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Abstract. Topographic heterogeneity and lateral subsurface flow at the hillslope scale of ≤ 1km 15 

may have outsized impacts on tropical forest through their impacts on water available to plants 

under water stressed conditions. However, vegetation dynamics and finer‐scale hydrologic 

processes are not concurrently represented in Earth system models. In this study, we integrate the 

Energy Exascale Earth System Model (E3SM) Land Model (ELM) that includes the 

Functionally-Assembled Terrestrial Ecosystem Simulator (FATES), with a three-dimensional 20 

hydrology model (ParFlow) to explicitly resolve hillslope topography and subsurface flow and 

perform numerical experiments to understand how hillslope scale hydrologic processes modulate 

vegetation along water availability gradients at Barro Colorado Island (BCI), Panama. Our 

simulations show that groundwater table depth (WTD) can play a large role in governing 

aboveground biomass (AGB) when drought-induced tree mortality is triggered by hydraulic 25 

failure. Analyzing the simulations using random forest (RF) models, we find that the domain-

wide simulated AGB and WTD can be well predicted by static topographic attributes including 

surface elevation, slope and convexity, and adding soil moisture or ground water table depth as 

predictors further improves the RF models. Different model representations of mortality due to 

hydraulic failure can change the dominant topographic driver for the simulated AGB. Contrary to 30 

the simulations, the observed AGB in the well-drained 50-ha forest census plot within BCI 

cannot be well predicted by the RF models using topographic attributes and observed soil 

moisture as predictors, suggesting other factors such as nutrient status may have larger influence 

on the observed AGB. The new coupled model may be useful for understanding the diverse 

impact of local heterogeneity by isolating the water availability and nutrient availability from the 35 

other external and internal factors in ecosystem modeling. 
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1 Introduction 

The aboveground biomass (AGB) within forests is a large storage pool for carbon, so 

reliably quantifying the spatial distribution of AGB is important for understanding the role of 40 

forests in the carbon cycle and in climate change mitigation [Garcia et al., 2017; Hernandez-

Stefanoni et al., 2020; Houghton et al., 2009]. The spatial distribution of AGB is commonly 

acquired from remote sensing or extensive field collection of plot data [Benitez et al., 2016; 

Condit et al., 2019; Goita et al., 2019; Goncalves et al., 2017; Hernandez-Stefanoni et al., 2020; 

Hernandez-Stefanoni et al., 2018; Zaki and Abd Latif, 2017; Zald et al., 2016]. However, it is 45 

challenging to understand the dynamic structure and biomass of forests and how they may 

respond to climate change, especially for tropical forests with high tree diversity [Clark et al., 

1999; Feroz et al., 2014; Wiegand et al., 2017].  

One factor that could play an important role in organizing the spatial distributions of 

tropical tree species is habitat variability, such as topographic conditions, soil biotic and abiotic 50 

characteristics, and soil water levels [Costa et al., 2005; Echiverri and Macdonald, 2019; Grasel 

et al., 2020; Kinap et al., 2021; Mascaro et al., 2011; Miron et al., 2021; Oliveira et al., 2019; 

Schietti et al., 2014; Steidinger, 2015; Zuleta et al., 2020]. Analyses of the spatial patterns of 

tropical species have shown that topographic attributes, such as slope and curvature, are a strong 

driver in controlling AGB variation in tropical forests [Detto et al., 2013; Mascaro et al., 2011; 55 

Silveira et al., 2019]. However, the mechanisms responsible for the association between 

topography and forest structure are not well understood. For example, soil moisture varies 

strongly with topography, and several studies have demonstrated how drought-associated 

mortality, species composition, structure and functions are all dependent on soil moisture 

gradients and water table depth [Schietti et al., 2014; Terra et al., 2018].    60 

Previous ecosystem dynamics modeling studies have included foci on non-spatial species 

distribution, statistical species-area relationship, and spatially explicit trees [Fisher et al., 2018; 

Moorcroft et al., 2001; Sato et al., 2007; Schumacher et al., 2004; Wiegand et al., 2017; and 

references therein]. However, they largely ignored hillslope hydrological processes, which 

fundamentally modulate water, energy, and biogeochemical fluxes at local scales [Fan et al., 65 

2019]. A quantitative assessment of the influence of hillslope water availability on ecosystem 

dynamics has not been undertaken, partly due to limited availability of observational data and 
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limited capabilities of models to represent processes at relevant scales. Our aim for this study is 

to develop a new modeling capability that incorporates the forest response to variation in 

hillslope soil moisture content and water table dynamics in an Earth system modeling 70 

framework. While ecosystem dynamics models have been coupled with land surface models, the 

latter generally ignore hillslope hydrologic processes or represent them crudely using subgrid 

parameterizations [Clark et al., 2015]. More detailed hydrologic models that represent hillslope 

hydrology and subsurface processes have been coupled to land surface models, but ecosystem 

dynamics models have not been included in those land surface models [e.g., Kollet and Maxwell, 75 

2006]. Models such as Regional Hydro-Ecologic Simulation System (RHEESyS) [Tague and 

Band, 2004] and Terrestrial Regional Ecosystem Exchange Simulator (TREES) [Mackay et al., 

2015] can represent vegetation dynamics with hillslope hydrology, but they have not been 

incorporated in Earth system models for modeling the coupled Earth system processes. In a 

comparison of a land surface model with a three-dimensional hydrology model in the Asu 80 

catchment of the Amazon basin, Fang et al. [2017] found significant influence of topography on 

groundwater table and runoff. Without subsurface lateral flow, the land surface model cannot 

reproduce the seasonal dynamics of the groundwater table simulated by the three-dimensional 

hydrology model. Hawthorne and Miniat [2018] suggested that through redistribution of soil 

moisture, topography may mitigate drought effects on vegetation along a hillslope gradient. It is 85 

recommended by Swetnam et al. [2017] that the non-linear effects of lateral redistribution of 

water in complex terrain should be taken into account to improve the prediction accuracy of tree 

mortality. These motivate the need to model hillslope hydrologic processes and ecosystem 

dynamics in a single Earth system modeling framework, as the seasonal dynamics of water 

available to plants could have significant effect on plant growth and survival during drought.   90 

To develop a new modeling capability to study the role of hillslope water availability on 

ecosystem dynamics, we couple the land component of the Energy Exascale Earth System Model 

(E3SM) [Golaz et al., 2019; Leung et al., 2020] in a configuration that includes a vegetation 

demographic model called the Functionally-Assembled Terrestrial Ecosystem Simulator 

(FATES) [Huang et al., 2020; Koven et al., 2020; Negron-Juarez et al., 2020; Powell et al., 95 

2018], with a three-dimensional hydrology model (ParFlow) [Ashby and Falgout, 1996; Jones 

and Woodward, 2001; Kollet and Maxwell, 2006; Maxwell, 2013]. The goal is to provide a tool 

in the Earth system modeling to isolate the plant water availability from the other controlling 
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factors associated with topography for AGB variability. The coupled model developed in this 

study is used to evaluate the role of hillslope water availability to ecosystem functioning at Barro 100 

Colorado Island (BCI), Panama, where observations of both vegetation and hydrology are 

available. BCI exhibits higher aboveground biomass on slopes and wet swamp [Chave et al., 

2003]. Furthermore, higher mortality rate of canopy trees at a plateau in BCI during 1983 was 

attributed to water stress by low precipitation and high temperature [Condit et al., 1995]. To our 

knowledge, no coupled modeling of ecosystem dynamics and hillslope hydrology has been 105 

conducted at the site.  

Hydraulic failure is the inability of a plant to move water from roots to leaves. It is one of 

the physiological mechanisms for tree mortality [McDowell et al., 2011]. Observed and projected 

increases in drought frequency, intensity, and duration increased the risk of hydraulic failure and 

vulnerability of trees [Allen et al., 2015]. We hypothesize that hydraulic failure induced 110 

mortality has a significant impact on AGB variability along the hillslope hydraulic gradient. In 

this study, we conduct numerical experiments using the newly developed coupled model to 

investigate how model structure (i.e., model with or without lateral flow captured by ParFlow), 

plant functional composition (represented by different functional traits in FATES), as well as 

alternative methods representing hydraulic failure induced mortality can influence ecosystem 115 

dynamics at BCI. We briefly summarize each model, followed by a description of the approach 

used to couple the models. We then describe a set of numerical experiments and compare the 

model simulations with field observations. To evaluate the influence of topography on AGB 

through its impact on hydrologic processes, we analyze and compare the simulations across the 

model domain to determine the sensitivity of the simulated AGB to model structure, plant 120 

functional composition, soil property, and representations of hydraulic failure. Lastly, we 

develop random forest (RF) models using various topographic attributes and the simulated and 

observed soil water states as predictors to predict the simulated and observed AGB. The purpose 

of the RF models is to reveal whether there are similar nonlinear relationships between 

topography, soil water states, and AGB in the coupled simulations and in the observations. This 125 

analysis may reveal model limitations in capturing certain nonlinear relationships found in the 

observations and inform future efforts to improve modeling of coupled hydrology-vegetation 

processes.   
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2 Methods 

2.1 Model descriptions 130 

To achieve the goals of this study, we used the land model of E3SM called ELM, the 

integrated hydrology model called ParFlow capable of simulating surface and subsurface flow at 

hillslope scale, and the FATES vegetation demographic model to develop a coupled model of 

vegetation-hydrology interactions at hillslope scale. The model components and the coupling 

approach are described below. 135 

2.1.1 The Energy Exascale Earth System Model (E3SM) Land Model (ELM) 

The Energy Exascale Earth System Model (E3SM) is an Earth system model containing 

modules for land, ocean, sea ice, and river [Caldwell et al., 2019; Leung et al., 2020]. The land 

model in E3SM, referred to as ELM, started as a branch of the Community Land Model version 

4.5 (CLM4.5) [Oleson et al., 2013].  The one-dimensional model simulates changes in canopy 140 

water, surface water, snow water, soil water, soil ice, and water in the unconfined aquifer 

through parameterization of  interception, throughfall, canopy drip, snow accumulation and melt, 

water transfer between snow layers, infiltration, evaporation, surface runoff, sub-surface 

drainage, vertical redistribution within the soil column, and groundwater discharge and recharge 

[Oleson et al., 2013]. The default soil hydrology model in ELM solves the one-dimensional 145 

Richards’ equation in unevenly spaced vertical soil layers. The solution of the Richards’ equation 

is driven by precipitation, infiltration, subsurface runoff, evaporation, and canopy transpiration 

through root extraction, and interactions with groundwater.  Water flux input to the ground 

surface (the top grid cell surface), is the liquid water reaching the ground, which is then 

partitioned between surface runoff, surface water storage, and infiltration into the soil. Runoff 150 

generation in ELM can be parameterized using either the TOPMODEL-based [Beven and 

Kirkby, 1979] runoff model (SIMTOP) [Niu et al., 2005] or the runoff parameterization of the 

Variable Infiltration Capacity (VIC) model [Liang et al., 1994]. Soil hydraulic properties are 

determined according to sand and clay contents based on the work by Clapp and Hornberger 

[1978] and Cosby et al. [1984], and organic properties of the soil [Lawrence and Slater, 2008]. 155 

2.1.2 ParFlow 
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ParFlow solves the following Richards’ equation in variably saturated soils in three 

dimensions [Kollet and Maxwell, 2006; Kuffour et al., 2020]:  

                              𝑆𝑆𝑠𝑠𝑆𝑆𝑤𝑤(ℎ) 𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

+ 𝜙𝜙 𝜕𝜕𝑆𝑆𝑤𝑤(ℎ)
𝜕𝜕𝜕𝜕

= −∇⌈𝑘𝑘𝑠𝑠𝑘𝑘𝑟𝑟(ℎ)∇(ℎ + 𝑧𝑧)⌉ + 𝑞𝑞𝑠𝑠                                   (1) 

where t is time (s), Ss is the specific storage (m-1), Sw is the relative saturation [-],𝜙𝜙 is the 160 

effective porosity of the media, h is pressure head (m), ks is the saturated hydraulic conductivity 

tensor (m h-1), kr(h) is the relative permeability [-], z is the elevation (m), and qs is the source 

term (h-1). The saturation-pressure and relative permeability-saturation functions can be 

represented by either the van Genuchten [1980] or the Brooks and Corey relationship [Brooks 

and Corey, 1966]. The following simplified Brooks and Corey relationship is used in this study: 165 

                                                                 𝜃𝜃−𝜃𝜃𝑟𝑟
𝜙𝜙−𝜃𝜃𝑟𝑟

= �𝑝𝑝𝑎𝑎
𝑝𝑝
�
𝜆𝜆
                                                                (2) 

                                                                 𝑘𝑘𝑟𝑟 = �𝜃𝜃−𝜃𝜃𝑟𝑟
𝜙𝜙−𝜃𝜃𝑟𝑟

�
𝑛𝑛

                                                                     (3) 

where θ is water content, θ = 𝜙𝜙 s(p), θr is the residual water content, λ is the pore size 

distribution index, pa is the bubbling capillary pressure, and n is the pore disconnectedness index, 

which equals 3+2/λ. 170 

ParFlow has an integrated overland flow simulation capability, where a free-surface 

overland flow boundary condition is applied at the land surface and overland flow is solved with 

the kinematic wave equation  [Kollet and Maxwell, 2006].  At the top boundary between the 

surface and subsurface systems, pressure continuity between the two systems is assigned. Only 

when the top cell of the subsurface domain is ponded is the kinetic wave equation activated 175 

[Maxwell et al., 2016].  One of the model options we use in this study is the terrain following 

grid (TFG) [Maxwell, 2013] capability to define the gridded domain to conform to topography, 

which is useful for coupled surface-subsurface flow problems. When discretized numerically into 

grids in three dimensions, Eq. 1 equates the time rate of change of water mass within a grid with 

the mass fluxes of water across the surfaces of each grid as well as water source/sink. This 180 

results in a matrix equation including every grid, both horizontally and vertically. The water 

table is the surface where the water pressure head is equal to the atmospheric pressure. The 

surface was calculated by the hydraulic head of the water saturated (i.e., the soil moisture equals 
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the porosity) grid near the ground surface.  The Richards’ equation is solved numerically using 

cell-centered finite difference in space and an implicit backward Euler scheme in time [Kollet 185 

and Maxwell, 2006]. It is designed for high performance applications and is solved using a 

parallel, globalized Newton method and a multigrid-preconditioned linear solver [Ashby and 

Falgout, 1996; Jones and Woodward, 2001]. 

2.1.3 The Functionally Assembled Terrestrial Ecosystem Simulator (FATES) 

The Functionally Assembled Terrestrial Ecosystem Simulator (FATES) is a cohort model 190 

of vegetation competition and co-existence that was originally separated from the ecosystem 

demography model in the community land model (CLM(ED)) [Fisher et al., 2015], which was 

based on the ecosystem demography concept in Moorcroft et al. [2001]. The tiling structure in 

FATES represents the disturbance history of the ecosystem via dynamically tracking areas with 

similar disturbance histories, which are referred to as ‘patches’, replacing the plant functional type 195 

(PFT) structure in the organization hierarchy in CLM. The patch has no spatial location 

association. In doing so, FATES uses a given “Host Land Model”. Currently supported host land 

models are the Community Land Model of the Community Terrestrial Systems Model (CLM-

CTSM) and E3SM Land Model (ELM). Boundary conditions are clearly identified between 

FATES and the host land models where FATES functions are invoked [Koven et al., 2020].  200 

Figure 1 shows the information that is passed between FATES and ELM at each ELM 

model step (half-hourly) for biophysics and at the end of each day for vegetation dynamics. At 

each ELM time step, ELM provides FATES with environment conditions (e.g., soil moisture, 

atmospheric forcing etc.), and FATES calculates surface processes and provides ELM terms 

(e.g., canopy conductance, albedo, leaf area index, root water extraction to meet transpiration 205 

demand, etc.) to calculate canopy level fluxes. Daily cohort-level carbon increment or net primary 

productivity (NPP) is used to allocate carbon to plant organs and alter the cohort structures. At the 

daily time step, daily carbon increment calculated in FATES is sequentially allocated per cohort 

[Koven et al., 2020]. The amount is subtracted from the cohort's storage pool if the carbon 

increment is negative. If the carbon increment is positive, the cohort first replenishes the carbon 210 

storage pool and tissue turnover is then compensated. The cohort will allocate the remaining 

increment to any organ pools (leaf, stem, coarse root, fine root, and seed) that are below their 

allometric targets. The cohort will grow its stem diameter, allocating to each pool proportionally 
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to that pool's derivative with respect to stem diameter using the remaining carbon increment (if 

any). Patch structures can also be altered by disturbance processes from fires, small-scale tree 215 

mortality, and anthropogenic disturbance.   

FATES uses allometric relationships with stem diameter (D) to determine tree height (h) 

and crown area (C). There are five model options for tree height in FATES. In this study, we 

used a power function described in Obrien et al. (1995): 

 ℎ = 10(𝑙𝑙𝑙𝑙𝑙𝑙10(𝐷𝐷∗)∙𝑎𝑎+𝑏𝑏) (4) 

 𝐷𝐷∗ = min (𝐷𝐷,𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚) (5) 

and a Michaelis–Menten form in Martinez Cano et al. (2019): 220 

 
ℎ =

𝑐𝑐𝐷𝐷∗𝑑𝑑

𝑘𝑘 + 𝐷𝐷∗𝑑𝑑
 

(6) 

 

The allometry function for crown area is 

 
𝐶𝐶 = �

𝑓𝑓𝐷𝐷𝑔𝑔 𝐷𝐷 < 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚

𝑓𝑓𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚
𝑔𝑔 𝐷𝐷 ≥ 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚

 
(7) 

where a, b, c, d, k, f, and g are allometric parameters, Dmax is diameter of plant where max 

height occurs. 

Target biomass (the projected quantity along the tangent of the allometric curves from 

where they started) of leaf, structure, stem, fine root, seed, and storage are also calculated using 225 

allometry functions in FATES (Koven et al., 2020). Target biomass of fine root and storage are 

assumed to be linearly proportional to the target leaf biomass, and the target structure biomass is 

linearly proportional to the target sapwood biomass. 

A power law allometric model is used for the target leaf biomass (L): 

 𝐿𝐿 = 𝑚𝑚𝐷𝐷∗
𝑔𝑔 (8) 

where m and g are allometric parameters, and g is the same as in Eq. 7. 230 

FATES has three allometry function options to calculate target stem aboveground 

biomass (Cagb), we used the functional form in Saldarriaga et al. (1998): 
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 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝1ℎ𝑝𝑝2𝐷𝐷𝑝𝑝3𝜌𝜌𝑝𝑝4 (9) 

and a functional form in Chave et al. (2014): 

 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎 =
1
𝑐𝑐2𝑏𝑏

𝑝𝑝1(𝜌𝜌𝐷𝐷2ℎ)𝑝𝑝2 (10) 

where fagb is the fraction of stem above ground, p1, p2, p3, and p4 are allometry parameters, c2b is 

carbon to biomass ratio, ρ is the plant wood density. 235 

Once tissue turnover and storage carbon demands are met, FATES uses a constant fraction 

of net primary production for seed production. Total aboveground biomass (AGB) reported in 

the study is the sum of leaf biomass, aboveground stem biomass and seed biomass. 

Total plant mortality per cohort is simulated as the sum of the six additive terms including 

mortality due to carbon starvation and hydraulic failure [McDowell et al., 2011], fire, size, age, and 240 

background mortality that is unaccounted by any of the other mortality rates.  Among these 

mortality mechanisms within the model, we are particularly interested in the mortality induced by 

hydraulic failure as we expect different vegetation response to plant water availability along the 

hillslope. 

The default hydraulic failure model in FATES uses a proxy for hydraulic failure induced 245 

mortality. For each day, mortality with a rate Mhf,coh is triggered (or a set fraction of trees are killed) 

if the plant wilting factor is beyond a threshold (default is 10-6 (unitless)) using the following 

equation: 

 
𝑀𝑀ℎ𝑓𝑓,𝑐𝑐𝑐𝑐ℎ = �

𝑚𝑚𝑓𝑓𝑓𝑓    for 𝛽𝛽 < 10−6

0.0     for 𝛽𝛽 ≥ 10−6
 

         (11) 

where mft is a constant specific to a plant functional type, β is the water stress factor that depends 

on soil water matric potential as follows [Oleson et al., 2013]: 250 

                                                                  𝛽𝛽 = ∑
ψ𝐶𝐶−ψ𝑆𝑆,𝑖𝑖
ψ𝐶𝐶−ψ𝑂𝑂

𝑟𝑟𝑖𝑖𝑖𝑖                                                          (12) 

where ψS,i is the soil water matric potential in soil layer i (m), ri is the root fraction in soil layer i, 

ψC is the soil water potential (m) when stomata are fully closed, and ψO is the soil water potential 
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(m) when stomata are fully open.  β = 1 when vegetation is unstressed, and β = 0 when the plant 

wilting point is reached. The threshold value of 10-6 represents a state where the average soil 255 

moisture potential is within 10-6 of the wilting point. As a default option in FATES, when β is 

below this threshold, a set fraction of the tress with rate Mhf,coh (yr-1) is killed as a proxy for 

hydraulic failure induced mortality.  

 Alternatively, a mechanistic hydraulic failure model is based on the plant hydraulics model 

in FATES, i.e., FATES-hydro, where hydraulic failure mortality begins when plant fractional loss 260 

of conductivity (ftc) reaches a threshold (ftc,t, default is 0.5): 

                  𝑀𝑀ℎ𝑓𝑓,𝑐𝑐𝑐𝑐ℎ = �
𝑓𝑓𝑓𝑓𝑓𝑓−𝑓𝑓𝑓𝑓𝑓𝑓,𝑡𝑡
1−𝑓𝑓𝑓𝑓𝑓𝑓,𝑡𝑡

𝑚𝑚𝑓𝑓𝑓𝑓    for 𝑓𝑓𝑓𝑓𝑓𝑓 ≥ 𝑓𝑓𝑓𝑓𝑓𝑓, 𝑡𝑡
0.0                  for 𝑓𝑓𝑓𝑓𝑓𝑓 < 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

                                       (13) 

where mft is the maximum mortality rate (yr-1). FATES-hydro solves the water transport through 

different organs in the plants, from roots to leaves. It considers the plant internal water storage, 

which can buffer the imbalance of root water uptake and transpiration demand. Details of 265 

FATES-hydro can be found in Christofferson et al. [2016] and Fang et al. [2021]. 

 We also tested another hydraulic failure model assuming the drought mortality rate as a 

linear function of soil water potential using, for example, the slope derived in Kupers et al. 

[2019a] based on the observations of first year mortality rate of naturally regenerating 

seedlings to soil water potential for one species from the study site: 270 

                                                             𝑀𝑀ℎ𝑓𝑓,𝑐𝑐𝑐𝑐ℎ = 𝑏𝑏ψ𝑆𝑆                                                               (14) 

where b is a constant (b = 0.49 yr-1 MPa-1), ψ𝑆𝑆 is soil water potential (MPa). 
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Figure 1. Schematics of ELM, ParFlow and FATES and the approach to couple the three 275 

models. Hydrology in ELM is replaced by ParFlow. Arrows show the passing of variables 

between models. Black arrows indicate the exchange of variables within FATES and between 

ELM and FATES. Red arrows highlight the exchange of variables between ELM and ParFlow.  

Interactions between FATES and ParFlow are mediated through ParFlow’s influence on soil 

water and FATES’ influence on root water extraction, shown in the red dashed boxes. 280 

2.2 Model coupling approach 

ParFlow was previously coupled to version 3.5 of CLM or CLM3.5 to simulate physical 

processes related to the energy and mass balance at the land surface [Maxwell and Miller, 2005]. 

Many changes have been made relative to CLM3.5 ever since then in terms of processes and 

modularized code structure. CLM3.5 was not designed to host FATES because of its code 285 

structure. Instead of modifying CLM3.5, the ELM and ParFlow coupling approach in this study 
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combines the approaches used to couple the land model and the subsurface model adopted by 

Maxwell and Miller [2005], Kollet and Maxwell [2006], and Bisht et al. [2017]. Coupling is 

achieved by: (1) replacing the one-dimensional models for flow in unsaturated and groundwater 

zones in ELM by ParFlow to simulate unsaturated–saturated flow within the three-dimensional 290 

subsurface domain, (2) replacing the runoff scheme in ELM with the integrated overland flow 

module in ParFlow, and (3) providing ELM with the soil moisture simulated by ParFlow (Fig. 1) 

at each time step.   

ParFlow is incorporated in ELM in a distributed manner as a module through an external 

model interface (EMI). Only vegetated surfaces are allowed in this coupling such that each tile in 295 

ELM coincides with the upper face of the uppermost cell (ground surface of the subsurface 

computational domain) in ParFlow using a terrain following grid. In other words, each vertical 

column of the ParFlow grids corresponds to a soil column in ELM. The decomposition approach 

for ELM and ParFlow are round-robin decomposition and domain decomposition, respectively. 

Therefore, mapping of gridded data from one model onto the grids of the other is required 300 

through sparse matrix vector multiplication based on preprocessed sparse weight matrices 

between the two models [Bisht et al., 2017]. For simplification, the size of soil columns of the 

two models are the same, i.e., the elements in the sparse weight matrices are 1.0. The new 

namelist “use_parflow_emi” in the land model is required to run the coupled model. As shown in 

Fig. 1, for each time step, ParFlow receives infiltration, evaporation, and root water extraction 305 

from ELM and provides its calculated soil moisture to ELM through the model coupling 

interface. Note that FATES does not have direct interface with ParFlow. The effect of ParFlow 

on FATES is through the soil moisture it passes to ELM, and the effect of FATES on ParFlow is 

through the root water extraction it passes to ELM, as indicated by the dashed red boxes in Fig. 

1. 310 

2.3 Site description and observation data 

Our model experiments are conducted at Barro Colorado Island (BCI) (9°10'N, 

79°51'W), Panama, which is one of the world’s best-studied tropical forests [Leigh, 1999] 

because of the century‐long presence of a research station and ongoing scientific investigation 

focused mainly on terrestrial forest ecology and related fields [Wright, 2020]. BCI is 315 

administered by the Smithsonian Tropical Research Institute (STRI). After canal construction 
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and the formation of Gatún Lake in the Chagres River in 1914, BCI became isolated from the 

surrounding mainland [Zimmermann et al., 2013]. It rises out of the waters of the man-made 

Lake Gatún (normal water level of 26 m above sea level) and has an area of 1560 ha which is 

covered by forest that has remained relatively undisturbed for at least 100 years 320 

(https://biogeodb.stri.si.edu/physical_monitoring/research/barrocolorado). The two main 

geological formations at BCI are the Bohio from the early Oligocene and the younger Caimito 

formation from the late Oligocene, both are sedimentary rocks consisting of volcanic and marine 

facies [Grimm et al., 2008 and references therein]. The clay-rich Cambisols and Ferralsols 

dominate the soils at BCI and the mean soil textures largely belong to silty loam, silty clay, clay, 325 

and clay loam textural classes [Grimm et al., 2008]. Measured saturated hydraulic conductivity at 

the site varies from 0.016 to 13.2 mm/h [Kinner and Stallard, 2004].  

The site has long-term meteorological and hydrological data. Meteorological data from 

2003-2016 is available from a meteorological tower near the Lutz catchment at BCI 

[Faybishenko et al., 2018]. The wet season at BCI is roughly from May to December and the dry 330 

season is from late December to April. Annual mean precipitation during the simulation period is 

2382.7 mm, while mean precipitation in the dry season is 219 mm. Observed evapotranspiration 

(ET), gross primary production (GPP), sensible heat flux (SH), and latent heat flux (LH) at the 

site was obtained from an eddy-covariance system installed in July 2012 on the AVA tower 

(~1.25 km from the Lutz catchment) located 41m above the ground on the top plateau. Locations 335 

of the Lutz tower and the AVA tower are shown in Fig. 2. Three Time Domain Reflectometers 

(TDR, CS616, Campbell Scientific) were installed vertically in the vicinity of the AVA tower in 

July 2012. The apparent dielectric permittivity of soil measured by TDR probes is related to the 

soil water content using an ad hoc calibration curve [Kelleners et al., 2005] using seven in 

situ gravimetric soil water content samples (0-15 cm) collected near the probes during different 340 

soil moisture regimes (30 campaigns).  The 50-ha permanent plot on BCI (1000 m × 500 m) was 

established in 1981. Censuses have been carried out in 1981-1983 and every five years from 

1985 to 2015. In each census, all woody stems at least 1 cm diameter-at-breast-height were 

identified, measured, and mapped. Over 350,000 individual trees have been tallied over 35 years 

[Condit et al., 2012; Condit et al., 2019; Condit et al., 2017; Hubbell and Foster, 1983]. The 345 

aboveground biomass along with a 5 m topography survey of the BCI 50-ha plot by Harms et al. 

[2001] can be found in the 2019 version the BCI forest census plot database [Condit et al., 2019]. 

https://biogeodb.stri.si.edu/physical_monitoring/research/barrocolorado
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Maps of soil water potential and soil water content for several dry season stages during 2015 and 

2016 in the 50-ha plot were generated by Kupers et al. [2019b] based on measurements of a total 

of 1299 samples at a total of 363 sites that covered all soil types and habitats in the plot area. 350 

Most samples were taken at the 15 cm depth. 

2.4 Numerical experiments 

Figure 2 shows the ParFlow simulation domain and the surface elevation at the site, as well 

as the 50-ha forest dynamics plot (consisting of quadrats of 5 m by 5 m). The ParFlow domain is 

selected to minimize the boundary effect on the flow within the 50-ha plot, by providing a buffer 355 

between the edge of the ParFlow domain boundary and the 50-ha plot boundary. The elevation in 

the study domain ranged from ∼28 to 186 m above sea level, with a moderately gentle 

topography [Lobo and Dalling, 2013]. The model is driven by the same atmospheric forcing (i.e., 

precipitation, air temperature, relative humidity, wind speed, and surface pressure) for 2003-

2016 measured at a meteorological tower near the Lutz catchment at BCI [Faybishenko et al., 360 

2018] in all grids due to the lack of spatial forcing. Comparison of the precipitation at the tower 

and a clearing near the Lutz catchment shows good agreement supporting the use of the same 

atmospheric forcing for all grids of the model.  
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Figure 2. Simulation domain and elevation. The black rectangle inside is the ParFlow simulation 365 

domain, and the smaller grey rectangle indicates the 50-ha census plot on the highland. Locations 

of the AVA eddy covariance tower and the Lutz meteorological tower are shown by the small 

triangles. 

Seven model experiments (Table 1) are conducted to evaluate model sensitivity to model 

structure, plant traits, soil property, and the hydraulic failure representations. Specifically, two of 370 

the experiments are run using ELM-FATES without ParFlow to evaluate sensitivity to model 

structure (Cases 1 and 2). The other five simulations are run using ELM-ParFlow-FATES with 

different combinations of plant traits, soil property, and representations of tree mortality rates 

due to hydraulic failure. The reasons for these selected simulations are that 1) plant traits directly 

affect vegetation structure and water use, 2) soil property affects WTD, thus plant water 375 

availability; 3) elevated mortality rate for canopy trees at BCI was observed during the severe 

dry season of 1983 [Condit et al., 1995], which can be triggered by hydraulic failure.  Soil 

saturated hydraulic conductivity and saturation function parameters for ParFlow are calculated 



17 
 

from ELM based on soil texture and organic matter content. Another set of soil water retention 

parameters was derived from soil water potential data in Kupers et al. [2019b]. As there are no 380 

site-wide groundwater table measurements, for simplicity no-flux boundary conditions are 

applied at the bottom boundary and the lateral boundaries of the ParFlow simulation domain 

assuming they have minimal impact on the results at the 50-ha plot in the center of the domain, 

at least 0.5 kilometer away from the lateral boundaries as the 50-ha is in the high elevation zone 

of the domain. The number of grids in x, y, and z direction are 31, 21, and 15, respectively. The 385 

grid resolution for ParFlow in the x and y directions is 90 m and varies from 7 mm (near the 

ground surface) to 35 m (near the bedrock) in the z direction. The 30 m resolution digital 

elevation model (DEM) of the Republic of Panama, generated by NASA SRTM program is 

aggregated and smoothed using cubic convolution resampling technique to 90 m resolution to 

calculate the slopes for the ParFlow simulations.  390 

In FATES, plant functional types (PFTs) are represented by a vector of plant traits. All of 

the numerical experiments are initialized with equal low number density of seedling (0.2 

individuals/m2) of broadleaf evergreen tropical PFT and are spun-up for 100 years using ELM-

FATES, without ParFlow. Model comparisons are based on the results for another 100 years 

after the spin-up for Cases 1 to 4, and additional 16 years for Cases 3, 6 and 7 for hydraulic 395 

failure model comparisons starting from the 200-year result of Case 3. The 16-year simulation 

period was chosen such that the meteorological forcing aligns with the years of observations. 

Another cycle of forcing was run for Case 4 using soil property derived from Kupers’ to get 

results of Case 5. If not noted, results reported in this study are based on the corresponding 

simulation years after the spin-up. Two PFTs representing early successional and late 400 

successional species are simulated at the same time in competition with each other using two 

input files of plant traits selected from previous ensemble simulations that best matched 

observations for tropical forests [Chen et al. 2022, Huang et al. 2020]. Further parameter tuning 

is out of the scope of this work. Those ensemble simulations were used to examine the sensitivity 

of tropical forest dynamics to hydrological and physiological parameters. The two input files we 405 

use contain trait parameters for both early and later successional species, and they are referred to 

as F1 and F2, respectively. F1 and F2 differ in vegetation biomass allometric models and 

parameters, as well as the fraction of woody biomass that is aboveground and mortality rate from 

carbon starvation. The allometric models for tree height and target stem aboveground biomass in 
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F1 are defined in Eqs. 4 and 9, respectively, and those in F2 are defined in Eqs. 6 and 10, 410 

respectively. F2 has a smaller maximum carbon starvation mortality rate (Sm,ft) and larger 

aboveground woody biomass fraction compared to F1. The complete parameters for F1 and F2 

are included in the Supplement. In FATES, the actual carbon starvation mortality (Mcs,coh) is 

calculated as a function of the non-structural carbon storage (Cstore,coh) and the PFT-specific 

‘target’ leaf carbon (Cleaf,target) as            415 

                         𝑀𝑀𝑐𝑐𝑐𝑐,𝑐𝑐𝑐𝑐ℎ = max �0.0, 𝑆𝑆𝑚𝑚,𝑓𝑓𝑓𝑓 �0.5 − 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑐𝑐𝑐𝑐ℎ
𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

��                                        (15) 

Three drought mortality models M1, M2, and M3 corresponding to Eqs. (5), (6), and (7), 

respectively, are evaluated. FATES-hydro is turned off for models M1 and M3. Details of each 

case are described in Table 1. 

2.5 Random forest models 420 

Topography attributes have previously been found to influence soil water, groundwater 

depth and vegetation structures [Condon and Maxwell, 2015; Detto et al., 2013; Holyman et al., 

2018; Lan et al., 2011; Mascaro et al., 2011; Pachepsky et al., 2001; Sener et al., 2005; Tai et 

al., 2020; Zinko et al., 2005]. As the relationships between AGB, hydrologic processes, and 

topographic attributes are likely complex and nonlinear, we develop RF regression models to 425 

evaluate how well static topographic attributes and hydrologic states may be used to predict the 

AGB in observations and model simulations. Such analysis can be used to determine how well 

the nonlinear relationships in observations may be captured by the coupled model and whether 

the RF models may be used as a more computationally efficient approach to represent the 

nonlinear relationships simulated by the complex models. To evaluate which topographic 430 

attributes (land surface elevation (DEM), slope, and Laplacian convexity) have more controls on 

plant water availability and aboveground biomass, we develop RF models using monthly output 

at each grid from our coupled model in year 2015 (a year when observations were also available) 

for Cases 3, 5 and 6, based on a supervised machine learning module from the Scikit-learn 

machine learning library in Python [Pedregosa et al. 2011]. The analyses are performed both 435 

domain-wide and for the 50-ha plot (Fig. 2). Variables that are simulated based on modeling of 

physical processes are also used as predictors to evaluate RF model accuracy. Similar analysis is 

performed for the observations in the 50-ha plot using the AGB, and soil moisture estimated 
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based on measurements across the plot, and the 5 m DEM grid from the 2019 version of the BCI 

database. The spatial soil water content across the plot in Kupers et al. [2019b] are linearly 440 

interpolated, and AGB are aggregated at each of the 5 m DEM grid location for the analysis.  

The slope and convexity are computed from the first and second order derivatives of the 

smoothed DEM (z) that’s aggregated for the 90 m resolution as follows [Detto et al., 2013]: 

            𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = arctan�𝑓𝑓𝑥𝑥2 + 𝑓𝑓𝑦𝑦2 ; 𝑓𝑓𝑥𝑥 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

;  𝑓𝑓𝑦𝑦 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                                                       (16) 

            𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑓𝑓𝑥𝑥𝑥𝑥 + 𝑓𝑓𝑦𝑦𝑦𝑦; 𝑓𝑓𝑥𝑥𝑥𝑥 = 𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2

;  𝑓𝑓𝑦𝑦 = 𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦2

                                                       (17) 445 

Positive convexity values are in the areas of depressions and valleys, and negative values in 

peaks or ridges.  

For each RF model based on the simulated results and observation in year 2015, 75 percent 

of the data are allocated to the training set and 25 percent to the test set. Hyperparameters of the 

RF models are selected using the scikit-learn’s function “RandomizedSearchCV” [Pedregosa et 450 

al. 2011]. Permutation importance, which measures the increase in model error or how much the 

model depends on a feature when the relationship between the feature and the target is broken, is 

reported for each RF model. To calculate the permutation importance, a reference score 

(prediction error) for a trained regression model m is first calculated.  Each feature j (a column) 

in the training or testing dataset is randomly shuffled to generate a corrupted dataset and the 455 

score of the model m on the corrupted dataset is calculated. The shuffling and corrupted dataset 

score computation are repeated multiple times. The importance of feature j is computed as the 

difference between the reference score and the arithmetic mean of the scores of the model m on 

the corrupted datasets. This is documented in https://scikit-learn.org/stable/about.html#citing-

scikit-learn. 460 

The performances of the RF models are quantified using the mean absolute percentage error 

(MAPE) and percent of variance explained (VARex): 

                                         𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ �𝑦𝑦𝑖𝑖,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑦𝑦𝑖𝑖

𝑦𝑦𝑖𝑖
� × 100%𝑛𝑛

𝑖𝑖=1                                          (18) 

                                                  𝑉𝑉𝑉𝑉𝑉𝑉𝑒𝑒𝑒𝑒 = �1 −
∑ �𝑦𝑦𝑖𝑖,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑦𝑦𝑖𝑖�

2𝑛𝑛
𝑖𝑖=1
∑ (𝑦𝑦𝑖𝑖−𝑦𝑦𝚤𝚤� )2𝑛𝑛
𝑖𝑖=1

� × 100%                                 (19) 

https://scikit-learn.org/stable/about.html#citing-scikit-learn
https://scikit-learn.org/stable/about.html#citing-scikit-learn


20 
 

 465 

Table 1. Definition of model experiments with ELM, PF, F, and M denoting E3SM land model, 

ParFlow, different parameters for plant traits, and different mortality models, respectively. K in 

experiment name of Case 5 indicates soil property derived from Kupers et al. [2019b] is used. 

Extra 16 years of simulation were conducted for four experiments. K in experiment name of 

Case 5 indicates soil property derived from Kupers et al. [2019b] is used. 470 

Cases Model 

Experiments 

Plant 

Traits 

Soil 

Property 

ParFlow Drought 

Mortality 

Model 

Extra simulation 

years for model 

comparison 

 

1 ELM-F1-M1 F1 S1 No Eq. (11) 0   

2 ELM-F2-M1 F2 S1 No Eq. (11) 0  

3 ELM-PF-F1-M1 F1 S1 Yes Eq. (11) 16 from Case 3  

4 ELM-PF-F2-M1 F2 S1 Yes Eq. (11) 0  

5 ELM-PF-F2-M1,K F2 S2 Yes Eq. (11) 16 from Case 4  

6 ELM-PF-F1-M2 F1 S1 Yes Eq. (13) 16 from Case 3  

7 ELM-PF-F1-M3 F1 S1 Yes Eq. (14) 16 form Case 3  

 

3 Results  

 

3.1 Model sensitivity to lateral flow representation 

This section focuses on model sensitivity analysis as no spatial observations are available 475 

for comparison with the model simulations. Averages for the year 2015 for selected variables are 

plotted in Fig. 3 for ELM-F1-M1 and ELM-PF-F1-M1, to assess the spatial impact of lateral 

flow on these variables. Results from ELM-PF-F1-M1 exhibit the largest spatial variability in 

terms of ground water table depth (WTD), vegetation biomass, and heat fluxes, showing large 

gradients between plateau and valley. Lacking representations of lateral flow (case ELM-F1-M1) 480 

results in less spatial variability in those variables of interest (Fig. 3a,c,e,g). ELM-F1-M1 

simulates shallower water table depth below the ground surface and lower Bowen ratio (the ratio 

of sensible to latent heat fluxes) at the plateau compared to the lowland (Fig. 3a,g). For ELM-PF-

F1-M1, wetter soil at lowland favors higher latent heat flux and smaller sensible heat flux, 
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resulting in smaller Bowen ratio compared to the plateau area (Fig. 3h). In ELM-PF-F1-M1, the 485 

simulated ground water table elevation generally follows the topography. There is a sharp 

transition in AGB and GPP associated with the large hydraulic gradients or sharp transition of 

ground water table depth above and below ~5 m at lowlands, with wetter area having larger 

AGB and GPP. Note this is based on model comparisons. Spatial observations at those locations 

are needed to validate the model but such observations are not currently available. But away 490 

from the transition zone, AGB and GPP are relatively insensitive to WTD in these model 

configurations (Fig. 3d,f). 

The simulated AGB is 3 times smaller than the observed AGB (15.5 kg C/m2 assuming a 

conversion factor of 0.5 from dry weight to carbon equivalents) in 2015 using the plant traits F1 

and two times smaller using plant traits F2 (Fig. 4e). With a main interest in the spatial 495 

variability of AGB and without model calibration to reduce differences between simulations and 

observations, we compare the observed AGB and the simulated AGB using normalized values 

(scaling to unit norm). Standard deviations of the normalized AGB at the 50-ha plot for ELM-

F1-M1 and ELM-PF-F1-M1 are 0.008 and 0.014, respectively. They are smaller than 0.072 

calculated from the observed AGB aggregated to the simulation grids. From Fig. 3a,b, variability 500 

of the normalized WTD from the simulations are 0.011 and 0.16 for ELM-F1-M1 and ELM-PF-

F1-M1, respectively at the 50-ha plot, higher than the variability of simulated AGB. The spatial 

correlation between modeled and observed biomass is not significant inside the 50-ha plot for all 

of the simulations because of homogeneity of the meteorological forcing, soil properties, and 

gentle topography. This suggests that WTD is not the dominant controlling factor for AGB at the 505 

plot based on correlation analysis and model assumptions.  

 



22 
 

 



23 
 

Figure 3. Sensitivity of model predictions to lateral flow dynamics and water table depth. Water 

table depth (WTD) (a,b), aboveground biomass (AGB) (c,d), GPP (e,f), and Bowen ratio (g,h) 510 

for ELM-F1-M1 (no lateral flow), and ELM-PF-F1-M1. The blue contour lines in d, f, and h are 

WTD, and the black contour lines in the rest are ground surface elevation (m). The 50-ha plot is 

located in the region within the dashed line. 

 

3.2 Influence of model configurations 515 

Model experiments with the plant traits F1 result in the survival of only early succession 

trees. Here we evaluate and compare model simulations with F1 and F2 in different model 

configurations to evaluate the impacts of the latter. Across the various simulations shown in 

Table 1, simulation ELM-PF-F1-M1 shows the maximum spatial standard deviations of variables 

of interest (shaded area in Fig. 4). From that simulation, the spatial standard deviation (STD) of 520 

monthly gross primary productivity (GPP) is 1.42 (g/m2/d) (Fig. 4a), latent heat flux (LH) is 19.5 

(W/m2) (Fig 4 b), sensible heat flux (SH) is 17.2 (W/m2) (Fig. 4c), volumetric water content 

(VWC) in the top 15 cm of soil is 0.084 (m3/m3) (Fig. 4d), AGB is 0.28 (kg C/m2) (Fig. 4e), and 

WTD is 13.7 (m) (Fig. 4f). For each month, standard deviations are calculated based on the 

spatial variability within the simulation domain and the monthly maximum standard deviations 525 

are determined by comparing the standard deviations across the model simulations. However, 

even the largest variability of AGB is only 5.5% of the average AGB while the VWC variability 

can be as large as 21% of the average VWC. WTD is deeper and has a large seasonal variability 

when lateral flow is represented in simulations with Parflow. The large differences of spatial 

average of GPP, LH, SH among simulations in the wet season are caused by plant functional 530 

traits, while the differences of VWC and WTD, and land surface fluxes in the dry season are 

caused by lateral flow representation (Fig. 4). In general, the simulated GPP and LH center 

around the observations, while the simulated SH and VWC are biased high and low, 

respectively, compared to the observations. As sensible heat flux is negatively related to soil 

moisture, it can be improved by a better parametrization of soil moisture dynamics, for example, 535 

by using different soil properties in the model as will be shown later. The model was not able to 

capture the temporal dynamics of GPP, it’s not clear what’s the cause. Model parameters and 
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measurement uncertainty can both contribute to the biases. This is a model limitation that needs 

to be addressed in the future. 

 Using plant trait F2, ELM-PF-F2-M1 generates a forest of coexisting early succession 540 

and late successional PFTs. The spatial standard deviations (STDs) of the aforementioned-

variables of interest for simulation ELM-PF-F2-M1 are slightly smaller than for ELM-PF-F1-

M1. The difference in STD between ELM-PF-F2-M1 and ELM-PF-F1-M1 is larger for VWC, 

LH, and SH compared to GPP, AGB and WTD. With this plant traits F2, AGB increases by 

47.5% and GPP decreases by 19% on average (Fig. 4). As the soil moisture (VWC) simulated 545 

using ELM-PF-F1-M1 and ELM-PF-F2-M1 are close (Fig. 4d), GPP is mainly affected by 

growth allometry while AGB is the result of both growth and mortality. Using plant traits F2 

results in larger growth rates and significantly lower mortality rates (Fig. S1), thus increases of 

AGB for F2 compared to F1. However, simulation with F2 results in much lower exposed leaf 

area index, thus lower GPP compared to that with F1. Based on the model results, species 550 

competition also cannot explain the observed variance of AGB at the 50-ha plot without 

accounting for the spatial heterogeneity of soil properties, nutrient availability, plant traits, etc. in 

the model. For example, wood density can contribute to the observed variability as it is a 

parameter used to define the allometry function (Eq. 10). AGB can be further increased by 

parameter tuning, but we don’t expect it to significantly change the AGB variability.  555 

 Model structure (ELM vs ELM-PF) and soil property have larger effect on soil water than 

on energy, carbon fluxes and AGB and vice versa for plant traits (Figs. 4 and 5). Using soil water 

retention curve from Kupers et al. [2019b] improved wet season soil moisture, dry season 

sensible heat flux, and GPP, as well as some of the observed peak GPP in wet season. It also 

significantly changed WTD compared to the simulation with the original soil property (Fig. 5f). 560 

The soil moisture in the dry season was overestimated, possibly due to the no-flux boundary 

conditions that created overall wetter soil in the domain at areas adjacent to the boundaries. 
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Figure 4. Simulated GPP (a), latent heat flux (LH) (b), sensible heat flux (SH) (c), top 15 cm 565 

volumetric water content (VWC) (d), aboveground biomass (AGB) (e), and groundwater table 

depth (WTD) (f) for simulations ELM-F1-M1, ELM-F2-M1, ELM-PF-F1-M1, and ELM-PF-F2-

M1. Dashed line is the observation if available. Solid line is spatial average and shaded area is 

the standard deviation over the simulation domain.  
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Figure 5. Simulated GPP (a), latent heat flux (LH) (b), sensible heat flux (SH) (c), top 15 cm 

volumetric water content (VWC) (d), aboveground biomass (AGB) (e), and groundwater table 

depth (WTD) (f) for simulations with default soil property (ELM-F2-M1), and soil property 

derived from Kupers et al. [2019b] (ELM-PF-F2-M1,K). Dashed line is the observation if 575 

available. Solid line is spatial average and shaded area is the standard deviation over the 

simulation domain. 

 

3.3 Impact of water availability on sitewide vegetation structure and mortality 
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As there is no spatial observation of the WTD at the site, this section is for model 580 

comparison only. The simulated AGB decreases nonlinearly with WTD and becomes flat at 

WTD around 15 m (Fig. 6 a,e) when Parflow is coupled. When hydraulic mortality is triggered 

(M2 and M3), the slope of the relationship between AGB and WTD (dAGB/dWTD) increases, 

so WTD plays a larger role in limiting AGB. As AGB does not fluctuate seasonally, the slope 

becomes large in the wet season. On the other hand, AGB has a positive relationship with soil 585 

moisture content (VWC) (Fig. 6 b,f) and reaches maximum when the soil water content is near 

saturation. AGB from ELM-PF-F1-M1 is the least sensitive to water table depth because the 

plant wilting factor (Eq. 12) calculated at the site is much larger than the prescribed threshold of 

10-6, which results in no mortality due to hydraulic failure. ELM-PF-F1-M2 simulates wetter soil 

in the dry season compared to ELM-PF-F1-M3 because of hydraulic redistribution simulated by 590 

ELM-PF-F1-M2 using FATES-hydro. However, the fast decrease of AGB with WTD using the 

M2 and M3 functions seems to be unrealistic and requires future exploration. The variability of 

the normalized AGB across the whole simulation domain considering hydraulic mortality is 0.08, 

which is comparable to that from the observation, but the variability at the 50 ha plot is still quite 

low because of the relatively homogeneous soil hydrology there. Note the water table may be 595 

artificially increased near the outer boundary due to the no flow assumption, but a sensitivity 

experiment using the water level in Gatún Lake at the outer boundaries shows no impact on the 

conclusion that lower areas are more resilient to water stress and has more biomass. 

AGB from ELM-PF-F1-M2 is smaller compared to that from ELM-PF-F1-M3, especially at 

locations where the water table is shallow (WTD < 2 m). That is due to the higher mortality rate 600 

triggered by hydraulic failure in ELM-PF-F1-M2 at those locations (Fig. 6c), resulting in less 

grids with AGB > 4.5 kg C/m2 (Fig. S2). Hydraulic mortality rates from ELM-PF-F1-M2 are 

much lower than those from ELM-PF-F1-M3 in the dry season (Fig. 6 c), even though at the 

plateaus WTD is simulated greater than 15 m for both models. The high hydraulic mortality rates 

within WTD between 0 to 5 m for ELM-PF-F1-M2 are associated with trees of diameter at breast 605 

height (DBH) greater than 16 cm. Mortality from hydraulic failure outcompetes mortality by 

carbon starvation for ELM-PF-F1-M3, and there is almost no carbon starvation related mortality 

in both wet and dry seasons when WTD is greater than 7.5 m  (Fig. 6 d,h) because of the reduced 

maintenance and turnover requirements with fewer trees with DBH between 1 cm and 5 cm. For 

ELM-PF-F1-M2, mortality related to carbon starvation and hydraulic failure co-occurs with 610 
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similar magnitude in the dry season. In the wet season, there is almost no mortality related to 

hydraulic failure except for tall trees with DBH > 16 cm dominant in regions of shallow water 

table depth. Tall trees are hydraulically more vulnerable than short trees because of their more 

negative stem water potentials due to longer hydraulic path length [McDowell et al., 2002]. 

Carbon starvation mortality consistently occurs during the dry and wet season when water table 615 

depth is greater than 15 m. Carbon starvation mortality rates for ELM-PF-F1-M2 and ELM-PF-

F1-M3 decrease with WTD between 0-7.5 m as hydraulic mortality rates increase. 
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Figure 6. The blue, orange, and green circle represent results from ELM-PF-F1-M1, ELM-PF-F1-620 

M2, and ELM-PF-F1-M3, respectively. Simulated aboveground biomass (AGB) with respect to 
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groundwater table depth, WTD (a,e) and top 1 m soil water content, VWC (b,f), and simulated 

hydraulic mortality (c,g), carbon starvation mortality (d,h) with respect to WTD the dry season (a-

d) and wet season (e-h).  

3.4 Environmental and physical controls on the simulated results 625 

The RF models have shown good performance. They can explain 90% and more of the 

variance (VARex in Table 2) in AGB and WTD for both the training data and the unseen test 

data, suggesting the predictors selected are sufficient to explain AGB and WTD. They perform 

better for AGB than for WTD with mean absolute percentage error (MAPE) less than 10% as 

opposed to 30% for WTD (Table 2). All explanatory variables used as predictors in the RF 630 

models can capture portions of the variability of the simulated AGB and WTD, but the relative 

importance of the predictors is different for the different ELM-PF models (Fig. 7). Among the 

three predictors, convexity is most important for describing the spatial variabilities of AGB 

simulated from ELM-PF-F1-M1. The variable importance for AGB is similar between ELM-PF-

F1-M2 and ELM-PF-F1-M3, with slope showing the highest importance (Fig. 7a). For WTD, the 635 

variable importance for ELM-PF-F1-M1 and ELM-PF-F1-M3 are comparable (Fig. 7b) as there 

is no feedback to soil water from plant roots in either model. But convexity and slope play more 

important roles than DEM in simulating WTD for all models (Fig. 7b) as slope influences water 

movement [Famiglietti et al., 1998; Moore et al., 1988; Nyberg, 1996] and convexity is 

associated with distance to drainage channels, i.e., whether an area in a hydrologic network is a 640 

local depression (valley, swamp) or peak (hilltop, ridge) [Detto et al., 2013].  

Introducing the vertically averaged volumetric water content (VWC), for example, from 

the first month of the various simulations as an additional predictor, the RF models have lower 

AGB error (column AGBRF2 vs column AGBRF1 in Table 2) and explain more variance in both 

the training and test data for all models, and VWC becomes the most important feature for ELM-645 

PF-F1-M2 and ELM-PF-F1-M3 as hydraulic mortality is tied to soil water status. Similar 

accuracy of the RF models can be achieved if WTD is introduced as additional predictor. These 

results highlight the importance of representing the interactions between the dynamic physical 

processes and the static topographic attributes in controlling AGB.    

 650 
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Figure 7. Variable importance for the explanatory variables (x-axis) included in the random 

forest model for the sitewide simulated AGB (a), and WTD (b) as response variables using 

elevation, slope, and convexity as explanatory variables, and for the simulated AGB (c) using 655 

VWC as additional explanatory variables. The number on top of each bar is the importance 

value. 

Table 2. Random Forest Model Performance on the simulated above ground biomass (AGB) and 

water table depth (WTD) from the site wide and 50-ha locations, respectively. Model performance 
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is quantified by mean absolute percentage error (MAPE (%)) and percent of variance explained 660 

(VARex (%)). The paired data separated by “/” in each column are metrics for training data (left) 

and unseen test data (right). Subscript RF1 indicates the random forest models using topographic 

features while subscript RF2 indicates model using simulated soil moisture as predictor in addition 

to the predictors used in RF1 models.  

 
Case 

Sitewide 50-ha 

AGBRF1  AGBRF2  WTD AGBRF1 AGBRF2 WTD 

MAPE 

(%) 

ELM-PF-F1-

M1 

0.34/0.38 0.27/0.3 28.4/32.3 0.4/0.5 0.23/0.5 13.4/13.7 

ELM-PF-F1-

M2 

4.4/4.9 4.05/4.56 31.2/35.5 5.1/6.0 2.7/4.8 11.4/12.6 

ELM-PF-F1-

M3 

5.2/5.9 4.85/5.42 27.7/31.6 6.4/7.4 1.1/2.6 11.5/12.6 

VARex 

(%) 

ELM-PF-F1-

M1 

98.5/98.1 99.7/99.6 92.7/91.4 97.8/96.6 98.8/95.1 78.1/79.4 

ELM-PF-F1-

M2 

99.1/98.9 99.7/99.6 91.7/89.8 81.3/77.8 93.4/79.8 84.4/81.4 

ELM-PF-F1-

M3 

99.1/98.9 99.7/99.6 93.0/91.8 38.3/27.0 96.7/88.1 83.8/80.6 

 665 

Using the same approach as described above for the domain-wide simulations, we also 

develop RF regression models to identify the important explanatory variables that can describe 

the simulated AGB and WTD and the observed AGB and VWC at the 50-ha plot in 2015. The 

RF model for the observation is at 5 m resolution based on the DEM from the BCI census 

database. We first analyze the results from the RF models developed based on model simulations 670 

at the 50-ha plot. All variables have almost the same level of importance describing the WTD 

results for ELM-PF-F1-M2 and ELM-PF-F1-M3 (Fig. 8b), but slope is more important than 

DEM and convexity for ELM-PF-F1-M1. For AGB, the variable importance shows larger 

differences across the predictor variables and the models. For example, convexity is more 

important in describing AGB than DEM and slope for ELM-PF-F1-M2 while slope is much 675 
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more important than DEM and convexity in describing ABG for ELM-PF-F1-M1 (Fig. 8a). The 

accuracy of the RF model for AGB simulated by ELM-PF-F1-M3 is the lowest with high MAPE 

(6.4%) and the RF model is not able to capture the underlying spatial variability of the data, 

explaining less than 40% of the variance (Table 2). Hence the predictor variables are 

uninformative with respect to the simulated AGB at the 50-ha plot as the plot is fairly 680 

homogeneous topographically. When adding VWC as an explanatory variable, it is the most 

important variable to describe the AGB simulated by ELM-PF-F1-M3 (Fig. 8c) as the hydraulic 

mortality is a linear function of VWC. It can explain more than 80% of the variance (Table 2). 

VWC is also important for ELM-PF-F1-M2 to describe the simulated AGB because plant water 

is linked to soil water. The accuracies of AGB are all improved when VWC is added as predictor 685 

(Table 2). When there is almost no hydraulic mortality (ELM-PF-F1-M1), slope is the dominant 

driver for the simulated AGB and WTD (Fig. 8a,c). 
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Figure 8. Variable importance for the explanatory variables (x-axis) included in the random 690 

forest model for the simulated AGB (a) and WTD (b) as response variables using elevation, 

slope, and convexity as explanatory variables, and for the simulated AGB (c) using VWC as 

additional explanatory variables in the 50-ha plot. The number on top of each bar is the 

importance value. 

 Compared to the RF regression model for the simulated AGB and VWC, explanatory 695 

variables including DEM, slope, and convexity can also well describe the observed VWC with 
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57.5% variance explained for the training data and 46.8% for the test data and MAPEs are 4.0% 

and 4.4% for the training and test data, respectively. DEM and slope have a slightly higher 

importance compared to convexity for the observed VWC (not shown). However, the RF model 

of the observed AGB using the topographic features and the observed VWC as explanatory 700 

variables can only master the training data. Even though it finds that slope is an important 

driving factor in the training data of the observed AGB, as supported by Mascaro et al. [2011] 

using the multiple regression method to examine controls over AGB derived from airborne Light 

Detection and Ranging (LiDAR) at BCI, it cannot master the test data (negative explained 

variance). Thus, the RF model based on the observed AGB is not able to generalize well. All the 705 

predictor variables including the observed VWC besides DEM, slope, and convexity are 

uninformative for the spatial variability of the observed AGB. This suggests that the data is 

sparse and/or the observed AGB may depend on other factors such as soil heterogeneity and 

nutrient availability. 

4. Discussions and conclusions 710 

There are many external and internal factors controlling ecosystem functioning, one of 

which is plant water availability. We developed a model to incorporate 3D subsurface modeling 

in Earth system in consideration of the role of hillslope on water availability and vegetation 

dynamics under water stress conditions. We applied the model to BCI where sustained water 

stress on canopy trees has been reported in the past. 715 

Our domain-wide simulations using ELM and the coupled ELM and ParFlow showed WTD 

can differ significantly from the wet lowland (shallow WTD) to the dry highland (deep WTD) 

when lateral flow is introduced by coupling ELM with ParFlow. The large difference in WTD 

affects soil water availability along the topographic gradient and consequently causes large 

spatial variability in the energy flux partitioning and GPP compared to ELM when soil 720 

hydrology is represented by vertical one-dimensional flow. As summarized in the review paper 

by Fan et al. [2019] and references therein, this spatial variability in energy and water associated 

with topography can fundamentally organize the vegetation structure, energy, and 

biogeochemical fluxes across the landscape under water and energy limiting conditions. 

Coupled to the subgrid vegetation dynamics model FATES, we found higher AGB in the 725 

wet areas compared to dry areas in the domain-wide simulations. AGB decreases nonlinearly 
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with increasing WTD when WTD is less than 10 m, but the relationship asymptotes beyond 

WTD of 10 m. Unlike WTD, AGB increases almost linearly with increasing VWC over a wide 

range of VWC values. When hydraulic failure occurs under water limiting conditions, the 

biomass difference along the topographic gradient can further increase.  Consistent with the 730 

higher VWC during the wet season compared to the dry season, mortality rates from hydraulic 

failure are very low in the wet season and model differences become minimal. Hydraulic failure 

represented by different methods can affect the mortality rate induced by carbon starvation. For 

example, using the approach in Eq. (14) to represent drought mortality rate as a linear function of 

soil water potential, there is essentially no carbon starvation for areas with WTD deeper than 10 735 

m. 

Even though soil water gradients have been identified as an important determinant of tropical 

forest structure and functioning [Miron et al., 2021; Terra et al., 2018], unlike for the modeling 

results, we were not able to find similar relationship of the corresponding observed features with 

observed AGB. More specifically, the results of our RF model based on observations reveal that 740 

topographic attributes and soil water availability cannot explain the spatial distribution of 

aboveground biomass observed at the 50-ha plot located in the highland of BCI, with relatively 

homogeneous surface conditions. While the lack of relationships in the observations may reflect 

the limited data coverage, it also suggests other factors may potentially play an important role in 

driving the spatial variability of the observed AGB. Furthermore, differences in the explanatory 745 

power of the topographic attributes and soil water status for the simulated AGB and the lack 

thereof for the observed AGB suggest that factors that drive the spatial variability of the 

observed AGB are likely absent or not well represented by the coupled model. The water table at 

the plot is close to the surface with several springs on the slopes [Becker et al., 1988; Harms et 

al., 2001] and there were considerable and non-systematic variation in soil saturated hydraulic 750 

conductivity [Kinner and Stallard, 2004] that could generate preferential flow paths. These 

observed features, which are not accounted for in our model, could limit the ability of the 

coupled model in reproducing the observations, even if more systematic efforts were devoted to 

calibrate the model parameters. And they should be explored in future studies. Other factors 

currently not accounted for by the model include spatial biodiversity of functional traits, toxic 755 

metals, soil nutrients, and liana (woody vines) abundance, which have all been found to 

influence the tree AGB at BCI [Ingwell et al., 2010; Ledo et al., 2016; Schnitzer and Bongers, 
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2011; Schnitzer et al., 2005; Zemunik et al., 2018]. Also not accounted for by the model is the 

negative relationship between the wood density and tree mortality rate at BCI found in 

McDowell et al. [2018] using data from Wright et al. [2010]. Including spatially variable tree 760 

mortality based on a negative relationship between mortality and wood density may substantially 

improve model representation of vegetation carbon as indicated by the modeling study in 

Hancock et al. [2022]. Local heterogeneity of plant functional composition and soil resources 

should be considered in future models [Hofhansl et al., 2020].  

Accurate estimation of spatial AGB and its dynamics is important for global carbon cycle 765 

and climate mitigation. Lateral flow that has a strong influence on soil water gradient is often 

missing in ecosystem modeling. Using a coupled land model, 3D integrated hydrologic model, 

and ecosystem dynamics model to simulate the carbon stock distribution at BCI, we found the 

simulated AGB is strongly influenced by topographic attributes and/or soil water availability at 

larger scale if hydraulic failure is triggered. However, prescribing spatially homogeneous soil 770 

properties and plant traits, the coupled model cannot explain the observed larger variability in 

AGB in the highland where WTD variations are likely very small. We also found drought 

mortality as a function of hillslope soil moisture (Eq. 14) or due to plant hydrodynamics (Eq. 12) 

can contribute to the large spatial variability in AGB.  These two hydraulic failure models are 

easily introduced in our coupled model without having to empirically parameterize the hydrology 775 

model. However, these two models have different effect on carbon starvation mortality. Data 

needs to be collected to support the findings in this study. For example, soil moisture, WTD, 

AGB, and plant traits (e.g., wood density) across hydrologic gradient (from low land to high 

land). It is necessary to have a better quantification of the soil texture and related hydraulic 

properties as the distribution of biomass is the combined result of plant traits, soil properties, 780 

climatic and groundwater conditions [Costa et al., 2022]. AGB can be influenced by soil texture 

which directly affects the time interval between precipitation inputs and groundwater recharge 

[Sousa et al. 2022] and the capillary fringe above the water table that supplies water to the 

rooting zone [Costa et al. 2022]. For example, results in Sousa et al. [2022] suggest a 

contribution of clayey texture in increasing AGB in dry climates with a shallow water table. 785 

Spatial heterogeneity is lacking in many forest dynamics models [Busing and Mailly, 2004].  

Future modeling research should also account for spatial heterogeneity of soil resource (i.e., 

water and nutrients) and plant functional traits (e.g., mortality, growth, rooting depth etc.), as 
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well as anthropogenic factors (habitat loss due to deforestation, degradation, and fragmentation 

[Miranda et al., 2017]) on the structure of plant communities. As a demonstration, only two plant 790 

functional types were considered in this study. When water stress is considered, the negative 

response of AGB with WTD simulated by the model is supported by previous studies (e.g., 

Esteban et al., 2021) that species associated with deep water tables had decreased growth and 

increased mortality compared to those associated with shallow water table depth during severe 

drought. However, the two hypothetical hydraulic failure models (M2 and M3) result in a strong 795 

positive relationship between mortality with the soil water stress, driving unrealistic response of 

AGB to increasing WTD. In reality, the resistance of trees to water stress also depends on the 

severity of droughts, plant traits, and environmental conditions [Costa et al., 2022; and 

references therein]. For example, previous studies found that hydraulically-vulnerable trees can 

delay dehydration by accessing deep water during droughts in BCI [Chitra‐Tarak et al., 2021]. 800 

How plant traits and PFT composition will impact these rates should be a key consideration in 

advancing coupled modeling in the future.  The coupled ELM-PF-FATES will be applied to 

other tropical forest regions where lateral flow and groundwater dynamics may play different 

role in water available to plants to further elucidate carbon-hydrology interactions and plant 

response to drought.  805 

Using a three-dimensional model in current Earth system models that are typically run at 

~100 km grid resolution may yield inaccurate results or have no significant on vegetation 

dynamics. A reasonable grid resolution for groundwater flow simulation is around 1 km (Xie et 

al. 2020 and references therein). Moving from 100 km to 1 km resolution for global scale 

vegetation dynamics simulation coupled with a 3D integrated hydrologic model is 810 

computationally challenging, but it may be a realistic goal with advances of computation power 

and architecture in the future. The model in this study provides opportunities for improving 

hydrological, ecological, and meteorological predictions of Earth system models. 

Code and data Availability. The coupled code is available at 

https://doi.org/10.5281/zenodo.6595795. The census data for the BCI plot are publicly available 815 

at http://dx.doi.org/10.5479/data.bci.20130603. Use of the data has been agreed upon with the 

principal investigators of the plot: Stephen Hubbell, Richard Condit and Robin Foster. Other 

observational data are available at http://doi.org/10.5281/zenodo.3752127. 

https://doi.org/10.5281/zenodo.6595795
http://dx.doi.org/10.5479/data.bci.20130603
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