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Abstract. Plant transpiration dominates terrestrial latent heat fluxes (LE) and plays a central role in regulating the water cycle 10 

and land surface energy budget. However, currently Earth system models (ESM) disagree strongly on the amount of 

transpiration, and thus LE, leading to large uncertainties in simulating future climate. Thus it is crucial to correctly represent 

the mechanisms controlling the transpiration in models. At the leaf-scale, transpiration is controlled by stomatal regulation, 

and at the canopy-scale, through turbulence, which is a function of canopy structure and wind. The coupling of vegetation to 

the atmosphere can be characterized by a coefficient Ω. A value of Ω → 0 implies a strong coupling of vegetation and the 15 

atmosphere, leaving a dominant role to stomatal conductance in regulating water (H2O) and carbon dioxide (CO2) fluxes, while 

Ω → 1 implies a complete decoupling of leaves from the atmosphere, that is, the transfer of H2O and CO2 is limited by 

aerodynamic transport. In this study, we investigated how well the land surface model ORCHIDEE (v7266), simulates the 

coupling of vegetation to the atmosphere by using empirical daily estimates of Ω derived from flux measurements from 90 

FLUXNET sites. Our results show that ORCHIDEE generally captures the Ω in forest vegetation types (0.27±0.12) compared 20 

with observation (0.26±0.09), but underestimates Ω in grasslands and croplands (0.25±0.15 for model, 0.33±0.17 for 

observation). The good model performance in forests is due to compensation of biases in surface conductance (Gs) and 

aerodynamic conductance (Ga). Calibration of key parameters controlling the dependence of the stomatal conductance to the 

water vapor deficit (VPD) improves the simulated Gs, and Ω estimates in grasslands and croplands (0.28±0.20). To assess the 

underlying controls of Ω, we applied random forest (RF) models to both simulated and observation-based Ω. We found that 25 

large observed Ω are associated with periods of low wind speed, high temperature, low VPD and related to sites with large 

leaf area index (LAI) and/or short vegetation. The RF models applied to ORCHIDEE output generally agree with this pattern. 

However, we found the ORCHIDEE underestimated the sensitivity of Ω to VPD when VPD is high, overestimated the impact 

of LAI on Ω, and did not correctly simulate the temperature dependence of Ω when temperature is high. Our results highlight 

the importance of observational constraints on simulating the vegetation-atmosphere coupling strength, which can help 30 

improve predictive accuracy of water fluxes in Earth system models. 
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1 Introduction 

Representing accurately the land-atmosphere interactions in Earth system models (ESMs) is crucial for analyzing climate 

variability and projecting climate change (Claussen, 1998; Goldberg and Bernhofer, 2001; Zhu et al., 2017). Among the key 

interactions, the exchange of latent heat (LE) between the land surface and the atmosphere is one of the most important 35 

processes (Trenberth et al., 2009; IPCC, 2014). LE is contributed by several sources, including evaporation from bare soil and 

canopy interception, vegetation transpiration, snow and ice sublimation (Chapin et al., 2011). In these sources, transpiration 

has the largest contribution (Jasechko et al., 2013; Wei et al., 2017; Li et al., 2019), but is massively uncertain across models 

(Stoy et al., 2019), leading to considerable uncertainty in LE simulation in current ESMs (Wild, 2020). The large uncertainties 

in current transpiration and LE simulations can further result in difficulties in constraining soil moisture and the carbon cycle 40 

(Humphreys et al., 2021). Therefore, there is a need to evaluate and improve the simulation of transpiration and LE in ESMs. 

The LE parameterization in ESMs is based on Fick’s law, using the conductance, or 1/resistance of water vapor between 

vegetation and atmosphere (Bonan, 2019). This conductance is the result of several processes such as stomatal opening, 

boundary layer turbulence, soil-to-air evaporative resistance, and it is thus affected by multiple factors including plant 

physiology, vegetation structure, vapor pressure deficit (VPD), temperature, net radiation, soil moisture etc (Igarashi et al., 45 

2016; Zhang et al., 2018; Veste et al., 2020). Currently, we can observe total LE at the site scale (i.e. FLUXNET), but we are 

unable to disentangle the relative contribution of different processes. The complexity of conductance and the lack of process-

level observations lead to difficulties in detailed evaluation on the vegetation-atmosphere water exchanges in ESMs based on 

the underlying processes. As a result, accurately capturing the regulation of LE by biotic and abiotic factors remains a key 

challenge for the land surface modeling community (Mueller et al., 2013; De Kauwe et al., 2017; Stoy et al., 2019). 50 

An early attempt to quantify the contribution of different conductance processes was made by Jarvis and McNaughton (1986), 

who developed a metric commonly referred to as the decoupling coefficient, Ω, to describe whether vegetation transpiration 

is mainly controlled by stomatal or aerodynamic processes. The calculation of Ω is based on the ratio between aerodynamic 

and stomatal conductance (See Method). At the limit, Ω=0 denotes perfect coupling between vegetation and atmosphere, i.e. 

the transpiration is entirely regulated by stomata, while Ω=1 denotes complete decoupling, i.e. transpiration is driven entirely 55 

by boundary layer turbulence. The concept of Ω can be used at scales from leaf to regional level, and for different fluxes from 

transpiration only to the total evapotranspiration (e.g., Peng et al. 2019). Because evapotranspiration includes water fluxes 

from not only leaf but also other surfaces, the stomatal conductance needs to be replaced by a surface conductance which 

integrates all conductances at different surfaces in the evapotranspiration Ω calculation. 

During the last decades, the number of eddy covariance flux measurements has rapidly grown. Quantification of Ω at site level 60 

from eddy covariance flux measurements offers insights into how different vegetation types control turbulent fluxes as a 

function of their phenology and stomatal physiology during the growing and the non-growing season (De Kauwe et al., 2017; 

Goldberg and Bernhofer, 2001). These observation-based Ω provides valuable information to evaluate ESMs on how well they 

capture the controls of LE. Using this estimate, De Kauwe et al. (2013) found that one of the principal reasons for disagreement 
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among simulated transpiration responses to elevated CO2 is the differences in the degree of coupling between vegetation and 65 

the atmosphere. 

ORCHIDEE land surface model (LSM) is one of the widely used models in simulating carbon, energy and water budget of 

terrestrial ecosystems (e.g. Zhang et al., 2021; Schrapffer et al., 2020). ORCHIDEE and the ESM IPSLCM, which has 

ORCHIDEE as the land surface module have participated in various model intercomparison projects including TRENDY, 

Coupled Model Intercomparison Project (CMIP), etc. In spite of its wide usage, the LE of ORCHIDEE LSM remains simply 70 

calibrated and evaluated against the total evapotranspiration observations (Bastrikov et al., 2018), without considering the 

detailed processes. A recent study showed that the ORCHIDEE version used in CMIP6 still has biases in LE, especially in 

tropical regions (Tafasca et al., 2020). However, it remains unclear how the biases happened and which processes need to be 

improved to better simulate the fluxes. To solve this problem, in this study we used Ω dataset derived from eddy-covariance 

data from 106 sites (De Kauwe et al., 2017), to evaluate the vegetation-atmosphere coupling strength of the land surface model 75 

ORCHIDEE 2.2 (v7266). We tested whether the calibration of the stomatal response to atmospheric dryness, or using observed 

canopy height, can improve the simulation of coupling strength. Further we used random forest models to investigating the 

biotic and abiotic factors affecting the coupling strength. The methodology presented here is generic enough to be applied for 

the benchmarking of other LSMs. The objectives of this study are to: (1) Benchmark ORCHIDEE using Ω estimated from 

FLUXNET observations; (2) Investigate how different factors affect Ω in the observations and whether ORCHIDEE correctly 80 

captured the driving factors. 

2 Data and methods 

2.1 ORCHIDEE model 

We use the ORCHIDEE 2.2 (v7266) land surface model in this study. This model version is the latest version participating in 

CMIP6 project under coupled configuration to atmospheric circulation model in the IPSL-CM6A-LR ESM (Boucher et al., 85 

2020). The ORCHIDEE model consists of three interactive sub-modules (Krinner et al., 2005). The SECHIBA module 

parameterizes the land surface energy and water balance (Ducoudré et al., 1993). The STOMATE module deals with phenology 

(Botta et al., 2000) and carbon fluxes of terrestrial ecosystems (Viovy, 1996). The LPJ dynamic vegetation module simulates 

the dynamics of vegetation (Sitch et al., 2003). In this study, the dynamic vegetation module is turned off because the 

vegetation types are prescribed at each site. 90 

ORCHIDEE simulates LE by considering plant transpiration, bare soil evaporation, sublimation, floodplain evaporation, and 

evaporation from canopy water interception. Because this study focuses on the vegetation-atmosphere coupling strength for 

transpiration and also because the data to evaluate this model has been filtered to represent the transpiration (De Kauwe et al., 

2017), here we only introduce the parameterization of conductance relating to transpiration in ORCHIDEE. 

The stomatal conductance (gs, mol m-2 s-1 bar-1) is calculated in the photosynthesis module which couples the leaf-level 95 

photosynthesis and stomatal conductance based on (Yin and Struik, 2009):  
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𝑔𝑠 = 𝑔0 +
𝐴+𝑅𝑑

𝐶𝑖−𝐶𝑖
∗ 𝑓𝑣𝑝𝑑          (1) 

Where g0 is the stomatal conductance when the irradiance is zero (mol m-2 s-1 bar-1). A is the rate of CO2 assimilation (μmol 

m-2 s-1), 𝑅𝑑 is the dark respiration (μmol m-2 s-1), 𝐶𝑖 is the intercellular CO2 partial pressure (μbar), 𝐶𝑖
∗ is the 𝐶𝑖-based CO2 

compensation point (μbar) in the absence of Rd, and 𝑓𝑣𝑝𝑑 is the function for the effect of vapor pressure deficit (VPD, kPa) on 100 

stomatal conductance, calculated as: 

𝑓𝑣𝑝𝑑 =
1

[
1

𝑎1−𝑏1𝑉𝑃𝐷
−1]

          (2) 

Here a1 and b1 are empirical parameters depending on vegetation type (Fig S1). This equation shows that a higher VPD will 

induce stomatal closure and decrease gs. 

The canopy level stomatal conductance is calculated by integrating gs across all leaves in the canopy. 105 

The aerodynamic conductance (𝐺𝑎, 𝑚𝑜𝑙 𝑚−2 𝑠−1) formulation in ORCHIDEE is 

𝐺𝑎 =
𝜅2𝑢𝑎

[𝑙𝑛 (
𝑧𝑎−𝑑

𝑧0𝑚
) 𝑙𝑛 (

𝑧𝑎−𝑑

𝑧0ℎ
) ]

𝑝𝑠 / (𝑅𝑇)         (3) 

where 𝑧𝑎 is the height of the wind measurement, d is the displacement height (i.e. the height at which the wind speed would 

go to zero), calculated as 0.66 of average canopy height. 𝑢𝑎is wind speed (𝑚𝑠−1), 𝜅 is the von Karman’s constant. ps, T are 

air pressure and temperature. R is the universal gas constant. 𝑧0𝑚  and 𝑧0ℎ  are respectively the roughness heights (m) for 110 

momentum and heat transfer estimated following Su et al. (2001) and Ershadi et al. (2015) using canopy height (z) and LAI: 

𝑧0𝑚 = (𝑧 − 𝑑)𝑒
−

κ

𝜂          (4) 

Where  

𝜂 = 0.32 − 0.264𝑒−3.02𝐿𝐴𝐼         (5) 

𝑧0ℎ is estimated using 𝑧0𝑚 : 115 

𝑧0ℎ =
𝑧0𝑚

𝑒𝜅𝐵−1           (6) 

B is the Stanton number. 𝜅𝐵−1 is estimated following Su et al. (2001; 2002): 

𝜅𝐵−1 =
𝜅𝐶𝑑

4𝐶𝑡𝜂(1−𝑒
−

𝑛𝑒𝑐
2 )

fc2 + 2fcfs
𝜅𝜂

𝑧0𝑚
𝑧

𝐶𝑡
∗ + 𝜅𝐵𝑠

−1𝑓𝑠2       (7) 

Where Cd, Ct are drag and heat transfer coefficient of leaves, nec is within canopy wind profile extinction coefficient, 

calculated as nec = CdLAI/(2𝜂2). fc, fs are the fraction of canopy and bare soil, 𝐶𝑡
∗ is the heat transfer coefficient of soil. Bs is 120 

the Stanton number for bare soil, with 𝜅𝐵𝑠
−1 estimated following Brutsaert (1999): 

𝜅𝐵𝑠
−1 = 2.46Re∗

1

4 − ln(7.4)          (8) 

Where Re* is the Reynolds number. 
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2.2 FLUXNET data and empirical calculation of Ω 

The empirical Ω reference is derived from the FLUXNET 2015 dataset (Pastorello et al., 2020). This dataset collects eddy 125 

covariance measurements of heat and water fluxes, as well as the corresponding meteorological variables above vegetation 

canopy in sites over the world and across different plant functional types (PFT). The detailed information of the flux sites used 

can be found in Table S1. 

The calculation of Ω was firstly introduced by Jarvis and McNaughton (1986), using the formulation: 

𝛺 =
1+𝜖

1+𝜖+
𝐺𝑎
𝐺𝑠

           (9) 130 

where 𝜖 =
𝑠

𝛾
, s is the slope of the saturation vapor pressure curve with air temperature (Pa K-1), 𝛾 is the psychrometric constant 

(Pa K-1). It should be noted that the conductance (Ga, Gs) used for Ω calculation depends on the scale of interest, at the scale 

larger than a leaf, if other water vapor fluxes besides transpiration (e.g. soil evaporation) have significant contribution to LE, 

Gs must also include such contribution. In such cases, the synthesized Gs was sometimes referred to as surface conductance 

(Peng et al., 2019). To be accurate, we use the term surface conductance for Gs hereafter to match our scale. 135 

There remains no direct observation of Ga and Gs at flux sites. De Kauwe et al. (2017) developed an empirical method to 

estimate the two terms. In this method, Ga was estimated as an empirical equation using wind speed and friction velocity 

(Thom et al., 1975), and Gs ( 𝑚𝑜𝑙 𝑚−2 𝑠−1 ) was estimated using inverted Penman–Monteith equation with measured 

evapotranspiration (ET, in mol m-2 s-1) flux:  

𝐺𝑠 =
𝐺𝑎𝛾𝜆𝐸𝑇

𝑠(𝑅𝑛−𝐺)−(𝑠+𝛾)𝜆𝐸𝑇+𝐺𝑎𝑀𝑎𝑐𝑉𝑃𝐷
         (10) 140 

Where 𝜆 is the latent heat of vaporization (J mol -1), VPD (Pa) is the vapor pressure deficit, Rn (Wm-2) is the net radiation flux, 

G (W m-2) is the soil heat flux, Ma (kg mol-1) is molar mass of air, and c is the heat capacity of air (J kg-1 K-1).  

In this study, Ga, Gs and Ω from De Kauwe et al.’s (2017) dataset are used as the reference to evaluate ORCHIDEE LSM. 

2.3 Simulation setup and modeled Ω calculation 

The site simulations with ORCHIDEE are forced with observed meteorology in the FLUXNET 2015 dataset (Pastorello et al., 145 

2020). The variables include half-hourly time series of air temperature (K), surface pressure (Pa), specific humidity (kg kg-1), 

North and East direction wind speed (m s-1), short-wave downward radiation (W m-2), long-wave downward radiation (W m-

2), rainfall (kg m-2 s-1) and snowfall (kg m-2 s-1). Gaps in the FLUXNET meteorology data are filled following Vuichard and 

Papale (2015). The plant functional type (PFT) classification of FLUXNET is different from the one used in ORCHIDEE. To 

let ORCHIDEE simulate LE and the conductances without bias, we used a combination of ORCHIDEE PFT types to represent 150 

the vegetation type at each site (Table S1). 

Three simulations are performed at each site (Fig. 1). The first simulation named Ctrl uses the default configuration and 

parameters as used in CMIP6 and TRENDY experiments. The second simulation named Clb_gs uses the same configuration 

as Ctrl but changes the empirical parameters in Eq. 2. New values for a1 and b1 are obtained by constraining the modeled 
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formulation of conductance against a global database of leaf-level observations of stomatal conductance from Lin et al. (2015) 155 

for different plant functional types (See the Supplementary, Table S2, Fig S1). Finally, because the ORCHIDEE model 

prescribes canopy height for each PFT (Table S3), which may cause biases in Ga, we performed a last simulation referred to 

as Clb_ht.  Clb_ht also uses the Ctrl configuration but the default canopy height parameters for each PFT are replaced by the 

canopy height observed at each site. In all the simulations, we kept the distance between measurement height and canopy 

height consistent with the observations, to ensure unbiased estimates of aerodynamic conductance in the model. Because 160 

canopy height and measurement height are required in the last simulation, we only used 90 sites where we found both height 

information out of the flux sites in the FLUXNET2015 dataset in this study. 

Although De Kauwe et al. (2017) excluded time steps with precipitation and the subsequent 48 half hours to have the LE 

mainly contributed by transpiration and referred to Gs as ‘stomatal conductance’ in their paper, we still need to keep in mind 

that the Gs calculated in this way may also contain contributions from several other processes. It includes the conductance 165 

related to bare soil evaporation and the one related to water transport in the leaf boundary layer, in addition to the stomatal 

conductance integrated over the entire canopy. So it is more a ‘surface conductance’ than a ‘stomatal conductance”. To be 

consistent with the observation-based dataset, we did not use the integrated canopy level stomatal conductance from 

ORCHIDEE output to calculate Ω. Instead, Gs is diagnosed using ORCHIDEE output evapotranspiration, Rn and G following 

Eq 5. 170 

2.4 Leaf area index data 

Because leaf area is an important factor affecting both aerodynamic and surface conductance, it is necessary to take leaf area 

into consideration when explaining the decoupling coefficient. However, instantaneous leaf area information is not available 

at most of the flux sites. To match the space and time of observation-based Ω, we extracted the leaf area index (LAI) from the 

500m 8-day MOD15A2H dataset derived from the space-borne MODIS observations (Myneni et al., 2015). This LAI dataset 175 

shows good consistency with in situ observations (Xu et al., 2018). The LAI for a given date is interpolated by averaging the 

nearest two high-quality LAI observations from the 8-day time series. For the simulated Ω, we used the LAI from the 

simulations for analyses to keep consistency between Ω and LAI. 

2.5 Analyses 

To be comparable with the observation-based Ω dataset, we first used the same criteria to screen the model outputs as De 180 

Kauwe et al. (2017), i.e. (1) only the three most productive months, to account for the different timing of summer in the 

Northern (June, July, August) and Southern (December, January, February) hemispheres are included in the study. This is to 

maximize the role of transpiration in Ω versus bare soil evaporation in the growing season. (2) only day-time data from 8:00 

am to 4:00 pm (local solar time) are used. (3) time steps during precipitation or within 2 days after precipitation are excluded. 

Because the 30-min Ω is very noisy, to reduce the noise in data, we used the day-time average of Ω and explanatory variables 185 

in all later analyses. 
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The decoupling coefficient Ω is affected by multiple factors and the relationships between Ω and different factors are often 

nonlinear. To characterize these relationships, we constructed random forest models for each of the observation-/simulation-

based daily Ω. The goal is here to diagnose the main explanatory variables from the random forests in the 

observations/simulations, and to gain insights about the model over-/under-representation of their relative importance. The 190 

explanatory variables used in the random forest models include wind speed, air temperature (Tair), VPD, net radiation (Rnet), 

LAI, canopy height and PFT. For each model, 90% of the data are randomly sampled for training and the left 10% are used 

for testing whether there is overfitting in the random forest models (Fig S2). 

To visualize the role of each factor in the complex random forest model, we calculated the SHapley Additive exPlanations 

(SHAP) values. SHAP value is an index based on the classic Shapley values from game theory (Lundberg and Lee, 2017). For 195 

each daily sample, SHAP calculates the expectation of contribution of each factor to deviate the sample value from the average 

of all samples. An example explaining the SHAP values can be found in Fig S3. Investigating the dependence of SHAP value 

to the factor value tells how this factor affects Ω. Also, by averaging the absolute values of the SHAP of one factor from all 

samples, we can get the importance of the factor in the random forest model. 

The workflow of the simulations and analyses can be found in Fig 1. 200 

3 Results 

3.1 The performance of the ORCHIDEE model 

The average growing season daytime Ω estimated from observations and from the ORCHIDEE outputs are shown in Fig 2. A 

remarkable difference in the decoupling coefficient is found among plant functional types. According to the observation-based 

estimation (De Kauwe et al. 2017), the short vegetation types including grasslands (GRA) and croplands (CRO) are generally 205 

more decoupled from the atmosphere than forests, with the median values of Ω over sites of 0.31 and 0.38. In forest vegetation 

types, the evergreen forests (median Ω=0.26-0.35) are more decoupled with the atmosphere than deciduous forests (median 

Ω=0.16). The wetlands in observation show a strong decoupling (median Ω=0.42). Considering the large evaporation from 

open water in this vegetation type, the strong decoupling is not surprising. Besides the difference among vegetation types, we 

also find large variability in Ω within each type, especially for GRA and CRO (Table S4). 210 

Compared with observations, ORCHIDEE Ctrl simulations show similar median Ω in forests and croplands (Fig 2, Table S4). 

However, in grasslands, the Ctrl median Ω (0.15) is much smaller compared to observation (0.31), implying a greater stomatal 

control in the model than the observations on grassland transpiration. This bias is not contributed by a few outlier sites but by 

a systematic underestimation of Ω at most of the grassland sites. For wetlands, ORCHIDEE also shows a significant 

underestimation of Ω (Fig 2). This could be due to the lack of wetland PFT and the corresponding open water in the 215 

ORCHIDEE model (Table S3). In spite of the biases in grassland and wetland, the observed differences in Ω among vegetation 

type are to a larger degree well reproduced (Fig 2). The strongest decoupling is found in CRO and deciduous broadleaf forest 

(DBF), and the evergreen needleleaf forests are more coupled than deciduous broadleaf forests.  
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By calibrating stomatal conductance (VPD dependence parameters leading to the Clb_gs simulation), we obtained Ω 

estimations closer to observations in short vegetation types (CRO and GRA) than Ctrl (Fig 2). But the median Ω estimation 220 

for most forest types is degraded after the gs ‘calibration’, with the Ω more overestimated in DBF, ENF and MF. In contrast 

to the large impact from the calibration of stomatal conductance, prescribing realistic canopy height to the model leads to 

minor changes in Ω (Fig 2). 

In order to understand the reasons for differences in Ω between observation and the ORCHIDEE model, we also look into its 

components Ga and Gs (Fig 3). Compared to observations, both Ga and Gs are underestimated in Ctrl. For Ga, the 225 

underestimation from model is ~1.0 mol m-2 s-1 in forest types and ~0.4 mol m-2 s-1 in GRA and CRO. Calibrating stomatal 

conductance (Clb_gs) or prescribing the observed canopy height to the model (Clb_ht) both have a small impact on Ga. For 

Gs, using the new parameters for stomatal conductance (Clb_gs) can generally correct the Gs bias in DBF, ENF and MF, and 

improved Gs in GRA and CRO than Ctrl. Although Clb_gs has improved the Gs simulation compared with Ctrl, it does not 

result in an improvement of Ω and latent heat simulation, implying a compensation of biases in Ga and Gs in current 230 

ORCHIDEE model. 

3.2 Factors controlling the decoupling coefficient 

To better understand the underlying drivers of the variability in decoupling we separated the importance of hypothesized 

drivers of decoupling coefficient in random forest models using SHAP values (Fig. 4a). Among all the factors, the observation-

based random forest results show that the variation of Ω is mainly contributed by the variation of VPD, followed by PFT, with 235 

each of them having a SHAP value of ~0.06, i.e. the variation of the factor contributes on average 0.06 of the deviation of Ω 

(absolute value) from the average of all samples. The other factors show relatively small importance to Ω, with SHAP values 

smaller than 0.03. Compared to observations, the ORCHIDEE Ω variation is also strongly contributed by VPD. However, 

opposite from the strong PFT impact found in observation, the modeled Ω is strongly affected by LAI. In Ctrl, the SHAP value 

of LAI is 0.09, which is much higher than the observation. The calibration of gs increased this value to 0.14. In contrast to the 240 

strong impact of LAI, all the modeled Ω show a much smaller contribution from PFT than in observation. It is also notable 

that the impact of air temperature on Ω is also much smaller in ORCHIDEE simulations than in observations. 

To further understand the differences between tall and short vegetation, we trained random forest models using only forests 

(EBF, DBF, ENF and MF) and only short vegetation (GRA and CRO) observation/simulation. In forests, the SHAP value of 

VPD is comparable in the observation and ORCHIDEE simulations, while the LAI SHAP value is strongly overestimated and 245 

the canopy height SHAP value is slightly underestimated by the model. For short vegetation, a strong overestimation of the 

SHAP of LAI is also confirmed in ORCHIDEE. But for the other factors (Tair, Rnet, VPD and height), the SHAP values are 

underestimated. It is notable that the SHAP values for VPD in ORCHIDEE is only 60% of the estimation in observation, 

probably indicating a strong underestimation of water stress on Ω in short vegetation. 

Figure 5 summarizes how different factors affect Ω in each of the observation/simulation random forest models. The responses 250 

of Ω to most factors are generally consistent in observations and simulations. According to all of the random forest models, 
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the vegetation is more decoupled, or having a larger Ω, under conditions with low wind speed, low VPD and large LAI. Also, 

both observation and simulations agree that GRA and CRO are more decoupled from the atmosphere than the other PFTs. 

However, for Tair and Rnet, ORCHIDEE does not capture the observed dependence correctly. In observation, a remarkable 

positive Tair dependence is found, with higher temperature tending to result in higher Ω. While in simulations, temperature 255 

shows a very small impact on Ω. The dependence of Ω on Rnet is similar to that of Tair in observation, but only the Clb_gs 

simulation captured this dependence correctly. Finally, to our surprise, we did not find Ω to strongly depend on canopy height 

in both observation and simulation. Although the highest canopy tends to have positive SHAP values, the range of SHAP 

values for smaller height levels is very large with both positive and negative. 

A comparison of all controlling factors individually between the observations and the ORCHIDEE simulations is shown in 260 

Fig. 6. The dependence of Ω on wind speed generally has similar patterns in observation and in ORCHIDEE. Similar patterns 

are also found in Ga and Gs between simulation and observations at wind speed larger than 1 m s-1. In observation, we found 

positive SHAP values of wind speed at wind speed smaller than 1 m s-1, this might be due to coincidence because low wind 

speed will cause large uncertainty in the eddy covariance measurements and there are very few valid observation-based Ω 

available at low wind speed. 265 

The observed dependence of Ω on Tair is not captured by ORCHIDEE. Observations indicate an increase of Ω when Tair is 

lower than 30℃, and a slight decrease at higher temperature. While ORCHIDEE simulations show a much smaller impact 

from Tair. This model bias is caused by differences in the relationships of Gs on Tair at high temperature. A strong decline of 

the Gs SHAP values is found when the Tair is over 20℃ in ORCHIDEE, while the observations show a slight increase of Gs 

SHAP values at the same temperature. This difference probably indicates an underestimation of optimal temperature for 270 

photosynthesis in ORCHIDEE in PFTs that have been acclimated to hot weather. 

In terms of the VPD, ORCHIDEE generally captures the negative dependence of Ω to VPD at VPD smaller than 2 kPa. 

However, when the VPD is larger, observations show continuous negative dependence of Ω, while ORCHIDEE simulations 

show no significant changes in Ω with VPD. The decomposition into components of Ω shows that this difference is mainly 

contributed by different dependence of Gs on VPD (Fig 6). 275 

Compared with the observations, ORCHIDEE simulations show a different dependence of Ω to Rnet when the net radiation is 

<100 W m-2. This difference is also mainly contributed by differences in Gs. In observation, the Gs SHAP values start to 

decrease rapidly when Rnet is lower than 200 W m-2, while in ORCHIDEE simulations, the decrease of SHAP values is smaller 

and happens when Rnet is below 50 W m-2. 

Regarding the dependence of Ω to LAI, ORCHIDEE simulations show a significant increase of Ω with LAI across the entire 280 

range of LAI, due to a strong increase of Gs along with LAI, with the Gs SHAP values increasing by 0.2-0.4 mol m-2 s-1 from 

LAI=0 to LAI=5. However, the observations show that SHAP values increase only by less than 0.05 mol m-2 s-1 for the same 

change in LAI, resulting in a weak dependence of Ω on LAI. 

Both observation and ORCHIDEE show weak dependence of Ω on canopy height. However, all of the data agree with a 

positive impact of canopy height on Ga. A strong increase of Ga is found when the height is below 15 m. 285 
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3.3 Interactions among factors 

To further understand how the model biases the controls of Ω, we explored the interactions between factors that have significant 

different impacts between ORCHIDEE and observations (Fig 7, 8). 

The interactions between VPD and Tair are shown in Fig. 7. The observation data show that when Ω SHAP value is positive 

(Tair >25℃), data with larger VPD have smaller Ω values than those with smaller VPD.  290 

In ORCHIDEE simulations, although Ω SHAP values varies differently along the temperature gradient compared with 

observations, similar interactions between VPD and Tair are also found, i.e., for a given temperature when Ω SHAP value is 

positive, large VPD values tend to result in smaller Ω. In another words, the dependence of Ω to Tair in hot weather is weakened 

by high VPD level. This weakening of Ω dependence on Tair is due to weakened dependence of Gs on Tair under high VPD 

conditions (Fig S3). 295 

A similar interaction between VPD and LAI is also found in both the observations and ORCHIDEE simulations (Fig 8). The 

data points with VPD>3kPa show SHAP values close to zero, indicating that higher VPD tends to also weaken the dependence 

of Ω on LAI. ORCHIDEE underestimated the weakening effect of high VPD to the Ω to LAI dependence as the SHAP values 

under high VPD conditions remain very positive/negative compared with the observation. 

4 Discussion 300 

4.1 How can models correctly simulate the coupling strength 

Accurately resolving the land-atmospheric water/energy exchanges is critical in simulating the climate system. To ensure this, 

LSMs must be carefully calibrated and validated with observations before use. The ORCHIDEE model has been calibrated 

several times for carbon and water fluxes against flux observations including the use of dedicated data assimilation systems 

(e.g., Bastrikov et al., 2018). As a result, the ORCHIDEE model with the most recent set of parameters does not show large 305 

biases in LE (Fig 3c).  

Nevertheless, there remains no evaluation on the components and processes of LE, as well as their biotic and abiotic controls, 

leading to potential biases in LE simulation if climate changes. Disentangling and assessing processes and components of LE 

are difficult due to the lack of direct observation (Nelson et al., 2020). Although not perfect, evaluating the coupling strength 

and its components gives a possible way to further constrain the models. 310 

In this study, we showed that current ORCHIDEE model captures the coupling strength at most of the sites, however fails to 

correctly represent the processes. The tuning of current LSM models often adjusts a few uncertain parameters to produce a 

small number of target variables (C fluxes, LE, sensible heat flux) close to the observation. In a complex model, this kind of 

calibration may result in overfitting, and errors compensating for each processes. In the end, the model may get the correct 

result for the wrong reasons. Therefore, calibration the model at the process level is helpful. For instance, the calibration of 315 

the a1 and b1 parameters in stomatal conductance calculation using independent observation-constrained values from Lin et al. 
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(2015) leaf scale data synthesis has significantly improved our estimation of fvpd (Fig. S1), and consequently corrected some 

biases in Gs and resulted in better Ω in short vegetation. In Forest sites, Ω seems worse after this calibration, but this is because 

of the biases in modeled Ga, probably due to bad assumption in calculating the displacement height. 

In spite of the improvement from gs calibration, there remain large biases in Gs in short vegetation (grasslands and croplands). 320 

Our analyses on the controlling factors sheds light on where the problems are and give a direction to improve: we expect the 

model performance to improve if the dependence of Gs on temperature is corrected and the impact of VPD on stomatal 

conductance is further constrained. We did not do further calibration here because the responses of gs to VPD are an emergent 

area of concern for LSMs and more process-level modeling and calibration efforts remain needed (Yang et al., 2019). Also, it 

is out of the scope of this evaluation study. Nevertheless, the framework we used here would be helpful for models to identify 325 

their problematic processes and potentially fix their biases. 

4.2 Factors controlling vegetation coupling strength 

Due to the complexity of processes, as well as the lack of data, it is difficult to attribute the variation of coupling strength to 

different factors. Previous studies either focus on one or a few meteorological factors such as VPD, radiation or wind speed 

(Kumagai et al., 2004; Nicolás et al., 2008; Zhang et al. 2018) or biotic factors like LAI or PFT (Tateishi et al., 2010; Zhang 330 

et al., 2016). Our new framework to disentangling the impacts of different factors provides a systematic view to understand 

the impact of these factors. 

Among all the factors, VPD was the most intensively investigated factor due to its strongest impact on stomatal conductance. 

Previous study showed that vegetation tends to be more decoupled in wet season with low VPD compared with dry season 

with high VPD (Kumagai et al. 2004). In this study, we found VPD the most important factor affecting Ω and to affect Ω 335 

similarly as the previous study (Fig 6). This effect is mainly due to the reduction of Gs under dry conditions as plants tend to 

close the stomata under high VPD conditions to reduce water loss. In addition, high VPD conditions often coincide with low 

soil moisture, which hampers soil water uptake by plants, also leading to low Gs. It should be noted that this VPD-Ω 

relationship is obtained using daily data. At a sub-daily time scale, this VPD-Ω relationship is not easily observed due to the 

strong impacts of other factors, such as radiation (Wullschleger et al., 2000; Zhang et al., 2018). 340 

The impact of Tair on Ω is through two possible pathways. First, Tair can directly affect VPD by changing saturate water 

vapor pressure, leading to changes in Ω. Second, Tair can affect the photosynthesis rate by changing enzyme activities. Because 

stomatal conductance is strongly coupled with carbon assimilation rate (Cowan and Farquhar, 1977), the changes in 

photosynthesis rate can thus affect gs, and consequently Ω. In this study, we found that the responses of Ω and Gs to Tair 

different from those to VPD, implying that the impacts of Tair through the second pathway is not negligible. The differential 345 

Tair impacts on Gs and Ω between observation and model simulations are probably due to wrong Tair adaptation of vegetation 

in ORCHIDEE model. 

Besides VPD and Tair, some studies found significant impacts from net radiation (Nicolás et al., 2008) or photosynthetically 

active radiation on Ω (which is strongly correlated to net radiation used in our analyses) (Zhang et al., 2018). Similar to Tair, 
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changing radiation can also alter leaf photosynthesis rate. Due to the coupling between stomatal conductance and carbon 350 

assimilation, the changes in radiation thus result in Ω changes. Nevertheless, the impact of radiation should be considered with 

caution because radiation is strongly correlated with other environmental or biotic factors that have diurnal and seasonal cycles 

(e.g. temperature, LAI). Besides the short-term effect, long term changes of radiation can affect soil moisture by altering LE, 

which may potentially change the coupling strength of the vegetation. 

In terms of wind speed, we detected a negative dependence of Ω on wind as expected. This is because wind can accelerate the 355 

mixing of the boundary layer, increasing Ga. In this study, we did not find wind speed to be as important as VPD or vegetation 

types in explaining the variation of Ω. However, it needs to be kept in mind that the importance of factors depends on vegetation 

type. In ecosystems with a small vegetation cover (meaning small Gs), or in ecosystems where Gs has small variability, the 

importance of wind speed will increase. 

Apart from the abiotic factors, the biotic factors, or vegetation properties also play important roles in controlling Ω. The PFT 360 

is found the second important factor affecting Ω after VPD in observation data (Fig 4). In ORCHIDEE simulations, the PFT 

impact on Ω is weaker but still important, especially for different forest types. The pattern of Ω among PFTs found in this 

study agree well with De Kauwe et al. (2017). The influences from PFT types on Ω may be due to various reasons. Besides 

leaf area and canopy height (investigated in this study), different PFTs often have different canopy structure and leaf traits, 

leading to differences in Ga and Gs. Meanwhile, the climate and environmental conditions (e.g. soil types) which different 365 

PFTs adapted to are also different. More detailed data are needed to further explain the PFT impacts. 

In the two biotic factors, canopy height is thought to be an important factor in affecting Ω because it directly affects the 

roughness length and the aerodynamic resistance (Ershadi et al., 2015). Higher canopies with larger roughness tend to enhance 

the turbulence for a given wind speed above the canopy. In this study, we found a positive but weak dependence of Ga on 

canopy height when the height is under 15m. This result is consistent with Peng et al. (2019), who found that when controlling 370 

leaf area, Ω decreases (corresponding to Ga increase) with canopy height in vegetation with height<20m. In higher canopies, 

Ga and Ω becomes less sensitive to canopy height. 

Besides canopy height, LAI is also an important control. On the one hand, observations have shown that large LAI can increase 

the roughness (Alekseychik et al., 2017), which can lead to an increase of Ga. Along with LAI, leaf size might be also important 

in affecting the roughness and Ga, but is not available at most sites, neither simulated by ORCHIDEE model. On the other 375 

hand, LAI affects Gs as a larger LAI means a larger area for transpiration. This effect might be further regulated by 

environmental factors such as VPD (Fig 8). Besides the influence from environmental factors, we also expect the impact of 

LAI on Gs to saturate for high LAI, because of increasing self-shading. The shaded leaves in lower canopy tend to have smaller 

transpiration due to the low interception of radiation (Roberts et al., 1993), resulting in a decrease of average transpiration per 

leaf area. Also, the Gs at the ecosystem level is a synthesis of different processes including the vapor diffusion within the 380 

canopy. Large LAI may slow down the diffusion of water vapor within the canopy, potentially resulting in smaller Gs, and 

smaller Ω. 
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4.3 Limitations 

Although the simulations and analyses we performed in this study clearly showed how and why ORCHIDEE LSM has biases 

in its estimation of the coupling strength, there remain some questions which need to be answered before we can calibrate the 385 

processes underlying these biases.  

First, the coupling strength is the consequence of multiple processes. In this evaluation of Ω, strict criteria have been used to 

screen the data to have only time steps with LE mainly contributed by transpiration. The effect of other processes (e.g. soil 

evaporation) can potentially affect the coupling strength under some circumstances. For instance, the wetland Ω is also strongly 

affected by evaporation from open water. An understanding of these processes is also important, and our evaluation cannot 390 

draw conclusions on how well ORCHIDEE simulates these processes. 

Second, due to the meteorological requirements of eddy covariance methods, the current selected observations have an 

incomplete coverage of the real meteorological conditions. We could not obtain valid observations under conditions with no 

wind. However, plants still transpire water to the atmosphere under such conditions. New observation methods are needed to 

fill this gap so that future calibrations can ensure the models to correctly simulate vegetation under all different conditions. 395 

The data used in this study are all day-time values. But for some vegetation types, transpiration also happens at nighttime 

(Dawson et al., 2007). Although the nighttime transpiration is smaller than the day-time transpiration, it can still affect the 

water and energy balance at longer time scale. These changes can potentially affect vegetation. However, the processes 

controlling the nighttime transpiration, as well as how coupled the ecosystems are at night remains poorly understood. Current 

LSMs also lack representations of such processes. We are not able to consider these processes in our evaluation/simulation. 400 

Besides the missing processes, uncertainty may also come from the method to estimate Ω. In the observation-based estimates, 

Ga was estimated using an empirical method from Thom et al. (1975), which was derived from a bean crop. Ga estimates from 

this method are found to be 81%-116% of the estimates of a more physically based method (Knauer et sl., 2017) in 6 forest 

sites. To test how biased Ga affects our evaluation, we increased/decreased Ga by 30% and re-estimated Gs and Ω (Fig S6). 

We found that perturbing Ga does not result in large changes in Gs. However, when Ga is 30% smaller than current 405 

observation-based estimates, we obtained smaller biases in Ga and Ω in ORCHIDEE Ctrl simulation in forest PFTs. Whereas 

in short PFTs, decreasing the reference Ga results in even larger biases in Ω, indicating that the large biases in model vegetation 

coupling strength in short vegetation is not due to uncertainties in the observation-based estimates. 

For Gs, the inverted Penman-Monteith equation may also result in some uncertainties. On the one hand, the energy budget is 

not always closed in flux observations. De Kauwe et al. (2017) used the value zero when soil heat flux observation is absent 410 

in estimating Gs, which could lead to biases in Gs and consequently Ω if the actual soil heat flux is not negligible. When the 

energy imbalance is corrected by adjusting the Bowen-ratio following De Kauwe et al. (2017), we obtained larger Gs estimates 

(Fig S6), resulting in even larger modeled Gs bias than in this study. The increased biases in the corrected Gs compensate for 

the existing biases in Ga, leading to a “good” performance of Ω simulation in forest PFTs. On the other hand, Penman-Monteith 

equation remains not perfect in estimating LE. A recent study (McColl, 2020) showed that the linear approximation of 415 
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Clausius-Clapeyron relation in the Penman-Monteith equation may cause significant biases when there is large difference 

between ambient air temperature and surface temperature (often with small Ga). A higher surface than ambient air temperature 

(daytime) tends to overestimate Gs in the inverted Penman-Monteith equation with observed LE, which can further 

overestimate Ω. However, since ORCHIDEE used the same method to estimate Gs as the observation, the uncertainties from 

the Penman-Monteith equation should not significantly affect our findings and conclusion. 420 

5 Conclusion 

In summary, in this study we evaluated the vegetation-atmosphere coupling strength, Ω, in ORCHIDEE LSM using an 

observation-based dataset at 90 flux sites. We found that short vegetation (grassland and cropland) in ORCHIDEE is too tightly 

coupled to the atmosphere compared to the observation-based estimates, while the coupling strength of forests is generally 

well estimated by ORCHIDEE. Nevertheless, there remains biases in both modeled Ga and Gs. Calibration of parameters 425 

controlling the dependence of the stomatal conductance to VPD reduces the biases of Gs in ORCHIDEE model to a small 

extent and improves the Ω estimates in short vegetation. Using a set of random forest models and analyses on SHAP values, 

we found that vegetation tends to be more decoupled to atmosphere at low wind speed, high temperature, low VPD and large 

LAI conditions and in short vegetation. ORCHIDEE generally agrees with this pattern but underestimated the VPD impacts 

when VPD is high, overestimated the contribution of LAI and did not correctly simulate the temperature dependence when 430 

temperature is high. Canopy height affects Ga but does not show a strong direct impact on Ω. Our results highlight the 

importance of observational constraints on simulating the vegetation-atmosphere coupling strength, which can help improve 

the predictive accuracy of water fluxes in Earth system models. 
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Figure 1: Workflow of this study. 

 

 
Figure 2. Box plots of site mean Ω observation (Flux) and different simulations, n indicates the number of sites in each PFT group. 605 
EBF, Evergreen broadleaf forests; DBF, Deciduous broadleaf forests; ENF, Evergreen needleleaf forests; MF, Mixed forests; SAV, 

Savannas; WSA, Woody savannas; CSH, Closed shrublands; OSH, Open shrublands; WET, wetlands; GRA, grasslands; CRO, 

croplands 
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Figure 3: Same as Fig. 2 but for (a) aerodynamic conductance, (b) surface conductance and (c) latent heat. 
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Figure 4. Importance of different factors based on absolute SHAP values of Ω (the expectance of factor-induced deviation of Ω from 

the averages of all samples). (a) in random forest model built by data from all PFTs. (b) model using only forest data. (c) model using 

only grassland and cropland data. 
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Figure 5. Beeswarm plots showing the dependence of Ω SHAP values to different factors. For each data point, the percentile of the 625 
factor’s value in all samples is shown in color. The SHAP value, or contribution of this factor value to deviate the day-time Ω from 

the average Ω of all samples, is shown in x axis. In each subplot, data points at a certain SHAP value level are sorted by the factor 

percentile (i.e. vertical gradient indicates the distribution of factor values in the data). (a) based on observation dataset, (b), (c) and 

(d) are for Ctrl, Clb_gs and Clb_ht simulations respectively. 
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 635 
Figure 6. Dependence of Ω (top), Ga (middle) and Gs (bottom) SHAP values on different factors (in order from left to right: wind 

speed, air temperature, VPD, net radiation, LAI and canopy height). The colors indicate observation or simulations. red: 

observation-based dataset, green: Ctrl, blue: Clb_gs, brown: Clb_ht. The shaded dots show the distribution of SHAP values in 

sample. 
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 645 
Figure 7. The interaction between VPD and air temperature in controlling Ω (contribution of temperature) in forests (top) and in 

grasslands and croplands (bottom). The y axis is the SHAP value of Tair for Ω, colors indicate the VPD of each data point. 

 

 

 650 
Figure 8. Same as Figure 7 but for interactions between VPD and LAI 

 


