## Supplemental materials for "Comparison and evaluation of updates to WRF-Chem (v3.9) biogenic emissions using MEGAN"

| Soil type        | Wilting point |
|------------------|---------------|
| Sand             | 0.01          |
| Loamy sand       | 0.028         |
| Sandy loam       | 0.047         |
| Silt loam        | 0.084         |
| Silt             | 0.084         |
| Loam             | 0.066         |
| Sandy clay loam  | 0.067         |
| Silty clay loam  | 0.12          |
| Clay loam        | 0.103         |
| Sandy clay       | 0.1           |
| Silty clay       | 0.126         |
| Clay             | 0.138         |
| Organic material | 0.06          |
| Water            | n.a.          |
| Bedrock          | 0.094         |
| Other (land-ice) | 0.028         |

Table S1: Soil-related wilting point  $(\theta_w)$  (m<sup>3</sup> m<sup>-3</sup>) used by MEGAN soil moisture emission activity factor. Adapted from Chen and Dudhia, 2001.



Figure S1: Comparison between M04 and M10 run of the emission activity factors (dimensionless) (a) photosynthetic photon flux density ( $\gamma$ P, GAMMA\_P), (b) temperature ( $\gamma$ T, GAMMA\_T), (c) leaf age ( $\gamma$ age, GAMMA\_A), and (d) leaf area index ( $\gamma$ LAI, GAMMA\_LAI) classified by classes compound (x-axis). The factors refer to the city of Kiev (Ukraine) in August 13th (12:00 UTC), 2015.



Figure S2: Comparison between M04 and M10 run of the emission activity factors (dimensionless) (a) photosynthetic photon flux density ( $\gamma_P$ , GAMMA\_P), (b) temperature ( $\gamma_T$ , GAMMA\_T), (c) leaf age ( $\gamma_{age}$ , GAMMA\_A), and (d) leaf area index ( $\gamma_{LAI}$ , GAMMA\_LAI) classified by classes compound (x-axis). The factors refer to the city of Porto (Portugal) in August 13<sup>th</sup> (12:00 UTC), 2015.



Figure S3: Comparison between M04 and M10 run of the emission activity factors (dimensionless) (a) photosynthetic photon flux density ( $\gamma_P$ , GAMMA\_P), (b) temperature ( $\gamma_T$ , GAMMA\_T), (c) leaf age ( $\gamma_{age}$ , GAMMA\_A), and (d) leaf area index ( $\gamma_{LAI}$ , GAMMA\_LAI) classified by classes compound (x-axis). The factors refer to the city of Zagreb (Croatia) in August 13<sup>th</sup> (12:00 UTC), 2015.



Figure S4: Comparison of the predicted spatial distribution of CO concentration ( $\mu$ g m<sup>-3</sup>) of the last two simulations done: (a) with all the MEGAN updates (M10 run), and (b) the same simulation without including the biomass burning emissions in the calculation (b - "M10\_noFINN"). The maps represent the weekly averages (from August 10<sup>th</sup>, 2015 at 0000 UTC to August 16<sup>th</sup>, 2015 at 0000 UTC), extrapolated from WRF-Chem model.

| Reactants                          | Products                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ISOP + OH                          | $\rightarrow$ ISOPO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $ISOP + O_3$                       | $\rightarrow 0.4 \cdot MACR \ + \ 0.2 \cdot MVK \ + \ 0.07 \cdot C_3H_6 \ + \ 0.27 \cdot OH \ + \ 0.06 \cdot HO_2 \ + \ 0.6 \cdot CH_2O \ + \ 0.3 \cdot CO \ + \ 0.1 \cdot O_3 \ + \ 0.07 \cdot C_3H_6 \ + \ 0.27 \cdot OH \ + \ 0.06 \cdot HO_2 \ + \ 0.6 \cdot CH_2O \ + \ 0.3 \cdot CO \ + \ 0.1 \cdot O_3 \ + \ 0.07 \cdot C_3H_6 \ + \ 0.27 \cdot OH \ + \ 0.06 \cdot HO_2 \ + \ 0.6 \cdot CH_2O \ + \ 0.3 \cdot CO \ + \ 0.1 \cdot O_3 \ + \ 0.07 \cdot C_3H_6 \ + \ 0.27 \cdot OH \ + \ 0.06 \cdot HO_2 \ + \ 0.6 \cdot CH_2O \ + \ 0.3 \cdot CO \ + \ 0.1 \cdot O_3 \ + \ 0.07 \cdot C_3H_6 \ + \ 0.27 \cdot OH \ + \ 0.06 \cdot HO_2 \ + \ 0.6 \cdot CH_2O \ + \ 0.3 \cdot CO \ + \ 0.1 \cdot O_3 \ + \ 0.07 \cdot CO \ + \ 0.1 \cdot O_3 \ + \ 0.07 \cdot CO \ + \ 0.1 \cdot O_3 \ + \ 0.07 \cdot CO \ + \ 0.1 \cdot O_3 \ + \ 0.07 \cdot CO \ + \ 0.1 \cdot O_3 \ + \ 0.07 \cdot CO \ + \ 0.1 \cdot O_3 \ + \ 0.07 \cdot CO \ + \ 0.1 \cdot O_3 \ + \ 0.07 \cdot CO \ + \ 0.1 \cdot O_3 \ + \ 0.07 \cdot CO \ + \ 0.1 \cdot O_3 \ + \ 0.07 \cdot CO \ + \ 0.1 \cdot O_3 \ + \ 0.07 \cdot CO \ + \ 0.1 \cdot O_3 \ + \ 0.07 \cdot CO \ + \ 0.1 \cdot O_3 \ + \ 0.07 \cdot CO \ + \ 0.1 \cdot O_3 \ + \ 0.07 \cdot CO \ + \ 0.1 \cdot O_3 \ + \ 0.07 \cdot CO \ + \ 0.1 \cdot O_3 \ + \ 0.07 \cdot CO \ + \ 0.1 \cdot O_3 \ + \ 0.07 \cdot CO \ + \ 0.1 \cdot O_3 \ + \ 0.07 \cdot O_3 \ $ |
|                                    | $0.2 \cdot MCO_3 + 0.2 \cdot CH_3COOH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $ISOPO_2 + NO$                     | $\rightarrow 0.08 \cdot \text{ONITR} + 0.92 \cdot \text{NO}_2 + \text{HO}_2 + 0.55 \cdot \text{CH}_2\text{O} + 0.23 \cdot \text{MACR} + 0.32 \cdot \text{MVK} + 0.37 \cdot \text{HYDRALD}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $ISOPO_2 + NO_3$                   | $\rightarrow HO_2 + NO_2 + 0.6 \cdot CH_2O + 0.25 \cdot MACR + 0.35 \cdot MVK + 0.4 \cdot HYDRALD$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\mathrm{ISOPO}_2 + \mathrm{HO}_2$ | $\rightarrow$ ISOPOOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ISOPOOH + OH                       | $\rightarrow 0.5 \cdot \text{XO}_2 + 0.5 \cdot \text{ISOPO}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $ISOPO_2 + CH_3O_2 \\$             | $\rightarrow 1.2 \cdot CH_2O + 0.19 \cdot MACR + 0.26 \cdot MVK + 0.3 \cdot HYDRALD + 0.25 \cdot CH_3OH + HO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $ISOPO_2 + CH_3CO_3$               | $\rightarrow 0.6 \cdot CH_2O + 0.25 \cdot MACR + 0.35 \cdot MVK + 0.4 \cdot HYDRALD + CH_3O_2 + HO_2 + CO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $ISOP + NO_3$                      | $\rightarrow$ ISOPNO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ISOPNO <sub>3</sub> + NO           | $\rightarrow 10.206\cdot\mathrm{NO_2} + 0.072\cdot\mathrm{CH_2O} + 0.167\cdot\mathrm{MACR} + 0.039\cdot\mathrm{MVK} + 0.794\cdot\mathrm{ONITR} + 0.794\cdot\mathrm{HO_2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $ISOPNO_3 + NO_3$                  | $\rightarrow 10.206 \cdot \mathrm{NO_2} + 0.072 \cdot \mathrm{CH_2O} + 0.167 \cdot \mathrm{MACR} + 0.039 \cdot \mathrm{MVK} + 0.794 \cdot \mathrm{ONITR} + 0.794 \cdot \mathrm{HO_2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $ISOPNO_3 + HO_2$                  | $\rightarrow 0.206 \cdot \mathrm{NO_2} + 0.008 \cdot \mathrm{CH_2O} + 0.167 \cdot \mathrm{MACR}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ISOPOOH + $hv$                     | $\rightarrow 0.402 \cdot MVK + 0.288 \cdot MACR + 0.69 \cdot CH_2O + HO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| TERPOOH + $hv$                     | $\rightarrow$ OH + 0.1 · CH <sub>3</sub> COCH <sub>3</sub> + HO <sub>2</sub> + MVK + MACR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

Table S2: Gas-phase reactions involving isoprene (ISOP) for the formation of methacrolein (MACR), and methyl vinyl ketone (MVK) in the MOZART-4 chemical mechanism. The table is adapted from Emmons et al., 2010.



Figure S5: The flight altitude (a - km), the temperature (b - K), the concentration of isoprene (c - ppb), methacrolein (MACR) (d - ppb), methyl vinyl ketone (MVK) (e - ppb), and ozone (f - ppb), for the first NOMADSS flight (rf01). The black line shows the C-130 aircraft measurements, the green and red lines indicate the WRF-Chem model results using MEGAN version 2.04 (M2.04 run) and MEGAN updated to the version 2.10 (M2.10 run), respectively. In the panel b) the green line is not showed since it is overlapped by the red line, they have identical values.



Figure S6: The flight altitude (a - km), the temperature (b - K), the concentration of isoprene (c - ppb), methacrolein (MACR) (d - ppb), methyl vinyl ketone (MVK) (e - ppb), and ozone (f - ppb), for the third NOMADSS flight (rf03). The black line shows the C-130 aircraft measurements, the green and red lines indicate the WRF-Chem model results using MEGAN version 2.04 (M04 run) and MEGAN updated to the version 2.10 (M10 run), respectively. In the panel b) the green line is not showed since it is overlapped by the red line, they have identical values.



Figure S7: The flight altitude (a - km), the temperature (b - K), the concentration of isoprene (c - ppb), methacrolein (MACR) (d - ppb), methyl vinyl ketone (MVK) (e - ppb), and ozone (f - ppb), for the fourth NOMADSS flight (rf04). The black line shows the C-130 aircraft measurements, the green and red lines indicate the WRF-Chem model results using MEGAN version 2.04 (M04 run) and MEGAN updated to the version 2.10 (M10 run), respectively. In the panel b) the green line is not showed since it is overlapped by the red line, they have identical values.



Figure S8: The flight altitude (a - km), the temperature (b - K), the concentration of isoprene (c - ppb), methacrolein (MACR) (d - ppb), methyl vinyl ketone (MVK) (e - ppb), and ozone (f - ppb), for the fifth NOMADSS flight (rf05). The black line shows the C-130 aircraft measurements, the green and red lines indicate the WRF-Chem model results using MEGAN version 2.04 (M04 run) and MEGAN updated to the version 2.10 (M10 run), respectively. In the panel b) the green line is not showed since it is overlapped by the red line, they have identical values.