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Abstract: 14 

Plant transpiration dominates terrestrial latent heat fluxes (LE) and plays a central role 15 

in regulating the water cycle and land surface energy budget. However, currently 16 

Earth system models (ESM) disagree strongly on the amount of transpiration, and 17 

thus LE, leading to large uncertainties in simulating future climate. Thus it is crucial 18 

to correctly represent the mechanisms controlling the transpiration in models. At the 19 

leaf-scale, transpiration is controlled by stomatal regulation, and at the canopy-scale, 20 

through turbulence, which is a function of canopy structure and wind. The coupling of 21 

vegetation to the atmosphere can be characterized by a coefficient Ω. A value of Ω → 22 

0 implies a strong coupling of vegetation and the atmosphere, leaving a dominant role 23 

to stomatal conductance in regulating water (H2O) and carbon dioxide (CO2) fluxes, 24 

while Ω → 1 implies a complete decoupling of leaves from the atmosphere, that is, 25 

the transfer of H2O and CO2 is limited by aerodynamic transport. In this study, we 26 

investigated how well the land surface model ORCHIDEE (v7266), simulates the 27 

coupling of vegetation to the atmosphere by using empirical daily estimates of Ω 28 

derived from flux measurements from 106 90 FLUXNET sites. Our results show that 29 

ORCHIDEE generally captures the Ω in forest vegetation types (0.27±0.120) 30 

compared with observation (0.26±0.09), but underestimates Ω in grasslands and 31 

croplands (0.256±0.156 for model, 0.33±0.17 for observation). The good model 32 

performance in forests is due to compensation of biases in surface conductance (Gs) 33 

and aerodynamic conductance (Ga). Calibration of key parameters controlling the 34 

dependence of the stomatal conductance to the water vapor deficit (VPD) improves 35 

the simulated Gs, and Ω estimates in grasslands and croplands (0.3028±0.210). To 36 

assess the underlying controls of Ω, we applied random forest (RF) models to both 37 

simulated and observation-based Ω. We found that large observed Ω are associated 38 

with periods of low wind speed, high temperature, low VPD and related to sites with 39 

large leaf area index (LAI) and/or short vegetation. The RF models applied to 40 

ORCHIDEE output generally agree with this pattern. However, we found the 41 

ORCHIDEE underestimated the sensitivity of Ω to VPD when VPD is high, 42 

overestimated the impact of LAI on Ω, and did not correctly simulate the temperature 43 

dependence of Ω when temperature is high. Our results highlight the importance of 44 



3 

 

observational constraints on simulating the vegetation-atmosphere coupling strength, 45 

which can help improve predictive accuracy of water fluxes in Earth system models. 46 

 47 

1. Introduction 48 

Representing accurately the land-atmosphere interactions in Earth system models 49 

(ESMs) is crucial for analyzing climate variability and projecting climate change 50 

(Claussen, 1998; Goldberg and Bernhofer, 2001; Zhu et al., 2017). Among the key 51 

interactions, the exchange of latent heat (LE) between the land surface and the 52 

atmosphere is one of the most important processes (Trenberth et al., 2009; IPCC,9 53 

2014). LE is contributed by several sources, including evaporation from bare soil and 54 

canopy interception, vegetation transpiration, snow and ice sublimation (Chapin et al., 55 

2011). In these sources, transpiration has the largest contribution (Jasechko et al., 56 

2013; Wei et al., 2017; Li et al., 2019), but is massively uncertain across models (Stoy 57 

et al., 2019), leading to considerable uncertainty in LE simulation in current ESMs 58 

(Wild, 2020). The large uncertainties in current transpiration and LE simulations can 59 

further result in difficulties in constraining soil moisture and the carbon cycle 60 

(Humphreys et al., 2021). Therefore, there is a need to evaluate and improve the 61 

simulation of transpiration and LE in ESMs. 62 

The LE parameterization in ESMs is based on Fick’s law, using the conductance, or 63 

1/resistance of water vapor between vegetation and atmosphere (Bonan, 2019). This 64 

conductance is the sum result of several processes such as stomatal opening, boundary 65 

layer turbulence, soil-to-air evaporative resistance, and it is thus affected by multiple 66 

factors including plant physiology, vegetation structure, vapor pressure deficit (VPD), 67 

temperature, net radiation, soil moisture etc (Igarashi et al., 2016; Zhang et al., 2018; 68 

Veste et al., 2020). Currently, we can observe total LE at the site scale (i.e. 69 

FLUXNET), but we are unable to disentangle the relative contribution of different 70 

processes. The complexity of conductance and the lack of process-level observations 71 

lead to difficulties in detailed evaluation on the vegetation-atmosphere water 72 

exchanges in ESMs based on the underlying processes. As a result, accurately 73 

capturing the regulation of LE by biotic and abiotic factors remains a key challenge 74 

https://scholar.google.fr/citations?user=BNuPxogAAAAJ&hl=zh-CN&oi=sra
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for the land surface modeling community (Mueller et al., 2013; De Kauwe et al., 75 

2017; Stoy et al., 2019). 76 

An early attempt to quantify the contribution of different conductance processes was 77 

made by Jarvis and McNaughton (1986), who developed a metric commonly referred 78 

to as the decoupling coefficient, Ω, to describe whether vegetation transpiration is 79 

mainly controlled by stomatal or aerodynamic processes. The calculation of Ω is 80 

based on the ratio between aerodynamic and stomatal conductance (See Method). At 81 

the limit, Ω=0 denotes perfect coupling between vegetation and atmosphere, i.e. the 82 

transpiration is entirely regulated by stomata, while Ω=1 denotes complete 83 

decoupling, i.e. transpiration is driven entirely by boundary layer turbulence. The 84 

concept of Ω can be used at scales from leaf to regional level, and for different fluxes 85 

from transpiration only to the total evapotranspiration (e.g., for instance, Peng et al. 86 

(2019). Because evapotranspiration includes water fluxes from not only leaf but also 87 

other surfaces, the stomatal conductance needs to be replaced by a surface 88 

conductance which sums integrates all conductances at different surfaces in the 89 

evapotranspiration Ω calculation. 90 

During the last decades, the number of eddy covariance flux measurements has 91 

rapidly grown. Quantification of Ω at site level from eddy covariance flux 92 

measurements offers insights into how different vegetation types control turbulent 93 

fluxes as a function of their phenology and stomatal physiology during the growing 94 

and the non-growing season (De Kauwe et al., 2017; Goldberg and Bernhofer, 2001). 95 

These observation-based Ω provides valuable information to evaluate ESMs on how 96 

well they capture the controls of LE. Using this estimates, De Kauwe et al. (2013) 97 

found that one of the principal reasons for disagreement among simulated 98 

transpiration responses to elevated CO2 is the differences in the degree of coupling 99 

between vegetation and the atmosphere. 100 

ORCHIDEE land surface model (LSM) is one of the widely used models in 101 

simulating carbon, energy and water budget of terrestrial ecosystems (e.g. Zhang et 102 

al., 2021; Schrapffer et al., 2020). ORCHIDEE and the ESM IPSLCM, which has 103 

ORCHIDEE as the land surface module have participated in various model 104 

intercomparison projects including TRENDY, Coupled Model Intercomparison 105 
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Project (CMIP), etc. In spite of its wide usage, the LE of ORCHIDEE LSM remains 106 

simply calibrated and evaluated against the total evapotranspiration observations 107 

(Bastrikov et al., 2018), without considering the detailed processes. A recent study 108 

showed that the ORCHIDEE version used in CMIP6 still has biases in LE, especially 109 

in tropical regions (Tafasca et al., 2020). However, it remains unclear how the biases 110 

happened and which processes need to be improved to better simulate the fluxes. To 111 

solve this problem, in this study we used Ω dataset derived from eddy-covariance data 112 

from 106 sites (De Kauwe et al., 2017), to evaluate the vegetation-atmosphere 113 

coupling strength of the land surface model ORCHIDEE 2.2 (v7266). We tested 114 

whether the calibration of the stomatal response to atmospheric dryness, or using 115 

observed canopy height, can improve the simulation of coupling strength. Further we 116 

used random forest models to investigating the biotic and abiotic factors affecting the 117 

decoupling strength. The methodology presented here is generic enough to be applied 118 

for the benchmarking of other LSMs. The objectives of this study are to: (1) 119 

Benchmark ORCHIDEE using Ω estimated from FLUXNET observations; (2) 120 

Investigate how different factors affect Ω in the observations and whether 121 

ORCHIDEE correctly captured the driving factors.  122 

2. Data and methods 123 

2.1 ORCHIDEE model 124 

We use the ORCHIDEE 2.2 (v7266) land surface model in this study. This model 125 

version is the latest version participating in CMIP6 project under coupled 126 

configuration to atmospheric circulation model in the IPSL-CM6A-LR ESM 127 

(Boucher et al., 2020). The ORCHIDEE model consists of three interactive sub-128 

modules (Krinner et al., 2005). The SECHIBA module parameterizes the land surface 129 

energy and water balance (Ducoudré et al., 1993). The STOMATE module deals with 130 

phenology (Botta et al., 2000) and carbon fluxes of terrestrial ecosystems (Viovy, 131 

1996). The LPJ dynamic vegetation module simulates the dynamics of vegetation 132 

(Sitch et al., 2003). In this study, the dynamic vegetation module is turned off because 133 

the vegetation types are prescribed at each site. 134 

ORCHIDEE simulates LE by considering plant transpiration, bare soil evaporation, 135 

sublimation, floodplain evaporation, and evaporation from canopy water interception. 136 

Because this study focuses on the vegetation-atmosphere decoupling strength for 137 
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transpiration and also because the data to evaluate this model has been filtered to 138 

represent the transpiration (De Kauwe et al., 2017), here we only introduce the 139 

parameterization of conductance relating to transpiration in ORCHIDEE. 140 

The stomatal conductance (gs, mol m-2 s-1 bar-1) is calculated in the photosynthesis 141 

module which couples the leaf-level photosynthesis and stomatal conductance based 142 

on (Yin and Struik, 2009):  143 

𝑔𝑠 = 𝑔0 +
𝐴+𝑅𝑑

𝐶𝑖−𝐶𝑖
∗ 𝑓𝑣𝑝𝑑         (1) 144 

Where g0 is the stomatal conductance when the irradiance is zero (mol m-2 s-1 bar-1). 145 

A is the rate of CO2 assimilation (μmol m-2 s-1), 𝑅𝑑 is the dark respiration (μmol m-2 s-146 

1), 𝐶𝑖 is the intercellular CO2 partial pressure (μbar), 𝐶𝑖
∗ is the 𝐶𝑖-based CO2 147 

compensation point (μbar) in the absence of Rd, and 𝑓𝑣𝑝𝑑 is the function for the effect 148 

of vapor pressure deficit (VPD, kPa) on stomatal conductance, calculated as: 149 

𝑓𝑣𝑝𝑑 =
1

[
1

𝑎1−𝑏1𝑉𝑃𝐷
−1]

         (2) 150 

Here a1 and b1 are empirical parameters depending on vegetation type (Fig S1). This 151 

equation shows that a higher VPD will induce stomatal closure and decrease gs. 152 

The canopy level stomatal conductance is calculated by integrating gs across all 153 

leaves in the canopy. 154 

The aerodynamic conductance (𝐺𝑎𝐺𝑎, 𝑚𝑜𝑙 𝑚−2 𝑠−1) formulation in ORCHIDEE is 155 

𝐺𝑎𝐺𝑎 =
𝜅2𝑢𝑎

[𝑙𝑛 (
𝑧𝑎−𝑑

𝑧0𝑚
) 𝑙𝑛 (

𝑧𝑎−𝑑

𝑧0ℎ
) ]

𝑝𝑠 / (𝑅𝑇)       156 

              (3) 157 

where 𝑧𝑎 is the average height of the wind measurement, all PFTs (including bare 158 

soil) in a grid (m), d is the displacement height (i.e. the height at which the wind 159 

speed would go to zero), calculated as 0.66 of zaverage canopy height. 𝑢𝑎is wind 160 

speed (𝑚𝑠−1), 𝜅 is the von Karman’s constant. ,ps, T are air pressure and temperature. 161 

R is the universal gas constant. 𝑧0𝑚 and 𝑧0ℎ are respectively the roughness heights 162 

(m) for momentum and heat transfer estimated following Su et al. (2001) and Ershadi 163 

et al. (2015) using canopy height (z) and LAI: 164 

带格式的: 字体: 倾斜
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𝑧0𝑚 = (𝑧 − 𝑑)𝑒
−

κ

𝜂        (4) 165 

Where  166 

𝜂 = 0.32 − 0.264𝑒−3.02𝐿𝐴𝐼       (5) 167 

𝑧0ℎ is estimated using 𝑧0𝑚 (see Eq E2 in Ershadi et al. (2015)).: 168 

𝑧0ℎ =
𝑧0𝑚

𝑒𝜅𝐵−1        (6) 169 

B is the Stanton number. 𝜅𝐵−1 is estimated following Su et al. (2001; 2002): 170 

𝜅𝐵−1 =
𝜅𝐶𝑑

4𝐶𝑡𝜂(1−𝑒
−

𝑛𝑒𝑐
2 )

fc2 + 2fcfs
𝜅𝜂

𝑧0𝑚
𝑧

𝐶𝑡
∗ + 𝜅𝐵𝑠

−1𝑓𝑠2   (7) 171 

Where Cd, Ct are drag and heat transfer coefficient of leaves, nec is within canopy 172 

wind profile extinction coefficient, calculated as nec = CdLAI/(2𝜂2). fc, fs are the 173 

fraction of canopy and bare soil, 𝐶𝑡
∗ is the heat transfer coefficient of soil. Bs is the 174 

Stanton number for bare soil, with 𝜅𝐵𝑠
−1 estimated following Brutsaert (1999): 175 

𝜅𝐵𝑠
−1 = 2.46Re∗

1

4 − ln(7.4)       (8) 176 

Where Re* is the Reynolds number. 177 

2.2 FLUXNET data and empirical calculation of Ω 178 

2.2 simulation setup 179 

The empirical Ω reference is derived from The site simulations with ORCHIDEE are 180 

forced with observed meteorology in the FLUXNET 2015 dataset (Pastorello et al., 181 

2020). This dataset collects eddy covariance measurements of heat and water fluxes, 182 

as well as the corresponding meteorological variables above vegetation canopy in 183 

sites over the world and across different plant functional types (PFT). The detailed 184 

information of the flux sites used can be found in Table S1. 185 

The variables include half-hourly time series of air temperature (K), surface pressure 186 

(Pa), specific humidity (kg kg-1), North and East direction wind speed (m s-1), short-187 

wave down (W m-2), long-wave down (W m-2), rainfall (kg m-2 s-1) and snowfall (kg 188 

m-2 s-1). Gaps in the FLUXNET meteorology data are filled following Vuichard and 189 

Papale (2015). The plant functional type (PFT) classification of FLUXNET is 190 
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different from the one used in ORCHIDEE. To let ORCHIDEE simulate LE and the 191 

conductances without bias, we used a combination of ORCHIDEE PFT types to 192 

represent the vegetation type at each site. The detailed information of flux sites can be 193 

found in Table S1. 194 

Three simulations are performed at each site (Fig. 1). The first simulation named Ctrl 195 

uses the default configuration and parameters as used in CMIP6 and TRENDY 196 

experiments. The second simulation named Clb_gs uses the same configuration as 197 

Ctrl but changes the empirical parameters in Eq. 2. New values for a1 and b1 are 198 

obtained by constraining the modeled formulation of conductance against a global 199 

database of leaf-level observations of stomatal conductance from Lin et al. (2015) for 200 

different plant functional types (See the Supplementary, Table S2, Fig S1). Finally, 201 

because the ORCHIDEE model prescribes canopy height for each PFT (Table S3), 202 

which may cause biases in Ga, we performed a last simulation referred to as Clb_ht.  203 

Clb_ht also uses the Ctrl configuration but the default canopy height parameters for 204 

each PFT are replaced by the canopy height observed at each site. Because canopy 205 

height is required in the last simulation, we only used 106 sites where we found height 206 

information out of the flux sites in the FLUXNET2015 dataset in this study. 207 

2.3 Empirical calculation of Ω 208 

The calculation of Ω was firstly introduced by Jarvis and McNaughton (1986), using 209 

the formulation: 210 

𝛺 =
1+𝜖

1+𝜖+
𝐺𝑎
𝐺𝑠

         211 

 (94) 212 

where 𝜖 =
𝑠

𝛾
, s is the slope of the saturation vapor pressure curve with air temperature 213 

(Pa K-1), 𝛾 is the psychrometric constant (Pa K-1). It should be noted that the 214 

conductance (Ga, Gs) used for Ω calculation depends on the scale of interest, at the 215 

scale larger than a leaf, if other water vapor fluxes besides transpiration (e.g. soil 216 

evaporation) have significant contribution to LE, Gs must also include such 217 

contribution. In such cases, the synthesized Gs was sometimes referred to as surface 218 

conductance (Peng et al., 2019). To be accurate, we use the term surface conductance 219 

for Gs hereafter to match our scale. 220 
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There remains no direct observation of Ga and Gs at flux sites. De Kauwe et al. 221 

(2017) developed an empirical method to estimate the two termsderived an Ω dataset 222 

over the sites of the FLUXNET network. In their this calculationmethod, Ga was 223 

estimated as an empirical equation using wind speed and friction velocity (Thom et 224 

al., 1975), and Gs (𝑚𝑜𝑙 𝑚−2 𝑠−1) was estimated using inverted Penman–Monteith 225 

equation with measured evapotranspiration (ET, in mol m-2 s-1) flux:  226 

𝐺𝑠𝐺𝑠 =
𝐺𝑎𝛾𝜆𝐸𝑇

𝑠(𝑅𝑛−𝐺)−(𝑠+𝛾)𝜆𝐸𝑇+𝐺𝑎𝑀𝑎𝑐𝑉𝑃𝐷
      227 

 (105) 228 

Where 𝜆 is the latent heat of vaporization (J mol -1), VPD (Pa) is the vapor pressure 229 

deficit, Rn (Wm-2) is the net radiation flux, G (W m-2) is the soil heat flux, Ma (kg mol-230 

1) is molar mass of air, and c is the heat capacity of air (J kg-1 K-1).  231 

In this study, Ga, Gs and Ω from De Kauwe et al.’s (2017) dataset are used as the 232 

reference to evaluate ORCHIDEE LSM. 233 

Although De Kauwe et al. (2017) excluded time steps with precipitation and the 234 

subsequent 48 half hours to have the LE mainly contributed by transpiration and 235 

referred to Gs as ‘stomatal conductance’ in their paper, we still need to keep in mind 236 

that the Gs calculated in this way may also contain contributions from several other 237 

processes. It includes the conductance related to bare soil evaporation and the one 238 

related to water transport in the leaf boundary layer, in addition to the stomatal 239 

conductance integrated over the entire canopy. So it is more a ‘surface conductance’ 240 

than a ‘stomatal conductance”. To be consistent with the observation-based dataset, 241 

we did not use the integrated canopy level stomatal conductance from ORCHIDEE 242 

output to calculate Ω. Instead, Gs is diagnosed using ORCHIDEE output ET, Rn and 243 

G following Eq 5.  244 

2.3 Simulation setup and modeled Ω calculation 245 

The site simulations with ORCHIDEE are forced with observed meteorology in the 246 

FLUXNET 2015 dataset (Pastorello et al., 2020). The variables include half-hourly 247 

time series of air temperature (K), surface pressure (Pa), specific humidity (kg kg-1), 248 

North and East direction wind speed (m s-1), short-wave downward radiation (W m-2), 249 

long-wave downward radiation (W m-2), rainfall (kg m-2 s-1) and snowfall (kg m-2 s-1). 250 
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Gaps in the FLUXNET meteorology data are filled following Vuichard and Papale 251 

(2015). The plant functional type (PFT) classification of FLUXNET is different from 252 

the one used in ORCHIDEE. To let ORCHIDEE simulate LE and the conductances 253 

without bias, we used a combination of ORCHIDEE PFT types to represent the 254 

vegetation type at each site (Table S1). 255 

Three simulations are performed at each site (Fig. 1). The first simulation named Ctrl 256 

uses the default configuration and parameters as used in CMIP6 and TRENDY 257 

experiments. The second simulation named Clb_gs uses the same configuration as 258 

Ctrl but changes the empirical parameters in Eq. 2. New values for a1 and b1 are 259 

obtained by constraining the modeled formulation of conductance against a global 260 

database of leaf-level observations of stomatal conductance from Lin et al. (2015) for 261 

different plant functional types (See the Supplementary, Table S2, Fig S1). Finally, 262 

because the ORCHIDEE model prescribes canopy height for each PFT (Table S3), 263 

which may cause biases in Ga, we performed a last simulation referred to as Clb_ht.  264 

Clb_ht also uses the Ctrl configuration but the default canopy height parameters for 265 

each PFT are replaced by the canopy height observed at each site. In all the 266 

simulations, we kept the distance between measurement height and canopy height 267 

consistent with the observations, to ensure unbiased estimates of aerodynamic 268 

conductance in the model. Because canopy height and measurement height are 269 

required in the last simulation, we only used 90 sites where we found both height 270 

information out of the flux sites in the FLUXNET2015 dataset in this study. 271 

Although De Kauwe et al. (2017) excluded time steps with precipitation and the 272 

subsequent 48 half hours to have the LE mainly contributed by transpiration and 273 

referred to Gs as ‘stomatal conductance’ in their paper, we still need to keep in mind 274 

that the Gs calculated in this way may also contain contributions from several other 275 

processes. It includes the conductance related to bare soil evaporation and the one 276 

related to water transport in the leaf boundary layer, in addition to the stomatal 277 

conductance integrated over the entire canopy. So it is more a ‘surface conductance’ 278 

than a ‘stomatal conductance”. To be consistent with the observation-based dataset, 279 

we did not use the integrated canopy level stomatal conductance from ORCHIDEE 280 

output to calculate Ω. Instead, Gs is diagnosed using ORCHIDEE output 281 

evapotranspiration, Rn and G following Eq 5. 282 
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2.4 Leaf area index data 283 

Because leaf area is an important factor affecting both aerodynamic and surface 284 

conductance, it is necessary to take leaf area into consideration when explaining the 285 

decoupling coefficient. However, instantaneous leaf area information is not available 286 

at most of the flux sites. To match the space and time of observation-based Ω, we 287 

extracted the leaf area index (LAI) from the 500m 8-day MOD15A2H dataset derived 288 

from the space-borne MODIS observations (Myneni et al., 2015). This LAI dataset 289 

shows good consistency with in situ observations (Xu et al., 2018). The LAI for a 290 

given date is interpolated by averaging the nearest two high-quality LAI observations 291 

from the 8-day time series. For the simulated Ω, we used the LAI from the 292 

simulations for analyses to keep consistency between Ω and LAI. 293 

2.5 Analyses 294 

To be comparable with the observation-based Ω dataset, we first used the same 295 

criteria to screen the model outputs as De Kauwe et al. (2017), i.e. (1) only the three 296 

most productive months, to account for the different timing of summer in the 297 

Northern (June, July, August) and Southern (December, January, February) 298 

hemispheres are included in the study. This is to maximize the role of transpiration in 299 

Ω versus bare soil evaporation in the growing season. (2) only day-time data from 300 

8:00 am to 164:00 pm (local solar time) are used. (3) time steps during precipitation 301 

or within 2 days after precipitation are excluded. Because the 30-min Ω is very noisy, 302 

to reduce the noise in data, we used the day-time average of Ω and explanatory 303 

variables in all later analyses. 304 

The decoupling strength coefficient Ω is affected by multiple factors and the 305 

relationships between Ω and different factors are often nonlinear. To characterize 306 

these relationships, we constructed random forest models for each of the observation-307 

/simulation-based daily Ω. The goal is here to diagnose the main explanatory 308 

variables from the random forests in the observations/simulations, and to gain insights 309 

about the model over-/under-representation of their relative importance. The 310 

explanatory variables used in the random forest models include wind speed, air 311 

temperature (Tair), VPD, net radiation (Rnet), LAI, canopy height and PFT. For each 312 

model, 90% of the data are randomly sampled for training and the left 10% are used 313 

for testing whether there is overfitting in the random forest models (Fig S2). 314 
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To visualize the role of each factor in the complex random forest model, we 315 

calculated the SHapley Additive exPlanations (SHAP) values. SHAP value is an 316 

index based on the classic Shapley values from game theory (Lundberg and Lee, 317 

2017). For each daily sample, SHAP calculates the expectation of contribution of each 318 

factor to deviate the sample value from the average of all samples. An example 319 

explaining the SHAP values can be found in Fig S3. Investigating the dependence of 320 

SHAP value to the factor value tells how this factor affects Ω. Also, by averaging the 321 

absolute values of the SHAP of one factor from all samples, we can get the 322 

importance of the factor in the random forest model. 323 

The workflow of the simulations and analyses can be found in Fig 1. 324 

3. Results 325 

3.1 The performance of the ORCHIDEE model 326 

The average growing season daytime Ω estimated from observations and from the 327 

ORCHIDEE outputs are shown in Fig 2. A remarkable difference in the decoupling 328 

coefficient is found among plant functional types. According to the observation-based 329 

estimation (De Kauwe et al. 2017), the short vegetation types including grasslands 330 

(GRA) and croplands (CRO) are generally more decoupled from the atmosphere than 331 

forests, with the median values of Ω over sites of 0.31 and 0.38. In forest vegetation 332 

types, the broadleaf evergreen forests (median Ω=0.2629-0.353) are more decoupled 333 

 

Figure 1. Workflow of this study 
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with the atmosphere than needleleaf deciduous forests (median Ω=0.2216). The 334 

wetlands in observation show a strong decoupling (median Ω=0.426). Considering the 335 

large evaporation from open water in this vegetation type, the strong decoupling is not 336 

surprising. Besides the difference among vegetation types, we also find large 337 

variability in Ω within each type, especially for GRA and CRO (Table S4). 338 

Compared with observations, ORCHIDEE Ctrl simulations show similar median Ω in 339 

forests and croplands (Fig 2, Table S4). However, in grasslands, the Ctrl median Ω 340 

(0.15) is much smaller compared to observation (0.31), implying a greater stomatal 341 

control in the model than the observations on grassland transpiration. This bias is not 342 

contributed by a few outlier sites but by a systematic underestimation of Ω at most of 343 

the grassland sites (Fig S4). For wetlands, ORCHIDEE also shows a significant 344 

underestimation of Ω (Fig 2). This could be due to the lack of wetland PFT and the 345 

corresponding open water in the ORCHIDEE model (Table S3). In spite of the biases 346 

in grassland and wetland, the observed differences in Ω among vegetation type are to 347 

a larger degree well reproduced (Fig 2). The strongest decoupling is found in CRO 348 

and deciduous broadleaf forest (DBF), and the evergreen needleleaf forests are more 349 

coupled than deciduous broadleaf forests.  350 

 

Figure 2. Box plots of site mean Ω observation (Flux) and different simulations, n 

indicates the number of sites in each PFT group. EBF, Evergreen broadleaf forests; 

DBF, Deciduous broadleaf forests; ENF, Evergreen needleleaf forests; MF, Mixed 

forests; SAV, Savannas; WSA, Woody savannas; CSH, Closed shrublands; OSH, Open 

shrublands; WET, wetlands; GRA, grasslands; CRO, croplands 
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By calibrating stomatal conductance (VPD dependence parameters leading to the 351 

 

Figure 3. Same as Fig. 2 but for (a) aerodynamic conductance, (b) surface 

conductance and (c) latent heat. 
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Clb_gs simulation), we obtained Ω estimations closer to observations in short 352 

vegetation types (CRO and GRA) than Ctrl (Fig 2). But the median Ω estimation for 353 

most forest types is degraded after the gs ‘calibration’, with the Ω more overestimated 354 

in DBF, ENF and MF, but more underestimated in EBF. In contrast to the large 355 

impact from the calibration of stomatal conductance, prescribing realistic canopy 356 

height to the model leads to minor changes in Ω (Fig 2). 357 

In order to understand the reasons for differences in Ω between observation and the 358 

ORCHIDEE model, we also look into its components Ga and Gs (Fig 3). Compared to 359 

observations, both Ga and Gs are underestimated in Ctrl. For Ga, the underestimation 360 

from model is 0.5-0.8~1.0 mol m-2 s-1 in forest types and 0.2-0.3~0.4 mol m-2 s-1 in 361 

GRA and CRO. Calibrating stomatal conductance (Clb_gs) or prescribing the 362 

observed canopy height to the model (Clb_ht) both have a small impact on Ga. For 363 

Gs, using the new parameters for stomatal conductance (Clb_gs) can generally correct 364 

the Gs bias in EBF, DBF, and ENF and MF, and improved Gs in GRA and CRO than 365 

Ctrl. Although Clb_gs has improved the Gs simulation compared with Ctrl, it does 366 

not result in an improvement of Ω and latent heat simulation, implying a 367 

compensatione of biases in Ga and Gs in current ORCHIDEE model. 368 

3.2 Factors controlling the decoupling strengthcoefficient 369 

To better understand the underlying drivers of the variability in decoupling we 370 

separated the importance of hypothesized drivers of decoupling strength coefficient in 371 

random forest models using SHAP values (Fig. 4a). Among all the factors, the 372 

observation-based random forest results show that the variation of Ω is mainly 373 

contributed by the variation of VPD, followed by PFT, with each of them having a 374 

SHAP value of ~0.06, i.e. the variation of the factor contributes on average 0.06 of the 375 

deviation of Ω (absolute value) from the average of all samples. The other factors 376 

show relatively small importance to Ω, with SHAP values smaller than 0.03. 377 

Compared to observations, the ORCHIDEE Ω variation is also strongly contributed 378 

by VPD. However, opposite from the strong PFT impact found in observation, the 379 

modeled Ω is strongly affected by LAI. In Ctrl, the SHAP value of LAI is 0.09, which 380 

is much higher than the observation. The calibration of gs increased this value to 381 

0.134. In contrast to the strong impact of LAI, all the modeled Ω show a much smaller 382 

contribution from PFT than in observation. It is also notable that the impact of air 383 
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temperature on Ω is also much smaller in ORCHIDEE simulations than in 384 

observations. 385 

To further understand the differences between tall and short vegetation, we trained 386 

random forest models using only forests (EBF, DBF, ENF and MF) and only short 387 

vegetation (GRA and CRO) observation/simulation. In forests, the SHAP value of 388 

VPD is comparable in the observation and ORCHIDEE simulations, while the LAI 389 

SHAP value is strongly overestimated and the canopy height SHAP value is slightly 390 

underestimated by the model. For short vegetation, a strong overestimation of the 391 

SHAP of LAI is also confirmed in ORCHIDEE. But for the other factors (Tair, Rnet, 392 

VPD and height), the SHAP values are underestimated. It is notable that the SHAP 393 

values for VPD in ORCHIDEE is only 60% of the estimation in observation, probably 394 

indicating a strong underestimation of water stress on Ω in short vegetation. 395 

 

Figure 4. Importance of different factors based on absolute SHAP values of Ω (the 

expectance of factor-induced deviation of Ω from the averages of all samples). (a) in 

random forest model built by data from all PFTs. (b) model using only forest data. (c) 

model using only grassland and cropland data. 



17 

 

Figure 5 summarizes how different factors affect Ω in each of the 396 

observation/simulation random forest models. The responses of Ω to most factors are 397 

generally consistent in observations and simulations. According to all of the random 398 

forest models, the vegetation is more decoupled, or having a larger Ω, under 399 

conditions with low wind speed, low VPD and large LAI. Also, both observation and 400 

simulations agree that GRA and CRO are more decoupled from the atmosphere than 401 

the other PFTs. However, for Tair and Rnet, ORCHIDEE does not capture the 402 

observed dependence correctly. In observation, a remarkable positive Tair 403 

dependence is found, with higher temperature tending to result in higher Ω. While in 404 

simulations, temperature shows a very small impact on Ω. Furthermore, for Clb_gs 405 

and Clb_ht simulations, the low Tair tends to result in large Ω. The dependence of Ω 406 

on Rnet is similar to that of Tair in observation, but only the Clb_gs simulation 407 

captured this dependence correctly. Finally, to our surprise, we did not find Ω to 408 

strongly depend on canopy height in both observation and simulation. Although the 409 

highest canopy tends to have positive SHAP values, the range of SHAP values for 410 

smaller height levels is very large with both positive and negative. 411 

 

Figure 5. Beeswarm plots showing the dependence of Ω SHAP values to different 

factors. For each data point, the percentile of the factor’s value in all samples is 

shown in color. The SHAP value, or contribution of this factor value to deviate the 

day-time Ω from the average Ω of all samples, is shown in x axis. In each subplot, 

data points at a certain SHAP value level are sorted by the factor percentile (i.e. 

vertical gradient indicates the distribution of factor values in the data). (a) based on 

observation dataset, (b), (c) and (d) are for Ctrl, Clb_gs and Clb_ht simulations 

respectively. 
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A comparison of all controlling factors individually between the observations and the 412 

ORCHIDEE simulations is shown in Fig. 6. The dependence of Ω on wind speed 413 

generally has similar patterns in observation and in ORCHIDEE. However,Similar 414 

patterns are also found in when Ω is decomposed to  Ga and Gs between simulation 415 

and observations at wind speed larger than 1 m s-1., differences between observation 416 

and ORCHIDEE appear. According to the observation, when wind speed is smaller 417 

than 5 m s-1, an increase of wind speed will contribute to larger Ω, while when wind 418 

speed is larger than 5 m s-1, increase of wind speed will not further affect Ga 419 

significantly. In contrast, ORCHIDEE simulations show an increase of Ga 420 

continuously with wind speed at large wind speeds. In observation, we also found 421 

positive SHAP values of wind speed at wind speed smaller than 1 m s-1, this might be 422 

due to coincidence because low wind speed will cause large uncertainty in the eddy 423 

covariance measurements and there are very few valid observation-based Ω available 424 

at low wind speed. 425 

The observed dependence of Ω on Tair is not captured by ORCHIDEE. Observations 426 

indicate an increase of Ω when Tair is lower than 30℃, and a slight decrease at higher 427 

temperature. While ORCHIDEE simulations show a much smaller impact from Tair. 428 

 

Figure 6. Dependence of Ω (top), Ga (middle) and Gs (bottom) SHAP values on 

different factors (in order from left to right: wind speed, air temperature, VPD, net 

radiation, LAI and canopy height). The colors indicate observation or simulations. 

red: observation-based dataset, green: Ctrl, blue: Clb_gs, brown: Clb_ht. The shaded 

dots show the distribution of SHAP values in sample. 
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Theis model bias is caused by differences in the relationships of Gs on Tair at high 429 

temperature. A strong decline of the Gs SHAP values is found when the Tair is over 430 

20℃ in ORCHIDEE, while the observations show a slight increase of Gs SHAP 431 

values at the same temperature. This difference probably indicates an underestimation 432 

of optimal temperature for photosynthesis in ORCHIDEE in PFTs that have been 433 

acclimated to hot weather. 434 

In terms of the VPD, ORCHIDEE generally captures the negative dependence of Ω to 435 

VPD at VPD smaller than 2 kPa. However, when the VPD is larger, observations 436 

show continuous negative dependence of Ω, while ORCHIDEE simulations show no 437 

significant changes in Ω with VPD. The decomposition into components of Ω shows 438 

that this difference is mainly contributed by different dependence of Gs on VPD (Fig 439 

6). 440 

Compared with the observations, ORCHIDEE simulations show a different 441 

dependence of Ω to Rnet when the net radiation is <100 W m-2. This difference is also 442 

mainly contributed by differences in Gs. In observation, the Gs SHAP values start to 443 

decrease rapidly when Rnet is lower than 200 W m-2, while in ORCHIDEE 444 

simulations, the decrease of SHAP values is smaller and happens when Rnet is below 445 

50 W m-2. 446 

Regarding the dependence of Ω to LAI, ORCHIDEE simulations show a significant 447 

increase of Ω with LAI across the entire range of LAI, due to a strong increase of Gs 448 

along with LAI, with the Gs SHAP values increasing by 0.2-0.4 mol m-2 s-1 from 449 

LAI=0 to LAI=5. However, the observations show that SHAP values increase only by 450 

less than 0.05 mol m-2 s-1 for the same change in LAI, resulting in a weak dependence 451 

of Ω on LAI. 452 

Both observation and ORCHIDEE show weak dependence of Ω on canopy height. 453 

However, all of the data agree with a positive impact of canopy height on Ga. A 454 

strong increase of Ga is found when the height is below 15 m.  455 

3.3 Interactions among factors 456 

To further understand how the model biases in the controls of Ω, we explored the 457 

interactions between factors that have significant different impacts between 458 

ORCHIDEE and observations (Fig 7, 8). 459 



20 

 

The interactions between VPD and Tair are shown in Fig. 7. The observation data 460 

show that when Ω SHAP value is positive (Tair >25℃), data with larger VPD have 461 

smaller Ω values than those with smaller VPD.  462 

In ORCHIDEE simulations, although Ω SHAP values varies differently along the 463 

temperature gradient compared with observations, similar interactions between VPD 464 

and Tair are also found, i.e., for a given temperature when Ω SHAP value is positive, 465 

large VPD values tend to result in smaller Ω. In another words, the dependence of Ω 466 

to Tair in hot weather is weakened by high VPD level. This weakening of Ω 467 

dependence on Tair is due to weakened dependence of Gs on Tair under high VPD 468 

conditions (Fig S3). 469 

A similar interaction between VPD and LAI is also found in both the observations and 470 

ORCHIDEE simulations (Fig 8). The data points with VPD>3kPa show SHAP values 471 

close to zero, indicating that higher VPD tends to also weaken the dependence of Ω 472 

on LAI. ORCHIDEE underestimated the weakening effect of high VPD to the Ω to 473 

LAI dependence as the SHAP values under high VPD conditions remain very 474 

positive/negative compared with the observation. 475 

 

Figure 7. The interaction between VPD and air temperature in controlling Ω 

(contribution of temperature) in forests (top) and in grasslands and croplands 

(bottom). The y axis is the SHAP value of Tair for Ω, colors indicate the VPD of each 

data point. 
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4. Discussion 476 

4.1 How can models correctly simulate the decoupling strength 477 

Accurately resolving the land-atmospheric water/energy exchanges is critical in 478 

simulating the climate system. To ensure this, LSMs must be carefully calibrated and 479 

validated with observations before use. The ORCHIDEE model has been calibrated 480 

several times for carbon and water fluxes against flux observations including the use 481 

of dedicated data assimilation systems (e.g., Bastrikov et al., 2018). As a result, the 482 

ORCHIDEE model with the most recent set of parameters does not show large biases 483 

in LE (Fig 3c).  484 

Nevertheless, there remains no evaluation on the components and processes of LE, as 485 

well as their biotic and abiotic controls, leading to potential biases in LE simulation if 486 

climate changes. Disentangling and assessing processes and components of LE are 487 

difficult due to the lack of direct observation (Nelson et al., 2020). Although not 488 

perfect, evaluating the coupling strength and its components gives a possible way to 489 

further constrain the models. 490 

In this study, we showed that current ORCHIDEE model captures the coupling 491 

strength at most of the sites, however fails to correctly represent the processes. The 492 

tuning of current LSM models often adjusts a few uncertain parameters to produce a 493 

small number of target variables (C fluxes, LE, sensible heat flux) close to the 494 

 

Figure 8. Same as Figure 7 but for interactions between VPD and LAI 
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observation. In a complex model, this kind of calibration may result in overfitting, and 495 

errors compensating for each processes. In the end, the model may get the correct 496 

result for the wrong reasons. Therefore, calibration the model at the process level is 497 

helpful. For instance, the calibration of the a1 and b1 parameters in stomatal 498 

conductance calculation using independent observation-constrained values from Lin 499 

et al. (2015) leaf scale data synthesis has significantly improved our estimation of 500 

fvpd (Fig. S1), and consequently corrected some biases in Gs and resulted in better Ω 501 

in short vegetation. In Forest sites, Ω seems worse after this calibration, but this is 502 

because of the biases in modeled Ga, probably due to bad assumption in calculating 503 

the displacement height. 504 

In spite of the improvement from gs calibration, there remain large biases in Gs in 505 

short vegetation (grasslands and croplands). Our analyses on the controlling factors 506 

sheds light on where the problems are and give a direction to improve: we expect the 507 

model performance to improve if the dependence of Gs on temperature is corrected 508 

and the impact of VPD on stomatal conductance is further constrained. We did not do 509 

further calibration here because the responses of gs to VPD are an emergent area of 510 

concern for LSMs and more process-level modeling and calibration efforts remain 511 

needed (Yang et al., 2019). Also, it is out of the scope of this evaluation study. 512 

Nevertheless, the framework we used here would be helpful for models to identify 513 

their problematic processes and potentially fix their biases. 514 

4.2 Factors controlling vegetation coupling strength 515 

Due to the complexity of processes, as well as the lack of data, it is difficult to 516 

attribute the variation of coupling strength to different factors. Previous studies either 517 

focus on one or a few meteorological factors such as VPD, radiation or wind speed 518 

(Kumagai et al., 2004; Nicolás et al., 2008; Zhang et al. 2018) or biotic factors like 519 

LAI or PFT (Tateishi et al., 2010; Zhang et al., 2016). Our new framework to 520 

disentangling the impacts of different factors provides a systematic view to 521 

understand the impact of these factors. 522 

Among all the factors, VPD was the most intensively investigated factor due to its 523 

strongest impact on stomatal conductance. Previous study showed that vegetation 524 

tends to be more decoupled in wet season with low VPD compared with dry season 525 
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with high VPD (Kumagai et al. 2004). In this study, we found VPD the most 526 

important factor affecting Ω and to affect Ω similarly as the previous study (Fig 6). 527 

This effect is mainly due to the reduction of Gs under dry conditions as plants tend to 528 

close the stomata under high VPD conditions to reduce water loss. In addition, high 529 

VPD conditions often coincide with low soil moisture, which hampers soil water 530 

uptake by plants, also leading to low Gs. It should be noted that this VPD-Ω 531 

relationship is obtained using daily data. At a sub-daily time scale, this VPD-Ω 532 

relationship is not easily observed due to the strong impacts of other factors, such as 533 

radiation (Wullschleger et al., 2000; Zhang et al., 2018). 534 

The impact of Tair on Ω is through two possible pathways. First, Tair can directly 535 

affect VPD by changing saturate water vapor pressure, leading to changes in Ω. 536 

Second, Tair can affect the photosynthesis rate by changing enzyme activities. 537 

Because stomatal conductance is strongly coupled with carbon assimilation rate 538 

(Cowan and Farquhar, 1977), the changes in photosynthesis rate can thus affect gs, 539 

and consequently Ω. In this study, we found that the responses of Ω and Gs to Tair 540 

different from those to VPD, implying that the impacts of Tair through the second 541 

pathway is not negligible. The differential Tair impacts on Gs and Ω between 542 

observation and model simulations are probably due to wrong Tair adaptation of 543 

vegetation in ORCHIDEE model. 544 

Besides VPD and Tair, some studies found significant impacts from net radiation 545 

(Nicolás et al., 2008) or photosynthetically active radiation on Ω (which is strongly 546 

correlated to net radiation used in our analyses) (Zhang et al., 2018). Similar to Tair, 547 

changing radiation can also alter leaf photosynthesis rate. Due to the coupling 548 

between stomatal conductance and carbon assimilation, the changes in radiation thus 549 

result in Ω changes. Nevertheless, the impact of radiation should be considered with 550 

caution because radiation is strongly correlated with other environmental or biotic 551 

factors that have diurnal and seasonal cycles (e.g. temperature, LAI). Besides the 552 

short-term effect, long term changes of radiation can affect soil moisture by altering 553 

LE, which may potentially change the coupling strength of the vegetation. 554 

In terms of wind speed, we detected a negative dependence of Ω on wind as expected. 555 

This is because wind can accelerate the mixing of the boundary layer, increasing Ga. 556 
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In this study, we did not find wind speed to be as important as VPD or vegetation 557 

types in explaining the variation of Ω. However, it needs to be kept in mind that the 558 

importance of factors depends on vegetation type. In ecosystems with a small 559 

vegetation cover (meaning small Gs), or in ecosystems where Gs has small variability, 560 

the importance of wind speed will increase. 561 

Apart from the abiotic factors, the biotic factors, or vegetation properties also play 562 

important roles in controlling Ω. The PFT is found the second important factor 563 

affecting Ω after VPD in observation data (Fig 4). In ORCHIDEE simulations, the 564 

PFT impact on Ω is weaker but still important, especially for different forest types. 565 

The pattern of Ω among PFTs found in this study agree well with De Kauwe et al. 566 

(2017). The influences from PFT types on Ω may be due to various reasons. Besides 567 

leaf area and canopy height (investigated in this study), different PFTs often have 568 

different canopy structure and leaf traits, leading to differences in Ga and Gs. 569 

Meanwhile, the climate and environmental conditions (e.g. soil types) which different 570 

PFTs adapted to are also different. More detailed data are needed to further explain 571 

the PFT impacts. 572 

In the two biotic factors, canopy height is thought to be an important factor in 573 

affecting Ω because it directly affects the roughness length and the aerodynamic 574 

resistance (Ershadi et al., 2015). Higher canopies with larger roughness tend to 575 

enhance the turbulence for a given wind speed above the canopy. In this study, we 576 

found a positive but weak dependence of Ga on canopy height when the height is 577 

under 15m. This result is consistent with Peng et al. (2019), who found that when 578 

controlling leaf area, Ω decreases (corresponding to Ga increase) with canopy height 579 

in vegetation with height<20m. In higher canopies, Ga and Ω becomes less sensitive 580 

to canopy height. 581 

Besides canopy height, LAI is also an important control. On the one hand, 582 

observations have shown that large LAI can increase the roughness (Alekseychik et 583 

al., 2017), which can lead to an increase of Ga. Along with LAI, leaf size might be 584 

also important in affecting the roughness and Ga, but is not available at most sites, 585 

neither simulated by ORCHIDEE model. On the other hand, LAI affects Gs as a 586 

larger LAI means a larger area for transpiration. This effect might be further regulated 587 
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by environmental factors such as VPD (Fig 8). Besides the influence from 588 

environmental factors, we also expect the impact of LAI on Gs to saturate for high 589 

LAI, because of increasing self-shading. The shaded leaves in lower canopy tend to 590 

have smaller transpiration due to the low interception of radiation (Roberts et al., 591 

1993), resulting in a decrease of average transpiration per leaf area. Also, the Gs at the 592 

ecosystem level is a synthesis of different processes including the vapor diffusion 593 

within the canopy. Large LAI may slow down the diffusion of water vapor within the 594 

canopy, potentially resulting in smaller Gs, and smaller Ω.  595 

4.3 Limitations 596 

Although the simulations and analyses we performed in this study clearly showed 597 

how and why ORCHIDEE LSM has biases in its estimation of the decoupling 598 

strength, there remain some questions which need to be answered before we can 599 

calibrate the processes underlying these biases.  600 

First, the decoupling strength is the consequence of multiple processes. In this 601 

evaluation of Ω, strict criteria have been used to screen the data to have only time 602 

steps with LE mainly contributed by transpiration. The effect of other processes (e.g. 603 

soil evaporation) can potentially affect the decoupling strength under some 604 

circumstances. For instance, the wetland Ω is also strongly affected by evaporation 605 

from open water. An understanding of these processes is also important, and our 606 

evaluation cannot draw conclusions on how well ORCHIDEE simulates these 607 

processes. 608 

Second, due to the meteorological requirements of eddy covariance methods, the 609 

current selected observations have an incomplete coverage of the real meteorological 610 

conditions. We could not obtain valid observations under conditions with no wind. 611 

However, plants still transpire water to the atmosphere under such conditions. New 612 

observation methods are needed to fill this gap so that future calibrations can ensure 613 

the models to correctly simulate vegetation under all different conditions.. 614 

The data used in this study are all day-time values. But for some vegetation types, 615 

transpiration also happens at nighttime (Dawson et al., 2007). Although the nighttime 616 

transpiration is smaller than the day-time transpiration, it can still affect the water and 617 

energy balance at longer time scale. These changes can potentially affect vegetation. 618 
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However, the processes controlling the nighttime transpiration, as well as how 619 

coupled the ecosystems are at night remains poorly understood. Current LSMs also 620 

lack representations of such processes. We are not able to consider these processes in 621 

our evaluation/simulation. 622 

Besides the missing processes, uncertainty may also come from the method to 623 

estimate Ω. In the observation-based estimates, Ga was estimated using an empirical 624 

method from Thom et al. (1975), which was derived from a bean crop. Ga estimates 625 

from this method are found to be 81%-116% of the estimates of a more physically 626 

based method (Knauer et sl., 2017) in 6 forest sites. To test how biased Ga affects our 627 

evaluation, we increased/decreased Ga by 30% and re-estimated Gs and Ω (Fig S6). 628 

We found that perturbing Ga does not result in large changes in Gs. However, when 629 

Ga is 30% smaller than current observation-based estimates, we obtained smaller 630 

biases in Ga and Ω in ORCHIDEE Ctrl simulation in forest PFTs. Whereas in short 631 

PFTs, decreasing the reference Ga results in even larger biases in Ω, indicating that 632 

the large biases in model vegetation coupling strength in short vegetation is not due to 633 

uncertainties in the observation-based estimates. 634 

has inevitable uncertainties. Nevertheless, estimates from this method are found to be 635 

consistent with other more physically based methods (Knauer et sl., 2017). For Gs, 636 

the inverted Penman-Monteith equation may also result in some uncertainties. On the 637 

one hand, the energy budget is not always closed in flux observations. De Kauwe et 638 

al. (2017) used the value zero when soil heat flux observation is absent in estimating 639 

Gs, which could lead to biases in Gs and consequently Ω if the actual soil heat flux is 640 

not negligible. When the energy imbalance is corrected by adjusting the Bowen-ratio 641 

following De Kauwe et al. (2017), we obtained larger Gs estimates (Fig S6), resulting 642 

in even larger modeled Gs bias than in this study. The increased biases in the 643 

corrected Gs compensate for the existing biases in Ga, leading to a “good” 644 

performance of Ω simulation in forest PFTs. On the other hand, Penman-Monteith 645 

equation remains not perfect in estimating LE. A recent study (McColl, 2020) showed 646 

that the linear approximation of Clausius-Clapeyron relation in the Penman-Monteith 647 

equation may cause significant biases when there is large difference between ambient 648 

air temperature and surface temperature (often with small Ga). A higher surface than 649 

ambient air temperature (daytime) tends to overestimate Gs in the invertedUsing 650 
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inverted Penman-Monteith equation with observed LE, which can further 651 

overestimate Ω may thus bias the Ω estimates. However, since ORCHIDEE used the 652 

same method to estimate Gs as the observation, the uncertainties from the Penman-653 

Monteith equation should not significantly affect our findings and conclusion. 654 

5. Conclusion 655 

In summary, in this study we evaluated the vegetation-atmosphere coupling strength, 656 

Ω, in ORCHIDEE LSM using an observation-based dataset at 106 90 flux sites. We 657 

found that short vegetation (grassland and cropland) in ORCHIDEE is too tightly 658 

coupled to the atmosphere compared to the observation-based estimates, while the 659 

coupling strength of forests is generally well estimated by ORCHIDEE. Nevertheless, 660 

there remains biases in both modeled Ga and Gs. Calibration of parameters 661 

controlling the dependence of the stomatal conductance to VPD reduces the biases of 662 

Gs in ORCHIDEE model to a small extent and improves the Ω estimates in short 663 

vegetation. Using a set of random forest models and analyses on SHAP values, we 664 

found that vegetation tends to be more decoupled to atmosphere at low wind speed, 665 

high temperature, low VPD and large LAI conditions and in short vegetation. 666 

ORCHIDEE generally agrees with this pattern but underestimated the VPD impacts 667 

when VPD is high, overestimated the contribution of LAI and did not correctly 668 

simulate the temperature dependence when temperature is high. Canopy height affects 669 

Ga but does not show a strong direct impact on Ω. Our results highlight the 670 

importance of observational constraints on simulating the vegetation-atmosphere 671 

coupling strength, which can help improve the predictive accuracy of water fluxes in 672 

Earth system models. 673 
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