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Abstract  19 

Accurately predicting urban PM2.5 concentrations and composition has proved challenging 20 

in the past, partially due to the resolution limitations of computationally intensive chemical 21 

transport models (CTMs). Increasing the resolution of PM2.5 predictions is desired to 22 

support emissions control policy development and address issues related to environmental 23 

justice. A nested grid approach using the CTM PMCAMx-v2.0 was used to predict PM2.5 24 

at increasing resolutions of 36 x 36, 12 x 12, 4 x 4, and 1 x 1 km for a domain largely 25 

consisting of Allegheny County and the city of Pittsburgh in southwestern Pennsylvania, 26 

US during February and July 2017. Performance of the model in reproducing PM2.5 27 

concentrations and composition was evaluated at the finest scale using measurements from 28 

regulatory sites as well as a network of low-cost monitors. Novel surrogates were 29 

developed to allocate emissions from cooking and on-road traffic sources to the 1 x 1 km 30 

resolution grid. Total PM2.5 mass is reproduced well by the model during the winter period 31 

with low fractional error (0.3) and fractional bias (+0.05) when compared to regulatory 32 

measurements. Comparison with speciated measurements during this period identified 33 

small underpredictions of PM2.5 sulfate, elemental carbon (EC), and organic aerosol (OA) 34 

offset by a larger overprediction of PM2.5 nitrate (bias = +1.4 µg m-3, fractional bias = 35 

+0.81). In the summer period, total PM2.5 mass is underpredicted due to a large 36 
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underprediction of OA (bias = -1.9 µg m-3, fractional bias = -0.41).  with fractional bias of 37 

-0.39. Here, PM2.5 nitrate is overpredicted again with a large fractional bias (+0.7) but 38 

significantly lower magnitude (+0.4 µg m-3). Underpredictions in PM2.5 sulfate and EC 39 

contribute to the negative prediction bias of total PM2.5 (-0.4 µg m-3 and -0.2 µg m-3, 40 

respectively), however the largest underprediction is seen for summer OA (bias = -1.9 µg 41 

m-3, fractional bias = -0.41). In the winter period, the model performs well reproducing the 42 

variability between urban measurements and rural measurements of local pollutants such 43 

as EC and OA. This effect is less consistent in the summer period due to a larger fraction 44 

of long range transport OA.  This effect is also captured well in the summer for EC, 45 

although the OA performance here is less consistent because much more of this OA is 46 

secondary and transported from outside of the inner modeling domain. Comparison with 47 

total PM2.5 concentration measurements from low-cost sensors showed improvements in 48 

performance with increasing resolutionyielded similar results with slightly higher 49 

overpredictions seen in the winter (fractional bias = +0.24) and lower underpredictions 50 

seen in the summer (fractional bias = -0.27). Inconsistencies in PM2.5 nitrate predictions in 51 

both periods are believed to be due to errors in partitioning between PM2.5 and PM10 modes 52 

and motivate improvements to the treatment of dust particles within the model. The 53 

underprediction of summer OA would likely be improved by updates to biogenic SOA 54 

chemistry within the model, which would result in an increase of long-range transport SOA 55 

seen in the inner modeling domain. These improvements are obvious topics for future work 56 

towards model improvement. Comparison with regulatory monitors showed that increasing 57 

resolution from 36 km to 1 km improved both fractional error and fractional bias in both 58 

modeling periods.  by 0.04 in February 2017.  In July 2017, fractional error decreased by 59 

0.05 and fractional bias improved by 0.07 with increasing resolution. Improvements at all 60 

types of measurement locations indicated an improved ability of the model to reproduce 61 

urban-rural PM2.5 gradients at higher resolutions. 62 

 63 

1 Introduction  64 

 Fine particulate matter with aerodynamic diameter less than 2.5 µm (PM2.5) has 65 

been associated with public health concerns due to short and long-term exposure. Some of 66 

the health effects of PM2.5 include increased risk of heart disease, increased likelihood of 67 
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heart attacks and strokes, impaired lung development, and increased risk of lung disease 68 

(Dockery and Pope, 1994). Chemical transport models are frequently used for supporting 69 

the development of air quality policies designed to protect public health. To evaluate these 70 

policies, CTMs must simulate PM2.5 concentrations and their response to changes in 71 

emissions accurately. 72 

 Grid resolution is an important factor for CTM studies focusing on major urban 73 

areas since on-road traffic, commercial cooking, and biomass burning can have sharp 74 

gradients at the urban scale (Lanz et al., 2007; Allan et al., 2010). High spatial resolution 75 

measurements of PM1 in the city of Pittsburgh in high source-impact locations are on 76 

average 40% higher than at urban background locations (Gu et al., 2018). Heightened 77 

organic aerosol concentrations have been observed in commercial districts containing 78 

multiple restaurants (Robinson et al., 2018). The demographic characteristics of the 79 

population can also have large variations at the neighborhood scale. High resolution 80 

predictions of pollutant concentrations allow for exposure assessments that compare 81 

subpopulations within the same metropolitan area to answer environmental justice related 82 

questions (Anand, 2002). The benefits of high-resolution modeling must be balanced with 83 

the increased complexity in the development of accurate, high-resolution emission 84 

inventories and increased computational cost and storage requirements. 85 

 Previous studies have found small to modest improvements on the predictive ability 86 

of regional CTMs for ozone in the summers of 1995, 1996, and 1997 moving from 36 km 87 

to 12 km resolution (Arunachalam et al., 2006) as well as in July 1988 using a dynamic 88 

grid system with sizes varying from 18.5 km to 4.625 km (Kumar and Russell, 1996). 89 

Stroud et al. (2011) found that the accurate simulation of urban and large industrial plumes 90 

required a grid resolution of 2.5 km in order to properly capture contributions from local 91 

sources of primary organic aerosol (POA) and volatile organic compounds (VOCs). 92 

Zakoura and Pandis (2019) investigated the effect of increasing grid resolution on PM2.5 93 

nitrate predictions and found that increasing the resolution to 4 km reduced bias by 65%.  94 

Fountoukis et al. (2013) reported a reduction of the bias for black carbon (BC) 95 

concentrations in the northeastern US when the grid resolution was reduced from 36x36 96 

km to 4x4 km. Pan et al., (2017) allocated county-based emissions at 4 km and 1 km grid 97 

resolution using the default approach from the National Emissions Inventory and found 98 
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small changes in model performance for NOx and ozone. The 1 km simulation was able to 99 

resolve the detailed spatial variability of emissions in heavily polluted areas including 100 

highways, airports and industrially focused sub-regions. 101 

 One of the weaknesses of several of the above studies has been that the gridded 102 

emissions used at the higher resolutions were the results of interpolation. It is not clear if 103 

the remaining discrepancies between model predictions and measurements were due to 104 

errors in the spatial distribution of the high-resolution emissions, errors in the overall 105 

magnitude of the emissions over an urban area or other modeling errors in the simulation 106 

of various processes (chemistry, condensation/evaporation, etc.). It is also not clear if errors 107 

in previous simulations of urban PM2.5 are due to inaccuracies in the transport of regional 108 

PM2.5 to urban areas. In this work, we explore the impacts of increasing the resolution of 109 

emissions inputs and CTM output on PM2.5 predictions in southwestern Pennsylvania 110 

during the months of February and July 2017, including the ability of the model to 111 

reproduce observed differences between urban and rural PM2.5 at the various grid 112 

resolutions. 113 

 Garcia Rivera et al. (2022) investigated the effects of increasing grid resolution of 114 

model inputs and CTM output on source resolved predictions of PM2.5 concentration and 115 

population exposure at 36 km, 12 km, 4 km, and 1 km. Moving to 12 x 12 km resolution 116 

resolved much of the urban-rural gradient. Increasing to 4 x 4 km resolved stationary 117 

sources such as power plants and the 1 x 1 km resolution results revealed intra-urban 118 

variations and individual roadways. Regional pollutants with low spatial variability such 119 

as PM2.5 nitrate showed modest changes when increasing the resolution to 4 x 4 km and 120 

higher. Local pollutants such as black carbon and organic aerosol showed gradients that 121 

were only resolved at the finest resolution. The ability of these simulations to reproduce 122 

PM2.5 concentrations at different resolutions is evaluated here against multiple 123 

measurement sources and types. Garcia Rivera et al. (2022) did not address model 124 

performance and the corresponding challenges related to the different types of the available 125 

measurements.  The two months of February and July 2017 were chosen to maximize the 126 

information gained with regards to the effects of seasonal variability of major emissions 127 

sources and meteorology on predicted concentrations while keeping the resources required 128 

for emissions inventory development at a feasible level. 129 
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 We apply the Particulate Matter Comprehensive Air quality Model with Extensions 130 

version 2.0 (PMCAMx-v2.0) to study the impact of increasing model resolution on the 131 

ability to reproduce observed PM2.5 concentrations. We evaluate the PMCAMx predictions 132 

at various grid resolutions against regulatory measurements of PM2.5 concentration and 133 

composition, as well as measurements from a network of low-cost sensors (Zimmerman et 134 

al., 2018) during February and July 2017 which provide a unique opportunity for 135 

comparison not available to previous studies. Aerosol mass spectrometer (AMS) 136 

measurements taken in Pittsburgh during February 2017 were also used to evaluate model 137 

predictions. 138 

 139 

2 Model Description   140 

 PMCAMx-v2.0, the Particulate Matter Comprehensive Air Quality Model with 141 

Extensions (Karydis et al., 2010; Murphy and Pandis, 2010; Tsimpidi et al., 2010) is a 142 

state-of-the-art atmospheric chemical transport model (CTM) that uses the framework of 143 

the CAMx model (Environ, 2006) with advanced aerosol chemistry modules. This model 144 

uses detailed emissions and meteorology inputs to dynamically predict changes in pollutant 145 

concentrations due to emissions, transport, chemical reactions in the gas and aqueous 146 

phases, removal processes, and aerosol processes. To track the dynamic evolution of 147 

aerosol mass, 10 moving size sections are used (Gaydos et al., 2003). The chemical 148 

mechanism SAPRC99 (Carter, 1999) was used for gas-phase chemistry, including 237 149 

individual chemical reactions involving 91 chemical species. Aqueous-phase chemistry is 150 

calculated with the Variable Size Resolution Model (Fahey and Pandis, 2001). PMCAMx-151 

v2.0 considers the formation of aerosol mass comprised of sulfate, nitrate, ammonium, 152 

sodium, chloride, water, elemental carbon, as well as lumped organic species (both primary 153 

and secondary). Inorganic aerosol growth is modelled using an approach that assumes 154 

equilibrium between the bulk aerosol and gas phases. Partitioning of semivolatile inorganic 155 

aerosol is calculated using ISORROPIA-I (Nenes et al., 1998). The Volatility Basis Set 156 

(VBS) was used to calculate partitioning of organic aerosol components across a 157 

distribution of species volatility (Donahue et al., 2006). Volatility bins (10) with effective 158 

saturation concentration from 10-3 to 106 µg m-3 (at 298 K) are used for primary organic 159 

aerosol (POA). Secondary organic aerosol is split into anthropogenic (aSOA) and biogenic 160 
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(bSOA) components, formed from a variety of SOA-forming volatile organic compounds 161 

(VOCs) from human activity and natural sources, respectively using NOx-dependent SOA 162 

formation yields (Lane et al., 2008). Both aSOA and bSOA are split into 4 volatility bins 163 

with effective saturation concentration from 100 to 103 µg m-3 (at 298 K). 164 

 165 

3 Model Application  166 

 Air quality simulations of a 5184 km2 area comprised of southwestern Pennsylvania 167 

and smaller parts of eastern Ohio and norther West Virginia were performed using 168 

PMCAMx. Two distinct simulation periods of February and July 2017 were investigated. 169 

The approach of Garcia et al. (2022) was used to produce speciated PM2.5 concentration 170 

predictions at spatial resolution of 36 km, 12 km, 4 km, and 1 km. Surface-level boundary 171 

conditions for the 36 x 36 km simulations are provided in Table S1. Boundary conditions 172 

for the higher resolution grids are taken from the results of parent-grid simulations. The 173 

first two days of simulation output have been removed from the analysis to allow for model 174 

spin-up. 175 

 Meteorological fields were calculated using the Weather Research and Forecasting 176 

model (WRF-v3.6.1) with horizontal resolution of 12 x 12 km, providing wind 177 

components, eddy diffusivity, temperature, pressure, humidity, clouds, and precipitation 178 

inputs for use in PMCAMx. Meteorology initial and boundary conditions were retrieved 179 

from the ERA-Interim global climate re-analysis database. The United States Geological 180 

Survey database was used to obtain input data for terrain, land-use, and soil type. When 181 

necessary, WRF output was interpolated to higher resolutions. An evaluation of 182 

interpolated meteorological inputs using data from METAR stations near the city of 183 

Pittsburgh in southwestern Pennsylvania determined that errors in the magnitude and 184 

phasing of diurnal cycles of temperature, relative humidity, and wind speed are 185 

appropriately small for use in air quality studies. These results are provided in the 186 

supplementary material (Fig. S1, S2).  187 

 Anthropogenic emissions are derived from the 2017 projections of the 2011 188 

National Emissions Inventory (Eyth and Vukovich, 2016) modelling platform. The Sparse 189 

Matrix Operator Kernel Emissions modeling system (SMOKE) was used, along with 190 

meteorological inputs to calculate emissions at a horizontal resolution of 12 x 12 km. 191 
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Default spatial surrogates were used to allocate these emissions to higher resolutions. 192 

Custom surrogates were developed for commercial cooking and on-road traffic emissions 193 

sectors within the 1 x 1 km grid and used for the primary analysis in this work. The use of 194 

these new surrogates results in different spatial distribution of emissions for cooking and 195 

on-road traffic sources than what would be observed with the default spatial surrogates. 196 

Additional simulations were performed to quantify the impact of these proposed surrogates 197 

on predicted PM2.5 concentrations. 198 

 For commercial cooking, the normalized restaurant count was used to distribute the 199 

emissions from the sector in space within the 1 x 1 km and 4 x 4 km domains. This surrogate 200 

distributed commercial cooking emissions based on the density of restaurants identified by 201 

the Google Places Application Programming Interface. To allocate on-road traffic 202 

emissions, the output from the traffic model of Ma et al. (2020) was used. This model 203 

simulates hourly traffic using data from the Pennsylvania Department of Transportation. 204 

Emissions from the on-road traffic sector were then allocated based on these values.  205 

 206 

3.1 Available measurements for model evaluation  207 

 Model predictions of sulfate, nitrate, elemental carbon and organic aerosol were 208 

compared with measurements from 4 sites from the EPA Chemical Speciation Network 209 

(EPA-CSN) (U.S. EPA, 2002). The locations of these 4 sites are shown in Figure 1a. These 210 

sites include: Lawrenceville, an urban background site 4 km northeast of downtown 211 

Pittsburgh; Hillman State Park located in a state park in southwest Pennsylvania in a rural 212 

and remote location approximately 40 km upwind of Pittsburgh; Steubenville in the Ohio 213 

River Valley close to industrial installations and coal-fired power plants, and the Liberty-214 

Clairton monitor, which is located close to the Clairton Coke Works in the Monongahela 215 

River Valley 14 km southeast of downtown Pittsburgh. Speciated PM2.5 measurements 216 

from EPA-CSN sites are available every three days during the simulation periods. Daily 217 

non-speciated measurements of total PM2.5 mass concentration are available from 17 sites 218 

within the inner simulation domain and are used to further evaluate total PM2.5 mass 219 

concentration predictions. The locations of these sites are also shown in Figure 1a.  220 

 For February 2017, high-resolution AMS measurements from the Carnegie Mellon 221 

University supersite (Gu et al., 2018) are used to evaluate the predicted chemical 222 
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composition of PM2.5 model predictions. Positive matrix factorization results are also used 223 

to investigate the breakdown of organic aerosol components. AMS measurements were 224 

taken continuously from February 1 to February 14, 2017. Due to uncertainties with the 225 

AMS collection efficiency during this campaign, we use here only the fractional particle 226 

composition data.  227 

 PMCAMx predictions of PM2.5 were also compared with measurements taken with 228 

a network of Real-time Affordable Multi-Pollutant (RAMP) monitors (Zimmerman et al., 229 

2018) distributed in the city of Pittsburgh. During the winter period measurements at 7 sites 230 

were available, all located within the boundaries of the city of Pittsburgh, while 22 sites 231 

were in operation during the summer period with a few sites also outside the city (Fig. 1b). 232 

Uncertainty in these low-cost measurements of PM2.5 mass concentration is between 3-4 233 

µg m-3 for hourly averaging times (Malings et al., 2019).   234 

 The model performance is assessed in terms of the mean bias (BIAS), the mean 235 

error (ERROR), the fractional bias (FBIAS) and the fractional error (ERROR): 236 

BIAS =
1

𝑁
∑ 𝑃𝑖 − 𝑂𝑖

𝑁
𝑖=1                                                                                                                   (1)       237 

FBIAS =
2

𝑁
∑

𝑃𝑖 − 𝑂𝑖

𝑃𝑖 + 𝑂𝑖

𝑁

𝑖=1

                                                                                                                 (2) 238 

ERROR =
1

𝑁
∑|𝑃𝑖 − 𝑂𝑖|

𝑁

𝑖=1

                                                                                                             (3) 239 

FERROR =
2

𝑁
∑

|𝑃𝑖 − 𝑂𝑖|

𝑃𝑖 + 𝑂𝑖

𝑁

𝑖=1

                                                                                                         (4) 241 

 240 

where N is the number of valid measurements, Pi is the predicted concentration and Oi is 242 

the corresponding observed concentration. The fractional error metric is bounded by 0 243 

(perfect prediction performance) and 2.0 (extremely poor prediction performance). 244 

Fractional bias is bounded by -2.0 (extreme underprediction) and +2.0 (extreme 245 

overprediction). 246 

 247 

4 Evaluation of high-resolution model performance  248 
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4.1 Winter 249 

 Table 1 summarizes the performance metrics of daily average PMCAMx-v2.0 250 

PM2.5 predictions in the 1x1 km resolution, when compared with daily measurements from 251 

EPA regulatory PM2.5 monitors. The speciated performance is illustrated in Figure 2. 252 

Predictions of total PM2.5 mass perform well against regulatory measurements in the 253 

February simulation period, with fractional error of 0.3 and fractional bias of +0.07.  254 

 Average measured PM2.5 sulfate for this time period was 1.9 µg m-3. Lower sulfate 255 

levels were observed at the Lawrenceville site in Pittsburgh (1.2 µg m-3) while significantly 256 

higher levels were observed at the Steubenville site (3.1 µg m-3). Predicted domain-average 257 

PM2.5 sulfate at 1 x 1 km resolution was 1.3 µg m-3. Overall fractional error for sulfate 258 

predictions was 0.41 and no overall bias was observed (fractional bias of -0.02). PM2.5 259 

sulfate was slightly overpredicted at Hillman State Park (+0.18 fractional bias) and 260 

Lawrenceville (+0.25 fractional bias) and underpredicted at the industrial sites, 261 

Steubenville (-0.24 fractional bias) and Liberty/Clairton (-0.43 fractional bias) where 262 

observed PM2.5 sulfate concentrations were higher. 263 

 Overpredictions were seen for PM2.5 nitrate, with a fractional bias of +0.81. The 264 

average measured concentration at EPA-CSN sites within the simulation domain was 1.5 265 

µg m-3, while the domain-average predicted concentration was 1.8 µg m-3. Observed 266 

average PM2.5 nitrate concentrations at Hillman State Park and Lawrenceville were slightly 267 

lower at 1.1 µg m-3 and 1.2 µg m-3, respectively. Nitrate at the Steubenville location was 268 

observed to be higher on average at 2.2 µg m-3. This overprediction is seen at all sites but 269 

is particularly prevalent at Hillman State Park, Lawrenceville, and Liberty/Clairton, where 270 

errors are of the order of a factor of two. Previous PMCAMx modeling studies have found 271 

similar over-predictions. Part of this overprediction was due to the use of coarse-grid 272 

resolution (Zakoura and Pandis, 2018), but this is unlikely to be the cause here, because 273 

81% of the predicted domain-average nitrate is transported from outside of the inner 274 

modeling domain. These inconsistencies in PM2.5 nitrate predictions are likely due to errors 275 

in the partitioning of nitrate between the fine (PM2.5) and coarse (PM10) modes, resulting 276 

in an overprediction of PM2.5 nitrate. Resolving this modeling error likely requires 277 

improvements to the treatment of dust within the model, and the use of a dynamic approach 278 

for inorganic aerosol calculations rather than the bulk equilibrium approach. 279 
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 The behavior of PM2.5 ammonium measurements is similar to that of nitrate as most 280 

of it is in the form of ammonium nitrate. The average measured concentration at the four 281 

EPA-CSN stations was 0.9 µg m-3. At Hillman State Park and Lawrenceville, the measured 282 

average was lower at 0.5 µg m-3 but higher at the Liberty/Clairton location at 2.1 µg m-3. 283 

PM2.5 ammonium was overpredicted similarly to PM2.5 nitrate with +0.83 fractional bias.   284 

The average measured concentration of PM2.5 elemental carbon at EPA-CSN sites during 285 

February 2017 was 1.1 µg m-3. Elemental carbon concentrations are more localized than 286 

the inorganic PM2.5 components. At Hillman State Park the average measured 287 

concentration was only 0.5 µg m-3 while at Liberty/Clairton the averaged measured 288 

concentration was 2.9 µg m-3. For elemental carbon, the predicted domain-average was 0.4 289 

µg m-3. Average elemental carbon concentration in the 4 x 4 km simulation grid outside of 290 

the inner modeling domain was 0.3 µg m-3. Black carbon predictions at all sites had a 291 

fractional error of 0.71 with fractional bias of -0.08. Elemental carbon was overpredicted 292 

at the urban site with fractional bias of 0.73 and underpredicted at the other sites. 293 

 Average measured OA during this period was 4.4 µg m-3, but with significant 294 

spatial variability. At Hillman State Park and Lawrenceville measured OA was 3.1 µg m-3 295 

and 3.4 µg m-3, respectively. At Liberty/Clairton and Steubenville the average measured 296 

OA was 7 µg m-3 and 6.3 µg m-3, respectively. Domain-average predicted OA was 2.2 µg 297 

m-3. Outside of the inner 1 x 1 km domain, average predicted OA was 1.6 µg m-3, 298 

suggesting that the majority of predicted OA is transported from outside of the 1 x 1 km 299 

grid. Overall OA prediction performance in the winter is acceptable at 0.53 fractional error 300 

and low fractional bias (-0.01). At individual sites, performance varies. OA is predicted 301 

with low fractional bias (-0.10) at the rural Hillman State Park site. OA is overpredicted by 302 

with +0.31 fractional bias at the urban site in Lawrenceville and underpredicted at both 303 

industrial sites. An added degree of uncertainty exists with the industrial sites within the 304 

inner domain. The emissions from these sources may be underestimated in the inventory 305 

and these locations are also difficult to accurately model due to their geographic location 306 

in river valleys.  307 

 Average concentrations of PM2.5 sulfate, nitrate, and ammonium in the 4 x 4 km 308 

resolution domain were around 83% of the average predicted concentrations in the inner 1 309 

x 1 km simulation grid. For elemental carbon and OA, the outer concentration was 64% 310 
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and 73% of the inner concentration respectively, indicating that these species had 311 

significant local sources. For these more local pollutants, the model appears to perform 312 

well in terms of capturing urban-rural gradients, but with a tendency towards 313 

underprediction at the rural site in Hillman State Park and overprediction at the urban site 314 

in Lawrenceville. The model also underpredicts EC and OA at the industrial locations, 315 

especially elemental carbon (-0.67 and -1.02 fractional bias at Steubenville and 316 

Liberty/Clairton, respectively). This again suggests errors in the emissions inventory or 317 

problems in simulating atmospheric dispersion near the sources. 318 

 Comparisons with the PM1 composition as determined by the AMS from February 319 

3 through February 14, 2017, show excellent agreement for all species (Fig. 3a). Gu et al. 320 

(2018) used PMF analysis and allocated total measured OA into five factors. Three of them 321 

corresponded to primary organic aerosol: hydrocarbon-like OA (HOA), cooking OA 322 

(COA) and biomass burning OA (BBOA) and two secondary OA factors: more-oxidized 323 

organic aerosol (MO-OOA) and less-oxidized organic aerosol (LO-OOA). To compare 324 

PMCAMx predictions with the primary PMF factors, two additional simulations were 325 

performed in which emissions from biomass burning and commercial cooking were set to 326 

zero. The predicted concentrations were then subtracted from the base case to estimate the 327 

contribution from each respective source. The remaining primary OA was assigned to 328 

HOA. The LO-OOA and MO-OOA factors were added together and compared with the 329 

PMCAMx SOA predictions. 330 

 The predicted cooking OA (COA) at the CMU site is 25% of the total OA and is in 331 

agreement with the PMF/AMS estimate of 22% (Fig. 3b). This is encouraging given the 332 

small bias of the model for total OA levels. The predicted HOA and BBOA are higher than 333 

measured by a factor of 2 or more. At the same time, the measurements indicate a 334 

surprisingly high contribution of SOA (53% of the total OA) during a period with little 335 

photochemical activity and low levels of OH radicals. SOA is predicted to be just 20% of 336 

the total during this time period. These discrepancies may indicate transformation of the 337 

HOA and BBOA to OOA during this wintertime period, that are not included in the model. 338 

Kodros et al. (20201) recently suggested that BBOA can react with the NO3  radical during 339 

the winter and can be transformed to OOA.  340 

 341 
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4.2 Summer  342 

 Total PM2.5 mass concentrations are underpredicted in the summer period. The 343 

average measured PM2.5 value in the regulatory network in the area was 11.4 µg m-3, while 344 

the average predicted value at the regulatory sites was 4 µg m-3 lower.  345 

 Speciated PM2.5 performance is illustrated in Figure 4. Average measured PM2.5 346 

sulfate for the summer period was 2 µg m-3. Slightly lower levels were observed at the 347 

Lawrenceville site in Pittsburgh (1.9 µg m-3). Liberty/Clairton had higher measured sulfate 348 

concentrations (2.6 µg m-3), but this difference between locations is lower than what was 349 

observed in the winter period. Predicted domain-average PM2.5 sulfate at 1 x 1 km 350 

resolution was 1.3 µg m-3. Overall fractional error (0.62) and fractional bias (-0.21) for 351 

sulfate predictions was higher than in the winter simulation period. PM2.5 sulfate was 352 

underpredicted at all sites but to the largest extent at Hillman State Park (-0.36 fractional 353 

error). 354 

 Overpredictions of PM2.5 nitrate were also seen the summer period, and at all types 355 

of sites. Average measured PM2.5 nitrate was 0.3 µg m-3, much lower than in the winter. 356 

The domain-average predicted PM2.5 nitrate was 0.7 µg m-3. Again, predicted PM2.5 nitrate 357 

in the inner domain is dominated by material transported from outside the boundaries 358 

(75%), so the issue is not resolved by using a high-resolution grid. Improvements to PM2.5 359 

nitrate formation are needed in the form of dust models with increased complexity to 360 

resolve the issues with fine-coarse mode partitioning of particulate nitrate. These issues 361 

have been highlighted by decreased concentrations of PM2.5 pollution in recent years. 362 

 Observed PM2.5 ammonium concentrations at EPA-CSN sites were also much 363 

lower in the summer with an average value of 0.5 µg m-3. Slightly higher average 364 

concentrations were observed at Liberty/Clairton (0.7 µg m-3) and slightly lower 365 

concentrations were observed at Steubenville (0.4 µg m-3). The domain-average predicted 366 

PM2.5 ammonium concentration was 0.6 µg m-3. The average concentration directly outside 367 

of the inner domain was 0.5 µg m-3. Overall performance was better for ammonium in the 368 

summer than in the winter with fractional error of 0.62 and fractional bias of +0.44. The 369 

strongest overprediction is seen at the Steubenville site (+0.57 fractional bias). 370 

 The average measured elemental carbon (EC) concentration in July was 0.7 µg m-371 

3. Measured EC carbon was significantly higher at Liberty/Clairton (1 µg m-3) and lower 372 
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at rural Hillman State Park (0.4 µg m-3). Domain-average predicted EC was 0.3 µg m-3. 373 

Outside of the inner domain, the average predicted concentration was 0.2 µg m-3. Elemental 374 

carbon predictions in July had a lower fractional error compared to the winter at 0.60 but 375 

showed a stronger negative fractional bias at -0.33. The model severely underpredicts at 376 

Hillman State Park (-0.86 fractional bias), where measured concentrations were lowest, but 377 

also at the industrial sites of Steubenville (-0.55 fractional bias) and Liberty/Clairton (-0.65 378 

fractional bias). EC was slightly overpredicted at the urban Lawrenceville location (+0.14 379 

fractional bias). While the urban-rural gradient in EC is slightly overpredicted, the model 380 

is still able to capture well the variability between rural (Hillman State Park) and urban 381 

(Lawrenceville). The model struggles to reproduce high measurements of EC at the 382 

Steubenville site, reiterating the issues with industrial EC seen in the winter.  383 

 Average measured OA concentration was 4.5 µg m-3 in July. Higher concentrations 384 

were observed at the industrial sites, Liberty/Clairton and Steubenville (5.0 µg m-3) 385 

respectively. The lowest observed concentration was in Hillman State Park (3.6 µg m-3). 386 

The average predicted concentration at CSN sites was 2.7 µg m-3. On average, OA is 387 

underpredicted with fractional bias of -0.47. This underprediction occurs at all sites but is 388 

less prevalent at the urban Lawrenceville location (-0.19 fractional bias) and is most 389 

dramatic in Steubenville (-0.65 fractional bias). Because such a large fraction of the OA in 390 

the summer is predicted to be secondary (50% of local OA on average) and transported 391 

from outside of the inner modeling domain (84% of total OA), treatment of SOA formation 392 

is likely a key factor contributing to the underprediction of PM2.5 in the summer. While 393 

these improvements are necessary for overall model improvement, they do not have 394 

significant impact on the urban-rural gradients which are the focus of this work and are 395 

driven by primary species. The performance of EC predictions in various locations is 396 

encouraging with regards to primary PM2.5 performance.  397 

 398 

5 Effect of grid resolution on PM2.5 performance  399 

 To determine the effect of grid resolution on the ability of the model to resolve 400 

geographical variations in PM2.5 concentrations, daily average measurements from the 17 401 

EPA regulatory sites were compared with PMCAMx predictions from simulations at 36 402 
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km, 12 km, 4 km and 1 km. The PMCAMx performance metrics are summarized in Table 403 

2. 404 

 405 

5.1 Winter 406 

 During the winter period, increasing grid resolution reduces the average fractional 407 

error from 34% at 36 x 36 km to 30% at 1 x 1 km. The higher resolution also improved the 408 

fractional bias, from -0.09 at 36 x 36 km to +0.05 at 1 x 1 km. The performance is illustrated 409 

in Figure 5. Performance at urban locations stayed steady in the winter, with fractional 410 

error changing from 0.30 to 0.26 and fractional bias changing from +0.02 to +0.08 moving 411 

from 36 km to 1 km resolution (Fig. S3). Rural performance improved to a greater extent, 412 

with fractional error improving from 0.33 to 0.28 and fractional bias lowering from +0.21 413 

to +0.11. 414 

 The comparison with low-cost sensor measurements largely represents the 415 

performance of the model in terms of urban PM2.5 predictions. The performance metrics of 416 

PMCAMx-v2.0 when compared to measurements from low-cost sensors are shown in 417 

Table 3. Moving from low to high resolution, the predictions go from no bias (-0.02) to a 418 

bias of +0.24. Due to the slight overprediction of the urban-rural gradient seen earlier 419 

(particularly with EC), the high resolution would likely lead to more positive biases when 420 

compared to a largely urban network. Fractional error increases slightly, but still exhibits 421 

good performance moving from 0.33 to 0.37. 422 

 423 

5.2 Summer 424 

 In the summer period, (Fig. 6) the model performance improved as the resolution 425 

increased from 36 km to 1 km. Fractional error decreased from 0.53 to 0.48, while 426 

fractional bias increased from -0.46 to -0.39. In July, performance at the urban locations 427 

significantly increased with resolution (Fig. S4). Fractional error decreased from 52% at 428 

36 x 36 km to 0.42 at 1 x 1 km. Fractional bias also improved from -0.46 at the coarse grid 429 

resolution to -0.39 at the finest scale. Rural predictions of PM2.5 were also better with 430 

increasing resolution in the summer. Fractional error decreased from 0.31 to 0.22 while 431 

fractional bias decreased from +0.05 to -0.05.  432 
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 Larger improvements are seen with increasing resolution during the summer when 433 

compared to measurements from low-cost sensors. Starting from a large negative bias of   434 

-5.4 µg m-3 (fractional bias of -0.48) at the 36 x 36 km resolution, performance consistently 435 

improved with each increasing resolution step with the bias eventually reaching -3.7 µg   436 

m-3 (fractional bias of -0.27) at the 1 x 1 km. There was also a reduction in fractional error 437 

from 0.52 at the coarse to 0.41 at the fine 1 x 1 km resolution. These metrics are 438 

encouraging, although they are likely impacted by an overprediction of the urban-rural 439 

gradient, similar to winter. Improvement of the secondary PM2.5 predictions is still the 440 

largest source of error between predictions and this source of measurements. 441 

 442 

6 Evaluation of Novel Emissions Surrogates 443 

 For commercial cooking, the normalized restaurant count was used to distribute the 444 

emissions from the sector in space within the 1 x 1 km domain. Geographical information 445 

was collected for all restaurant locations in the inner domain from the Google Places 446 

Application Programming Interface. This includes southwestern Pennsylvania as well as 447 

parts of eastern Ohio and northern West Virginia. To allocate on-road traffic emissions, the 448 

output from the traffic model of Ma et al. (2020) was used. This model simulated hourly 449 

traffic using data from the Pennsylvania Department of Transportation sites located 450 

throughout the inner modeling domain. Changes in the spatial distribution of cooking and 451 

on-road traffic emissions are illustrated in the supplementary material (Fig. S5-S8). The 452 

use of new surrogates resulted in a new spatial distribution of emissions for both cooking 453 

and onroadon road traffic sources when compared to those developed using default 454 

emissions surrogates. The changes in spatial distributions are illustrated in the 455 

supplementary material (Figures S5, S6, S7, and S8). These novel emissions surrogates 456 

resulted in larger emissions of both traffic and cooking in the downtown area. In the case 457 

of on-road traffic, major highways in the inner domain are emphasized with the new 458 

surrogates.  459 

 For both February and July 2017, the largest observed change when using the novel 460 

surrogates is an increase in predicted PM2.5 of around 3 µg m-3 in the downtown Pittsburgh 461 

area (Fig. 7). Differences in predicted PM2.5 concentrations outside of the urban areas of 462 

the inner domain are very small (less than 0.5 µg m-3 in magnitude).   463 
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 Model performance at 1 x 1 km resolution is detailed in Table 4. Negligible changes 464 

in performance were seen using EPA regulatory PM2.5 data in February 2017. Small 465 

improvements were seen at regulatory sites in July 2017, where fractional error was 466 

reduced from 51% to 48% and fractional bias increased from -43% to -39%. A positive 467 

shift in fractional bias was seen with the use of the new surrogates during both periods 468 

when compared to low-cost sensor measurements, resulting in a modest overprediction of 469 

PM2.5 in the winter (+0.24 fractional bias) and a modest underprediction of PM2.5 in the 470 

summer (-0.27 fractional bias). The larger changes when compared to the low-cost sensor 471 

measurements are a result of the location of the low-cost sensors in urban areas, where the 472 

new surrogates predicted elevated PM2.5 mass concentrations. 473 

7 Conclusions   474 

We applied PMCAMx-v2.0 over southwestern Pennsylvania during February and 475 

July 2017 at grid resolutions of 36 km, 12 km, 4 km and 1 km. Emissions were calculated 476 

for the relevant grids by using the spatial surrogates provided along with the 2011 NEI for 477 

all emissions sectors except traffic and cooking, for which 1 x 1 km spatial surrogates were 478 

developed. 479 

 PMCAMx predicts winter sulfate, elemental carbon, and organic aerosol 480 

concentrations with fractional biases below 10% at high resolution. Nitrate concentrations 481 

are overpredicted (bias +1.4 µg m-3) following the trend of previous studies in both the US 482 

and Europe. Agreement with total PM2.5 measurements is also encouraging with a 483 

fractional bias of +5%. Variability between urban and rural predictions of local pollutants 484 

EC and organic aerosol (OA) are reproduced well in the winter period. Underpredictions 485 

of summer OA concentrations led to underpredictions of total PM2.5 mass. Summer sulfate 486 

is reproduced with fractional bias of -21% and elemental carbon (EC) is predicted with 487 

fractional bias of -33%. Nitrate is similarly overpredicted in the summer with fractional 488 

bias of +70% although with a much smaller magnitude than in the winter (+0.4 µg m-3). 489 

Improvement of the treatment of dust in the model is required to better model the 490 

distribution of particulate nitrate between PM2.5 and PM10 modes. Differences between 491 

urban and rural EC is also predicted well in the summer, while OA is predicted to vary 492 

little between urban and rural locations. This is indicative of a greater contribution of 493 

secondary species to OA during this period. Improvements to SOA formation chemistry 494 
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within the model, particularly from biogenic sources outside of the inner modeling domain, 495 

will likely have a significant impact on PM2.5 predictions around the city of Pittsburgh. 496 

This, along with the improvement of dust treatment in the model, are topics of future work 497 

for model improvement. 498 

 499 

 PM2.5 prediction performance improved in almost all cases when increasing 500 

the resolution from 36 km to 1 km. Underpredictions at urban sites and overpredictions at 501 

rural sites were reduced at the same time. This is true when comparing against 502 

measurements from regulatory sites as well as low-cost monitors. The improved 503 

performance here is evidence of the enhanced ability of the model to capture important 504 

urban-rural gradients in PM2.5 pollution by increasing the resolution of predictions to 1 x 1 505 

km. Increasing resolution of predictions has been shown here to improve model 506 

performance when comparing predicted PM2.5 concentrations with observations from 507 

regulatory monitors and low-cost sensors. However, these simulations highlight the need 508 

for specificadditional improvements in the simulation to some of the secondary PM2.5 509 

formation pathways in the model. Improvement of the treatment of dust in the model is 510 

required to better simulatemodel the distribution of particulate nitrate between the fine and 511 

coarse PM2.5 and PM10 modes. Additionally, improvements to SOA formation chemistry 512 

within the model, particularly from biogenic sources outside of the inner modeling domain, 513 

will likely have a significant impact on PM2.5 predictions inaround the city of Pittsburgh. 514 

 515 

 516 

Code Availability. The PMCAMx-v2.0 code is available in Zenodo at 517 

https://doi.org/10.5281/zenodo.6772851 (Dinkelacker et al., 2022). License (for files): 518 

GNU General Public License v3.0. 519 
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Table 1. Comparison of daily average high-resolution PMCAMx-v2.0 predictions with 649 

daily EPA-CSN measurements during February and July 2017. 650 

 651 

February 2017 

 Sulfate Nitrate Ammon. Elemental 

Carbon 

Organic 

Aerosol 

PM2.5 a 

Measured Avg. (µg m-3) 1.92 1.51 0.91 1.08 4.37 10.34 

Predicted Avg. (µg m-3) 1.70 2.90 1.62 0.94 3.68 10.52 

Error (µg m-3) 0.79 1.54 1.03 0.78 2.15 3.02 

Fractional Error 0.41 0.83 0.96 0.71 0.53 0.30 

Bias (µg m-3) -0.22 1.40 0.71 -0.14 -0.68 0.18 

Fractional Bias -0.02 0.81 0.83 -0.08 -0.01 0.05 

 652 

July 2017 

 Sulfate Nitrate Ammon. Elemental 

Carbon 

Organic 

Aerosol 

PM2.5 a 

Measured Avg. (µg m-3) 2.04 0.26 0.53 0.74 4.46 11.24 

Predicted Avg. (µg m-3) 1.60 0.68 0.79 0.56 2.67 7.26 

Error (µg m-3) 1.12 0.45 0.39 0.39 2.46 4.67 

Fractional Error 0.62 0.82 0.62 0.60 0.67 0.49 

Bias (µg m-3) -0.44 0.42 0.26 -0.18 -1.85 -4.01 

Fractional Bias -0.21 0.70 0.44 -0.33 -0.47 -0.39 
a Measurements from the regulatory EPA monitors. 653 

  654 
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Table 2. Comparison of daily average PMCAMx-v2.0 predicted PM2.5 concentrations 655 

during February and July 2017 with daily measurements from 17 EPA regulatory 656 

monitors. 657 

 658 

 36 x 36 km 12 x 12 km 4 x 4 km 1 x 1 km 

            February 2017 

Measured Avg. (µg m-3) 10.34 10.34 10.34 10.34 

Predicted Avg. (µg m-3) 9.78 9.68 10.49 10.52 

Error (µg m-3) 3.35 3.16 3.04 3.02 

Fractional Error 0.34 0.32 0.30 0.30 

Bias (µg m-3) -0.56 -0.66 0.15 0.18 

Fractional Bias -0.09 -0.10 0.06 0.05 

  

                 July 2017 

Measured Avg. (µg m-3) 11.24 11.24 11.24 11.24 

Predicted Avg. (µg m-3) 6.90 6.86 7.26 7.23 

Error (µg m-3) 4.89 5.05 4.67 4.65 

Fractional Error 0.53 0.53 0.49 0.48 

Bias (µg m-3) -4.34 -4.39 -3.98 -4.01 

Fractional Bias -0.45 -0.47 -0.39 -0.39 

  659 
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Table 3. Comparison of daily average PMCAMx-v2.0 predicted PM2.5 concentrations 660 

during February and July 2017 with daily low-cost sensor (RAMP) measurements. 661 

 662 

 36 x 36 km 12 x 12 km 4 x 4 km 1 x 1 km 

              February 2017 

Measured Avg. (µg m-3) 11.65 11.65 11.65 11.65 

Predicted Avg. (µg m-3) 10.23 11.64 12.04 13.50 

Error (µg m-3) 4.53 4.53 4.51 5.12 

Fractional Error 0.33 0.33 0.34 0.37 

Bias (µg m-3) -1.43 -0.02 0.4 1.85 

Fractional Bias -0.02 <0.01 0.14 0.24 

                     

                  July 2017 

Measured Avg. (µg m-3) 12.59 12.59 12.59 12.59 

Predicted Avg. (µg m-3) 7.19 7.44 8.06 8.83 

Error (µg m-3) 5.60 5.70 5.29 4.89 

Fractional Error 0.51 0.51 0.46 0.42 

Bias (µg m-3) -5.40 -5.15 -4.53 -3.76 

Fractional Bias -0.48 -0.43 -0.36 -0.27 

 663 

  664 
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Table 4. Performance of daily average predicted total PM2.5 concentrations compared to 665 

daily measurements from regulatory sites and low-cost sensors with the use of old 666 

surrogates and new surrogates for on-road traffic and commercial cooking within the 1 x 667 

1 km resolution grid.  668 

 669 
February 2017 

 Old Surrogates New Surrogates 

Regulatory  

network 

Low-cost 

sensors 

Regulatory 

network 

Low-cost 

sensors 

Observed Average 

(µg m-3) 

10.34 11.65 10.34 11.65 

Predicted Average 

(µg m-3) 

10.23 11.32 10.52 13.50 

Error (µg m-3) 2.94 4.12 3.02 5.12 

Fractional Error 0.29 0.31 0.30 0.37 

Bias (µg m-3) -0.11 -0.33 0.18 1.85 

Fractional Bias -0.04 0.08 0.05 0.24 

 

July 2017 

 Old Surrogates New Surrogates 

 Regulatory  

network  

Low-cost 

sensors 

Regulatory  

network  

Low-cost 

sensors 

Observed Average 

(µg m-3) 

11.24 12.58 11.24 12.58 

Predicted Average 

(µg m-3) 

7.09 7.98 7.26 8.83 

Error (µg m-3) 4.91 5.32 4.67 4.89 

Fractional Error 0.51 0.47 0.49 0.42 

Bias (µg m-3) -4.33 -4.61 -4.01 -3.76 

Fractional Bias -0.43 -0.37 -0.39 -0.27 

 670 

  671 
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 672 

 673 
 674 

Figure 1. Monitoring sites. (a) Particulate matter speciation measurement sites from EPA-675 

CSN and PM2.5 regulatory monitors. The entire inner modeling domain is shown. (b) low-676 

cost sensor sites. City of Pittsburgh boundaries are shown in both panels for reference. 677 

  678 
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 679 

 680 
Figure 2. Comparison of daily average PMCAMx-v2.0 predicted concentrations of PM2.5 681 

(a) sulfate, (b) nitrate, (c) ammonium, (d) elemental carbon, and (e) organic aerosol with 682 

daily measurements from EPA-CSN sites during February 2017. 683 



 28 

 684 
 685 

Figure 3. (a) Comparison of PMCAMx-v2.0 predicted composition of PM1 with the 686 

corresponding AMS measurements at the CMU site and (b) organic aerosol composition 687 

based on the PMF analysis of the AMS measurements and predicted composition.  688 

  689 
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 690 
Figure 4. Comparison of PMCAMx-v2.0 predicted concentrations of PM2.5 (a) sulfate, (b) 691 

nitrate, (c) ammonium, (d) elemental carbon, and (e) organic aerosol with measurements 692 

from EPA-CSN sites during July 2017. 693 
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 694 

 695 
 696 

Figure 5. Comparison of daily average PMCAMx-v2.0 predicted concentrations of PM2.5 697 

with daily regulatory measurements and daily low-cost sensor measurements at (a) 36 x 698 

36, (b) 12 x 12, (c) 4 x 4, and (d) 1 x 1 km during February 2017. 699 

  700 
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 701 

 702 
 703 

Figure 6. Comparison of daily average PMCAMx-v2.0 predicted concentrations of PM2.5 704 

with daily regulatory measurements and daily low-cost sensor measurements at (a) 36 x 705 

36, (b) 12 x 12, (c) 4 x 4, and (d) 1 x 1 km during July 2017. 706 

  707 
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 708 
 709 

Figure 7. Difference between predicted monthly average PM2.5 mass concentration when 710 

using novel surrogates and original surrogates in (a) February 2017 and (b) July 2017 for 711 

the 1 x 1 km resolution simulation grid. A positive value indicates a higher concentration 712 

predicted with the novel surrogates. 713 


