
1

Contents

A) Yeti fundamentals 1

A1) System and data prerequisites 1

A2) Input and output file format 1

B) Yeti directory structure 2

B1) Source code 2

B2) Yeti run case 2

B3) HBEFA emission factor data 3

B4) Traffic activity data 4

B5) Meteorological data 4

C) Using Yeti 6

C1) Essential configuration parameters 6

C2) Running a case 6

C3) Obtaining results 8

D) Remarks on data processing 9

D1) Subsegment mapping between HBEFA version 3.3 and 4.1 9

D2) Discretizing Yeti data for chemical transport models 10

References 10

A) Yeti fundamentals

This document serves as a basic guide for assembling input data and configuration for conducting a

Yeti run. The version of Yeti described herein has been developed using Python version 3.7.6. Both

development and testing of Yeti have been conducted in a Unix-compatible environment. However,

Yeti should also function in other operating systems (such as Windows) when a compatible Python

environment is available. It is assumed that the reader has a rudimentary understanding of the basic

Python environment and data structures, such as lists and dictionaries, as well as basic operation and

organization of HBEFA. The reader should note that all variables are written in camelCase.

A1) System and data prerequisites

The following Python packages are used in Yeti, which should be part of the standard installation:

concurrent.futures, io, itertools, math, os, shutil, sys, timeit, yaml

Any missing dependencies can be rectified using the pip3 utility. Yeti has been tested with the pubic

edition of HBEFA versions 3.3 and 4.1, which can be purchased on-line from INFRAS (Zürich,

Switzerland) through the HBEFA home page (https://hbefa.net/). Further, traffic activity data

in Yeti format must be tabulated according to available subsegments, and LOS corresponding to the

version of HBEFA used. The onus is therefore on the user to procure HBEFA and generate activity data

in a suitable format.

A2) Input and output file format

In order to streamline workflow and reduce computational effort, Yeti was conceived with a high level

of symmetry in data representation and processing. Text files are used as the sole data exchange medium

between the user and other systems. Configuration data are written in YAML format, as indicated by

the dependency to the same-named Python package shown previously. On the other hand, input and

output data are stored in tab-delimited tabulated text data with column header labels. This facilitates

manual inspection of these data using a variety of software packages from text editors to spreadsheet

programs. Figure S1 shows a sample of such a tabulated file viewed in the latter.

2

Figure S1: Exemplary tab-delimited tabulated data file used in Yeti viewed in a spreadsheet program.

B) Yeti directory structure

As part of the symmetric design concept, Yeti also manifests a high degree of parallelism in the way

the input and output data are organized on the file system, so that they could be processed and retrieved

quickly and easily. Each set of Yeti emissions is known as a run case, where the input parameters and

output data are stored under the same directory, aptly called the case directory. HBEFA emission factors

and traffic data can also be stored there for reference, but due to their size they should be introduced as

symbolic links (in a Unix-like environment). Alternatively, their location can be specified directly in

the user configuration.

B1) Source code

Figure S2 shows the default source and executable structure of Yeti. For better source and data

organization, the source code and output data should be stored under a home directory, indicated in Fig.

S1 as yeti/. The shell script yeti is a wrapper to the executable script main.py. The location

of each Yeti run case, where the case configuration and output files are located, can be specified as a

command line argument for yeti. If no argument is supplied, Yeti will look for case configuration

from the path yeti/runs/default/, where emission data are also written out.

B2) Yeti run case

The file organization for a Yeti run case is shown in Fig. S3. As mentioned previously, Yeti uses the

path yeti/runs/default/ by default, while input and output data for multiple cases can be

independently stored under the runs/ directory or elsewhere. All input and output file names and

directory structures under each case path are identical, so for illustration, descriptions made for the

default Yeti run case (that is, yeti/runs/default/) can be applied directly to all other run cases

without losing generality.

All execution options specific to the case are contained in the file config.yaml in YAML format.

This configuration file contains locations of other input data (that is, emission factor, traffic, and

meteorological data), basic operation parameters, and emission strategies. Further specification for

config.yaml will be detailed in Section C1. During execution, Yeti output emission data in the

emissions/ directory. An overview of roadlinks and vehicle subsegments used in the case can be

found in the files keyTable_roadlink.txt and keyTable_Subsegment.txt

respectively, in tab-delimited text format. Should the case be re-executed, the emissions/ directory

will be backed-up with a sequentially applied five-digit identifier. A duplicate of the input

config.yaml contains the exact default user-defined parameters used for the case in question, while

the accompanying logfile provides basic diagnostics and statistics of the run.

3

The processed emission data are saved in the sub-directory hourly/. The data are first organized in

directories based on road link ID and corresponding traffic direction, such that road links with two-way

traffic will be identified in two directories. In turn, the emission data are located under each road link /

direction pair. Each file contains hourly emissions from all vehicle subsegments for each pollutant,

emission strategy, traffic activity and meteorological profiles.

Figure S2: Yeti source code structure.

Figure S3: Yeti case directory structure and organization.

B3) HBEFA emission factor data

The layout of the HBEFA data tables used in Yeti is illustrated in Fig. S4. By default, Yeti looks for the

HBEFA data under the directory hbefa/ under the run case directory, but it can be customized to a

different user-defined location. All HBEFA data of the same version are stored as tabulated text files in

the same directory, and therefore it is advisable to distinguish each set of HBEFA data tables should

multiple versions exist. Yeti can be configured to automatically identify the version of HBEFA when

the version number is present as the suffix of the folder (e.g., hbefa_3.3 and hbefa_4.1).

4

Figure S4: Yeti HBEFA data directory structure and organization.

There are two types of HBEFA data tables that are used by Yeti, which are accordingly indicated on

the file naming convention. The first are the emission factor files – identified with the prefix

emissionFactor_ – which contain emission factors from HBEFA. The second are known as key

tables – recognizable by the prefix keyTable_ – containing basic information on pollutants, vehicle

subsegments, traffic situations (TS), etc. The two sets of data work in combination in Yeti to serve as a

light-weight relational database, and can be extracted from the public edition (i.e., Microsoft Access

runtime application) of HBEFA. Table S1 shows the header required by each of the data tables.

B4) Traffic activity data

The organization of traffic activity data, integrated with subsegment and LOS data from a specific

version of HBEFA, is presented in Fig. S5. As with the HBEFA data tables, Yeti will by default look

for the traffic data in the directory trafficData/ in the case directory, although the user could

specify an alternate location in the configuration. Additionally, the Yeti can be optionally configured to

distinguish the HBEFA version with which of the traffic data is generated in the same manner as

HBEFA data tables.

The key table containing information for each road link present in the traffic data

(keyTable_roadlink.txt) is required by Yeti. Optionally, a second key table,

keyTable_fleetSubsegment.txt, contains subset of the HBEFA key table

keyTable_Subsegment.txt, for the subsegments appearing only in the vehicle fleet appearing

in the road network of interest, can be used by Yeti. The hourly count of each vehicle subsegment

passing through each road link in each direction are collected in the directory hourlyData/, with

each set of data stored in individual directories.

The count data for each traffic activity profile are stored in a table file in a format shown in Fig. S1. A

header row indicates the subsegment ID, LOS, and the hourly counts starting at midnight (00h) local

time. Typically, the traffic profiles are specific to the type of day throughout the week, and in Yeti, they

are classified as Mondays to Thursdays (workday), Fridays (friday), Saturdays (saturday), as

well as Sundays and holidays (holiday). The file linkInfo.yaml contains information of the

link and road direction for the user.

B5) Meteorological data

The meteorological data used in Yeti are the diurnal temperature profiles and the seasonal RVPs, which

are stored in separate files in table format in a common directory. By default, Yeti will look for the

traffic data in the directory meteorology/ in the case directory, although it can be configured to

look for the files in a user-specified location. The temperature data file is

keyTable_temperature.txt, which contains the hourly diurnal temperature profile for each

meteorological profile. The header for the tab-delimited temperature table must be presented as follows:

profile 00 01 … 23

5

Table S1: Header information for all HBEFA data tables used in Yeti.

Emission factor file HBEFA data fields
emissionFactor_hot.txt IDVehCat

IDSubsegment
IDTS
IDPollutant
Grad
V
EFA

emissionFactor_cold.txt IDVehCat
IDSubsegment
IDPollutant
Condition
EFA

emissionFactor_evapDiurnal.txt IDVehCat
IDSubsegment
IDPollutant
Condition
EFA

emissionFactor_evapSoak.txt IDVehCat
IDSubsegment
IDPollutant
Condition
EFA

emissionFactor_evapRL.txt IDVehCat
IDSubsegment
IDPollutant
RoadCat
Condition
EFA

emissionFactor_nonExhaust.txt IDVehCat
IDSubsegment
IDTS
IDPollutant
Grad
V
EFA

keyTable_Pollutant.txt IDPollutant
Pollutant

keyTable_Subsegment.txt IDSubsegment
Subsegment
IDVehCat
Segment
SizeClass
Technology

keyTable_VehCat.txt IDVehCat
VehCat

keyTable_TS.txt IDTS
TS

Where the field profile refers to the labels denoting each meteorological profile, and the fields 00

to 23 contain the hourly temperature (in °C) for the corresponding profile. On the other hand, the

seasonal RVP data can be found in the file keyTable_temperature.txt, and the contents of the

file is defined by its header as shown below:

profile season RVP

As with the meteorological data, the field profile refers to the same meteorological profile labels.

The field season corresponds to the season for which the RVP is valid (i.e., spring, summer, autumn,

and winter). The values of the RVP, expressed in kPa, are located under the field RVP. The user should

be aware that the meteorological profile labels will be used to distinguish the output of the emission

data in Yeti and thus they must be identical in the two files.

6

Figure S5: Yeti Traffic data directory structure and organization.

C) Using Yeti

C1) Essential configuration parameters

The run configuration for Yeti is written in YAML format. Most options are presented with two

indentation levels, with further levels being represented explicitly by dictionary or list structures. Table

S2 shows the minimum required user parameters, their default values (if available), as well as a brief

description of their function. Identifiers in boldface are mandatory.

C2) Running a case

As mentioned in Sections B1, a Yeti run can be started using the shell script yeti located in the

yeti/ directory. The user can either specify the path to the run case (Fig. S2) as argument to the script

or, with no argument, have Yeti use the case path of run/default. Once the input file and

configuration have been properly assembled, Yeti should start with the following notification:

--

 Yeti 1.0 - DEAGGREGATION UTILITY FOR TRAFFIC EMISSIONS INVENTORY

--

 *** NOTE : opening logfile runs/default/emissions/logfile

 reading table for roadlinks topology

 reading emission factors

 reading emission key tables

 reading meteorological tables

 harmonizing emission factor tables

 compacting tables

 indexing emission factor tables

 creating folder for hourly emissions under runs/default

 processing disaggregated emissions on 8 processes

 24 of 24 road links processed

 Yeti completed

Diagnostic information concerning status and statistics the run can be found in the log file

(runs/default/emissions/logfile). An excerpt is presented below:

--

-- reading table for roadlinks topology

--

 loading traffic roadlink table runs/default/trafficData_3.3/keyTable_roadlink.txt

 10082 records retrieved

 time elapsed: 0.058 seconds

--

-- reading emission factors

--

 loading HBEFA emission factor for strategy_hbefa_hot

 985527 records retrieved

time elapsed: 3.815 seconds

--

-- reading emission key tables

--

7

Table S2: Essential Yeti configuration parameters as specified in config.yaml.

Section and Key Type Default Description Remarks

general

 hbefaVersion string 3.3 HBEFA version Required if appendVersion is True

 appendVersion Boolean False Attaches HBEFA version to all relevant
input and output files and paths

 numProcesses integer 4 Number of processes spawned for
processing emissions

output

 logfile string ‘logfile’ Name of Yeti log file

 precision integer 6 Floating point write precision

 encoding string ‘utf-8’ Output text encoding Uses Python 3 encoding names

hbefa

 tableRoot string ‘hbefa’ Location of HBEFA data tables If appendVersion is True, hbefaVersion
will be attached to tableRoot

 encoding string ‘utf-8’ Input text encoding Possible options are ‘latin’ and ‘ascii’

traffic

 tableRoot string ‘trafficData’ Location of traffic activity data tables If appendVersion is True, hbefaVersion
will be attached to tableRoot

 useTrafficSubsegment Boolean False If Yeti vehicle subsegments are limited to
those present in the traffic data

Uses complete HBEFA vehicle
subsegment listing if it is set to False

 lengthConversion float 0.001 Converts output length unit to km

 subset [string] N/A Defines a unique subset of street links
from the traffic data to be processed to
reduce runtime (e.g., for a smaller region
of interest).

Subsets can be specified using full or
partial road name and / or link ID.

 encoding string ‘utf-8’ Input text encoding Possible options are ‘latin’ and ‘ascii’

meteorology

 useMeanProfiles Boolean False If intra-day mean values are used

 meanSeasons [string] [‘summer’] Labels for each mean profile Required if userMeanProfiles is True

 meanTemperatures [float] [20.0] Mean temperatures [°C] to be defined for
each meteorological profile

Required if userMeanProfiles is True

 meanRVPs [float] [70.0] Seasonal RVPs [kPa] to be defined for
each meteorological profile

Required if userMeanProfiles is True

 tableRoot string ‘meteorology’ Location of traffic activity data tables Required if userMeanProfiles is False

 encoding string ‘utf-8’ Input text encoding Possible options are ‘latin’ and ‘ascii’

(Table continued next page …)

loading HBEFA emission key table runs/default/trafficData_3.3/keyTable_fleetSubsegment.txt

 223 records retrieved

time elapsed: 0.122 seconds

--

-- reading meteorological tables

--

 loading hourly temperature profile table runs/default/meteorology/keyTable_temperature.txt

 4 records retrieved

time elapsed: 0.001 seconds

--

-- harmonizing emission factor tables

--

 table runs/default/hbefa_3.3/emissionFactor_cold.txt reduced from 198744 to 8112 records

 time elapsed: 10.576 seconds

--

-- compacting tables

--

table runs/default/hbefa_3.3/emissionFactor_hot.txt reduced from 985527 to 246192 records

time elapsed: 46.566 seconds

8

Table S2: Essential Yeti configuration parameters (continued)

Section and Key Type Default Description Remarks

strategy_hbefa_hot

 active Boolean False If hot exhaust emissions are calculated At least one strategy must be active

strategy_hbefa_cold

 active Boolean False If cold excess emissions are calculated At least one strategy must be active

 baseColdStartFactor float 0.0 Fraction of hourly traffic attributed to cold
starts for all HBEFA road types

 customColdStartFactor { int : float } N/A Fraction of hourly traffic attributed to cold
starts for specified HBEFA road types

Overrides baseColdStartFactor

strategy_hbefa_evapDiurnal

 active Boolean False If diurnal evaporative HC emissions are
calculated

At least one strategy must be active

strategy_hbefa_evapSoak

 active Boolean False If evaporative HC emissions from hot
soak are calculated

At least one strategy must be active

 baseHotSoakFactor float 0.0 Fraction of hourly traffic attributed to hot
soaks for all HBEFA road types

 customHotSoakFactor { int : float } N/A Fraction of hourly traffic attributed to hot
soaks for specific HBEFA road types

Overrides baseHotSoakFactor

strategy_hbefa_evapRL

 active Boolean False If evaporative HC emissions from
running losses are calculated

At least one strategy must be active

strategy_hbefa_nonExhaust

 active Boolean False If non-exhaust PM10, PM2.5, and BC
emissions are calculated

At least one strategy must be active

--

-- indexing emission factor tables

--

 creating indices for emission factor table runs/default/hbefa_3.3/emissionFactor_hot.txt

time elapsed: 0.959 seconds

--

-- creating folder for hourly emissions under runs/default

--

 emissions for the following pollutants will be processed:

 HC CO NOx PM PM (non-exhaust) BC (non-exhaust) PM2.5 (non-exhaust)

 the following emission strategies have been activated:

 strategy_hbefa_hot

--

-- processing disaggregated emissions on 8 processes

--

 time elapsed: 27.293 seconds

--

-- Yeti completed

--

C3) Obtaining results

The emissions/ directory contains the disaggregated emissions results of the Yeti run case, with

the layout shown in Fig. S2, where the hourly emissions for each vehicle subsegment are first organized

by road link ID, traffic direction in a directory, then individually saved in tabulated format according to

pollutant, emission strategy, traffic activity and meteorological profiles. Figure S6 shows an example

of Yeti output, as viewed in a spreadsheet program. In addition, summary data on the run case

configuration can be found in the emissions/ root directory. Information on road links and vehicle

subsegments are saved in the files keyTable_roadlink.txt and

keyTable_subsegment.txt respectively. A complete listing of the particular case run

configuration can be inspected in the file config.yaml, which can be used to re-execute the Yeti

case with settings identical to the original.

9

Figure S6: Exemplary hourly emission output from Yeti viewed in a spreadsheet program.

D) Remarks on data processing

D1) Subsegment mapping between HBEFA version 3.3 and 4.1

Vehicle subsegment definitions between different HBEFA versions are not unconditionally compatible.

Although it is expected that the same subsegment IDs introduced in an older version would still appear

unaltered in newer versions, they might not be used or assigned in vehicle fleet composition from one

version to another, resulting from various technical and logistical factors. Thus, a vehicle subsegment

allocated to a particular subsegment ID in one version could be reassigned to a different subsegment ID

in another version. In the context of the Berlin fleet, this includes, but not limited to, by the use of

segment (engine size) independent passenger vehicle subsegments, the identification of diesel vehicle

subsegments equipped with the “defeat device” for manipulating standardized emission tests – and

those with subsequent corrective software update, as well as hybrid and flex-fuel vehicles operating

under their respective powertrain, all of which introduced in HBEFA version 4.1 under new

subsegments.

On the other hand, emission factors for non-exhaust PM in HBEFA 3.3 can only be obtained through

its limited availability “expert” version. Importing them from HBEFA 4.1 is a plausible option, but this

requires vehicle subsegments to be redefined from 4.1 to 3.3. In addition to the displacement

subsegment IDs, the accommodation and attribution of subsegments representing technologies that are

still unaccounted for in HBEFA 3.3 are also of primary concern. Their treatment in this case, however,

could be less rigorous, as non-exhaust PM is independent of powertrain systems and thus subsegment

characteristics such as fuel type and exhaust treatment technology have a diminished influence over

non-exhaust PM.

Therefore, some kind of methodology is required to ascertain a systematic bi-directional alignment, or

mapping, of vehicle subsegment IDs between HBEFA 3.3 and 4.1, or other relevant versions. While

manual mapping is theoretically most flexible, it is labor intensive, having to account for about over

900 subsegment definitions, and it does not always completely incorporate displaced subsegments.

Thus, the emission factors for the mapped subsegments may not be representative of those of its original

subsegment, as in the case of vehicles belonging to different Euro VI classes, or multi-fuel vehicles.

The method presented below is indicative of one such possible way with which an effective subsegment

mapping can be made, using a combination of classification, lexicon analysis, and heuristics.

The process begins by selecting active subsegments for each HBEFA version, that is, subsegments that

have non-zero emission factors in the corresponding version. This is accomplished by looking up each

subsegment in the emission factors tables. The two sets of subsegments are then separated into match

pools belonging to the same combination of HBEFA categories and, if available, the Euro emission

standard. This strategy can significantly improve computational effort by restricting the matching

10

operation into smaller pools, since the computational effort, that is, the number of look-ups required to

find a match, scales quadratically with the size of the pool.

Eligible map candidates for each subsegment are located lexically by selecting those subsegment

descriptors with the minimum string edit distance defined by Levenshtein (1966), an algorithm which

scales logarithmically with the length of both strings. Degenerate cases, that is, a subsegment having

more than one match with identical minimum Levenshtein distance, are eliminated using a heuristic

match to the subsegment descriptors. The listing of heuristic matching used is presented in Table S3.

Table S3. Heuristic used in HBEFA subsegment mapping.

> 12 t ↔ > 7.5-12 t

151 cc ↔ ≤ 250 cc

251 cc ↔ > 250 cc

BEV ↔ EE

EA189 ↔ < 2.0 L

Euro-6c ↔ Euro-6

Euro-6d-temp ↔ Euro-6d1

Fuel cell ↔ EE

LPG ↔ CNG

Rigid Truck ↔ RT

The lexical heuristics can still be determined manually by inspecting mappings that still remain

degenerate following the lexical analysis. A subsegment map is established between the versions when

a unique eligible match is found. Degenerate subsegments (still having non-unique eligible matches) as

well as invalid subsegments (having no matches) will not be provided a matching subsegment. Such

cases typically represent subsegments whose powertrain technologies or Euro emission classes are

unavailable in the target HBEFA version.

Subsegment maps from HBEFA 3.3 to 4.1, and vice versa, are produced using the aforementioned

methodology. A total of 606 matches out of 970 subsegments are mapped from version 3.3 to 4.1, while,

in the other direction, 704 maps have been identified out of a total of 1840 subsegments. These mapping

are then applied to the fleet composition data, so that vehicle subsegment IDs from the base HBEFA

version can be substituted into those for the target version, as part of the traffic data pre-processing.

D2) Discretizing Yeti data for chemical transport models

One of the objectives for developing Yeti is to produce high-resolution traffic emissions data for

chemical transport modelling studies that are consistent with the meteorological conditions for the

region and period of interest. An algorithm is currently being undertaken using a k-dimensional tree

approach (Bentley, 1975), to reconcile structure and topological heterogeneities between the road

network and corresponding road surfaces in the model grid in a computationally efficient manner. It

has been tested on some modelling platforms such as WRF-Chem (Grell et al, 2005) and OpenFOAM

(Weller et al, 1998; Chan and Butler, 2021), as shown in the example in Figure S7.

References

Bentley (1975) Commun ACM 18(9):509-517.

Chan & Butler (2021) Geosci Model Dev 14:4555-4572.

Grell et al (2005) Atmos Environ 39(17):6957-6975.

Levenshtein (1966) Sov Phys Dokl 10(9):707-710.

Weller et al (1998) Comput Phys 12:620-631.

11

Figure S7. An illustrative example of gridded emissions output over a WRF-Chem domain at a

horizontal resolution of 100 m using the k-dimensional tree algorithm (Bentley, 1975).

