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Abstract. Precipitation is a crucial component of the global water cycle. Rainfall features strongly affect societal activities 

and are closely associated with the functioning of terrestrial ecosystems. Hence predicting global and gridded precipitation 

under different emission scenarios is an essential output of climate change research, enabling a better understanding of future 10 

interactions between land biomes and climate change. Here, we provide a data-calibrated precipitation emulator (PREMU), 

offering a convenient and computationally effective way to better estimate and represent precipitation simulated by Earth 

system models (ESMs) under different user-prescribed emission scenarios. We construct the relationship between global/local 

precipitation and modes of global gridded temperature and find that the emulator shows a good performance in predicting 

historically observed precipitation from GSWP3. The ESM-specific emulator also estimates well the simulated precipitation 15 

of nine ESMs and under four dissimilar future scenarios of future atmospheric greenhouse gases (GHGs). Our ESM-specific 

emulator also reproduced well interannual fluctuations (R = 0.82–0.93, p < 0.001) of global land average precipitation (GLAP) 

simulated by the nine ESMs, as well as their trends and spatial patterns. The default configuration of our emulator only requires 

gridded temperature, also available from lower complexity models (LCMs) such as IMOGEN (Zelazowski et al., 2018) and 

MESMER (Beusch et al., 2022), which themselves are calibrated against ESMs. Therefore, our precipitation emulator can be 20 

directly coupled within other LCMs, for instance improving on the current simpler linear scaling of precipitation changes 

against global warming implicit in IMOGEN. The PREMU model has the opportunity to provide the driving conditions to 

model well the hydrological cycle, ecological processes, and their interactions with climate change. Critically the efficiency 

of LCMs allows them to make projections for many more potential future trajectories in atmospheric GHG concentrations than 

is possible with full ESMs, due to the high computational requirement of the latter. This flexibility makes LCMs an especially 25 

valuable tool for policymakers. 

1 Introduction 

Representing all the important Earth system processes, Earth system models (ESMs) are the primary tools to study the impact 

of greenhouse gas emissions on our climate (IPCC, 2013). However, there is a lack of sufficient computational power to run 

our most comprehensive, physically complete climate models for every application of interest (Nicholls et al.,2020), or for 30 
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every potential future emissions scenario. Thus, more computationally efficient tools are needed for climate change research 

(Gasser et al., 2017). 

 

Lower complexity models (LCMs) are common approaches to improve computational efficiency in climate change research 

(Gasser et al., 2017). By describing highly parameterized macro-properties of the climate system, LCMs are many orders of 35 

magnitude faster than full complexity Earth System Models (ESMs) (Nicholls et al., 2020). The simplest LCMs are Energy 

Balance Models (EBMs) that use multiple parameterized numerical models to estimate the changes in greenhouse gas 

concentrations, radiative forcing and then global land/ocean average temperature under different emission scenarios 

(Meinshausen et al., 2011; Nicholls et al., 2020). However, such global “box” models do not simulate the spatial pattern of 

temperature. Some more complex LCMs, such as IMOGEN and OSCAR, additionally emulate the spatial pattern of 40 

temperature through the pattern-scaling method. Pattern-scaling multiplies global temperature change by spatial patterns to 

give regional information (Zelazowski et al., 2018; Gasser et al., 2017; Huntingford et al., 2010). Recently, a spatially resolved 

emulator (MESMER) coupled with the emission-driven LCM (MAGICC) has been developed, which is found to reproduce 

the spatial pattern of temperature in ESMs better (Beusch et al., 2022). Other than temperature, however, it is still a challenge 

for LCMs to simulate well other climate variables such as precipitation under different emission scenarios (Gasser et al., 2017).  45 

 

Projecting changes in precipitation is important. Precipitation is a crucial component of the water cycle (Eltahir and Bras, 1996; 

Trenberth et al., 2003; Sun et al., 2018), has key societal implications and is closely associated with the functioning of terrestrial 

ecosystems. Accurately emulating precipitation change is necessary to determine the climate response to different emission 

scenarios and to understand feedbacks to global warming via rainfall-dependent vegetation net primary productivity (Gasser 50 

et al., 2017). Until now, however, only two LCMs (IMOGEN and OSCAR) can emulate precipitation (Zelazowski et al., 2018; 

Gasser et al., 2017). IMOGEN emulates the gridded precipitation based on the regression relationship (by month and location) 

between gridded precipitation and global land average temperature (Zelazowski et al., 2018). OSCAR constructs the emulator 

by establishing the relationship between global average precipitation and global average temperature and radiative forcing, 

and then using the pattern-scaling method to deduce the gridded precipitation (Gasser et al., 2017). Nevertheless, the gridded 55 

precipitation estimated by the simple linear method is not reliable either in IMOGEN or in OSCAR; the gridded precipitation 

predicted by IMOGEN only explains less than 20% of variance of seasonal precipitation in most regions (Zelazowski et al., 

2018) and OSCAR cannot capture the interannual variations of gridded precipitation across the globe at all (Gasser et al., 

2017). This may be because 1) the global average temperature could not fully characterize local temperature and moisture 

recycling (Prein et al., 2017) and large-scale circulation (Shepherd, 2014; Fereday et al., 2018; Heinze-Deml et al., 2021); 2) 60 

there is at any given location a nonlinear relationship between local rainfall features and global warming (Allen and Ingram., 

2002; Collins et al., 2013; Chadwick and Good, 2013). Hence models such as IMOGEN, that rely on linear pattern-scaling, by 

definition cannot fully capture expected future precipitation changes. 
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To this end, we proposed a computationally efficient precipitation emulator (PREMU), which uses gridded temperature data 65 

as independent forcing variables to reconstruct the gridded precipitation. In Sect. 2 we described the datasets (both 

measurements and ESM-based) and the methods to construct the driving-data specific emulator for historical observation and 

each ESM in detail. We illustrated the emulator’s ability to emulate the historical and future precipitation in Sect. 3. Finally, 

Sect. 4 discusses the strengths and caveats of our emulator. 

2 Data and Methods 70 

2.1 Observation datasets 

To verify the ability to predict historical precipitation using the emulator proposed in this study, we first tested it against the 

precipitation dataset from Global Soil Wetness Project Phase 3 (GSWP3) (Kim, 2017a). The GSWP3 dataset is based on the 

20th Century Reanalysis (20CR) version 2c (Compo et al., 2011), and has precipitation fields at a resolution of 2° × 2°. The 

GSWP3 data is dynamically downscaled using spectral nudging and bias-correction from the Global Precipitation Climatology 75 

Project and Climate Research Unit (Humphrey and Gudmundsson, 2019). This approach successfully keeps the low frequency 

signal of the two original reanalysis products, yet provides additional high frequency signals which are lacking in previous 

products (Kim, 2017a). GSWP3 also provides the other seven climate variables including air temperature (Tair), specific 

humidity, surface down welling long-wave radiation, surface down welling short-wave radiation, surface air pressure, and 

near-surface wind speed at a 0.5° × 0.5° spatial resolution from years 1901 to 2016. Here, with an emphasis on precipitation, 80 

we used Tair and precipitation from GSWP3 from period 1901 to 1950 to calibrate the emulator and from 1951 to 2016 to 

verify the emulator’s performance in predicting historical precipitation. 

2.2 Earth System Model data 

To evaluate the emulator’s performance in estimating future precipitation, we additionally used monthly precipitation and Tair 

for years 2015 to 2100 from nine ESMs operated under four Shared Socioeconomic Pathways (SSPs; SSP1-2.6, SSP2-4.5, 85 

SSP3-7.0, and SSP5-8.5; O’Neill et al., 2016). These ESMs are included in the 6th phase of the Coupled Model Intercomparison 

Project (CMIP6; Table 1). The SSP5-8.5 scenario represents the largest future change of GHG concentrations, compared to 

the other three SSPs (Hausfather and Peters, 2020), and so is associated with the largest variation in precipitation and Tair 

changes. Hence we used the precipitation and Tair from SSP5-8.5 to calibrate the emulator and the other three scenarios to 

verify the emulator’s performance at reproducing ESMs. In addition, in view of the different responses of precipitation to the 90 

changes of Tair in different ESMs, we constructed the emulator for each ESM respectively. For comparison between different 

models, the precipitation and Tair from all nine ESMs are re-gridded to the resolution of 2.5° × 2.5° using the first-order 

conservative remapping technique (Jones, 1999). 
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2.3 Methods 

2.3.1 Calibration 95 

Given the relatively poor linear relationship between global/gridded (i.e. local) precipitation and global land mean temperature 

(as noted in Zelazowski et al., 2018), we try to build a new emulator for precipitation. We still search for a relationship between 

precipitation change and some function of gridded Tair (Fig. 1), although more complex than simply linear in global 

temperature. Since precipitation is also not controlled by local temperature (Zhou et al., 2020), we seek links to features of 

Tair from all grid cells (10,368 at 2.5° × 2.5° resolution) across the globe to predict precipitation variation.  100 

In this section, we set out underlying methods for our emulation of local precipitation by the principal component regression 

(PCR) approach, based on relating it to the dominant modes of variability of temperature. PCR is a type of regression analysis, 

which considers the orthogonal principal components as independent variables. As a method that can be used to overcome the 

problem of multilinearity on predictor variables, PCR is widely used in forecasting seasonal precipitation (Kim et al.,2017b) 

and reconstructing the climatic modes of variability (Jones et al., 2009; Michel et al., 2020) and performed remarkably well. 105 

As might be expected, therefore, our starting point is deriving the principal components of global gridded temperature. We 

followed the standard procedure of Principal Component Analysis (PCA), as used in climate research, consisting of a set of 

time-invariant spatial patterns multiplied by timeseries. PCA notation can vary between users, but for simplicity, we will 

simply refer to these as PCA “spatial patterns” (each of which has the dimensions of the spatial grid, or alternatively an array 

of one dimension with 10,368 points), and PCA “timeseries”, which multiply the patterns. These timeseries, derived for each 110 

month, contain values applicable for each year, and so for instance, fitting to years 1901-1950 imply they will have 50 numbers. 

As precipitation may be influenced by the temperature of the previous months, we used the average Tair of three months 

(month of interest plus the previous two months) to apply PCA. In addition, considering that ESM may under-represent the 

effects of topography and aerosols on the precipitation from observations, we calibrated the emulator for the historical period 

and future respectively. For the future, we used precipitation and Tair from SSP5-8.5 to calibrate the ESM-specific emulator 115 

due to its largest changes in Tair covering the range of other SSPs. The detailed reasons for using precipitation and Tair from 

SSP5-8.5 rather than other lower emission scenarios or historical period are discussed in the Sect. 4. 

We set out in the Table 2 below our notation for indices and variable quantities. 

Our use of the standard definition of PCAs (sum of patterns × timeseries) implies that the estimate of the principal components 

is given by the spatial pattern of principal component coefficients 𝑈!,#
$%&'(&)(𝑘, 𝑖) multiplied by the timeseries of three months 120 

average gridded temperature. However, unlike many limited-area applications that derive a single timeseries (to multiply each 

PCA), we instead determined a timeseries for each location, and hence why 𝑇!,#*(#!+!,(!+(𝑘, 𝑦) has a k dependency. We then 

summed over all locations k, and this gives a global annual timeseries (for each month m, and PCA i) of: 

𝑇!,#-./(𝑦, 𝑖) = ∑ 𝑈!,#
$%&'(&)(𝑘, 𝑖) ∗0!"#$

123 𝑇!,#*(#!+!,(!+(𝑘, 𝑦)                    (1) 
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Using Tair for years 1901-1950 from the GSWP3 gridded dataset, and for period 2016-2100 from the nine ESMs forced under 125 

the SSP5-8.5 scenario, we determined the principal component coefficient matrix 𝑈!,#
$%&'(&) for each month m, and ESM e (or 

GWSP3) independently. We employed Equation (1), and the top 10 principal components (i = 1,…,10) were used in this study, 

which described more than 70% of gridded temperature information (i.e. variation) across the globe (Fig. 2 and Figs. S1-S3).  

 

Having established the temperature principal components, via the form presented in Eq (1), we then mapped these onto 130 

precipitation both globally and locally. Our mapping is via a standard regression based on 50 datapoints (i.e. year 1901-1950; 

or 86 datapoints in ESMs for year 2015-2100). The regression has 10 degrees-of-freedom, due to our selection of 10 PCAs, 

and this relationship links the timeseries of global monthly GLAP from the GSWP3 dataset (or the nine ESMs) and the 10 

principal components of gridded temperature for each month of the 12 months of the year (January to December). This 

regression is constructed as: 135 

𝑃!,#
4)56&)(𝑦) = ∑ 𝛼!,#(𝑖) ∗ 𝑇!,#-./(𝑦, 𝑖) + 𝛼!,#

(7'!,8!%'(𝑖)0%&'
(23                    (2) 

where 𝑃!,#
4)56&) is the monthly GLAP. 𝛼!,#	represents the regression coefficient of each principal component and 𝛼!,#

(7'!,8!%' 

is the intercept term, which are derived from linear regressions by least squares fitting. To provide the spatial pattern of monthly 

precipitation, we also constructed the local (i.e. spatial) regression relationship between gridded precipitation and the 10 

individual principal components as: 140 

𝑃!,#	
4,(:(𝑘, 𝑦) = ∑ 𝛽!,#(𝑘, 𝑖) ∗ 𝑇!,#-./(𝑦, 𝑖) + 𝛽!,#

(7'!,8!%'(𝑘, 𝑖)0%&'
(23               (3) 

and where 𝑃!,#		
4,(:(𝑘, 𝑦) is the precipitation at a specific cell, k. Variable 𝛽!,# represents the regression coefficient of each 

principal component and 𝛽!,#
(7'!,8!%' is the intercept term, which are derived from linear regressions by least squares method 

using the calibration time series. 

2.3.2 Validation 145 

For validation, we set out in the table below the variables that we estimate with our methodology.  The “overhat” notation 

represents an estimated quantity. 

Variable Symbol Variable Notes 
 

𝑇!,#-./(𝑦, 𝚤)3  
Principal components estimated by the Tair 

from validation datasets 

Based on the assumption of constant spatial 

part of PCAs, 𝑈!,#
$%&'(&)(𝑘, 𝑖). 

 

𝑃!,#
4)56&)(𝑦)3  

Estimation of monthly global precipitation, 

GLAP 
  

𝑃!,#
4,;:(𝑘, 𝑦)3  

Estimation of monthly gridded (i.e. spatial) 

precipitation 
   

https://doi.org/10.5194/gmd-2022-144
Preprint. Discussion started: 7 July 2022
c© Author(s) 2022. CC BY 4.0 License.



6 
 

  

We first recalled that we fitted our PCA-based framework to historical temperature and precipitation data for period 1901-

1950, and to ESMs for the SSP5-8.5 future atmospheric GHG concentration scenario. Based on the principal component 150 

coefficients extracted using these calibration datasets, we then estimated the 𝑇!,#-./(𝑦, 𝚤)3  for 1951-2016 using Tair from 

GSWP3 and for 2015-2100 using Tair from each ESM independently under the other three SSPs:  

𝑇!,#-./(𝑦, 𝚤)3 = ∑ 𝑈!,#
$%&'(&)(𝑘, 𝑖) ∗0!"#$

123 𝑇!,#*(#+!,(!+,<&)(𝑘, 𝑦),                     (4) 

Then we estimated the  𝑃!,#
4)56&)(𝑦)3  and 𝑃	!,#

4,;:(𝑠, 𝑦)3  by the 𝑇!,#-./(𝑦, 𝚤)3  and our fitted regression coefficients in Eq. 2 and Eq. 

3: 155 

𝑃!,#
4)56&)(𝑦)3 = ∑ 𝛼!,#(𝑖) ∗ 			𝑇!,#-./(𝑦, 𝚤)3 +𝛼!,#

(7'!,8!%'(𝑖)0%&'
(23 ,                  (5) 

𝑃!,#
4,;:(𝑘, 𝑦)3 = ∑ 𝛽!,#(𝑘, 𝑖) ∗ 		𝑇!,#-./(𝑦, 𝚤)3 +𝛽!,#

(7'!,8!%'(𝑘, 𝑖)0%&'
(23 ,						          (6) 

where the 𝑇!,#*(#+!,(!+,<&) is the gridded Tair from validation datasets, and as before is the average of the previous three months. 

We found a slight difference in GLAP between 𝑃!,#
4)56&)3  and the spatial average of 𝑃!,#

4,;:3 , but  𝑃!,#
4)56&)3  had a slightly better 

correlation with GSWP3. Thus, in a final component to our calculations, we scale 𝑃!,#
4,;:3  by the ratio of  𝑃!,#

4)56&)3  and the 160 

monthly GLAP from area-weighted averaged  𝑃!,#
4,;:3 , i.e. with equation: 

𝑃!,#
4,;:,			/:=(𝑘, 𝑦)3 = 𝑃!,#

4,;:(𝑘, 𝑦)3 ∗
-(,*
!+,-.+>

?!&7@-(,*
!"/$>

A
,			                              (7) 

where 𝑃!,#
4,;:,/:=3  is the adjusted estimation of monthly gridded precipitation and 𝑀𝑒𝑎𝑛 9𝑃!,#

4,;:3: represents the area-weighted 

averaged  𝑃!,#
4,;:3 . 

3 Results 165 

3.1 Performance of precipitation emulator on historical precipitation 

As outlined above, to evaluate the ability of our PREMU to emulate historical precipitation, we first used the precipitation and 

Tair data from GSWP3, for the period 1901-1951, to calibrate its parameters. We then tested its predictive capability at 

estimating precipitation data from the period 1951-2016. For the calibration period (1901-1950), our emulator shows a 

consistent areally-averaged global annual precipitation value (1002 mm year-1 and 1002 mm year-1 for PREMU and GSWP3, 170 

respectively) and trend (0.48 mm year-2 and 0.54 mm year-2 for PREMU and GSWP3). Furthermore, the interannual variations 

of GLAP derived from PREMU are found to be significantly correlated with that from GSWP3 (R = 0.81, p < 0.001). For the 

validation period (1951-2016), PREMU also captured the observed trend (0.22 mm year-2 for both PREMU and GSWP3) and 

interannual variations (R = 0.67, p < 0.001) of GLAP from GSWP3 (Fig.3a). By contrast, if we simply used a prediction that 
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linearly relates rainfall changes to global temperature changes and variability, which has similarities to the IMOGEN-based 175 

method, we found a much smaller (-0.25 mm year-2, -45%) and larger (+0.47 mm year-2, +213%) trend in GLAP than GSWP3 

for the calibration and validation periods, respectively. In addition, the interannual variations of GLAP as estimated by a simple 

linear regression against global temperature, shows a weaker correlation with GSWP3 in these two periods (R = 0.27, p = 0.06 

for the calibration period; R = 0.15, p = 0.21 for validation period; Fig. 3a). 

 180 

Spatially, PREMU and a simple linear-based method (similar to the algorithms in IMOGEN) can both emulate similarly the 

spatial pattern of mean annual precipitation (MAP) during the last three decades in the validation period (1987–2016), as 

observed in the GSWP3 data (Fig. 4a, c, e). Compared to the simple linear approach, there are fewer grid cells showing more 

than 25% error of MAP from GSWP3 in our emulation (17%) against a simple linear fit (27%; Fig. 3b,c). The overestimation 

of MAP with our PREMU method is mainly found in the Tibetan Plateau and central Africa (~20%), and the underestimation 185 

of MAP mainly in northern Siberia, Greenland Island and northern Australia (-15% – -30%); Fig. 3c). To verify the emulator’s 

ability to predict changes in gridded observation precipitation, we calculated the change of MAP in the first and last three 

decades of the validation period (1951-1980 and 1987-2016; Fig. 4b, d, f). For the differences between these two time periods, 

both PREMU and GSWP3 consistently show an increase of annual precipitation in the northern Eurasia, North America and 

the southern South America and a decrease in central South America. However, in some regions of East Asia, Europe, Australia 190 

and South America, PREMU underestimates / overestimates the changes in annual precipitation (50–200 mm year-1; Fig. 4). 

3.2 Performance of precipitation emulator on future precipitation from CMIP6 ESMs 

A key requirement of our PREMU emulator is that it can make projections of precipitation change for different future scenarios 

of atmospheric GHG concentrations, and potentially for novel trajectories of such gases for which ESMs have not made 

calculations. To test for this capability, we analysed its performance at predicting changes under the SSP1-2.6, SSP2-4.5 and 195 

SSP3-7.0 scenarios, and for which ESM-based simulations that are available. Recall that our PREMU calibration was against 

ESMs operated for the SSP5-8.5 scenario, capturing inter-ESM differences in projections of Tair, and critically, precipitation. 

Similar to the emulation for the historical period, PREMU shows a good performance in emulating future precipitation (Fig. 

5). For the calibration scenario, the multi-model mean GLAP from PREMU shows consistent trend (0.96 mm year-2 and 0.96 

mm year-2 for our emulator and ESMs) and interannual variation (R = 0.98, p<0.001) with that from ESMs (Fig. 5a). For the 200 

three validation scenarios of the different SSPs, PREMU shows a better correlation in interannual variations of GLAP with 

ESMs than the historical period (R = 0.86, p<0.001 for SSP1-2.6; R = 0.95, p<0.001 for SSP2-4.5; R = 0.95, p<0.001 for 

SSP3-7.0; Fig. 5c,e,g). Although the trends of global precipitation in our emulation are close to that of ESMs across the three 

scenarios (Table 3), the error of trends by the PREMU increases from high to low emission scenarios. Hence, we found larger 

errors when interpolating to colder climates using the emulator constructed under a high emissions scenario (SSP5-8.5).  At 205 

the individual ESM level, PREMU can capture well both trends and interannual fluctuations of GLAP well under all scenarios 

for MPI-ESM1-2-LR, MIROC6, EC-Earth3 and CanESM5. For the other five models, there are biases of trends (Table 3) 

https://doi.org/10.5194/gmd-2022-144
Preprint. Discussion started: 7 July 2022
c© Author(s) 2022. CC BY 4.0 License.



8 
 

and/or interannual variations of GLAP (Fig. 6 and Figs. S4-S6) between our emulation and ESMs. These differences could be 

partly related to the substantial uncertainties in future precipitation projection in ESMs. 

 210 

For the spatial pattern (Fig. 5b,d,f,h), PREMU can reproduce the projected pattern of MAP from the multi-model mean of 

ESMs under the calibration scenario and the three validation scenarios (Fig. 7). Compared to the historical period, the error of 

multi-model MAP between our emulation and ESMs is relatively smaller (~10%; Fig. 7). During the prediction period, defined 

here as years 2015-2100, PREMU predicts a 50-200 mm year-1 increase of annual precipitation in Eurasia, North America and 

northeastern of Africa, but a 50-200 mm years-1 decrease in Amazon rainforest from the low to high emission scenarios, which 215 

is consistent with the canonical pattern from the multi-model mean of ESMs (Fig. 8). Similar to the simulation for GLAP, the 

error in spatial pattern of MAP and changes in MAP between our emulation and ESMs increases from high to low emission 

scenarios (Fig. 5 and Fig. 8). Under the SSP3-7.0 scenario, PREMU shows a less than 100 mm year-1 error of change in MAP 

in 64% of grid cells. While under the lowest emission scenario (SSP1-2.6), PREMU underestimates the increase of MAP in 

eastern China (100-200 mm year-1) and overestimates the decrease in southern Europe (50-100 mm year-1). When considering 220 

performance at the individual ESM level, PREMU can reproduce the spatial pattern of MAP well. In general, the proportions 

of grid cells with an error more than 10% is small (8% [6%-14%] for SSP1-2.6; 5% [3%-8%] for SSP2-4.5; 5% [3%- 9%] for 

SSP3-7.0; 0% [0%- 0 %] for SSP5-8.5; mean [min-max]; Fig. 9 and Figs. S7-S9). However, as for the changes in MAP, we 

found a relative poor performance in emulating the changes in some ESMs especially in SSP1-2.6 (Fig. 10 and Figs. S10-S12). 

While the spatial pattern of changes in MAP is quite different across ESMs even under the same SSP, the errors by PREMU 225 

are much smaller than the inter-ESM differences (Fig. 10 and Figs. S10-S12). 

4 Discussion 

To our knowledge, this study provides a novel approach to linking local precipitation changes to geographical features (i.e. 

spatial modes) of gridded temperature in a single emulator chain, which can be further incorporated into existing LCMs. 

Despite relying on a series of simple assumptions, PREMU can successfully capture the simulated changes in precipitation by 230 

ESMs and under a broad range of different emission scenarios. Comparing with the precipitation predicted by a simple linear 

regression between local rainfall alteration and level of global warming (e.g. as used in other LCMs such as IMOGEN), the 

rainfall in PREMU shows more consistent trends and interannual variations of GLAP and in the spatial pattern of MAP. These 

improvements are noted in the comparison against the historical precipitation recorded in the GSWP3 dataset, as well as when 

emulating the predicted future precipitation by ESMs (Figs. 3-6). For a user-prescribed emission scenario, or for a time-235 

evolving global temperature trajectory designed to constrain warming to a level such as two degrees (Huntingford et al., 2017), 

PREMU can accurately and quickly emulate the related gridded precipitation changes. Our method can utilize the existing 

spatial features of gridded temperature from either ESMs or LCMs, to support studies related to future changes in precipitation. 

In particular, coupling our precipitation emulator with other LCMs provides the input climate forcing for land surface models 
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to help disentangle hydrological and ecological responses globally to future climate change (Zelazowski et al., 2018; Li et al., 240 

2022; Korell et al., 2021).  

 

We note that the performance of PREMU at predicting future precipitation from ESMs is much better than that when emulating 

historical GSWP3 precipitation. This is because PREMU is only based on the ten modes of global gridded temperature, and 

the effects of aerosols and topography on precipitation are not well represented in our emulator (Austin and Dirks., 2005; 245 

Medvigy et al., 2012). For instance, Fig. 3 shows emulated precipitation has large errors in mountainous regions, where 

orographic precipitation could be dominant. The effect of raised aerosols in the 20th century have been shown as having a role 

almost as large as greenhouse gases warming effects on features of regional precipitation (e.g. in India; Bollasina et al., 2011). 

Thus, adding the effects of topography and aerosols on precipitation in to the PREMU could further improve the ability of 

predicting precipitation. An alternative argument is that the good performance on predicting precipitation from ESMs by 250 

PREMU may suggest that climate models under-represent the effects of topography and aerosols (Samset et al., 2016; Yang 

et al., 2021). 

 

Overall, the performance of predicting precipitation from ESMs by our emulator is good, although not for all models and under 

all scenarios. Both trends and interannual variability of GLAP are well captured under all scenarios for MPI-ESM1-2-LR, 255 

MIROC6, EC-Earth3 and CanESM5, but PREMU performs less well at predicting GLAP in the other five ESMs (Fig. 6 and 

Figs. S4-S6). This may be because different ESMs use alternative atmospheric circulation model and precipitation schemes 

(e.g., CAM6.3 in CESM2 and AM4 in GFDL-ESM4), which contain different physical processes or parameterizations in their 

simulation of precipitation (Danabasoglu et al., 2020; Horowitz et al., 2020; Hourdin et al., 2020). Notable is that, PREMU 

underestimates 30% (6%–60%) of interannual variations of precipitation in all ESMs and when considering across all four 260 

GHG concentration scenarios. This is a common “feature” of linear regression models, as they favor bias reduction over 

variance under the bias-variance trade-off (Geman et al.,1992). In addition, we also suggest this may be because of missing 

some modes (out of the 10 modes we used) for interannual variations, or an under-representation of the effect of key climate 

modes such as ENSO in our emulator, or a non-linear response of precipitation to climate modes. It is also worth noting that 

the trend of GLAP in CESM2 and GFDL-ESM4 under SSP3-7.0 are lower than that under SSP2-4.5. We speculate that this 265 

may be caused by the most drastic land use changes of that former SSP, and that are account for in ESM simulations, resulting 

in a slower increase in precipitation under SSP3-7.0 (Riahi et al., 2017). Our emulator predicts precipitation through the 

temperature gradients and so cannot capture the impact of land-use changes on precipitation via altered land-atmospheric 

feedbacks impacts the hydrological cycle (Table 3).  

 270 

Our emulator is based on the assumption that spatial temperature modes can describe well precipitation. Hence, we assumed 

implicitly that the coefficient matrix in PCA for global gridded temperature (i.e., the weights of each grid cell for each principal 

component) are stable, i.e. invariant, with climate change. To test this assumption, we compared the coefficient matrixes of 
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temperature derived for the SSP5-8.5 scenario with those from the SSP1-2.6 scenario, for modelled period 2015-2100 (Figs. 

S13 and S14). For the future scenarios, we found that most coefficients of PCA, in both January and July, are similar between 275 

the SSP5-8.5 scenario and SSP1-2.6 scenario, explaining >95% variations in global temperature. This is, though, with a 

different order of PCA coefficients (for example, the third PCA of SSP5-8.5 in Fig. S3d corresponds to the second PCA of 

SSP1-2.6 in Fig. S14c; Figs. S2-S3, S13-S14). This finding suggests that the main features of global temperature are constant 

across different scenarios. We note in some instances, the signs of coefficients are opposite for some principal components 

between different scenarios, but this corresponds to regression coefficients also with opposite signs, which combined give the 280 

same predictions.  

 

We have confirmed that our ability to reproduce the historical and future trends as well as interannual variabilities in 

precipitation, is better than with other methods that more simply regression local changes against global temperature variation 

(e.g. IMOGEN and OSCAR; Zelazowski et al., 2018; Gasser et al., 2017). However, the remaining biases in emulating the 285 

other three SSPs with the emulator constructed (i.e. fitted) under SSP5-8.5 imply that the sensitivity of gridded precipitation 

to temperature modes may have a slight dependence on SSP. There are some studies predict that the variability of precipitation 

will increase in a warmer world (Zhang et al., 2021; Song et al., 2018), but where such additional variability is not present in 

the spatial temperature modes of variations. Therefore, it could be unwise to use the emulator constructed using the temperature 

and precipitation during the historical period or under the low emission scenarios to project future precipitation change under 290 

a high emission scenario. Constructing the emulator separately for low or high emission scenarios could help reduce 

uncertainties in emulating future precipitation.  

 

We tested the effect of different lags of gridded temperature on changes in precipitation. Previous studies noted that “memory 

effects” may cause precipitation to be affected more by the climate modes in the previous months (An et al., 2020). Here, we 295 

used throughout the three-month average temperature (month of interest plus the previous two months) to capture potential 

lagging effects. However, to quantify the uncertainty based on duration of the lag effect, we also tested one-month temperature 

and six-month average temperature to construct the emulator respectively (“emulator-1mon” and “emulator-6mon”). For the 

historical period, we found that the emulator-1mon was unable to capture the increase of GLAP after 1950. Predicting the 

GLAP from emulator-6mon shows a good fitting of the trends and interannual variations of GLAP in GSWP3 similar to that 300 

from emulator based on three-month average temperature, but with a lower correlation coefficient (R=0.77, p<0.001 for three-

month; R=0.73, p<0.001 for six-month; Fig. S15).  While for future precipitation from ESMs, all three emulators with 

different temperature lag periods (one-month, three-month, six-month) can capture well the changes in GLAP and gridded 

precipitation under different scenarios in the future (Fig. S16, S17). Hence, we deduce that the method is highly robust (i.e. 

invariant) to lag-length when emulating the future precipitation (Fig. 5 and Fig. S16-17).  305 
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We constructed our emulator using thermal modes of variation based on the temperature from over both land and ocean grid 

cells. As a sensitivity study, we also evaluated the performance of the emulator constructed only using Tair over land 

(“emulator-land”) to test its capability at predicting future precipitation. We found that the emulator-land can also reproduce 

consistent trends and interannual variations of GLAP and changes in gridded precipitation with ESMs (Fig. S18 and S19). 310 

However, considering that the change of air temperature over ocean could contain additional information that relates to local 

climate variability (Trenberth and Shea, 2005), we suggest retaining our inclusion of all land and ocean grid cells in PREMU 

calibration. 

 

Our emulator has focused on total precipitation at each location. Future analyses could include testing its performance for 315 

individual features or subsets of precipitation patterns, such as convective precipitation, large-scale precipitation and 

topographic precipitation. We also suggest possibly extending our emulator drivers beyond the modes of variability of air 

temperature only. For example, considering that the interannual variations of precipitation are mainly caused by large-scale 

precipitation dominated by ESNO (Cai et al., 2001; Oldenborgh and Burgers, 2005; Gupta and Jain., 2021; Zhou et al., 2020), 

we could consider additionally entraining sea surface temperature as a forcing variable. Similarly, for convective precipitation, 320 

local temperature and energy for uplift could be used for prediction (Berg et al., 2013).  

5 Conclusions 

In this study, we proposed an algorithm to construct a precipitation emulator, which could estimate gridded precipitation and 

its changes in a convenient and computationally effective way. We exploit strong discovered linkages between rainfall patterns 

and natural spatial modes of variability in near-surface temperature. To the best of our knowledge, this is a pioneer emulator 325 

that can be directly coupled within existing LCMs, and especially noting that LCMs may perform well for other variables but 

are currently weaker at estimating features of rainfall. This new combination will better predict global and gridded precipitation 

under different emission scenarios. With illustrative examples, we demonstrated the good performance of our emulator in 

predicting the absolute value and interannual variations in historical precipitation from GSWP3 as well as predicted future 

precipitation under four scenarios from ESMs. In addition, we also verified the reliability of our results despite the potential 330 

uncertainties in the method (e.g., the assumptions of the stability in coefficient matrix in PCA and sensitivity of gridded 

precipitation to temperature modes). The accurate projection of future precipitation can help analyze not only expected direct 

climate change under different emission scenarios but also the responses of the hydrological cycle and ecological processes to 

such future changes. ESMs remain hugely computationally demanding and can be only operated for a limited number of 

century-timescale projections. Hence robust emulators of full-complexity Earth system models remain an important tool, 335 

extrapolating ESM projections to alternative future emissions or GHG concentration scenarios that require investigation and 

understanding. 
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Code availability 
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Table 1: List of the 9 employed CMIP6 models and the modeling groups providing them. 495 
  

Model Modeling Center 

UKESM1-0-LL Met Office Hadley Centre and National Environmental Research Council, UK  

MPI-ESM1-2-LR Max Planck Institute for Meteorology, Germany 

MIROC6 Japan Agency for Marine-Earth Science and Technology, Japan 

IPSL-CM6A-LR Institute Pierre Simon Laplace, France 

GFDL-ESM4 Geophysical Fluid Dynamics Laboratory, USA 

EC-Earth3 EC-Earth consortium, Europe 

CanESM5 Canadian Centre for Climate Modeling and Analysis Environment and Climate Change, Canada. 

CESM2 National Center for Atmospheric Research, Climate and Global Dynamics Laboratory, USA 

ACCESS-ESM1-5 Commonwealth Scientific and Industrial Research Organisation, Australia 
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Indice Label or 

Variable Symbol 
Variable Notes 

 

𝑒 ESM index Indexes nine ESMs used (see Table 1)  

𝑖 PCA index 𝑖 = 1 is dominant spatial PCA, 1 ≤ 𝑖 ≤ 𝑁!"# = 10 used  

𝑘 Spatial index 1 ≤ 𝑘 ≤ 𝑁$%&', where	𝑁$%&' = 10, 368 grids  

𝑚 Month index All calculations for each month, 1 ≤ 𝑚 ≤ 12  

𝑦 Year index Index of years in periods of calibration or prediction  

𝑇(,*+&*(,(%&(,(𝑘, 𝑦) 
Timeseries part of PCAs, for each 

location, and for temperature 

Average gridded Tair of three months (month of interest plus the 

previous two months). Note, different timeseries calculated for 

each location indexed by k. 

 

𝑈(,*
-./0&/1(𝑘, 𝑖) Spatial part of PCAs for temperature A matrix of eigenvectors of the covariance matrix.  

𝑇(,*!"#(𝑦, 𝑖) Temporal principal components in PCAs 
Timeseries representing the characteristics of global gridded 

Tair   
 

𝑃(,*
$123/1(𝑦) 

Monthly global land average precipitation 

for calibration 
  

𝑃(,*	
$%&'(𝑘, 𝑦) 

Monthly gridded (i.e. local) precipitation 

for calibration 
   

Table 2: List of indices labels and variable symbols in the calibration. 
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 SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5 

  ESM PREMU ESM PREMU ESM PREMU ESM PREMU 

ESMs average 0.29  0.16  0.58 0.45  0.69 0.76  0.96  0.96  

UKESM1-0-LL 0.57  0.30  0.67  0.53  0.88  0.87  1.16  1.16  

MPI-ESM1-2-LR 0.19  0.06  0.23  0.26  0.63  0.69  0.85  0.85  

MIROC6 0.08  0.09  0.54  0.41  0.62  0.74  1.09  1.09  

IPSL-CM6A-LR 0.48  0.27  0.73  0.56  1.05  0.90  1.25  1.25  

GFDL-ESM4 0.15  -0.06  0.41  0.06  -0.13  0.03  0.04  0.03  

EC-Earth3 0.13  0.18  0.63  0.72  1.14  1.21  1.67  1.69  

CanESM5 0.51  0.40  1.15  0.90  1.33  1.32  1.48  1.48  

CESM2 0.33  0.12  0.69  0.47  0.41  0.81  0.82  0.80  

ACCESS-ESM1-5 0.18  0.08  0.21  0.18  0.28  0.25  0.28  0.27  

Table 3: Trend of GLAP from ESMs average and each ESM and its corresponding emulation by PREMU during the period 2015-

2100 under four scenarios. The ESMs Average represents the multi-model mean precipitation predicted by gridded temperature 500 
from 9 ESMs. Note that the unit is mm year-2.     
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Appendix 1 

Table A1: Table of acronyms. 

  505 

Acronym Meaning 

CMIP6 The 6th phase of the Coupled Model Intercomparison Project 

EBM Energy Balance Model 

ESM Earth System Model 

GLAP Global land average precipitation 

GSWP3 Global Soil Wetness Project Phase 3 

IMOGEN Integrated Model Of Global Effects of climatic aNomalies （Zelazowski et al., 2018) 

LCM Lower complexity models 

MAP Mean annual precipitation 

MESMER Modular Earth System Model Emulator with spatially Resolved output (Beusch et al., 2021) 

OSCAR A compact Earth system model (See Gasser et al., 2017) 

PCA Principal Component Analysis 

PREMU A computationally efficient precipitation emulator (This study). 

SSP Shared Socioeconomic Pathway 

Tair Surface air temperature 
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Figure 1: Illustration of the precipitation emulator driven by the gridded temperature. Step 1 is to extract the features of gridded 

temperature through principal component analysis. In step 2, we construct the parameters of the emulator by regression of 

GLAP/gridded precipitation and principal components of gridded temperature. Then we use the emulator to predict the 510 

precipitation for validation period/ scenario in Step 3. Finally, we calibrate the precipitation and verify the results with precipitation 

from GSWP3 and ESMs. Here, 𝑻𝒆,𝒎𝑷𝑪𝑨(𝒚, 𝒊) is the principal components extracted by PCA. 𝑷𝒆,𝒎
𝒈𝒍𝒐𝒃𝒂𝒍(𝒚)	is the GLAP and 𝑷𝒆,𝒎

𝒈𝒓𝒊𝒅(𝒌, 𝒚)  

is the precipitation a given grid k. 𝜶𝒆,𝒎(𝒊)/𝜷𝒆,𝒎(𝒌, 𝒊) represents the coefficients of each principal components of temperature to 

global/gridded precipitation and 𝜶𝒆,𝒎
𝒊𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕(𝒊) /𝜷𝒆,𝒎

𝒊𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕(𝒌, 𝒊)  is the intercept term. And 𝑼𝒆,𝒎
𝑺𝒑𝒂𝒕𝒊𝒂𝒍(𝒌, 𝒊) is the PCA coefficients. 

Note that, the gridded temperature from GSWP3 is area-weighted averaged to 2.5° x 2.5° before PCA.    515 
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Figure 2: The corresponding results from the PCA of the gridded temperature in January between 1901 and 1950 from GSWP3: a) 

The cumulative variance explanation rate of the top ten principal components. b-k) Coefficients of the top ten principal components 520 

(corresponding to 𝑼𝒆,𝒎
𝑺𝒑𝒂𝒕𝒊𝒂𝒍(: , 𝒊), 𝒊 = 𝟏 − 𝟏𝟎).  

 

  

https://doi.org/10.5194/gmd-2022-144
Preprint. Discussion started: 7 July 2022
c© Author(s) 2022. CC BY 4.0 License.



23 
 

   

Figure 3: The emulation on historical precipitation: a) GLAP of the historical observation precipitation (GSWP3), the prediction 525 

precipitation estimated by the simple linear method (Simple linear) and our emulator (PREMU) in 1901–2016. b) The spatial pattern 

of error of MAP in 1987-2016 between Simple linear and GSWP3. c) The spatial pattern of error of the MAP in 1987-2016 between 

our emulator and GSWP3. The global land average does not include Antarctica because of no emulation for Antarctica and the arid 

areas where the MAP from GSWP3 is less than 200 mm year-1 in 1980-2016 are masked.  

  530 
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Figure 4: Spatial pattern of MAP and change in MAP: a) The MAP in 1987-2016 from GSWP3. b) The spatial pattern of change in 

MAP between the period of 1951-1980 and 1987-2016 from GSWP3. c-d). Same as a-b) but for the emulation from Simple linear. e-

f). Same as a-b) but for the emulation from PREMU.  

  535 
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Figure 5: The emulation on future precipitation: a) multi-model mean GLAP in 9 ESMs from CMIP6 (CMIP (9)), and the 

precipitation prediction by our emulator (PREMU) in 2015-2100 under the SSP5-8.5 scenario. The shaded area represents the 

mean±std. b) The spatial pattern of error in MAP during 2071-2100 between multi-model mean and our emulator. c-d) SSP1-2.6; e-

f) SSP2-4.5; g-h) SSP3-7.0. 540 
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Figure 6: The anomaly of GLAP from each ESM under the SSP1-2.6 scenario: a) UKESM1-0-LL; b) MPI-ESM1-2-LR; c) MIROC6; 

d) IPSL-CM6A-LR; e) GFDL-ESM4; f) EC-Earth3; g) CanESM5; h) CESM2; i) ACCESS-ESM1-5.   

 545 
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Figure 7: The spatial pattern of MAP in 2071-2100 from a) multi-model mean of ESMs, b) our emulation under SSP5-8.5 scenario 550 
and c) the errors in MAP from our emulation. d-f) SSP1-2.6; g-i) SSP2-4.5; j-l) SSP3-7.0.  
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Figure 8: The spatial pattern of change in MAP in 2071-2100 from a) multi-model mean of ESMs and b) our emulation under SSP5-555 
8.5 scenario. c-d) SSP1-2.6; e-f) SSP2-4.5; g-h) SSP3-7.0.  
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Figure 9: The spatial pattern of error of the MAP in 2071-2100 between each ESM and our emulation under the SSP1-2.6 scenario: 

a) UKESM1-0-LL; b) MPI-ESM1-2-LR; c) MIROC6; d) IPSL-CM6A-LR; e) GFDL-ESM4; f) EC-Earth3; g) CanESM5; h) CESM2; 560 
i) ACCESS-ESM1-5. 
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Figure 10: The spatial pattern of change in MAP between the period of 2016-2045 and 2071-2100 from a) UKESM1-0-LL and b) 

our emulation under SSP1-2.6 scenario. c-d) MPI-ESM1-2-LR; e-f) MIROC6; g-h) IPSL-CM6A-LR; i-j) GFDL-ESM4; k-l) EC-565 
Earth3; m-n) CanESM5; o-p) CESM2; q-r) ACCESS-ESM1-5.    
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