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Abstract As a challenge in the construction of a “seamless forecast” system, improving 11 
the prediction skills of subseasonal forecasts is a key issue for meteorologists. In view 12 
of the evolution characteristics of numerical models and recent deep learning models 13 
for subseasonal forecasts, as forecast times increase, forecast results tend to become 14 
intraseasonal low-frequency components, which are essential to the change in general 15 
circulation on the subseasonal timescale as well as persistent extreme weather. In this 16 
paper, the Global Subseasonal Forecast Model (GSFM v1.0) first extracted the 17 
intraseasonal oscillation (ISO) components of atmospheric signals and used an 18 
improved deep learning model (SE-ResNet) to train and predict the ISO components of 19 
geopotential height at 500 hPa (Z500) and temperature at 850 hPa (T850). The results 20 
show that the 10-30 day prediction performance of the model used in this paper is better 21 
than that of the model trained directly with original data. Compared with other 22 
models/methods, the SE-ResNet model has a good ability to depict the subseasonal 23 
evolution of the ISO components of Z500 and T850. In particular, although the CFSv2 24 
results have a better prediction performance through 10 days, the SE-ResNet model is 25 
substantially superior to CFSv2 through 10-30 day, especially in the middle and high 26 
latitudes. The SE-ResNet model also has a better effect in predicting 3-8 planetary 27 
waves, which leads to the difference in model prediction performance in extratropical 28 
areas. A case study shows that the SE-ResNet model depicted the phase change and 29 
propagation characteristics of planetary waves well. Thus, the application of data-30 
driven subseasonal forecasts of atmospheric ISO components may shed light on 31 
improving the skill of seasonal forecasts. 32 
 33 
1. Introduction 34 

In the meteorological department, forecasts on the 10-30 day timescale lie between 35 
0-10 day short- and mid-term weather forecasts and monthly scale short-term climate 36 
forecasts, which are called subseasonal or extended-range forecasts and are a crucial 37 
link in the construction of seamless and refined forecasting and prediction systems (Jin 38 
et al., 2019). However, it is also difficult to construct a “seamless forecast” system 39 
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(Hoskins, 2013). 40 
Subseasonal forecasts lack predictability due to the chaotic nature of the 41 

atmosphere (Mayer et al., 2021) and thus have a rather limited predictive signal over 42 
subseasonal timescales (Srinivasan et al., 2021). To accelerate the research progress of 43 
subseasonal forecasting and bridge the timescale gap between synoptic-scale 44 
forecasting and short-term climate forecasting, the World Weather Research 45 
Programme (WWRP) and the World Climate Research Programme (WCRP) jointly 46 
launched a 5-year research programme called the Subseasonal to Seasonal (S2S) 47 
Prediction research project to improve the ability of extended-range forecasting and the 48 
understanding of the sources of subseasonal to seasonal predictability (Vitart et al., 49 
2017). To address this academic challenge, meteorologists have made various attempts 50 
and studies on subseasonal forecasting, resulting in remarkable progress. The Madden-51 
Julian Oscillation (MJO) is the most important source of forecasting skills on the 52 
subseasonal timescale (Robertson et al.,2015), and an empirical model of spring 53 
precipitation forecasts in southern China on the subseasonal timescale was established 54 
by Li et al. (2016) using the spatiotemporal information of MJO as a predictor. In 55 
addition, Zhu et al. (2017) constructed spatial-temporal projection models (STPM) to 56 
carry out real-time subseasonal forecasts for tropical cyclones over the western North 57 
Pacific. 58 

Although the timescale of the subseasonal forecast exceeds the theoretical upper 59 
limit of the daily weather forecast, atmospheric movement still has predictable 60 
components (Zhu et al.,2014), and the predictability of atmospheric movement is 61 
related to the spatial-temporal scale (Zhang et al., 2019). Hsu et al. (2015) developed a 62 
set of methods to extract low-frequency signals from the atmosphere for 10-60 day 63 
without using bandpass filters, and the developed STPM showed good performance in 64 
subseasonal precipitation forecasting in South China. Wang et al. (2014), by extracting 65 
the predictable component on the subseasonal timescale and referring to the 66 
conditionally nonlinear optimal perturbation (CNOP) correlation algorithm, developed 67 
a practical method and prediction technology for extracting the predictable components 68 
in numerical models. 69 

Weather and climate systems are typically nonlinear systems, and the 70 
characteristics of high dimensionality, large quantity and complexity of meteorological 71 
data make it difficult to forecast accurately. The ability of artificial intelligence 72 
technology to effectively learn and capture features in massive data has been widely 73 
applied in various fields. Machine learning, especially deep learning technology, has 74 
also been widely used in meteorological research and business fields in recent years, 75 
from the automatic recognition of tropical cyclones (Hong et al., 2017), extratropical 76 
cyclones (Lu et al., 2020) and fronts (Lagerquist et al., 2019; Lagerquist et al., 2020) to 77 
the prediction techniques of nowcasting (Shi et al., 2015; Ravuri et al., 2021), weather 78 
forecasting (Weyn et al., 2019) and ENSO forecasting (Ham et al., 2019). For example, 79 
Song et al. (2019) developed the SE-ResUNet model for the prediction of precipitation 80 
near Beijing and achieved better results than traditional weather forecasts. Sønderby et 81 
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al. (2020) evaluated the performance of MetNet under different precipitation thresholds 82 
and found that MetNet is superior to numerical weather forecasting to some extent. 83 
Rasp and Thuerey (2021) used the ResNet model to predict geopotential height, 84 
temperature and precipitation in the next 5 days and obtained more reliable results. 85 

Machine learning has made considerable progress in weather-scale prediction, but 86 
further research on subseasonal-scale prediction is still needed. Machine learning can 87 
provide a potential approach to the development of S2S prediction systems with 88 
significantly reduced computational costs (Weyn et al., 2021). Residual structure has 89 
an excellent feature extraction ability (Jin et al., 2021), so we attempt to apply this 90 
structure to the field of subseasonal prediction. However, with the extension of forecast 91 
time, the prediction results will gradually smoothen (Rasp et al., 2020) and tend to 92 
become low-frequency signals of the atmosphere (Weyn et al., 2021). In fact, in the 93 
deep learning process of subseasonal forecasts, as the loss function mostly adopts 94 
spatial root mean square error, the prediction result will tend to be “fuzzy” as the 95 
forecast time increases (Mathieu et al., 2015), showing the low-frequency or low degree 96 
of freedom characteristics of atmospheric circulation during the subseasonal forecast 97 
process. In view of this “low-frequency” feature, can we reduce the degrees of freedom 98 
of the atmospheric elements in advance by extracting the intraseasonal oscillation 99 
signals from them to focus the learning object of the learning model, in order to improve 100 
the learning ability of the model and the forecast performance? In fact, weather and 101 
climate systems are complex systems composed of multiscale interactions of small-102 
scale, high-frequency and low-frequency evolution. Reliable representation of 103 
multiscale characteristics is one of the important conditions for the development of 104 
high-performance weather/climate prediction models (Slingo et al., 2008). Spectral 105 
analysis (extraction of different components) provides novel ways of incorporating the 106 
multiscale properties of weather and climate systems in machine learning (Kashinath 107 
et al. 2021). For example, Wu et al. (2020) developed a generative adversarial network 108 
(GAN) partial differential solution model to describe Rayleigh-Bénard convective 109 
activity by enhancing covariance constraints and pointed out that these constraint pairs 110 
help preserve and highlight the physical characteristics of the corresponding spectrum. 111 
Mohan et al. (2020) used wavelet transformation to predict turbulence by constructing 112 
wavelet coefficients based on physical features. 113 

In addition, since multifactor predictors can be input into the forecast model, the 114 
contributions of evolution among different factors to the forecast may be different. Can 115 
a self-attention mechanism such as squeeze-and-excitation (Hu et al., 2017) be 116 
introduced to optimize the contribution of different elements (channels) to the model? 117 
Therefore, this study attempted to predict the ISO components of Z500 and T850 in the 118 
next 1-30 day by using an improved deep learning model (SE-ResNet, which combines 119 
the self-attention mechanism and the ResNet prediction model). The SE-ResNet model 120 
was quantitatively evaluated by comparing the prediction results with those of the 121 
CFSv2 and ResNet models against ERA5 data. 122 
 123 
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2 Methods 124 
2.1 Filtering method 125 

To allow the model to be applicable for real-time forecasting, this paper uses the 126 
filtering method proposed by Hsu et al. (2015) to extract atmospheric signals over 10-127 
30 day. This method can be divided into three steps. (1) Remove the slow-varying 128 
climatologic annual circle by subtracting the climatologic 90-day low-pass filtered 129 
components from the raw data. (2) Remove other ISO signals by subtracting the last 130 
15-day running mean. (3) Remove the synoptic scale components by taking a 5-day 131 
running mean. 132 

To have comparable forecasting, the results are defined as the results of the ISO 133 
components predicted by the model plus the climatology of the elemental fields for the 134 
corresponding date calculated using data from 1981 to 2010. 135 
 136 
2.2 Forecast model 137 

The forecast model used in this paper is developed based on the ResNet model 138 
designed by Rasp et al. (2020) and has been further improved according to the 139 
prediction objectives. The specific model structure is shown in Fig. 1. The ResNet 140 
model and SE-ResNet model mentioned in this paper both contain 17 residual blocks, 141 
which consist of two convolution blocks. The convolution block is defined as a 2D 142 
convolution layer, an activation function layer, a batch normalization layer and a 143 
dropout layer. All convolutions are padded periodically in the longitudinal direction but 144 
zero in the latitudinal direction. The SE-ResNet model for this study is a further 145 
improvement by the model above. Both models have a similar structure and use the 146 
same convolution block, but in the residual block of the SE-ResNet model, a squeeze-147 
and-excitation block is added, which works as a self-attention mechanism. When there 148 
are multiple elements input into the model, the squeeze-and-excitation block can choose 149 
the importance of each channel through the squeeze and excitation operations, and the 150 
weight coefficient is put on each channel by the scale operation to complete the 151 
recalibration of the importance of the original channel (Hu et al., 2017). The residual 152 
block obtains the final output by adding the output of the squeeze-and-excitation block 153 
and the input of the residual block. In addition, since this method is a point-to-point 154 
forecast, there is a corresponding forecast model for each forecast lead time, so the 155 
prediction task of 1-30 day is completed by 30 models representing different forecast 156 
times. The parameters in training the SE-ResNet model are set as follows. The initial 157 
learning rate is set to 0.5×10-4, which will be reduced by a factor of 5 once the validation 158 
loss has not decreased for 2 epochs. The number of residual blocks is 17. Each residual 159 
block contains two convolution blocks with 128 channels. The convolution kernel size 160 
is 3. Weight decay is 0.01 used for all layers. The activation function is LeakyReLU. 161 
Dropout is set to 0.3. Model training data are provided by the WeatherBench challenge. 162 
A detailed description can be found in studies of Rasp et al. (2020), and the data set 163 
mainly contains ERA5 data from 1979 to 2018, and the horizontal resolution of the data 164 
set used in this paper is 5.625°×5.625°. 165 
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 166 

Figure 1. Schematic diagram of the model structure 169 
 170 

2.3 Forecast effect evaluation methods 171 
To evaluate the forecast results of the model, the area-weighted root mean squared 172 

error (RMSE) is defined as 173 
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where f is the prediction result of the model, and t is the ERA5 data of the corresponding 175 
time. The smaller the RMSE value is, the better the prediction result of the model is. 176 
The abnormal correlation coefficient (ACC) is defined as 177 
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where the symbol ' represents the difference to the climatology, L(j) is the weight factor 179 
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ACC can represent the similarity of two fields. The closer the absolute value of ACC is 182 
to 100, the more similar the two fields are. 183 
 184 
3. Model forecast results 185 
3.1 Prediction case analysis: original data vs. ISO component 186 

This paper mainly focuses on the 10-30 day forecast ability of ISO components. 187 
To show the importance of ISO components in actual atmospheric changes and the 188 
forecast ability of ISO components of the forecast process, Figure 2 compares the zonal 189 
deviation of ERA5 and predicted Z500 and its ISO components during 7-19 November 190 
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2017. According to the variations in the ERA5 original field and ERA5 ISO component 191 
field over time (Fig. 2a and 2b), the ERA5 ISO components reasonably reflect the main 192 
trough-ridge system (Rossby wave) and its characteristics of amplitude and movement 193 
variation over time of the original Z500 in the middle and high latitudes of the Northern 194 
Hemisphere, including troughs along the western coast of Europe, East Asia, the Gulf 195 
of Alaska, and northeastern Canada, as well as ridges in the midlatitude North Atlantic, 196 
Urals, and south of the Aleutian Islands. Although the amplitudes of the ISO 197 
components are slightly smaller for these weather fluctuations, the mean variance 198 
contribution is 26.67 %, indicating that the ISO components are of paramount 199 
importance to actual atmospheric change. In fact, the ISO components are good 200 
indicators of large-scale persistent circulation systems and their associated extreme 201 
weather and climate events (e.g., Qi et al. 2019). 202 

Predictions at forecast lead times of 10-22 day based on the original and ISO 203 
components can both well reflect the variation characteristic of the deep trough in the 204 
East Asian region as well as in northeast Canada. The variation characteristics of the 205 
shallow trough in the gulf of Alaska and the ridges on the west coast of North America 206 
and northwest Eurasia can also be reasonably reflected, but the prediction results are 207 
weaker in oscillation variation and smoother in streamlines than the midlatitude 208 
atmospheric fluctuations described by the ERA5 ISO components (Fig. 2c, 2d). The 209 
global mean RMSE of the prediction driven by ISO components for the next 10-22 day 210 
is 541.20 m2 s-2, which is notably better than that of the CFSv2 prediction for the same 211 
period (RMSE: 563.32 m2 s-2). Interestingly, the model prediction results of Z500 212 
driven by original (unfiltered) data have a similar spatial form to that predicted using 213 
ISO components, showing a distinct “low-frequency” (smoothened) feature. 214 
Furthermore, in this case, the Z500 values predicted by the ISO components are closer 215 
to the ERA5 ISO components, with a mean RMSE of 575.96 (m2 s-2). Similarly, the 216 
T850 values predicted by the ISO components are in better agreement with the ERA5 217 
ISO components (Fig. A1). The mean RMSE for the ISO components at 10-22 day is 218 
2.13 (K), which is significantly lower than the prediction driven by the original data 219 
(2.26 K). This may be because the degrees of freedom and complexity of the ISO 220 
components are lower than those of the original variables, which could lead to the 221 
learning ability of the model based on ISO components being better than that of the 222 
model driven by the original data. 223 
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Figure 2. Result and zonal deviation comparison of model predictions for Z500 225 
(unit: gpm) in the Northern Hemisphere (20°-90° N, 180° W-180° E). Forecast lead 226 

times from left to right are 10 days, 14 days, 18 days and 22 days, respectively. 227 
 228 
3.2 Overall evaluation of the model 229 

To reflect the long-term overall prediction result of the model, Figure 3 presents 230 
the RMSE of the model’s prediction results for the global average Z500 and T850 ISO 231 
components at forecast lead times of 10-30 day in 2017-2018 (a total of 2920 initial 232 
conditions, i.e., 2920 samples). For the ISO component forecast, the RMSE values of 233 
CFSv2, ResNet and SE-ResNet results of global Z500 all increase with the forecast lead 234 
times. The increase rate is larger through 20 days and flattens after that, with a smaller 235 
decrease rate with time. ResNet and SE-ResNet are better than climatological forecast 236 
(mean RMSE: 578 m2 s-2) and persistence forecast (the worst prediction, mean RMSE: 237 
859 m2 s-2) over the 10-30 day forecast lead times. It is noteworthy that the average 238 
RMSE of the CFSv2 model is larger than those of the ResNet model and the SE-ResNet 239 
model when the forecast lead times are more than 12 days, indicating that although the 240 
prediction of global atmospheric circulation and its ISO components over 10 days based 241 
on the dynamic seasonal climate prediction system still has a great advantage, the 242 
prediction ability of the subseasonal atmospheric circulation beyond 12 days is weaker 243 
than those of the data-driven ResNet model and the SE-ResNet model. Compared with 244 
the climatological forecast, the CFSv2 model has lower prediction skills after 16 days. 245 
Moreover, the average RMSE of the SE-ResNet model is 1.01 % lower than that of the 246 
ResNet model through lead times of 10-30 day. This is an improvement on the ResNet 247 
model because of the squeeze-and-excitation block, which optimizes the output based 248 
on the importance and weight of each factor when using multiple inputs. 249 

As seen from the RMSE boxplot of ISO components of Z500 every 5 days (Fig. 250 
3c), 75 % of the samples predicted by the deep learning model are below the 251 
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climatological forecast in 10-15 day, and more than 50 % of the samples predicted 252 
remain below the climatological forecast after that. The CFSv2 model predictions have 253 
50 % of the samples higher than the climatological forecast in 16-20 day and beyond. 254 
The persistence forecast is the worst, with the RMSE of all the predicted samples being 255 
higher than the climatological forecast, and the RMSE of more than 75 % of the samples 256 
is above 1000 m2 s-2. Not surprisingly, the SE-ResNet model has the “best” inaccurate 257 
forecast case (RMSE: 647.34 m2 s-2), followed by the ResNet model, CFSv2 model, 258 
and persistence forecast. For the “best” accurate forecast case, SE-ResNet and ResNet 259 
are close, outperforming the CFSv2 model and persistence forecast beyond 16 days. On 260 
the other hand, the “best” accurate forecast case of each model is obtained from the 10-261 
15 days CFSv2 model with an RMSE of 346.38 m2 s-2. 262 

For the global average ISO components of T850, the prediction result of each 263 
model is similar to the ISO components of Z500. As shown in Fig. 3b, the SE-ResNet 264 
model is still the model with the highest forecasting skills, with an average RMSE 0.75 % 265 
lower than the ResNet model through forecast lead times of 10-30 day. Both the SE-266 
ResNet model and ResNet model are superior to climatological forecasts, and their 267 
RMSE beyond 11 days of forecasting is significantly lower than that of the CFSv2 268 
model, which is inferior to climatological forecasts beyond 14 days. In the RMSE 269 
boxplot of ISO components of T850 every 5 days (Fig. 3d), the overall prediction 270 
performance of SE-ResNet and ResNet outperform CFSv2 model and persistence 271 
forecast. The SE-ResNet model has the “best” inaccurate prediction case (RMSE: 2.68 272 
K), followed by the ResNet model, CFSv2 model and persistence forecast. For the “best” 273 
accurate prediction case, the SE-ResNet, ResNet, and CFSv2 models are close, but the 274 
RMSE value of the CFSv2 model increases slightly beyond 21 days. 275 
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Figure 3. Mean RMSE of ISO components of model prediction varies with the 277 
forecast lead times for (a) Z500[m2 s-2], (b) T850[K] and the boxplot of RMSE every 278 

5 days for (c) Z500[m2 s-2], (d) T850[K] evaluated against ERA5 data. 279 
 280 

To quantitatively show the spatial similarity between the ISO components 281 
predicted by different models and the ERA5 ISO components, the sequence of the 282 
globally averaged ACC of the predicted ISO components for Z500 and T850 with 283 
forecast lead times is given in Fig. 4. The results are similar to the RMSE results 284 
analysis, and the ACC skills of the deep learning model are significantly superior to 285 
other models beyond 12 days. Among them, the spatial similarity between the predicted 286 
ISO components of the SE-ResNet model and the ERA5 ISO components is the highest, 287 
and the ACC of Z500 and T850 for 10-30 day is 72.90 % and 82.89 %, respectively. 288 
Unsurprisingly, its prediction result for 10-30 day ahead is higher than the 289 
climatological forecast. The ResNet model has the second highest ACC skills, with an 290 
averaged ACC of 72.19 % for Z500 and 82.59 % for T850 through 10-30 day. ACC 291 
corresponding to the Z500 and T850 ISO components predicted by CFSv2 is lower than 292 
the climatological forecast in approximately 17 and 15 days, respectively, and lower 293 
than the aforementioned two deep learning models beyond forecast lead times of 12 294 
days, whose ACC of Z500 and T850 in 10-30 day is 70.11 % and 80.83 %, respectively. 295 
The ACC skills of the persistence forecast are the worst, with an average ACC of 47.48 % 296 
and 65.28 % for Z500 and T850 during 10-30 day, respectively. 297 

Figure 4. Mean ACC of ISO components of model prediction varies with the 299 
forecast lead times for (a) Z500 and (b) T850 300 

 301 
From the perspective of the global average, the above section shows that the 302 

prediction ability of the SE-ResNet model is better than CFSv2 for the Z500 and T850 303 
ISO components during 14-30 day. To further show the difference in the prediction 304 
effects of the two at different latitudes, Figure 5 demonstrates the difference between 305 
the zonally averaged RMSE of the prediction results of the CFSv2 and SE-ResNet 306 
models under different forecast lead times. The large RMSE difference between the two 307 
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models mainly occurs in the extratropical region of the two hemispheres, while the 308 
difference is relatively small in the tropical region. In general, CFSv2 has a large 309 
advantage in the prediction of the Z500 and T850 ISO components when the forecast 310 
lead time is less than 10 days. However, when the forecast lead time is more than 10 311 
days, the prediction results of the SE-ResNet model are stably better than those of 312 
CFSv2, which is consistent with the analysis results of the global average (Fig. 3). 313 
Specifically, the RMSE predicted by the SE-ResNet model for Z500 (T850) is 28.71 314 
m2 s-2 (0.14 K) lower on average than CFSv2 in the 20-80° region when the forecast 315 
lead time is more than 10 days. 316 

Figure 5. The difference in the zonally averaged RMSE of the CFSv2 and SE-318 
ResNet models at different forecast lead times: (a) Z500[m2 s-2], (b) T850[K] 319 

 320 
Since planetary waves are the main drivers of atmospheric circulation at middle 321 

and high latitudes and regional weather/climate anomalies, the enhancement of 322 
planetary wave activity is closely related to long-term extreme climate events (e.g., 323 
Petoukhov et al., 2013; Screen and Simmonds, 2014), so the simulation difference 324 
between CFSv2 and SE-ResNet in the extratropical region may be due to the difference 325 
in the prediction skills of planetary waves. Figure 6a and 6b further show the RMSE 326 
and ACC of the CFSv2 and SE-ResNet models for planetary waves with wavenumbers 327 
of 3-8 in 30-70° N latitudes in the Northern Hemisphere compared with ERA5 data. It 328 
can be clearly seen that the SE-ResNet model has a good skill in the prediction of 329 
planetary waves with wavenumbers of 3-8 beyond 11 days. The average RMSE of the 330 
SE-ResNet model is 524.22 m2 s-2 during the forecast lead times of 11-25 day, which is 331 
significantly lower than the climatology (551.39 m2 s-2) and CFSv2 model (555.32 m2 332 
s-2). Compared with the CFSv2 model, the SE-ResNet model is 31.10 m2 s-2 lower on 333 
average at 11-25 day, which is equivalent to the average zonal deviation of the two 334 
models shown in Fig. 5a, indicating that the difference in the prediction effect for 335 
extratropical Z500 is mainly due to the difference in prediction performance of the 336 
above two models for planetary waves. At the same time, the ACC results also show 337 
that the performance of the SE-ResNet model is higher than that of the climatology 338 
(82.29 %) during 11-25 day, while the CFSv2 model has low prediction skills beyond 339 
16 days. 340 
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Figure 6. The prediction results of Z500 planetary waves (3-8 waves) at different 342 
forecast lead times: (a) RMSE[m2 s-2], (b) ACC. 343 

 344 
3.3 Prediction and evaluation of the 500 hPa circulation situation in the Eurasian 345 

region 346 
Focusing on the reliability of the 10-30 day forecast of regional upper-level 347 

circulation by different methods, the following section uses the Eurasian region as an 348 
example to give an individual case and their overall prediction performance. Figure 7 349 
first shows the Z500 ISO components of a cold wave weather process in Eurasia from 350 
3-9 December 2018, and the difference in ERA5 ground 2 m temperature between the 351 
schematic time and 12 UTC on 2 December 2018. This event was a continuous large-352 
scale cold wave affecting East Asia, with the cooling area mainly concentrated in 353 
eastern China, the Korean Peninsula and Japan, and the local temperature dropped up 354 
to 16.09 K (24.91 K) within 24 (72) hours. During this process, the characteristics of 355 
planetary wave activity were obvious and were mainly caused by the continuous 356 
maintenance and strengthening of the blocking high near the Ural Mountains, leading 357 
to the deepening and development of the downstream East Asian trough. Meanwhile, 358 
along with the continuous eastward movement of the low trough in Central and Western 359 
Europe, a large amount of cold air from the northwest entered East Asia, resulting in 360 
widespread and persistent cooling. According to the predicted results, the three models 361 
reflect the phase and propagation characteristics of the planetary wave well and clearly 362 
represent the maintenance and development of the blocking high near the Ural 363 
Mountains and the deepening of the East Asian trough. However, because the model 364 
only focuses on the ISO components, the amplitude of the wave oscillation is relatively 365 
smaller than that of the ERA5 ground truth. From the perspective of RMSE and ACC, 366 
the prediction results of the SE-ResNet model over 10 days are superior to those of the 367 
CFSv2 model. In particular, after December 7, the contour lines of the CFSv2 model's 368 
prediction results near the Ural Mountains gradually become flat, and the position of 369 
the high-pressure ridge appears near 90° E, which is to the east of the real position. 370 
Compared with the ResNet model, the SE-ResNet model is only slightly worse at 12 371 
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UTC on December 7 and is better than the ResNet model at other times, with lower 372 
RMSE and larger ACC values. 373 

Figure 7. Comparison of different models’ 500 hPa situation (unit: gpm) of a 375 
cold wave weather process in Eurasia (3-9 December 2018), and the difference (unit: 376 
K) of ERA5 ground 2 m temperature between the schematic time and 12 UTC on 2 377 
December 2018. Forecast lead time is 10 days, 12 days, 14 days, and 16 days from 378 

left to right, respectively. 379 
 380 
Turning now to the overall prediction effect of different models in the Eurasian 381 

region, the variation sequences of the averaged RMSE and ACC of the Z500 ISO 382 
components with the forecast lead times are shown in Fig. 8. It can be inferred that the 383 
SE-ResNet model performs best in the overall prediction of upper-level circulation over 384 
the Eurasian region. The averaged RMSE and ACC of 10-30 day are 578.72 m2 s-2 and 385 
83.85 %, respectively. The ResNet model is slightly worse than the SE-ResNet model, 386 
with a mean RMSE and ACC of 583.68 m2 s-2 and 83.56 % for 10-30 day, respectively. 387 
The forecast skill of the CFSv2 model is lower than that of the deep learning model 388 
beyond 12 days, and the averaged RMSE and ACC at 10-30 day are 603.85 m2 s-2 and 389 
82.31 %, respectively. Similar to the global prediction results, RMSE and ACC 390 
predicted by CFSv2 show a large variation rate over 20 days, while it tends to be flat 391 
beyond that, with a smaller decrease rate over time. 392 

https://doi.org/10.5194/gmd-2022-146
Preprint. Discussion started: 11 July 2022
c© Author(s) 2022. CC BY 4.0 License.



13 
 

Figure 8. The prediction results of Z500 in the Eurasian region at different 394 
forecast lead times: (a) RMSE [m2 s-2], (b) ACC. 395 

 396 
4. Discussion and Conclusions 397 

In this paper, we used ISO components of atmospheric signals to train the SE-398 
ResNet machine learning model to forecast the global Z500 and T850 situation in the 399 
next 1-30 day and compared the prediction results with the ResNet and CFSv2 models. 400 
Compared with the previous deep learning model, the forecast model used in this study 401 
has made the following important improvements. (1) As the prediction object gradually 402 
tends to become the low-frequency component with the increase in the forecast time 403 
within the subseasonal scale, the ISO components are directly used to train the forecast 404 
model. (2) Adding a self-attention mechanism optimizes the importance of different 405 
factor channels in the model. 406 

We studied two indicators, RMSE and ACC, to evaluate the predictive 407 
performance of the model, and the results show that the SE-ResNet model is 408 
significantly better than the CFSv2 model in forecast lead times of 10-30 day. It is worth 409 
noting that the deep learning model is not endowed with meteorological constraints 410 
internally, but we still try to analyze the interpretability of its prediction results. The 411 
difference between the CFSv2 model and SE-ResNet model mainly occurs in the 412 
extratropical region and is small in the tropical region. Moreover, the SE-ResNet model 413 
has good performance in the prediction of planetary waves with wavenumbers of 3-8 414 
beyond 11 days, which also leads to the difference in the prediction performance of the 415 
model in the extratropical regions. As an issue of focus, the variation characteristics of 416 
planetary waves are closely related to the occurrence and development process of 417 
weather. Not surprisingly, the data-driven model we developed in this study has a 418 
reliable reflection on the phase and propagation characteristics of planetary waves at 419 
forecast lead times of 11-30 day. 420 

It should be noted that when latitude-weighted RMSE is used as the loss function 421 
training model in this paper, the predicted circulation oscillation features tend to be 422 
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smoothed over the forecast duration. For optimization of the model loss function, for 423 
example, the weight of the loss function increases with the forecast time, or the use of 424 
a multitime step loss function (Weyn et al., 2020) may help to improve the stability and 425 
accuracy of long-term prediction. On the other hand, meteorological elements are 426 
closely correlated with each other. Although deep learning provides a new method for 427 
the prediction of weather and climate evolution, the prediction objects in this study are 428 
limited to Z500 and T850 and are not necessarily constrained by the physical 429 
relationship between multiple elements (Kashinath et al., 2021), so using a machine 430 
learning framework based on physical models (e.g., Pawar et al., 2021; Karra et al., 431 
2021) or combining dynamic models with deep learning models (e.g., He et al., 2021) 432 
may help improve the reliability and authenticity of subseasonal forecast models. 433 
Furthermore, recent studies have shown that probabilistic weather prediction makes it 434 
possible to calculate the uncertainty and skill index of neural network prediction (Clare 435 
et al., 2021), which also provides a reference basis for probabilistic prediction within 436 
the subseasonal timescale. 437 
 438 
Appendix A 439 

Figure A1. Result and zonal deviation comparison of model predictions for T850 441 
(unit: K) in the Northern Hemisphere (20°-90° N, 180° W-180° E). Forecast lead 442 
times from left to right are 10 days, 14 days, 18 days and 22 days, respectively. 443 

 444 
Code availability. The scripts for training the ResNet and SE-ResNet model, and 445 
constructing figures are available in the following Zenodo repository: 446 
https://zenodo.org/record/6592371 (Lu et al., 2022). 447 
 448 
Data availability. The data for training the models and the prediction of the models are 449 
archived at https://zenodo.org/record/6592371 (Lu et al., 2022). 450 
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