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Abstract  19 

Accurately predicting urban PM2.5 concentrations and composition has proved challenging 20 

in the past, partially due to the resolution limitations of computationally intensive chemical 21 

transport models (CTMs). Increasing the resolution of PM2.5 predictions is desired to 22 

support emissions control policy development and address issues related to environmental 23 

justice. A nested grid approach using the CTM PMCAMx-v2.0 was used to predict PM2.5 24 

at increasing resolutions of 36 x 36, 12 x 12, 4 x 4, and 1 x 1 km for a domain largely 25 

consisting of Allegheny County and the city of Pittsburgh in southwestern Pennsylvania, 26 

US during February and July 2017. Performance of the model in reproducing PM2.5 27 

concentrations and composition was evaluated at the finest scale using measurements from 28 

regulatory sites as well as a network of low-cost monitors. Total PM2.5 mass is reproduced 29 

well by the model during the winter period with low fractional error (0.3) and fractional 30 

bias (+0.05) when compared to regulatory measurements. Comparison with speciated 31 

measurements during this period identified small underpredictions of PM2.5 sulfate, 32 

elemental carbon (EC), and organic aerosol (OA) offset by a larger overprediction of PM2.5 33 

nitrate (bias = +1.4 µg m-3, fractional bias = +0.81). In the summer period, total PM2.5 mass 34 

is underpredicted with fractional bias of -0.39. Here, PM2.5 nitrate is overpredicted again 35 

with a large fractional bias (+0.7) but significantly lower magnitude (+0.4 µg m-3). 36 
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Underpredictions in PM2.5 sulfate and EC contribute to the negative prediction bias of total 37 

PM2.5 (-0.4 µg m-3 and -0.2 µg m-3, respectively), however the largest underprediction is 38 

seen for summer OA (bias = -1.9 µg m-3, fractional bias = -0.41). In the winter period, the 39 

model performs well reproducing the variability between urban measurements and rural 40 

measurements of local pollutants such as EC and OA. This effect is also captured well in 41 

the summer for EC, although the OA performance here is less consistent because much 42 

more of this OA is secondary and transported from outside of the inner modeling domain. 43 

Comparison with total PM2.5 concentration measurements from low-cost sensors yielded 44 

similar results with slightly higher overpredictions seen in the winter (fractional bias = 45 

+0.24) and lower underpredictions seen in the summer (fractional bias = -0.27). 46 

Inconsistencies in PM2.5 nitrate predictions in both periods are believed to be due to errors 47 

in partitioning between PM2.5 and PM10 modes and motivate improvements to the treatment 48 

of dust particles within the model. The underprediction of summer OA would likely be 49 

improved by updates to biogenic SOA chemistry within the model, which would result in 50 

an increase of long-range transport SOA seen in the inner modeling domain. These 51 

improvements are obvious topics for future work towards model improvement. 52 

Comparison with regulatory monitors showed that increasing resolution from 36 km to 1 53 

km improved both fractional error and fractional bias by 0.04 in February 2017.  In July 54 

2017, fractional error decreased by 0.05 and fractional bias improved by 0.07 with 55 

increasing resolution. Improvements at all types of measurement locations indicated an 56 

improved ability of the model to reproduce urban-rural PM2.5 gradients at higher 57 

resolutions. 58 

 59 

1 Introduction  60 

 Fine particulate matter with aerodynamic diameter less than 2.5 µm (PM2.5) has 61 

been associated with public health concerns due to short and long-term exposure. Some of 62 

the health effects of PM2.5 include increased risk of heart disease, increased likelihood of 63 

heart attacks and strokes, impaired lung development, and increased risk of lung disease 64 

(Dockery and Pope, 1994). Chemical transport models are frequently used for supporting 65 

the development of air quality policies designed to protect public health. To evaluate these 66 
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policies, CTMs must simulate PM2.5 concentrations and their response to changes in 67 

emissions accurately. 68 

 Grid resolution is an important factor for CTM studies focusing on major urban 69 

areas since on-road traffic, commercial cooking, and biomass burning can have sharp 70 

gradients at the urban scale (Lanz et al., 2007; Allan et al., 2010). High spatial resolution 71 

measurements of PM1 in the city of Pittsburgh in high source-impact locations are on 72 

average 40% higher than at urban background locations (Gu et al., 2018). Heightened 73 

organic aerosol concentrations have been observed in commercial districts containing 74 

multiple restaurants (Robinson et al., 2018). The demographic characteristics of the 75 

population can also have large variations at the neighborhood scale. High resolution 76 

predictions of pollutant concentrations allow for exposure assessments that compare 77 

subpopulations within the same metropolitan area to answer environmental justice related 78 

questions (Anand, 2002). The benefits of high-resolution modeling must be balanced with 79 

the increased complexity in the development of accurate, high-resolution emission 80 

inventories and increased computational cost and storage requirements. 81 

 Previous studies have found small to modest improvements on the predictive ability 82 

of regional CTMs for ozone in the summers of 1995, 1996, and 1997 moving from 36 km 83 

to 12 km resolution (Arunachalam et al., 2006) as well as in July 1988 using a dynamic 84 

grid system with sizes varying from 18.5 km to 4.625 km (Kumar and Russell, 1996). 85 

Stroud et al. (2011) found that the accurate simulation of urban and large industrial plumes 86 

required a grid resolution of 2.5 km in order to properly capture contributions from local 87 

sources of primary organic aerosol (POA) and volatile organic compounds (VOCs). 88 

Zakoura and Pandis (2019) investigated the effect of increasing grid resolution on PM2.5 89 

nitrate predictions and found that increasing the resolution to 4 km reduced bias by 65%.  90 

Fountoukis et al. (2013) reported a reduction of the bias for black carbon (BC) 91 

concentrations in the northeastern US when the grid resolution was reduced from 36x36 92 

km to 4x4 km. Pan et al., (2017) allocated county-based emissions at 4 km and 1 km grid 93 

resolution using the default approach from the National Emissions Inventory and found 94 

small changes in model performance for NOx and ozone. The 1 km simulation was able to 95 

resolve the detailed spatial variability of emissions in heavily polluted areas including 96 

highways, airports and industrially focused sub-regions. 97 
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 One of the weaknesses of several of the above studies has been that the gridded 98 

emissions used at the higher resolutions were the results of interpolation. It is not clear if 99 

the remaining discrepancies between model predictions and measurements were due to 100 

errors in the spatial distribution of the high-resolution emissions, errors in the overall 101 

magnitude of the emissions over an urban area or other modeling errors in the simulation 102 

of various processes (chemistry, condensation/evaporation, etc.). It is also not clear if errors 103 

in previous simulations of urban PM2.5 are due to inaccuracies in the transport of regional 104 

PM2.5 to urban areas. In this work, we explore the impacts of increasing the resolution of 105 

emissions inputs and CTM output on PM2.5 predictions in southwestern Pennsylvania 106 

during the months of February and July 2017, including the ability of the model to 107 

reproduce observed differences between urban and rural PM2.5 at the various grid 108 

resolutions. 109 

 Garcia Rivera et al. (2022) investigated the effects of increasing grid resolution of 110 

model inputs and CTM output on source resolved predictions of PM2.5 concentration and 111 

population exposure at 36 km, 12 km, 4 km, and 1 km. Moving to 12 x 12 km resolution 112 

resolved much of the urban-rural gradient. Increasing to 4 x 4 km resolved stationary 113 

sources such as power plants and the 1 x 1 km resolution results revealed intra-urban 114 

variations and individual roadways. Regional pollutants with low spatial variability such 115 

as PM2.5 nitrate showed modest changes when increasing the resolution to 4 x 4 km and 116 

higher. Local pollutants such as black carbon and organic aerosol showed gradients that 117 

were only resolved at the finest resolution. The ability of these simulations to reproduce 118 

PM2.5 concentrations at different resolutions is evaluated here against multiple 119 

measurement sources and types. 120 

 We apply the Particulate Matter Comprehensive Air quality Model with Extensions 121 

version 2.0 (PMCAMx-v2.0) to study the impact of increasing model resolution on the 122 

ability to reproduce observed PM2.5 concentrations. We evaluate the PMCAMx predictions 123 

at various grid resolutions against regulatory measurements of PM2.5 concentration and 124 

composition, as well as measurements from a network of low-cost sensors (Zimmerman et 125 

al., 2018) during February and July 2017 which provide a unique opportunity for 126 

comparison not available to previous studies. Aerosol mass spectrometer (AMS) 127 
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measurements taken in Pittsburgh during February 2017 were also used to evaluate model 128 

predictions. 129 

 130 

2 Model Description   131 

 PMCAMx-v2.0, the Particulate Matter Comprehensive Air Quality Model with 132 

Extensions (Karydis et al., 2010; Murphy and Pandis, 2010; Tsimpidi et al., 2010) is a 133 

state-of-the-art atmospheric chemical transport model (CTM) that uses the framework of 134 

the CAMx model (Environ, 2006) with advanced aerosol chemistry modules. To track the 135 

dynamic evolution of aerosol mass, 10 moving size sections are used (Gaydos et al., 2003). 136 

The chemical mechanism SAPRC99 (Carter, 1999) was used for gas-phase chemistry, 137 

including 237 individual chemical reactions involving 91 chemical species. Aqueous-phase 138 

chemistry is calculated with the Variable Size Resolution Model (Fahey and Pandis, 2001). 139 

PMCAMx-v2.0 considers the formation of aerosol mass comprised of sulfate, nitrate, 140 

ammonium, sodium, chloride, water, elemental carbon, as well as lumped organic species 141 

(both primary and secondary). Inorganic aerosol growth is modelled using an approach that 142 

assumes equilibrium between the bulk aerosol and gas phases. Partitioning of semivolatile 143 

inorganic aerosol is calculated using ISORROPIA-I (Nenes et al., 1998). The Volatility 144 

Basis Set (VBS) was used to calculate partitioning of organic aerosol components across a 145 

distribution of species volatility (Donahue et al., 2006). Volatility bins (10) with effective 146 

saturation concentration from 10-3 to 106 µg m-3 (at 298 K) are used for primary organic 147 

aerosol (POA). Secondary organic aerosol is split into anthropogenic (aSOA) and biogenic 148 

(bSOA) components, formed from a variety of SOA-forming volatile organic compounds 149 

(VOCs) from human activity and natural sources, respectively using NOx-dependent SOA 150 

formation yields (Lane et al., 2008). Both aSOA and bSOA are split into 4 volatility bins 151 

with effective saturation concentration from 100 to 103 µg m-3 (at 298 K). 152 

 153 

3 Model Application  154 

 Air quality simulations of a 5184 km2 area comprised of southwestern Pennsylvania 155 

and smaller parts of eastern Ohio and norther West Virginia were performed using 156 

PMCAMx. Two distinct simulation periods of February and July 2017 were investigated. 157 

The approach of Garcia et al. (2022) was used to produce speciated PM2.5 concentration 158 
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predictions at spatial resolution of 36 km, 12 km, 4 km, and 1 km. Surface-level boundary 159 

conditions for the 36 x 36 km simulations are provided in Table S1. Boundary conditions 160 

for the higher resolution grids are taken from the results of parent-grid simulations. The 161 

first two days of simulation output have been removed from the analysis to allow for model 162 

spin-up. 163 

 Meteorological fields were calculated using the Weather Research and Forecasting 164 

model (WRF-v3.6.1) with horizontal resolution of 12 x 12 km, providing wind 165 

components, eddy diffusivity, temperature, pressure, humidity, clouds, and precipitation 166 

inputs for use in PMCAMx. Meteorology initial and boundary conditions were retrieved 167 

from the ERA-Interim global climate re-analysis database. The United States Geological 168 

Survey database was used to obtain input data for terrain, land-use, and soil type. When 169 

necessary, WRF output was interpolated to higher resolutions. An evaluation of 170 

interpolated meteorological inputs using data from METAR stations near the city of 171 

Pittsburgh in southwestern Pennsylvania determined that errors in the magnitude and 172 

phasing of diurnal cycles of temperature, relative humidity, and wind speed are 173 

appropriately small for use in air quality studies. These results are provided in the 174 

supplementary material (Fig. S1, S2).  175 

 Anthropogenic emissions are derived from the 2017 projections of the 2011 176 

National Emissions Inventory (Eyth and Vukovich, 2016) modelling platform. The Sparse 177 

Matrix Operator Kernel Emissions modeling system (SMOKE) was used, along with 178 

meteorological inputs to calculate emissions at a horizontal resolution of 12 x 12 km. 179 

Default spatial surrogates were used to allocate these emissions to higher resolutions. 180 

Custom surrogates were developed for commercial cooking and on-road traffic emissions 181 

sectors and used for the primary analysis in this work.  182 

 For commercial cooking, the normalized restaurant count was used to distribute the 183 

emissions from the sector in space within the 1 x 1 km and 4 x 4 km domains. This surrogate 184 

distributed commercial cooking emissions based on the density of restaurants identified by 185 

the Google Places Application Programming Interface. To allocate on-road traffic 186 

emissions, the output from the traffic model of Ma et al. (2020) was used. This model 187 

simulates hourly traffic using data from the Pennsylvania Department of Transportation. 188 

Emissions from the on-road traffic sector were then allocated based on these values.  189 
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 190 

3.1 Available measurements for model evaluation  191 

 Model predictions of sulfate, nitrate, elemental carbon and organic aerosol were 192 

compared with measurements from 4 sites from the EPA Chemical Speciation Network 193 

(EPA-CSN) (U.S. EPA, 2002). The locations of these 4 sites are shown in Figure 1a. These 194 

sites include: Lawrenceville, an urban background site 4 km northeast of downtown 195 

Pittsburgh; Hillman State Park located in a state park in southwest Pennsylvania in a rural 196 

and remote location approximately 40 km upwind of Pittsburgh; Steubenville in the Ohio 197 

River Valley close to industrial installations and coal-fired power plants, and the Liberty-198 

Clairton monitor, which is located close to the Clairton Coke Works in the Monongahela 199 

River Valley 14 km southeast of downtown Pittsburgh. Speciated PM2.5 measurements 200 

from EPA-CSN sites are available every three days during the simulation periods. Daily 201 

non-speciated measurements of total PM2.5 mass concentration are available from 17 sites 202 

within the inner simulation domain and are used to further evaluate total PM2.5 mass 203 

concentration predictions. The locations of these sites are also shown in Figure 1a.  204 

 For February 2017, high-resolution AMS measurements from the Carnegie Mellon 205 

University supersite (Gu et al., 2018) are used to evaluate the predicted chemical 206 

composition of PM2.5 model predictions. Positive matrix factorization results are also used 207 

to investigate the breakdown of organic aerosol components. AMS measurements were 208 

taken continuously from February 1 to February 14, 2017. Due to uncertainties with the 209 

AMS collection efficiency during this campaign, we use here only the fractional particle 210 

composition data.  211 

 PMCAMx predictions of PM2.5 were also compared with measurements taken with 212 

a network of Real-time Affordable Multi-Pollutant (RAMP) monitors (Zimmerman et al., 213 

2018) distributed in the city of Pittsburgh. During the winter period measurements at 7 sites 214 

were available, all located within the boundaries of the city of Pittsburgh, while 22 sites 215 

were in operation during the summer period with a few sites also outside the city (Fig. 1b). 216 

Uncertainty in these low-cost measurements of PM2.5 mass concentration is between 3-4 217 

µg m-3 for hourly averaging times (Malings et al., 2019).   218 

 The model performance is assessed in terms of the mean bias (BIAS), the mean 219 

error (ERROR), the fractional bias (FBIAS) and the fractional error (ERROR): 220 
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1
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 224 

where N is the number of valid measurements, Pi is the predicted concentration and Oi is 226 

the corresponding observed concentration. The fractional error metric is bounded by 0 227 

(perfect prediction performance) and 2.0 (extremely poor prediction performance). 228 

Fractional bias is bounded by -2.0 (extreme underprediction) and +2.0 (extreme 229 

overprediction). 230 

 231 

4 Evaluation of high-resolution model performance  232 

4.1 Winter 233 

 Table 1 summarizes the performance metrics of daily average PMCAMx-v2.0 234 

PM2.5 predictions in the 1x1 km resolution, when compared with daily measurements from 235 

EPA regulatory PM2.5 monitors. The speciated performance is illustrated in Figure 2. 236 

Predictions of total PM2.5 mass perform well against regulatory measurements in the 237 

February simulation period, with fractional error of 0.3 and fractional bias of +0.07.  238 

 Average measured PM2.5 sulfate for this time period was 1.9 µg m-3. Lower sulfate 239 

levels were observed at the Lawrenceville site in Pittsburgh (1.2 µg m-3) while significantly 240 

higher levels were observed at the Steubenville site (3.1 µg m-3). Predicted domain-average 241 

PM2.5 sulfate at 1 x 1 km resolution was 1.3 µg m-3. Overall fractional error for sulfate 242 

predictions was 0.41 and no overall bias was observed (fractional bias of -0.02). PM2.5 243 

sulfate was slightly overpredicted at Hillman State Park (+0.18 fractional bias) and 244 

Lawrenceville (+0.25 fractional bias) and underpredicted at the industrial sites, 245 

Steubenville (-0.24 fractional bias) and Liberty/Clairton (-0.43 fractional bias) where 246 

observed PM2.5 sulfate concentrations were higher. 247 
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 Overpredictions were seen for PM2.5 nitrate, with a fractional bias of +0.81. The 248 

average measured concentration at EPA-CSN sites within the simulation domain was 1.5 249 

µg m-3, while the domain-average predicted concentration was 1.8 µg m-3. Observed 250 

average PM2.5 nitrate concentrations at Hillman State Park and Lawrenceville were slightly 251 

lower at 1.1 µg m-3 and 1.2 µg m-3, respectively. Nitrate at the Steubenville location was 252 

observed to be higher on average at 2.2 µg m-3. This overprediction is seen at all sites but 253 

is particularly prevalent at Hillman State Park, Lawrenceville, and Liberty/Clairton, where 254 

errors are of the order of a factor of two. Previous PMCAMx modeling studies have found 255 

similar over-predictions. Part of this overprediction was due to the use of coarse-grid 256 

resolution (Zakoura and Pandis, 2018), but this is unlikely to be the cause here, because 257 

81% of the predicted domain-average nitrate is transported from outside of the inner 258 

modeling domain. These inconsistencies in PM2.5 nitrate predictions are likely due to errors 259 

in the partitioning of nitrate between the fine (PM2.5) and coarse (PM10) modes, resulting 260 

in an overprediction of PM2.5 nitrate. Resolving this modeling error likely requires 261 

improvements to the treatment of dust within the model, and the use of a dynamic approach 262 

for inorganic aerosol calculations rather than the bulk equilibrium approach. 263 

 The behavior of PM2.5 ammonium measurements is similar to that of nitrate as most 264 

of it is in the form of ammonium nitrate. The average measured concentration at the four 265 

EPA-CSN stations was 0.9 µg m-3. At Hillman State Park and Lawrenceville, the measured 266 

average was lower at 0.5 µg m-3 but higher at the Liberty/Clairton location at 2.1 µg m-3. 267 

PM2.5 ammonium was overpredicted similarly to PM2.5 nitrate with +0.83 fractional bias.   268 

The average measured concentration of PM2.5 elemental carbon at EPA-CSN sites during 269 

February 2017 was 1.1 µg m-3. Elemental carbon concentrations are more localized than 270 

the inorganic PM2.5 components. At Hillman State Park the average measured 271 

concentration was only 0.5 µg m-3 while at Liberty/Clairton the averaged measured 272 

concentration was 2.9 µg m-3. For elemental carbon, the predicted domain-average was 0.4 273 

µg m-3. Average elemental carbon concentration in the 4 x 4 km simulation grid outside of 274 

the inner modeling domain was 0.3 µg m-3. Black carbon predictions at all sites had a 275 

fractional error of 0.71 with fractional bias of -0.08. Elemental carbon was overpredicted 276 

at the urban site with fractional bias of 0.73 and underpredicted at the other sites. 277 
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 Average measured OA during this period was 4.4 µg m-3, but with significant 278 

spatial variability. At Hillman State Park and Lawrenceville measured OA was 3.1 µg m-3 279 

and 3.4 µg m-3, respectively. At Liberty/Clairton and Steubenville the average measured 280 

OA was 7 µg m-3 and 6.3 µg m-3, respectively. Domain-average predicted OA was 2.2 µg 281 

m-3. Outside of the inner 1 x 1 km domain, average predicted OA was 1.6 µg m-3, 282 

suggesting that the majority of predicted OA is transported from outside of the 1 x 1 km 283 

grid. Overall OA prediction performance in the winter is acceptable at 0.53 fractional error 284 

and low fractional bias (-0.01). At individual sites, performance varies. OA is predicted 285 

with low fractional bias (-0.10) at the rural Hillman State Park site. OA is overpredicted by 286 

with +0.31 fractional bias at the urban site in Lawrenceville and underpredicted at both 287 

industrial sites. An added degree of uncertainty exists with the industrial sites within the 288 

inner domain. The emissions from these sources may be underestimated in the inventory 289 

and these locations are also difficult to accurately model due to their geographic location 290 

in river valleys.  291 

 Average concentrations of PM2.5 sulfate, nitrate, and ammonium in the 4 x 4 km 292 

resolution domain were around 83% of the average predicted concentrations in the inner 1 293 

x 1 km simulation grid. For elemental carbon and OA, the outer concentration was 64% 294 

and 73% of the inner concentration respectively, indicating that these species had 295 

significant local sources. For these more local pollutants, the model appears to perform 296 

well in terms of capturing urban-rural gradients, but with a tendency towards 297 

underprediction at the rural site in Hillman State Park and overprediction at the urban site 298 

in Lawrenceville. The model also underpredicts EC and OA at the industrial locations, 299 

especially elemental carbon (-0.67 and -1.02 fractional bias at Steubenville and 300 

Liberty/Clairton, respectively). This again suggests errors in the emissions inventory or 301 

problems in simulating atmospheric dispersion near the sources. 302 

 Comparisons with the PM1 composition as determined by the AMS from February 303 

3 through February 14, 2017, show excellent agreement for all species (Fig. 3a). Gu et al. 304 

(2018) used PMF analysis and allocated total measured OA into five factors. Three of them 305 

corresponded to primary organic aerosol: hydrocarbon-like OA (HOA), cooking OA 306 

(COA) and biomass burning OA (BBOA) and two secondary OA factors: more-oxidized 307 

organic aerosol (MO-OOA) and less-oxidized organic aerosol (LO-OOA). To compare 308 
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PMCAMx predictions with the primary PMF factors, two additional simulations were 309 

performed in which emissions from biomass burning and commercial cooking were set to 310 

zero. The predicted concentrations were then subtracted from the base case to estimate the 311 

contribution from each respective source. The remaining primary OA was assigned to 312 

HOA. The LO-OOA and MO-OOA factors were added together and compared with the 313 

PMCAMx SOA predictions. 314 

 The predicted cooking OA (COA) at the CMU site is 25% of the total OA and is in 315 

agreement with the PMF/AMS estimate of 22% (Fig. 3b). This is encouraging given the 316 

small bias of the model for total OA levels. The predicted HOA and BBOA are higher than 317 

measured by a factor of 2 or more. At the same time, the measurements indicate a 318 

surprisingly high contribution of SOA (53% of the total OA) during a period with little 319 

photochemical activity and low levels of OH radicals. SOA is predicted to be just 20% of 320 

the total during this time period. These discrepancies may indicate transformation of the 321 

HOA and BBOA to OOA during this wintertime period, that are not included in the model. 322 

Kodros et al. (2021) recently suggested that BBOA can react with the NO3 during the 323 

winter and can be transformed to OOA.  324 

 325 

4.2 Summer  326 

 Total PM2.5 mass concentrations are underpredicted in the summer period. The 327 

average measured PM2.5 value in the regulatory network in the area was 11.4 µg m-3, while 328 

the average predicted value at the regulatory sites was 4 µg m-3 lower.  329 

 Speciated PM2.5 performance is illustrated in Figure 4. Average measured PM2.5 330 

sulfate for the summer period was 2 µg m-3. Slightly lower levels were observed at the 331 

Lawrenceville site in Pittsburgh (1.9 µg m-3). Liberty/Clairton had higher measured sulfate 332 

concentrations (2.6 µg m-3), but this difference between locations is lower than what was 333 

observed in the winter period. Predicted domain-average PM2.5 sulfate at 1 x 1 km 334 

resolution was 1.3 µg m-3. Overall fractional error (0.62) and fractional bias (-0.21) for 335 

sulfate predictions was higher than in the winter simulation period. PM2.5 sulfate was 336 

underpredicted at all sites but to the largest extent at Hillman State Park (-0.36 fractional 337 

error). 338 
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 Overpredictions of PM2.5 nitrate were also seen the summer period, and at all types 339 

of sites. Average measured PM2.5 nitrate was 0.3 µg m-3, much lower than in the winter. 340 

The domain-average predicted PM2.5 nitrate was 0.7 µg m-3. Again, predicted PM2.5 nitrate 341 

in the inner domain is dominated by material transported from outside the boundaries 342 

(75%), so the issue is not resolved by using a high-resolution grid. Improvements to PM2.5 343 

nitrate formation are needed in the form of dust models with increased complexity to 344 

resolve the issues with fine-coarse mode partitioning of particulate nitrate. These issues 345 

have been highlighted by decreased concentrations of PM2.5 pollution in recent years. 346 

 Observed PM2.5 ammonium concentrations at EPA-CSN sites were also much 347 

lower in the summer with an average value of 0.5 µg m-3. Slightly higher average 348 

concentrations were observed at Liberty/Clairton (0.7 µg m-3) and slightly lower 349 

concentrations were observed at Steubenville (0.4 µg m-3). The domain-average predicted 350 

PM2.5 ammonium concentration was 0.6 µg m-3. The average concentration directly outside 351 

of the inner domain was 0.5 µg m-3. Overall performance was better for ammonium in the 352 

summer than in the winter with fractional error of 0.62 and fractional bias of +0.44. The 353 

strongest overprediction is seen at the Steubenville site (+0.57 fractional bias). 354 

 The average measured elemental carbon (EC) concentration in July was 0.7 µg m-355 

3. Measured EC carbon was significantly higher at Liberty/Clairton (1 µg m-3) and lower 356 

at rural Hillman State Park (0.4 µg m-3). Domain-average predicted EC was 0.3 µg m-3. 357 

Outside of the inner domain, the average predicted concentration was 0.2 µg m-3. Elemental 358 

carbon predictions in July had a lower fractional error compared to the winter at 0.60 but 359 

showed a stronger negative fractional bias at -0.33. The model severely underpredicts at 360 

Hillman State Park (-0.86 fractional bias), where measured concentrations were lowest, but 361 

also at the industrial sites of Steubenville (-0.55 fractional bias) and Liberty/Clairton (-0.65 362 

fractional bias). EC was slightly overpredicted at the urban Lawrenceville location (+0.14 363 

fractional bias). While the urban-rural gradient in EC is slightly overpredicted, the model 364 

is still able to capture well the variability between rural (Hillman State Park) and urban 365 

(Lawrenceville). The model struggles to reproduce high measurements of EC at the 366 

Steubenville site, reiterating the issues with industrial EC seen in the winter.  367 

 Average measured OA concentration was 4.5 µg m-3 in July. Higher concentrations 368 

were observed at the industrial sites, Liberty/Clairton and Steubenville (5.0 µg m-3) 369 

https://doi.org/10.5194/gmd-2022-145
Preprint. Discussion started: 19 July 2022
c© Author(s) 2022. CC BY 4.0 License.



 13 

respectively. The lowest observed concentration was in Hillman State Park (3.6 µg m-3). 370 

The average predicted concentration at CSN sites was 2.7 µg m-3. On average, OA is 371 

underpredicted with fractional bias of -0.47. This underprediction occurs at all sites but is 372 

less prevalent at the urban Lawrenceville location (-0.19 fractional bias) and is most 373 

dramatic in Steubenville (-0.65 fractional bias). Because such a large fraction of the OA in 374 

the summer is predicted to be secondary (50% of local OA on average) and transported 375 

from outside of the inner modeling domain (84% of total OA), treatment of SOA formation 376 

is likely a key factor contributing to the underprediction of PM2.5 in the summer. While 377 

these improvements are necessary for overall model improvement, they do not have 378 

significant impact on the urban-rural gradients which are the focus of this work and are 379 

driven by primary species. The performance of EC predictions in various locations is 380 

encouraging with regards to primary PM2.5 performance.  381 

 382 

5 Effect of grid resolution on PM2.5 performance  383 

 To determine the effect of grid resolution on the ability of the model to resolve 384 

geographical variations in PM2.5 concentrations, daily average measurements from the 17 385 

EPA regulatory sites were compared with PMCAMx predictions from simulations at 36 386 

km, 12 km, 4 km and 1 km. The PMCAMx performance metrics are summarized in Table 387 

2. 388 

 389 

5.1 Winter 390 

 During the winter period, increasing grid resolution reduces the average fractional 391 

error from 34% at 36 x 36 km to 30% at 1 x 1 km. The higher resolution also improved the 392 

fractional bias, from -0.09 at 36 x 36 km to +0.05 at 1 x 1 km. The performance is illustrated 393 

in Figure 5. Performance at urban locations stayed steady in the winter, with fractional 394 

error changing from 0.30 to 0.26 and fractional bias changing from +0.02 to +0.08 moving 395 

from 36 km to 1 km resolution (Fig. S3). Rural performance improved to a greater extent, 396 

with fractional error improving from 0.33 to 0.28 and fractional bias lowering from +0.21 397 

to +0.11. 398 

 The comparison with low-cost sensor measurements largely represents the 399 

performance of the model in terms of urban PM2.5 predictions. The performance metrics of 400 
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PMCAMx-v2.0 when compared to measurements from low-cost sensors are shown in 401 

Table 3. Moving from low to high resolution, the predictions go from no bias (-0.02) to a 402 

bias of +0.24. Due to the slight overprediction of the urban-rural gradient seen earlier 403 

(particularly with EC), the high resolution would likely lead to more positive biases when 404 

compared to a largely urban network. Fractional error increases slightly, but still exhibits 405 

good performance moving from 0.33 to 0.37. 406 

 407 

5.2 Summer 408 

 In the summer period, (Fig. 6) the model performance improved as the resolution 409 

increased from 36 km to 1 km. Fractional error decreased from 0.53 to 0.48, while 410 

fractional bias increased from -0.46 to -0.39. In July, performance at the urban locations 411 

significantly increased with resolution (Fig. S4). Fractional error decreased from 52% at 412 

36 x 36 km to 0.42 at 1 x 1 km. Fractional bias also improved from -0.46 at the coarse grid 413 

resolution to -0.39 at the finest scale. Rural predictions of PM2.5 were also better with 414 

increasing resolution in the summer. Fractional error decreased from 0.31 to 0.22 while 415 

fractional bias decreased from +0.05 to -0.05.  416 

 Larger improvements are seen with increasing resolution during the summer when 417 

compared to measurements from low-cost sensors. Starting from a large negative bias of   418 

-5.4 µg m-3 (fractional bias of -0.48) at the 36 x 36 km resolution, performance consistently 419 

improved with each increasing resolution step with the bias eventually reaching -3.7 µg   420 

m-3 (fractional bias of -0.27) at the 1 x 1 km. There was also a reduction in fractional error 421 

from 0.52 at the coarse to 0.41 at the fine 1 x 1 km resolution. These metrics are 422 

encouraging, although they are likely impacted by an overprediction of the urban-rural 423 

gradient, similar to winter. Improvement of the secondary PM2.5 predictions is still the 424 

largest source of error between predictions and this source of measurements. 425 

 426 

6 Evaluation of Novel Emissions Surrogates 427 

 For commercial cooking, the normalized restaurant count was used to distribute the 428 

emissions from the sector in space within the 1 x 1 km domain. Geographical information 429 

was collected for all restaurant locations in the inner domain from the Google Places 430 

Application Programming Interface. This includes southwestern Pennsylvania as well as 431 
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parts of eastern Ohio and northern West Virginia. To allocate on-road traffic emissions, the 432 

output from the traffic model of Ma et al. (2020) was used. This model simulated hourly 433 

traffic using data from the Pennsylvania Department of Transportation sites located 434 

throughout the inner modeling domain. Changes in the spatial distribution of cooking and 435 

on-road traffic emissions are illustrated in the supplementary material (Fig. S5-S8). These 436 

novel emissions surrogates resulted in larger emissions of both traffic and cooking in the 437 

downtown area. In the case of on-road traffic, major highways in the inner domain are 438 

emphasized with the new surrogates.  439 

 For both February and July 2017, the largest observed change when using the novel 440 

surrogates is an increase in predicted PM2.5 of around 3 µg m-3 in the downtown Pittsburgh 441 

area (Fig. 7). Differences in predicted PM2.5 concentrations outside of the urban areas of 442 

the inner domain are very small (less than 0.5 µg m-3 in magnitude).   443 

 Model performance at 1 x 1 km resolution is detailed in Table 4. Negligible changes 444 

in performance were seen using EPA regulatory PM2.5 data in February 2017. Small 445 

improvements were seen at regulatory sites in July 2017, where fractional error was 446 

reduced from 51% to 48% and fractional bias increased from -43% to -39%. A positive 447 

shift in fractional bias was seen with the use of the new surrogates during both periods 448 

when compared to low-cost sensor measurements, resulting in a modest overprediction of 449 

PM2.5 in the winter (+0.24 fractional bias) and a modest underprediction of PM2.5 in the 450 

summer (-0.27 fractional bias). The larger changes when compared to the low-cost sensor 451 

measurements are a result of the location of the low-cost sensors in urban areas, where the 452 

new surrogates predicted elevated PM2.5 mass concentrations. 453 

7 Conclusions   454 

We applied PMCAMx-v2.0 over southwestern Pennsylvania during February and 455 

July 2017 at grid resolutions of 36 km, 12 km, 4 km and 1 km. Emissions were calculated 456 

for the relevant grids by using the spatial surrogates provided along with the 2011 NEI for 457 

all emissions sectors except traffic and cooking, for which 1 x 1 km spatial surrogates were 458 

developed. 459 

 PMCAMx predicts winter sulfate, elemental carbon and organic aerosol 460 

concentrations with fractional biases below 10% at high resolution. Nitrate concentrations 461 

are overpredicted (bias +1.4 µg m-3) following the trend of previous studies in both the US 462 
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and Europe. Agreement with total PM2.5 measurements is also encouraging with a 463 

fractional bias of +5%. Variability between urban and rural predictions of local pollutants 464 

EC and organic aerosol (OA) are reproduced well in the winter period. Underpredictions 465 

of summer OA concentrations led to underpredictions of total PM2.5 mass. Summer sulfate 466 

is reproduced with fractional bias of -21% and elemental carbon (EC) is predicted with 467 

fractional bias of -33%. Nitrate is similarly overpredicted in the summer with fractional 468 

bias of +70% although with a much smaller magnitude than in the winter (+0.4 µg m-3). 469 

Improvement of the treatment of dust in the model is required to better model the 470 

distribution of particulate nitrate between PM2.5 and PM10 modes. Differences between 471 

urban and rural EC is also predicted well in the summer, while OA is predicted to vary 472 

little between urban and rural locations. This is indicative of a greater contribution of 473 

secondary species to OA during this period. Improvements to SOA formation chemistry 474 

within the model, particularly from biogenic sources outside of the inner modeling domain, 475 

will likely have a significant impact on PM2.5 predictions around the city of Pittsburgh. 476 

This, along with the improvement of dust treatment in the model, are topics of future work 477 

for model improvement. 478 

 PM2.5 prediction performance improved in almost all cases when increasing the 479 

resolution from 36 km to 1 km. Underpredictions at urban sites and overpredictions at rural 480 

sites were reduced at the same time. This is true when comparing against measurements 481 

from regulatory sites as well as low-cost monitors. The improved performance here is 482 

evidence of the enhanced ability of the model to capture important urban-rural gradients in 483 

PM2.5 pollution by increasing the resolution of predictions to 1 x 1 km. 484 

 485 

Code Availability. The PMCAMx-v2.0 code is available in Zenodo at 486 

https://doi.org/10.5281/zenodo.6772851 (Dinkelacker et al., 2022). License (for files): 487 

GNU General Public License v3.0. 488 
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Table 1. Comparison of daily average high-resolution PMCAMx-v2.0 predictions with 614 

daily EPA-CSN measurements during February and July 2017. 615 

 616 

February 2017 

 Sulfate Nitrate Ammon. Elemental 

Carbon 

Organic 

Aerosol 

PM2.5 a 

Measured Avg. (µg m-3) 1.92 1.51 0.91 1.08 4.37 10.34 

Predicted Avg. (µg m-3) 1.70 2.90 1.62 0.94 3.68 10.52 

Error (µg m-3) 0.79 1.54 1.03 0.78 2.15 3.02 

Fractional Error 0.41 0.83 0.96 0.71 0.53 0.30 

Bias (µg m-3) -0.22 1.40 0.71 -0.14 -0.68 0.18 

Fractional Bias -0.02 0.81 0.83 -0.08 -0.01 0.05 

 617 

July 2017 

 Sulfate Nitrate Ammon. Elemental 

Carbon 

Organic 

Aerosol 

PM2.5 a 

Measured Avg. (µg m-3) 2.04 0.26 0.53 0.74 4.46 11.24 

Predicted Avg. (µg m-3) 1.60 0.68 0.79 0.56 2.67 7.26 

Error (µg m-3) 1.12 0.45 0.39 0.39 2.46 4.67 

Fractional Error 0.62 0.82 0.62 0.60 0.67 0.49 

Bias (µg m-3) -0.44 0.42 0.26 -0.18 -1.85 -4.01 

Fractional Bias -0.21 0.70 0.44 -0.33 -0.47 -0.39 
a Measurements from the regulatory EPA monitors. 618 

  619 
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Table 2. Comparison of daily average PMCAMx-v2.0 predicted PM2.5 concentrations 620 

during February and July 2017 with daily measurements from 17 EPA regulatory 621 

monitors. 622 

 623 

 36 x 36 km 12 x 12 km 4 x 4 km 1 x 1 km 

            February 2017 

Measured Avg. (µg m-3) 10.34 10.34 10.34 10.34 

Predicted Avg. (µg m-3) 9.78 9.68 10.49 10.52 

Error (µg m-3) 3.35 3.16 3.04 3.02 

Fractional Error 0.34 0.32 0.30 0.30 

Bias (µg m-3) -0.56 -0.66 0.15 0.18 

Fractional Bias -0.09 -0.10 0.06 0.05 

  

                 July 2017 

Measured Avg. (µg m-3) 11.24 11.24 11.24 11.24 

Predicted Avg. (µg m-3) 6.90 6.86 7.26 7.23 

Error (µg m-3) 4.89 5.05 4.67 4.65 

Fractional Error 0.53 0.53 0.49 0.48 

Bias (µg m-3) -4.34 -4.39 -3.98 -4.01 

Fractional Bias -0.45 -0.47 -0.39 -0.39 

  624 
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Table 3. Comparison of daily average PMCAMx-v2.0 predicted PM2.5 concentrations 625 

during February and July 2017 with daily low-cost sensor (RAMP) measurements. 626 

 627 

 36 x 36 km 12 x 12 km 4 x 4 km 1 x 1 km 

              February 2017 

Measured Avg. (µg m-3) 11.65 11.65 11.65 11.65 

Predicted Avg. (µg m-3) 10.23 11.64 12.04 13.50 

Error (µg m-3) 4.53 4.53 4.51 5.12 

Fractional Error 0.33 0.33 0.34 0.37 

Bias (µg m-3) -1.43 -0.02 0.4 1.85 

Fractional Bias -0.02 <0.01 0.14 0.24 

                     

                  July 2017 

Measured Avg. (µg m-3) 12.59 12.59 12.59 12.59 

Predicted Avg. (µg m-3) 7.19 7.44 8.06 8.83 

Error (µg m-3) 5.60 5.70 5.29 4.89 

Fractional Error 0.51 0.51 0.46 0.42 

Bias (µg m-3) -5.40 -5.15 -4.53 -3.76 

Fractional Bias -0.48 -0.43 -0.36 -0.27 

 628 

  629 
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Table 4. Performance of daily average predicted total PM2.5 concentrations compared to 630 

daily measurements from regulatory sites and low-cost sensors with the use of old 631 

surrogates and new surrogates for on-road traffic and commercial cooking.  632 

 633 
February 2017 

 Old Surrogates New Surrogates 

Regulatory  

network 

Low-cost 

sensors 

Regulatory 

network 

Low-cost 

sensors 

Observed Average 

(µg m-3) 

10.34 11.65 10.34 11.65 

Predicted Average 

(µg m-3) 

10.23 11.32 10.52 13.50 

Error (µg m-3) 2.94 4.12 3.02 5.12 

Fractional Error 0.29 0.31 0.30 0.37 

Bias (µg m-3) -0.11 -0.33 0.18 1.85 

Fractional Bias -0.04 0.08 0.05 0.24 

 

July 2017 

 Old Surrogates New Surrogates 

 Regulatory  

network  

Low-cost 

sensors 

Regulatory  

network  

Low-cost 

sensors 

Observed Average 

(µg m-3) 

11.24 12.58 11.24 12.58 

Predicted Average 

(µg m-3) 

7.09 7.98 7.26 8.83 

Error (µg m-3) 4.91 5.32 4.67 4.89 

Fractional Error 0.51 0.47 0.49 0.42 

Bias (µg m-3) -4.33 -4.61 -4.01 -3.76 

Fractional Bias -0.43 -0.37 -0.39 -0.27 

 634 

  635 
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 636 

 637 
 638 

Figure 1. Monitoring sites. (a) Particulate matter speciation measurement sites from EPA-639 

CSN and PM2.5 regulatory monitors. (b) low-cost sensor sites. 640 

  641 
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 642 

 643 
Figure 2. Comparison of daily average PMCAMx-v2.0 predicted concentrations of PM2.5 644 

(a) sulfate, (b) nitrate, (c) ammonium, (d) elemental carbon, and (e) organic aerosol with 645 

daily measurements from EPA-CSN sites during February 2017. 646 
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 647 
 648 

Figure 3. (a) Comparison of PMCAMx-v2.0 predicted composition of PM1 with the 649 

corresponding AMS measurements at the CMU site and (b) organic aerosol composition 650 

based on the PMF analysis of the AMS measurements and predicted composition.  651 
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 653 
Figure 4. Comparison of PMCAMx-v2.0 predicted concentrations of PM2.5 (a) sulfate, (b) 654 

nitrate, (c) ammonium, (d) elemental carbon, and (e) organic aerosol with measurements 655 

from EPA-CSN sites during July 2017. 656 
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 657 

 658 
 659 

Figure 5. Comparison of daily average PMCAMx-v2.0 predicted concentrations of PM2.5 660 

with daily regulatory measurements and daily low-cost sensor measurements at (a) 36 x 661 

36, (b) 12 x 12, (c) 4 x 4, and (d) 1 x 1 km during February 2017. 662 
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 664 

 665 
 666 

Figure 6. Comparison of daily average PMCAMx-v2.0 predicted concentrations of PM2.5 667 

with daily regulatory measurements and daily low-cost sensor measurements at (a) 36 x 668 

36, (b) 12 x 12, (c) 4 x 4, and (d) 1 x 1 km during July 2017. 669 
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 671 
 672 

Figure 7. Difference between predicted monthly average PM2.5 mass concentration when 673 

using novel surrogates and original surrogates in (a) February 2017 and (b) July 2017 for 674 

the 1 x 1 km resolution simulation grid. A positive value indicates a higher concentration 675 

predicted with the novel surrogates. 676 
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