrostatic scheme, the eddies can proliferate with energy dissipation 241 
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due to the associated shear on the perturbation, vigorously mixing the high and low-density water on the 242 

interface. More specifically, the energy is transmitted to the small-scale eddies across the density fronts 243 

due to dispersion and nonlinearity.  244 

The evolution process of K-H instability is shown in Fig. 2. It is out of gravitational adjustment that 245 

the density fronts movement accompanies with the heavy water in the bottom and light one in the upper 246 

moving to the left and right, respectively, causing a velocity shear field and clockwise rotating interface 247 

in Fig. 2a. The shear strength gradually increases until breaking the critical point of restoring force that 248 

depends on the density gradient, and later a series of eddies grow from the middle to both sides of the 249 

tank with the turbulent rolling and overturning. These eddies mix the water body with high density at the 250 

bottom and the upper one with low density, forming multiple considerable density mixing areas in Figs. 251 

2b and 2c. When the bottom density flow is reflected on the left wall, the similar adjustment process 252 

begins to develop in reverse of Figs. 2d and 2e, but the strength of subsequent eddies is significantly 253 

weakened due to energy dissipation. 254 

 255 

Figure 2. Density field evolution at t = (a) 5.0, (b) 7.5, (c) 10.0, (d) 12.5, and (e) 15.0 s  256 

These density distributions display the generation of density fronts and numerous eddies throughout 257 

the gravitational adjustment process. Based on the point of energy dynamics, the gravitational potential 258 

energy (PE) is converted to the kinematical energy (KE) for the water parcel, while the total energy 259 

dissipates continuously in the tank. Here, KE and PE of the entire 2-D tank are calculated from the 260 



 12 

following formulas. 261 

𝐾𝐸 = @ @
1
2𝜌
(𝑢3 +𝑤3)𝑑𝑥𝑑𝑧

+

-$

?

2

 (30) 

𝑃𝐸 = @ @𝜌𝑔𝑧𝑑𝑥𝑑𝑧

+

-$

?

2

 (31) 

The three curves show the fluctuation of PE, KE, and total energy during the K-H instability 262 

simulation in Fig. 3. The PE and KE correspond to the maximum and zero due to the initial density 263 

distribution and static field in Fig. 3a. Afterward, the PE declines sharply with an opposite change of KE. 264 

Both rates of change are almost the same based on the curve slopes, which demonstrate that PE is 265 

converted to KE, reaching mutual peaks of about 9.5 s at the end of the first gravitational adjustment. 266 

From then on, both of them still maintain the opposite trends with an oscillation of roughly 25 s. It is 267 

worth noting that all kinds of energy exhibit a downward trend with their oscillation period increasing 268 

steadily due to energy dissipation so that KE will drop to zero and PE and total energy (PE+KE) will 269 

reach the constant in the end. The results above are equivalent to the previous works (Harel et al., 2000; 270 

Fringer et al., 2006; Lai et al., 2010), implying the correctness of the nonhydrostatic dynamic module.  271 

 272 

Figure 3. (a) The timeseries of the kinematical (red dashed line), potential (blue solid line) energy, and 273 

(b) the same as total (black dotted line) energy (units: kg m2 s-2). 274 
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3.2. Internal Solitary Wave in a tank 275 

 Internal solitary wave activities are ubiquitous in the ocean with strong nonlinearity and 276 

nonhydrostatic effect. Laboratory experiments are usually carried out to study the ISWs to make up for 277 

the defects of field observations. The numerical ISWs experiment in a laboratory-scale background needs 278 

to be combined simultaneously (Grue et al., 2000). We follow the previous experimental configuration 279 

(Ma et al., 2019). A schematic diagram of the ISW experiment is given in Fig. 4. The tank length is 2.0 280 

m with the x-axis origin located on the left; the static height is 10 cm without topographic change; the 281 

horizontal and vertical resolutions are 2×10-3 and 1×10-3 m; both bottom friction and drag coefficients 282 

are set to 3×10-3 with the effect of a fairly robust friction to the ISW; 𝐴"2	and	𝐷"2	are same as the 283 

experiment configuration in section 3.1. Here, a gravity collapse method is used to generate the 284 

depression ISW. Specifically, the low- and high-density fluids initially fill the upper and lower layers of 285 

the tank with the collapse area on the left side. The collapse height and width are 5.0 cm and 4.0 cm. 286 

Water density averages are calculated in the upper and lower layer with 𝜌1 = 1003.62 kg m-3 and 𝜌3 = 287 

1026.95 kg m-3. Additionally, the diagnostic module is employed to characterize the high-frequency 288 

variation. The high-frequency outputs are positioned at points x = 0.4, 0.8, 1.2, and 1.6 m with a time 289 

interval of 0.05 s. 290 

 291 

Figure 4. Schematic diagram of ISW case. The light and dark gray indicate the low- and high-density 292 

water with 1003.62 kg m-3 and 1026.95 kg m-3, where four white dots refer to the high-frequency 293 

output points. 294 

 Figure 5 distinctly illustrates the evolution of the ISW packet in the tank based on the pycnocline 295 

fluctuation. The isopycnic of 1026 kg m-3 can characterize the maximum strength of depression ISW in 296 

Fig. 5a. The eastward starting wave packet originated from the west gravity collapse area comprises the 297 

depression heading wave and several tail waves whose amplitudes decreases successively. The heading 298 

wave with the maximum amplitude propagates much faster than the tails behind so that the distance 299 
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expands promptly between them. As is exhibited in Table 1 about the heading wave characteristics at the 300 

four locations, we find the wave amplitude with almost little change and then a slight fluctuation but no 301 

more than 0.1 cm after x = 0.8 m. The quantitative evaluation of the wave speed based on the slope of 302 

the blue dashed area in Fig. 5b reveals that the wave speed increases slowly after x = 0.2 m but with its 303 

increment less than 0.01 m s-1. Those above indicate that the starting ISW packet are still at the stage of 304 

gravity adjustment before arriving at x = 0.2 m and then propagating to the east steadily in our simulation. 305 

Besides, the characteristic westward reflected waves (the blue line in Fig. 5a) with the larger amplitude 306 

prove that the wave-wave interactions happen between the reflected and starting tail waves. 307 

 308 

Figure 5. (a) The density timeseries of 1026 kg m-3 at the four high-frequency output locations from the 309 

west to east. The left red and blue arrow lines indicate the eastward and westward waves, and the right 310 

red means the eastward reflected waves from the channel start. (b) Hovmöller diagram showing the 311 

density 𝜎 at z = 2.0 cm where the time interval is 0.1 s. 312 

 313 

Table 1 The characteristics of the depression heading wave at the four points 314 

         location (x/cm) 
parameters 

0.4 0.8 1.2 1.6 

amplitude (a/cm) 2.369 2.362 2.392 2.469 
characteristic wavelength (L/cm) 19.632 21.643 23.206 25.822 

nonlinearity (𝜺) 0.237 0.236 0.239 0.250 
dispersion (𝝁) 0.259 0.213 0.186 0.150 

 315 



 15 

  316 

Figure 6. From top to bottom, density, horizontal and vertical velocity fields of the ISWs at t = 24.5 s. 317 

We select a snapshot result for characteristic verification shown in Fig. 6 when the heading wave 318 

arrives at around x = 0.8 m. The strongest horizontal velocity of the depression wave is 0.023 m s-1, and 319 

the vertical flow can reach up to 0.0065 m s-1. The characteristic velocity fields are in line with the 320 

clockwise structure of a theoretical depression internal solitary wave. Furthermore, the nonlinearity 𝜀 =321 

𝑎/ℎ and dispersion 𝜇 = (ℎ/𝜆)3 are calculated at the different locations in Table 1 where 𝑎, ℎ, and 𝜆 322 

are the amplitude, water height, and characteristic wavelength. The KdV model (Benjamin, 1966) 323 

described in Appendix B is utilized to predict theoretical waveforms at the four locations. The 324 

comparison depicted in Fig. 7 demonstrates that the results are more consistent with the KdV model 325 

rather than m-KdV model. According to the nonlinearity 𝜀 from Michallet and Barthélemy (1998), the 326 

small and large-amplitude ISW can be classified when 𝜀 < 0.05 and 𝜀 > 0.05, respectively. Whereas 327 

the application of the KdV model requires a balance between the weak nonlinearities and dispersion 328 

(Ono, 1975), which namely needs satisfy this condition 	𝜇 = 𝑂(𝜀) ≪1. Despite the large-amplitude 329 

waves simulated from our model with	𝜀 > 0.05, the nonlinearity and dispersion are of the same order 330 

and small enough that the heading wave can be deemed under weak nonlinearity. Those can explain this 331 

reason why the waveforms are better described by the KdV model. Therefore, analyses of the theoretical 332 

model indicate that the simulation of internal solitary wave can be fulfilled authentically using our 333 

nonhydrostatic model. 334 
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 335 

Figure 7. The interface displacement induced by ISW at four high-frequency output locations. The red 336 

lines indicate the 1026 kg m-3 isopycnic, and the blue and cyan lines represent the KdV and m-KdV 337 

model results. 338 

3.3. Internal Solitary Wave shoaling on a Gaussian terrain 339 

 Based on the experiment configuration in section 3.2 (also called Exp. 3.2). Here, a slowly varying 340 

terrain is implemented to explore the nonlinear evolution of internal solitary wave in this section 3.3 341 

(also called Exp. 3.3), especially the wave shoaling. As shown in Fig. 8, the left half of the Gaussian 342 

curve is reserved as the slope-shelf terrain starting between x = 1.0 and 1.3 m with a height of 5.0 cm, 343 

and then the water depth remains unchanged from x = 1.3 to 2.0 m corresponding to the shallow water 344 

zone. The high-frequency outputs are acquired during the climbing process of ISWs at points x = 0.4, 345 

0.8, 1.0, 1.2, 1.3, 1.4, 1.6, and 1.8 m with the same output interval as Exp. 3.2. 346 

 347 

Figure 8. As in Figure 4, but with half-Gaussian topography in the east of the tank, where eight white 348 

dots refer to the high-frequency output points. 349 
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The evolution of the internal solitary waves with varying topography is displayed in Fig.9. The 350 

heading ISW holds a stable packet at x = 0.4 m and initiates to shoal after reaching x = 1.0 m. Afterward, 351 

the heading ISW undergoes the topographic change so that the speed of the wave trough is less than the 352 

wave rear. Consequently, the contrasting effects on the wave front and wave rear contribute to the former 353 

gentle sloping but the latter gradual steepening, which shows a similarity with Vlasenko et al. (2002). 354 

Then the closed isopycnic contour mirrors the backward overturning and rolling due to the wave breaking 355 

at x = 1.2 m in Fig. 9a. Apart from the wave breaking process above, it is also found in Fig. 9b that the 356 

reflected waves propagate back to the deep water zone from x = 1.2 m. In other words, both the wave 357 

breaking and refection attenuate substantially the original depression ISW energy. When arriving at the 358 

east of x =1.2 m, the original depression wave past the critical point where the upper layer is thicker than 359 

the lower one in Fig. 10a, so an elevation wave springs up in the wave rear. The elevation wave then 360 

continues to propagate eastward, which leads to accumulating the high-density water in the upper water 361 

increasingly in the right region close to the wall of the tank. Hence, A new collapse area between x = 1.8 362 

m and the east wall comes into being where the thickness of the upper layer is larger than lower layer. 363 

Ultimately, the westward reflected waves including a series of elevation tail waves, are released at x = 364 

1.6 m. In detail, the first elevation is the leading one with a rank-ordered structure in the rear. After 365 

reaching the deep water zone left to 1.3 m, the wave rear begins to steepen and sink, and a depression 366 

wave forges behind the wave rear. Namely, the soliton wave passes the critical point inversely due to the 367 

wave deepening.  368 

 369 

Figure 9. As in Figure 5, (a) the solid and dashed arrow lines indicate the depression and elevation 370 

waves, and the red and blue mean the eastward and reflected westward waves. (b) Hovmöller diagram 371 

showing the density 𝜎 at z = 2.0 cm. 372 
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For further exploration of the evolution of the depression wave, the distributions of the vorticity 373 

(𝜁 = 𝜕𝑤 𝜕𝑥⁄ − 𝜕𝑢 𝜕𝑧⁄ ) with velocity vector are depicted in Fig.10. The depression wave core features 374 

negative vorticity with an anticyclonic velocity structure before reaching the shelf topography. When the 375 

ISW approaches the top of the slope in Figs. 10a and 10b, the vertical shear increases promptly and 376 

strengthens the positive vorticity at the bottom. Then the backward overturning springs up between x = 377 

1.2 and 1.3 m, marking the ISW entering the breaking instability stage (Helfrich and Melville, 1986) due 378 

to the shoaling. At this time, even though wave breaking and reflection render the wave energy 379 

dissipation partially, the fraction of the depression wave can reach the shallow water zone, leaving a 380 

cyclonic vortex behind above the slope-shelf in Fig. 10c. This partial soliton wave is adjusted 381 

instantaneously when the upper layer thickness is more significant than the lower in the light of the 382 

boundary of the negative vorticity area in Fig. 10d. As a result, after the reverse situation occurs, the 383 

elevation wave begins to emerge at the back of the original wave. Its core corresponds to the positive 384 

vorticity with a cyclonic velocity structure. In addition, the vortex from the wave breaking weakens 385 

slowly and motivates numerous small-scale waves with high wavenumber propagating to both sides in 386 

Figs. 10e and 10f, which is consistent with the propagation characteristics of the reflected waves near x 387 

= 1.2 m in Fig. 9b. 388 

 389 

Figure 10. The shoaling of a depression soliton where the velocity fields (black arrow) and the vorticity results 390 

(color) are shown at t = (a) 35, (b) 40, (c) 45, (d) 50, (e) 55, and (f) 60 s. 391 

 It is also worthy of highlighting the evolution of the reflected westward waves. We also visualize 392 

the process of the second reverse situation due to the wave deepening in Fig. 11. It can be noticed that 393 
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there is a leading elevation wave at x = 1.4 m followed by a series of rank-order waves exhibiting a 394 

likewise sinusoidal variation. They propagate together to the deep water zone with the wave crest 395 

corresponding to positive vorticity. Particularly, the wave train is considered linear approximatively 396 

based on the alternated positive and negative vorticity regions, since the cores of these waves almost are 397 

located in the middle layer where the nonlinear parameter 𝛼 is close to zero in terms of the KdV model. 398 

As the water depth becomes deeper, the crest of the elevation wave gradually grows down and flattens 399 

with the wave rear sinking. The original elevation cannot be maintained in the deep water, transforming 400 

into a depression wave with the velocity fields adjusted accordingly. 401 

 402 

Figure 11. As in Figure 10, the elevation wave propagates westward to the deep water where the x-axis is inverse 403 

for convenience at t = (a) 115, (b) 120, (c) 125, and (d) 130 s. 404 

 The ISW is not stable enough to coincide with the KdV model after pasting the critical point into 405 

the adjustment stage. Hence, we select the two types of soliton results for verification before the reverse 406 

situation occurs. The comparison results between theoretical and numerical model are illustrated in Fig. 407 

12 at x = 0.8 and 1.4 m before the wave shoaling and deepening, respectively. We can find that the 408 

depression waveform conforms to the KdV model results before climbing the slope, whereas the 409 

elevation is closer to the m-KdV model. Compared with 𝜀 = 0.233 at x = 0.8 m, the interaction between 410 

the ISW and the shoaling topography renders a stronger nonlinearity 𝜀 = 0.331 of the elevation heading 411 

wave in the shallow water. Namely, the larger wave amplitude ratio in the shallow water results can be 412 

characterized with m-KdV theory, which compares well with the conclusions of Michallet and 413 

Barthélemy (1998) in a satisfactory way. 414 
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 415 

Figure 12. Wave profiles at x = 0.8 (a) and 1.4 m (b). The left (right) refers to the depression (elevation) 416 

heading wave before shoaling (deepening), where the results are plotted with the red line. The blue and 417 

cyan lines represent the KdV and m-KdV model results. 418 

3.4. Internal Solitary Wave breaking on a slope. 419 

 To further characterize a complete breaking and dissipative process of ISWs, we set a linear slope 420 

identical to Michallet and Ivey (1999). As is shown in Fig. 13, the tank length is 2.0 m; The height is 15 421 

cm with the linear terrain placed on the east side. The model configuration (i.e., spatial resolution and 422 

viscous coefficients) is identical to Exp. 3.2, which can ensure the same time step according to Courant-423 

Friedrichs-Lewy (CFL) condition, and the depression ISW is about to be dissipated due to increasing 424 

bottom friction at the shelf break. In contrast with Bourgault and Kelley (2004), water density averages 425 

are calculated to be 𝜌1 =1000.01 kg m-3 and 𝜌3 =1047.00 kg m-3 in the upper and lower layers. Via 426 

several sensitivity experiments about collapse area, the amplitude of depression wave can reach 427 

approximately 2.8 cm when the collapse height is 9.0 cm with its width identical to Exp. 3.2. Although 428 

the stimulated wave strength is slightly greater than the results from Bourgault and Kelley (2004) due to 429 

the different wave generation methods, it is predictable that the breaking of the larger-amplitude ISW 430 

will be more dramatic with a prominent performance for model verification. 431 

 432 
Figure 13. As in Figure 4, the low and high density are set to 1000.01 kg m-3 and 1047.00 kg m-3 with a 433 
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linear slope terrain placed in the east of the tank, and related configuration is referred by Bourgault and 434 

Kelley (2004) 435 

 The associated density and velocity fields produced by the depression ISW are presented in Fig. 14 436 

at t = 15 s before wave shoaling. The horizontal velocity is about 3.0 cm s-1 at the surface and varies up 437 

to 3.5 cm s-1 at the wave core. Meanwhile, the vertical velocity distribution presents a double-core 438 

structure reaching ±0.8 cm s-1. The unique anticyclonic velocity characteristic just like an eastward 439 

rolling wheel is consistent with the model results of Bourgault and Kelley (2004). We select the four 440 

moments of the evolution of wave shoaling illustrated in Fig. 15. In addition to wave breaking 441 

accompanied by the waveform steepening in the rear, a significant density fronts rolling in the wave front 442 

evolves along the linear slope during the overall shoaling process in Figs. 15a and 15b. Specifically, 443 

while the depression wave continues getting closer to the shallow zone, the effect of bottom friction can 444 

maintain the vertical shear and increase the potential energy, which intensifies the diapycnal mixing and 445 

dissipation on the density interface. Then the wave-induced diapycnal flow contributes to high-density 446 

water under the interface transported continuously to the shallow zone in Fig. 15c. On the other hand, 447 

there is another pronounced peculiarity in Fig. 15d compared to the Exp. 3.2. A few small-scale eddies 448 

emerge along with the sheared interface due to the shear instability. 449 

   450 

Figure 14. As in Figure 6, but with the time referring to t = 15 s before the wave shoaling.  451 
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 452 

Figure 15. Wave breaking with density front rolling at t = (a) 22, (b) 23, (c) 24, and (d) 25 s.  453 

 To further evaluate and validate the wave breaking process, we compare the velocity field 454 

distributions with the observation results via PIV technology from Michallet and Ivey (1999) and 455 

nonhydrostatic numerical experiments from Bourgault and Kelley (2004) in Fig. 16. Accordingly, when 456 

the depression wave arrives over the slope, its depression waveform and anticyclonic flow field are 457 

modulated by the topographic shoaling to flatten the wave front and enhance the downward current along 458 

the slope due to the bottom friction. Meanwhile, a smaller cyclonic eddy appears and clings to the slope 459 

under the steepened wave rear in Fig. 16a. As the deformed depression wave persists in shoaling, the 460 

cyclonic eddy reinforces and extends its scope of influence, resulting in a strong overturning from near 461 

the bottom layer to promote the wave steepening in Fig. 16b, which presents a good agreement with the 462 

results from Exp. 3.3. Afterward, the anticyclonic flow structure has been ruined since the bottom friction 463 

commences hindering the current down the slope. In contrast, the coverage of the cyclonic eddy continues 464 

to expand and moves the shallow zone with the waveform distorted furtherly. All the above nonlinear 465 

processes are similar to the previous laboratory and model results. Our nonhydrostatic model can also 466 

resolve the nonlinear evolution of the internal solitary waves at shelf break with enough high accuracy. 467 

  468 
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 469 

Figure 16. Comparison of velocity fields during the wave breaking on a linear slope between (left) the 470 

PIV observations in the laboratory (Michallet and Ivey, 1999), (middle) the numerical model simulation 471 

(Bourgault and Kelley, 2004), and (right) ORCTM simulation at t = (a) 21.7, (b) 22.2, and (c) 23.2 s 472 

from top to bottom. The red contours indicate the isopycnic lines. 473 

3.5. Nonlinear Internal Waves in a double-ridge system 474 

 The last validation experiment is to examine the generated nonlinear internal waves via tidal flow 475 

over the varying topography. We set up an underwater double-ridge system comparable to the Luzon 476 

Strait in the northern South China Sea (SCS), where the largest internal solitary waves in the world can 477 

exist (Huang et al., 2016). This validation case is a 2-D problem for the reduction of computational 478 

resources as well. The topography in this double-ridge system is fitted approximately with the Gaussian 479 

function given as 480 

𝐻(𝑥) = 	3000 − ℎ4 × 𝑒𝑥𝑝 T−_
𝑥 − 𝑥4
20 × 106a

3
V − ℎ@ × 𝑒𝑥𝑝 T−_

𝑥 − 𝑥@
20 × 106a

3
V (32) 

 In Eq. (32), 𝐻(𝑥) is the water depth; the height of the East and West Ridge (ℎ@ and ℎ4) is 2500 481 

and 1300 m in sequence with an interval and widths of 100 km, which is similar to the fundamental 482 

topographic characteristics in the Luzon Strait. As shown in Fig. 17a, the static water height is 3000 m; 483 

the East and West Ridge (hereafter ER and WR) are located at the coordinate origin and 𝑥 =	-100 km; 484 

the horizontal and vertical grid resolutions are uniformly 200 m and 10 m throughout; 𝐴"2 and 𝐷"2 in 485 

formulas (11) and (12) are set to 2×10-4 m2 s-1 and 2×10-5 m2 s-1; the bottom friction coefficients both are 486 

value of 3×10-3. As for the tidal categories, the generation of semidiurnal ITs and the modulation effect 487 
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of diurnal ITs in the Luzon Strait determine the evolution of the larger-amplitude ISW packet in the 488 

northern South China Sea (Buijsman et al., 2010a; Zeng et al., 2019), so we define the M2 and K1 tidal 489 

currents amplitudes as 5.0 and 4.0 cm s-1 corresponding to the semidiurnal and diurnal components at the 490 

open boundaries; the sponge thicknesses		𝐿);	of the west and east boundaries are both approximately 40 491 

km and the time-scale coefficient	𝜏	is set to 500 s. These model configuration in the validation experiment 492 

are analogous to the control test from Li (2010) and Zhang et al. (2011) to reproduce the major structures 493 

of NIWs in the South China Sea. Besides, to simplify the background environment, we also use 494 

horizontally uniform stratification as the initial field for our model. Here, the reprehensive stratification 495 

in Figs. 17b to 17d stems from GLORYS12V1 reanalysis product in CMEMS (Copernicus Marine 496 

Environment Monitoring Service). The initial field is based on the spatial mean around the source of 497 

generated ISWs in the Luzon Strait during the summer of 2011, since the large-amplitude ISWs are 498 

observed during this period on the SCS continental shelf (Ramp et al., 2019) and the strong thermocline 499 

structure in summer is conducive to the formation of baroclinic tides in the Luzon Strait (Zheng et al., 500 

2007; Buijsman et al., 2010b;). Additionally, the slope criticality	𝛾 (Gilbert and Garrett, 1989; Shaw et 501 

al., 2009) no less than one is usually essential with the formation of linear internal waves. 502 

𝛾 =
𝑑𝐻
𝑑𝑥

�𝜔
3 − 𝑓3

𝑁3 −𝜔3�  (33) 

in which 	𝜔  is the tidal angular frequency; 𝑁3  is the buoyancy frequency squared; the Coriolis 503 

parameter 𝑓 is set to zero for the earth rotation neglected due to the 2-D environment. Around East 504 

Ridge 𝛾 is always larger than unity regardless of the M2 and K1 tide, which means East Ridge belongs 505 

to the supercritical topography. Therefore, it is predictable to generate the internal waves due to the 506 

interactions with barotropic flow over the East Ridge. We run the model for 10 days from an initial static 507 

field. The diagnostic module is also used to characterize the high-frequency variation with the output 508 

interval of 1 min at 𝑥 =	-250, -350 km. 509 
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 510 

Figure 17. (a) The sketch of generated NIWs over the submerged double-ridge system case, and the 511 

gray zones indicate the sponger layers. The summer stratification in 2011 including (b) temperature, (c) 512 

salinity, and (d) buoyancy frequency squared are from the spatial mean within 20.25 °N–20.85 °N, 513 

121.7 °E–122.08 °E corresponding to the source of internal waves in the Luzon Strait (Zhang et al., 514 

2011). 515 

 516 
Figure 18. Distributions of horizontal baroclinic velocity with the temperature (°C) contours for 517 

western far field (a) and source field (b) when the maximum eastward tidal current at East Ridge 518 

reaches the end of ebb on the sixth day, where the blue (black) dashed box means the 2nd mode (1st 519 

mode) ISW packets. 520 

 Figure 18 shows the maps of horizontal baroclinic velocity 𝑢< = 𝑢 − 𝑈  where 𝑢  is the total 521 
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velocity and 𝑈 is the barotropic flow velocity. From the characteristics of the source field, it is found 522 

that the generation of internal tide beam propagating eastward and westward centered from the eastern 523 

side of East Ridge. The eastward barotropic flooding current flows continuously over the East Ridge 524 

with the maximum barotropic current up to 0.0531 m s-1. A significant hydraulic jump can appear with 525 

the isotherm fluctuation up to roughly 200 m on the eastern side, which indicates the formation of Lee 526 

waves to a certain extent. Above internal waves generation due to tide-topography interactions can be 527 

described with below non-dimensional parameters at the source: (1) the tidal excursion parameter 𝜀 =528 

	𝑈2 𝐿𝜔⁄ , which can be associated with the generation of internal tide beam under the critical or 529 

supercritical topography where 𝑈2  is barotropic current amplitude from the far field and 𝐿  is the 530 

characteristic length for topography (Garret and Kunze, 2007, Chen et al., 2017). (2) the Froude number 531 

𝐹𝑟 = 	𝑈 𝑐⁄ , and its topographic form 𝐹𝑟& = 	𝜔 𝑁(𝑑𝐻/𝑑𝑥)⁄ , in which 𝑐 is the mode-1 linear speed for 532 

the eigenvalue problem (Legg and Adcroft, 2003; see Appendix B). Specifically, Legg and Klymak (2008) 533 

found that the nonlinear hydraulic jump will develop with lee waves generation when 𝐹𝑟&< 1/3. It is 534 

worth noticing that the tidal excursion far less than unity agrees with the formation of the linear internal 535 

tide beam on the critical or supercritical topography but cannot ensure the formation of the Lee waves 536 

altogether. For instance, the Lee waves remain strong in the Luzon Strait despite the tidal excursion under 537 

the unity (𝜀 ≈ 0.4) in previous model result (Buijsman et al., 2010b). The tidal excursion parameter 𝜀 538 

and the Froude number 𝐹𝑟 are estimated to be 0.025 and 0.018 in Fig.18. That demonstrates that the 539 

multi-modal baroclinic tides and upstream propagation of internal waves will generate around the source 540 

field when the sub-critical barotropic current flows over the East Ridge. Furthermore, the maximum 541 

topographic Froude number is just 0.3362 around the East Ridge with the approach to the regime 542 

transition value 1/3, which ensures that the nonlinear hydraulic jump can grow with Lee waves on the 543 

east of East Ridge. All of the above can explain well the generation of the internal tide beam and hydraulic 544 

jump in our simulation and confirm to the mixed tidal lee wave regime in the Luzon Strait (Chen et al., 545 

2017). 546 

 After the westward internal tide beam emitting from the East Ridge reaches the sea surface and 547 

reflects into the deep sea, the partial downward internal tide beam can propagate to the top of West Ridge 548 

below 1500 m depth and reflect into the upper layer again. Between the double ridges, such a more 549 

significant portion of beam energy captured by the pycnocline waveguide together with the upstream 550 

influence can strengthen the westward propagating internal waves energy in Fig. 18b, which can trace 551 
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back to the source of the internal solitary wave packets in the far field. However, the strong dissipation 552 

for the high modal internal waves contributes to the vanishing of the internal tide beam structure and 553 

allows the nonlinear evolution of low-mode baroclinic tides. The low modal internal solitary wave 554 

packets can grow and propagate westward from x = -150 km, marking the disintegration of the multi-555 

modal nonlinear internal wave energy. Specifically, the first-mode ISW packet emerges from x = -250 to 556 

-200 km. Meanwhile, the second-mode ISW between x = -350 and -300 km performs the convex wave 557 

packet. 558 

 559 

Figure 19. Hovmöller diagram about the global temperature timeseries at z = 400 m, where the time 560 

interval is 15 mins. The black solid curve indicates the tidal current at the East Ridge, and the blue 561 

solid line means the West Ridge location. The black and magenta dashed lines are the first and second-562 

mode internal solitary waves. 563 

We can acquire the propagation characteristics of these ISWs via analyzing the global temperature 564 

timeseries at 400 m depth layer. As is illustrated in Fig. 19, the second-mode ISW packet propagates 565 

slower, and its strength is much weaker than the first-mode wave one. Besides, it can be distinguished 566 

that the two first-mode wave packets can propagate westward in one day, one of which is stronger with 567 

the structure of several tail waves, and the other is almost solitary and weak. These two types of first-568 

mode wave packets refer to the type-a and b waves (hereafter a-wave and b-wave) respectively in the 569 

northern South China Sea (Ramp et al., 2004). Besides, their occurrence time can be connected to the 570 
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ebb of eastward flood current around East Ridge. These simulated results in the strength and timing prove 571 

that a- and b-wave originate from the double-ridge in Luzon Strait (Ramp et al., 2004; 2019; Zhao and 572 

Alford, 2006). Additionally, the relatively weak second-mode concave wave can be found distinctly 573 

following the a-wave from the west of -300 km. To sum up, the multi-modal baroclinic tide structures 574 

from the double-ridge system can propagate to the far fields. The low-mode internal waves gradually 575 

perform the corresponding ISWs due to the nonlinear enhancement, which displays a good agreement 576 

with the other two-dimensional experimental results (Buijsman et al., 2010a; 2010b; Vlasenko et al., 577 

2010). 578 

  579 

Figure 20. (a) The temperature (°C), (b) horizontal baroclinic velocity (m s-1), (c), and vertical velocity 580 

(m s-1) structures of the first-mode ISW packet at x = -250 km on the sixth day. (d) The SSHG 581 

Hovmöller diagram during the associated period where the black and magenta dashed lines indicate the 582 

first and second-mode ISW packets. (e) The normal mode profiles of vertical velocity for the first three 583 

modes using the Taylor-Goldstein equation.  584 

 To evaluate the comparison between the numerical ISWs with internal wave theory, we select the 585 

results of the first-mode ISW at 𝑥 =	-250 km. In Fig. 20. It is found that a first-mode ISW packet 586 

including three tail waves arrives at the position after 10 a.m. on the 6th day. The maximum fluctuation 587 

of the first-mode ISW packet can reach 206 m located between 650 and 900 m water depths. The 588 

westward horizontal baroclinic velocity associated with the wave packet prevails above 200 m with a 589 

maximum strength of roughly 1.41 m s-1, and the corresponding downwelling region is located between 590 
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200 and 1500 m depths with the strongest downward velocity up to 0.22 m s-1. According to the Sea 591 

Surface Height Gradient (SSHG, SSHG is defined `(∇𝜍)3) in Fig. 20d, the average propagation speed 592 

of this wave packet is approximately 3.17 m s-1 based on the slope of SSHG contour. Moreover, we solve 593 

the Taylor-Goldstein equation (Miles, 1961; Liu, 2010; see Appendix B) 10 minutes before this wave 594 

packet reaches 𝑥 = -250 km, and the normal mode of vertical velocity is subject to the rigid-lib boundary 595 

condition. We found that the location of the maximum modal function is 710 m in agreement with the 596 

model results in Fig. 20e. However, the propagation speed is greater than the first-mode linear result of 597 

2.69 m s-1, which is probably attributed to the underestimated effect in linear theory. Therefore, The KdV 598 

model is also utilized to analyze the depression wave packet. The nonlinear and dispersion parameters 599 

are -3.4×10-3 s-1 and 2.4×105 m3 s-1, which denotes that the theoretical depression wave is consistent with 600 

the simulated results (Helfrich and Melville, 1986). Nevertheless, the theoretical nonlinear velocity of 601 

about 2.88 m s-1 is slightly lower than the simulated results. It is probable that the increasing nonlinearity 602 

with the steepening of internal tides ultimately leads to the larger propagation speed of this first-mode 603 

ISW packet. 604 

 605 

Figure 21. (a) The temperature (°C) field from the west side of East Ridge at 13:00 on the seventh day, 606 

where dashed rectangles refer to the respective wave types. (b) The horizontal baroclinic velocity (m s-607 

1) and (c) vertical velocity (m s-1) structures of the second-mode ISW at x = -350 km in the meantime. 608 

(d) The normal mode profiles about vertical velocity for the first three modes using the Taylor-609 

Goldstein equation.  610 

 It is also noticeable that the multi-modal internal solitary waves field generate and get strengthen 611 
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gradually due to the nonlinear enhancement. In Fig. 21a, we can recognize the distinct ISW packets from 612 

the isotherm displacement that refers to the type-a, second-mode, and type-b waves from the source to 613 

the far field. The a-wave packet features the most substantial strength with tail waves when its vertical 614 

excursion induced by the heading wave can reach up to 120 m. In contrast, the weaker b-wave contains 615 

one depression soliton in the west to x = -400 km. They both originate from multi-modal internal tide 616 

caused by the tide-topography interactions in the double-ridge system, but the b-wave is more associated 617 

with the West Ridge (Buijsman et al., 2010a; Zeng et al., 2019). Between a- and b-wave, there is a second-618 

mode ISW packet classified evidently as a structure of concave wave whose upper and lower isotherm 619 

fluctuate downward and upward. The maximum isotherm fluctuations are located in the roughly 180 and 620 

1000 m depths and can reach up to -57.2 and 140.6 m. The propagation speed of this second-mode ISW 621 

is about 1.36 m s-1 from the SSHG slope in Fig. 20d. It is predictable that the a-wave packet will follow 622 

the second-mode signal due to the more considerable speed. Figures 21b and 21c show the second-mode 623 

ISW packet and related velocity fields timeseries at 𝑥 = -350 km. The horizontal baroclinic velocity 624 

field has a sandwich-shaped vertical structure, and the maximum 0.42 m s-1 is located in the middle layer 625 

between 200 and 600 m. The strength of baroclinic velocity with a small average of 0.2 m s-1 is distinct 626 

from the stronger first-mode ISW packet above 200 m. Additionally, a double-peak structure performs 627 

in the vertical velocity field, and it is distributed at the depths of 150 and 1000 m where the strength in 628 

the deep layer is stronger than the upper, resulting in a minor isotherm fluctuation above 200 m. Here, 629 

the Taylor-Goldstein equation is also solved to acquire the eigenfunction of the vertical velocity. In Fig. 630 

21d, the second-mode eigenvalues have two vertical peaks whose depths correspond to 150 and 1070 m 631 

with the latter strength stronger than the former, and the corresponding phase speed is about 1.34 m s-1. 632 

In summary, the first and second mode internal solitary waves as the leading carriers can transfer the 633 

baroclinic tidal energy from the source to far fields until dissipating thoroughly. The multi-modal solitary 634 

waves field conforms with the previous two-ridge experimental result using MITgcm (Vlasenko et al., 635 

2010). The internal wave theoretical models can compare well with the distribution of stimulated results 636 

in our nonhydrostatic ocean model, demonstrating an overall good performance of characterizing the 637 

nonlinear evolution of multi-modal baroclinic tides. 638 
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4. Discussion and Conclusion 639 

 The main focus of this paper is to introduce a newly oceanic regional nonhydrostatic circulation 640 

and tide model (ORCTM) which is rooted from the MPI-OM and aims to characterize the internal solitary 641 

wave processes of real oceans, such as in the northern South China Sea. We developed and implemented 642 

the nonhydrostatic dynamics and open boundary module under the original global hydrostatic framework 643 

of MPI-OM. Based on the fractional step and finite difference methods, ORCTM involves the three-644 

dimensional fully nonlinear momentum equations under the Boussinesq fluid. It is needed to solve the 645 

three-dimensional Poisson equation subject to different boundary conditions before the pressure 646 

correction method is employed to acquire the velocity field corrected via nonhydrostatic pressure 647 

gradient force. In order to match the nonhydrostatic algorithm and realize larger-amplitude ISWs 648 

simulation in an ocean-scale case, an exponential relaxation term is implemented to the control equations 649 

through the sponge layers as the open boundary condition. 650 

 A series of two-dimensional ideal numerical experiments associated with the nonlinear evolution 651 

of the internal solitary waves and baroclinic tides are devised to verify this nonhydrostatic ocean model. 652 

Here, the results of the validation experiments are in accord with the theoretical framework of the 653 

nonhydrostatic dynamics and demonstrate that ORCTM can successfully characterize the generation, 654 

propagation, and dissipation of internal solitary waves in laboratory-scale cases. Specifically, the reverse 655 

situation due to wave shoaling and deepening can be depicted completely when considering the 656 

topographic change. Meanwhile, the stimulated internal solitary wave conforms with the previous 657 

numerical experiment and the direct observations in the laboratory test. Also, ORCTM can capture the 658 

density fronts with the cyclonic eddy induced by the wave breaking, which shows good stability and a 659 

high enough accuracy. Furthermore, based on the real topographic features in the Luzon Strait of the 660 

northern South China Sea, analyses of the validation experiment indicate that the multi-modal structure 661 

of baroclinic tides in the double-ridge system. The nonhydrostatic ocean model ORCTM is proven to be 662 

able to reproduce the life cycle of multi-modal ISWs induced by the tide-topography interactions in the 663 

Luzon Strait and precisely capture the alternation process of type-a and b internal solitary wave packets. 664 

The first two mode ISWs structure compares well with the internal wave theoretical model. 665 

Even though these validation experiments have a strong resemblance to other nonhydrostatic 666 

models results (Bourgault and Kelley, 2004; Berntsen et al., 2006; Lai et al., 2010), some distinctions in 667 
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grid structure or numerical methods may have an opposite impact, especially when predicting a particular 668 

nonhydrostatic dynamics process. Berntsen et al. (2006) indicated some noisy structures near the bottom 669 

layer due to numerical errors of finite volume treatment when predicting the internal solitary wave 670 

breaking via MITgcm (Marshall et al., 1997a, 1997b). They found that BOM model can avoid this 671 

problem with a sigma-coordinate, whereas MITgcm needs a high-order filter to suppress the noise. 672 

However, the artificial flow usually emerges and has a negative influence on the ISWs breaking 673 

simulation due to the internal baroclinic pressure errors in the sigma-coordinate. Those require that model 674 

users need a refined grid when encountering the area of changing topography. Compared to the 675 

nonhydrostatic FVCOM (Lai et al., 2010) and BOM (Berntsen et al., 2006), ORCTM is based on the 676 

finite difference method and owns a Z-coordinate, which has the capability to avoid the above errors. 677 

These numerical methods and validation experiments demonstrate that ORCTM is able to approach or 678 

reach an acceptable better level of the nonhydrostatic ocean model for the ISWs simulation. 679 

The simulation of internal solitary waves can mirror the macroscopic structure and assist with the 680 

implementation of in-situ observations. It is noticed that the predictability of nonlinear internal waves 681 

characteristics relies on the model performance and external conditions such as realistic stratification, 682 

bathymetry, and background circulation. Another advantage of ORCTM is the usage of the orthogonal 683 

curvilinear mesh grid in the horizontal direction. It is competent enough to maintain the small-scale 684 

nonhydrostatic dynamics well-resolved in the concerned region via mesh refinement. Particularly, 685 

constructing the practical and reliable background fields via nested technique remains the way to move 686 

forward for the ISWs simulation in the oceanic environment. Enhancing the fidelity of ISWs simulation 687 

remains to be challengeable. Nevertheless, it can be concluded that our regional nonhydrostatic ocean 688 

model is a good choice for oceanography scientists interested in internal waves research and numerical 689 

prediction. 690 

  691 
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Appendix A 692 

Discretization Algorithms of the Poisson Equation 693 

 According to the idea of fractional steps (Chorin,1968; Press et al., 1988), a pressure correct method 694 

on the nonhydrostatic dynamic component is employed to calculate the intermediate velocity over the 695 

original hydrostatic balance scheme (Fringer et al., 2006; Lai et al., 2010). If the flow is close to the 696 

hydrostatic balance, the pressure of nonhydrostatic part will be so slight that the correction plays a minor 697 

role. The key to the nonhydrostatic dynamics module is to solve the Poisson equation below. 698 

𝜕3𝑝/,<

𝜕𝑥3 +
𝜕3𝑝/,<

𝜕𝑦3 +
𝜕3𝑝/,<

𝜕𝑧3 =
𝜌!
∆𝑡 (

𝜕𝑢p
𝜕𝑥 +

𝜕𝑣p
𝜕𝑦 +

𝜕𝑤o
𝜕𝑧 ) 

(A.1) 

 The right-hand side (RHS) of this Eq. (A.1) is the divergence about the intermediate velocity as a 699 

source or sink term. Here, based on the definition of divergence, the three components calculated directly 700 

at each cell are specified in the three orthogonal coordinates as 701 

𝜕𝑢p
𝜕𝑥 =

𝑢pA,CD ∗ 𝐴𝑢A,CD − 𝑢pA-1,CD ∗ 𝐴𝑢A-1,CD

𝛺A,CD
 (A.2) 

𝜕𝑣p
𝜕𝑦 =

𝑣pA,C-1D ∗ 𝐴𝑣A,C-1D − 𝑣pA,CD ∗ 𝐴𝑣A,CD

𝛺A,CD
 (A.3) 

𝜕𝑤o
𝜕𝑧 =

𝑤oA,CD ∗ 𝐴𝑤A,C −𝑤oA,CD01 ∗ 𝐴𝑤A,C
𝛺A,CD

 (A.4) 

Where 𝑖, 𝑗 and 𝑘 are the indices of increasing eastward, northward, and downward along x, y, and z-702 

axis, respectively; z = 0 is defined on the undisturbed sea surface by means of local Cartesian coordinates. 703 

𝑢p , 𝑣p, and 𝑤o  are the intermediate velocity; 𝐴𝑢, 𝐴𝑣, and 𝐴𝑤 means the six faces area of a cell in 𝑖, 𝑗, 704 

and 𝑘 directions; 𝛺 is the volume of a cell. These grid descriptors are defined as 705 

𝐴𝑢A,CD = 𝐷𝑍𝑤A,CD ∗ 𝐷𝑌𝑢A,C , 𝐴𝑢A-1,CD = 𝐷𝑍𝑤A-1,CD ∗ 𝐷𝑌𝑢A-1,C ,  

𝐴𝑣A,CD = 𝐷𝑍𝑤A,CD ∗ 𝐷𝑌𝑣A,C , 𝐴𝑣A,C-1D = 𝐷𝑍𝑤A,C-1D ∗ 𝐷𝑋𝑣A,C-1,  

𝐴𝑤A,C = 𝐷𝑋𝑝A,C ∗ 𝐷𝑌𝑝A,C ,		  

𝛺A,CD = 𝐷𝑋𝑝A,C ∗ 𝐷𝑌𝑝A,C ∗ 𝐷𝑍𝑤A,CD  (A.5) 

The 𝐷𝑋, 𝐷𝑌 and 𝐷𝑍 represent the spacing difference between the adjacent grid cells in x, y, and z-706 

axis. The suffixes associate 𝑢,	𝑣, and 𝑤 at cell face center and 𝑝′ at body center. Compared to the 707 

finite difference method, the definition of the divergence of a cell is more accurate and reliable especially 708 

when adjacent to the solid boundaries for the RHS calculation. The left-hand side (LHS) of this equation 709 

is discretized horizontally on the Arakawa C-grid (Arakawa and Lamb, 1977) using the central difference 710 

method with a second-order accuracy. The vertical discretization is the same as Max Planck Institute 711 
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Ocean Model (Marsland et al., 2003), where the bottom grid has the capacity of the partial filled cell to 712 

adjust the vertical distance for fitting into the realistic terrain (Marshall et al., 1997b). We can acquire 713 

the following finite discrete equation about 7 cells for nonhydrostatic pressure perturbation as 714 

𝐿𝐻𝑆 = (𝑋𝑊)𝑝′A-1,CD + (𝑋𝐸)𝑝′A01,CD + (𝑌𝑁)𝑝′A,C01D + (𝑌𝑆)𝑝′A,C-1D + (𝑍𝑈)𝑝′A,CD-1

+ (𝑍𝐷)𝑝′A,CD01 + (𝑋𝐶 + 𝑌𝐶 + 𝑍𝐶)𝑝′A,CD  
(A.6) 

where the coefficients of the discretized LHS are given as follows. 715 

𝑋𝑊 =
1

𝐷𝑋𝑢A-1,C ∗ 𝐷𝑋𝑝A,C
, 𝑋𝐸 =

1
𝐷𝑋𝑢A,C ∗ 𝐷𝑋𝑝A,C

,  

𝑌𝑁 =
1

𝐷𝑌𝑣A,C-1 ∗ 𝐷𝑌𝑝A,C
, 𝑌𝑆 =

1
𝐷𝑌𝑣A,C ∗ 𝐷𝑌𝑝A,C

,  

𝑍𝑈 =
1

𝐷𝑍𝑤A,CD ∗ 𝐷𝑍𝑝A,CD
, 𝑍𝐷 =

1
𝐷𝑍𝑤A,CD01 ∗ 𝐷𝑍𝑝A,CD

,  

𝑋𝐶 = −d
1

𝐷𝑋𝑢A-1,C
+

1
𝐷𝑋𝑢A,C

g
1

𝐷𝑋𝑝A,C
,  

𝑌𝐶 = −d
1

𝐷𝑌𝑣A,C-1
+

1
𝐷𝑌𝑣A,C

g
1

𝐷𝑌𝑝A,C
,  

𝑍𝐶 = −d
1

𝐷𝑍𝑤A,CD01
+

1
𝐷𝑍𝑤A,CD

g
1

𝐷𝑍𝑝A,CD
 (A.7) 

Invoking the boundary conditions (29) and Eqs. (A.6) to (A.7), the discretized Poisson equation with 7 716 

cells can be derived with the matrix form below 717 

𝑨𝑝/,< = 𝑩 (A.8) 

Where 𝑨 is a sparse, and definite-positive matrix with seven diagonals; 𝑝/,<  and 𝑩 are the column 718 

vectors with a size of all cell number 𝑁𝑥𝑦𝑧 = 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 in the model domain where 𝑁𝑥, 𝑁𝑦, 719 

and 𝑁𝑧 are the cell number in 𝑖, 𝑗 and 𝑘 directions. Actually, the sparse matrix 𝑨 cannot easily to 720 

be handled directly with a size of 𝑁𝑥𝑦𝑧 × 𝑁𝑥𝑦z , which hence needs to be designed with greater 721 

efficiency as a precondition. To apply the nonhydrostatic model to the real oceanic environment on the 722 

original model base, the Portable, Extensible Toolkit for Scientific Computation (PETSc) Library is 723 

implemented into the nonhydrostatic dynamic module. We apply the numerical Krylov subspace methods 724 

for the matrix solvers under an MPI-based framework (Balay et al., 2020). Here, the Flexible Generalized 725 

Minimal Residual (FGMRES) method (Saad, 1993) is applied to solve this problem in conjunction with 726 

a multigrid preconditioner (Smith et al. 1996) for the sparse matrix before iteration. Thus, the 727 

nonhydrostatic pressure can be computed with these methods. It is needed to emphasis that the 728 
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nonhydrostatic and hydrostatic dynamics modules remain independent of each other and not 729 

contradictory. The nonhydrostatic dynamics module will make up for the deficiency of the hydrostatic 730 

module only considered in this model, which means the nonhydrostatic and hydrostatic simulations can 731 

be simultaneous in this model. in other words, the nonhydrostatic dynamics can be fulfilled economically 732 

in harmony with the original numerical framework. 733 

Appendix B 734 

The Korteweg–de Vries (KdV) Model in the Shallow Water 735 

 Based on the shallow water approximation, a small-amplitude internal solitary wave whose 736 

amplitude compared with the total depth is small enough can be described by the classical two-737 

dimensional Korteweg-de Vries (KdV) equation given as follows (Apel et al., 2007). 738 

𝜕𝜂
𝜕𝑡 + 𝑐

𝜕𝜂
𝜕𝑥 + 𝛼𝜂

𝜕𝜂
𝜕𝑥 + 𝛽

𝜕6𝜂
𝜕𝑥6 = 0 (B.1) 

 Considering two-fluid stratification system is more appropriate for the experiments in Sec. 3.1–3.3. 739 

𝜌1  and 	𝜌3  are the upper and lower densities corresponding to the thickness ℎ1  and ℎ3 ; x is the 740 

horizontal coordinate. Several parameters can be written here as (Benjamin, 1966; Wessels and Hutter, 741 

1996) 742 

𝛼 = −
3𝑐
2

𝜌1ℎ22 − 𝜌2ℎ12

𝜌1ℎ1ℎ22 + 𝜌2ℎ12ℎ2
, 𝛽 =

𝑐
6
𝜌1ℎ12ℎ2 + 𝜌2ℎ1ℎ22

𝜌1ℎ2 + 𝜌2ℎ1
, 𝑐 = �

𝑔ℎ1ℎ2(𝜌2 − 𝜌1)
𝜌1ℎ2 + 𝜌2ℎ1

 (B.2) 

where nonlinear and dispersion parameters (𝛼 and 𝛽 respectively) can represent the soliton polarity; 𝑐 743 

is the linear velocity and the solution of solitary wave is expressed below the interface displacement 744 

𝜂(𝑥, 𝑡)  745 

𝜂(𝑥, 𝑡) = 𝜂0𝑠𝑒𝑐ℎ3 T
𝑥 − 𝑉𝑡
𝐿 V (B.3) 

in which the 𝜂2  is the amplitude. The nonlinear velocity 	𝑉  (also called phase velocity) and the 746 

characteristic length of soliton 𝐿 are given as. 747 

𝑉 = 𝑐 +
𝛼
3
𝜂0,									𝐿 = �

12𝛽
	𝛼𝜂0

	 (B.4) 

The dispersion parameter 𝛽 is almost larger than zero for the internal solitary waves in the ocean 748 

but the sign for the nonlinear parameter 𝛼 is relevant to the wave formation. When 𝛼 > 0, the interface 749 

displacement will show a waveform of depression soliton. If negative, the isopycnal elevation will appear. 750 

Therefore, the reverse situation for an internal solitary wave is determined by the sign change of the 751 
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nonlinear parameter. The KdV model is suitable with weakly nonlinear and dispersive waves which is 752 

capable of being used to validate the small-amplitude ISW results in the laboratory. Nevertheless, when 753 

nonlinearity enhancement happens by the reason of shallower topography or stronger stratification, the 754 

modified KdV (m-KdV) model (Michallet and Barthelemy, 1998; GrimShaw et al., 2004) can describe 755 

relatively stronger nonlinear solitons with the addition for cubic nonlinearity term as 756 

𝜕𝜂
𝜕𝑡 +

(𝑐 + 𝛼𝜂 − 𝛼1𝜂3)
𝜕𝜂
𝜕𝑥 + 𝛽

𝜕6𝜂
𝜕𝑥6 = 0	 (B.5) 

It is worthy of noting that the m-KdV equation takes the higher-order nonlinear term into account 757 

and can degenerate into the KdV equation when the cubic nonlinear parameter 𝛼1= 0. Here, the solution 758 

is given with the interface displacement 𝜂(𝑥, 𝑡) 759 

𝜂(𝑥, 𝑡) =
𝜂2𝑠𝑒𝑐ℎ3 _

𝑥 − 𝑉𝑡
𝐿 a

1 − 𝜇 𝑡𝑎𝑛ℎ3 _𝑥 − 𝑉𝑡𝐿 a
	 (B.6) 

where 760 
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	,  
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1
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g
2

�	,  
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2 �1 − d1 −
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g
1 3⁄

� 
1 3⁄

,  

𝐿 = 2(ℎ1 + ℎ2 − ℎ!)�
(ℎ1 + ℎ2 − ℎ!)6 + ℎ!6

3(ℎ1 + ℎ2)ℎ<ℎ<<
 (B.7) 

More generally, when considering the continuously stratified fluid, the linear velocity 𝑐 refers to 761 

the long-wave velocity of each mode for the Strum-Liouville problem given as follows (Apel et al., 2007) 762 

¡

𝑑3𝑊	
𝑑𝑧3 +

𝑁3

𝑐3 𝑊 = 0											
𝑊 = 0,																					𝑧 = 0
𝑊 = 0,																𝑧 = −𝐻

 (B.8) 

where 𝐻 is the water depth; 𝑁 is the buoyancy frequency; 𝑊 is the nondimensional modal function. 763 

When the nonlinear and dispersion parameters (𝛼 and 𝛽 respectively) are obtained as 764 
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𝛼 =
3𝑐 ∫ (𝑑𝑊 𝑑𝑧⁄ )62

-$ 𝑑𝑧

2∫ (𝑑𝑊 𝑑𝑧⁄ )3𝑑𝑧2
-$

, 𝛽 =
𝑐 ∫ 𝑊32

-$ 𝑑𝑧

2∫ (𝑑𝑊 𝑑𝑧⁄ )3𝑑𝑧2
-$

 (B.9) 

 Besides, if still considering the background current 𝑈£(𝑧), the Taylor-Goldstein equation (Miles, 765 

1961; Liu, 2010) can describe the vertical modal function 𝑊 , when the nonlinear and dispersion 766 

parameters are obtained under the Boussinesq approximation expressed as (GrimShaw et al., 2002).  767 

𝑑3𝜑¤(𝑧)	
𝑑𝑧3 + ¥

𝑁3

(𝑈£ − 𝑐)3
−

𝑈£<<

(𝑈£ − 𝑐)
− 𝑘3¦𝜑¤(𝑧) 	= 0 (B.10) 

𝛼 =
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,					𝛽 =
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 (B.11) 

where 𝑐  is the n-mode linear speed; 𝜑¤(𝑧) is the stream function; 𝑈£<<are the second derivative of 768 

background currents; 𝑘 is the horizontal wave number. 769 

  770 
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Code and data availability.  771 

 The current version of the nonhydrostatic ocean model (ORCTM-v1) and these experiments about 772 
the internal solitary wave simulation in this paper are available through 773 
https://doi.org/10.5281/zenodo.6683597 (HaoHuang, 2022), as well as the experiment configurations, 774 
preprocessing, and post-processing. The PETSc library (the download address: 775 
https://petsc.org/release/download/, Balay et al., 2020) needs to be installed before building the model. 776 
Nevertheless, we also provide the PETSc library of the version in use and the ORCTM quick manual for 777 
the users at the above link.  778 
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