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Abstract. Surface gravity waves play a critical role in several processes, including mixing, coastal inundation and
surface fluxes. Despite the growing literature on the importance of ocean surface waves, wind-wave processes have
traditionally been excluded from Earth system models due to the high computational costs of running spectral wave
models. The Next Generation Ocean Model Development in the DOE’s (Department of Energy) E3SM (Energy Ex-
ascale Earth System Model) project partly focuses on the inclusion of a wave model, WAVEWATCH III (WW3), into
the-E3SM. WW3, which was originally developed for operational wave forecasting, needs to be computationally less
expensive before it can be integrated into ESMs. To accomplish this, we take advantage of heterogeneous architectures
at DOE leadership computing facilities and the increasing computing power of general-purpose graphics processing
units (GPU). This paper identifies the wave action source terms, w3srceMDp, as the most computationally intensive
module in WW3 and then accelerates them via GPU. Using-ene-GPU5-eur-Our experiments on two computing plat-
forms, Kodiak (P100 GPU & Intel(R) Xeon(R) CPU E5-2695 v4) and Summit (V100 GPU & IBM POWERY), show

ee 56 02 Asc G -espeetivel—over—one—MP on—CP ine—differe S ORS—6 iple

CPUsand-GPUs—we-obtained-an-averagespeedup-of-average speedups of 2x and 4x-enKediak-and-Summit—4x
respectively when mapping one MPI per GPU. An average speedup of 1.4x was achieved using all the 42 CPU cores
and 6 GPUs on a summit node (with 7 MPI ranks per GPU). However, the GPU speedup over the 42 CPU cores
remains relatively unchanged (~1.3x) even when using 4 MPI ranks per GPU (24 ranks in total) and 3 MPI ranks
per GPU (18 ranks in total). This corresponds to a 35-40% decrease in both simulation time and usage of resources.
Due to too many local scalars and arrays in the wssrcemp subroutine and the huge WW3 memory requirement, GPU.
performance is currently limited by the data transfer bandwidth between the CPU and the GPU. Ideally, OpenACC

routine directives could be used to further improve performance. However, w3srCEMD would require significant code
refactoring to make this possible. We also discuss how the trade off between the occupancy, register and latency

affects the GPU performance of WW3.
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1 Introduction

Ocean surface gravity waves, which derive energy and momentum from steady winds blowing over the surface of
the ocean{Hassehnann;—+994), are a very crucial aspect of the physical processes at the atmosphere-ocean interface.
They influence a variety of physical processes such as momentum and energy fluxes, gas fluxes, upper ocean mixing,
sea spray production, ice fracture in the marginal ice zone and Earth albedo (Cavaleri et al., 2012). Such complex
wave processes can only be treated accurately by including a wave model into Earth system models (ESMs). The
first ocean models neglected the existence of ocean waves by assuming that ocean surface is rigid to momentum and
buoyancy fluxes from the atmospheric boundary layer (Bryan and Cox, 1967). Currently, most state-of-the-science
ESMs are still missing some or all of these wave-induced effects (Qiao et al., 2013) despite the growing literature on
their importance in the simulation of weather and climate.

Recent literature has shown that incorporating different aspects of surface waves into ESMs lead to improved skill
performance, particularly in the simulation of sea surface temperature, wind speed at 10m height, ocean heat content,
mixed layer depth, and the Walker and Hadley circulations (Law Chune and Aouf, 2018; Song et al., 2012; Shimura
et al., 2017; Qiao et al., 2013; Fan and Griffies, 2014; Li et al., 2016). Yet, only two climate models that participated in
the Climate Model Intercomparison Project phase 6 (CMIP6), i.e. the First Institute of Oceanography-Earth System
Model version 2 (FIO-ESM v2.0; Bao et al., 2020) and the Community Earth System Model Version 2 (CESM2;
Danabasoglu et al., 2020) have a wave model as part of their default model components. However for CMIP6, only
FIO-ESM v2.0 employed a wave model. Wind-wave induced physical processes have traditionally been excluded
from ESMs due to the high computational cost of running spectral wave models on global model grids for long
term climate integrations. In addition to higher computing costs due to longer simulation times, adding new model
components also increases resource requirements e.g. number of CPUs/nodes. The Next Generation Ocean Model
Development in the US DOE’s (Department of Energy) E3SM (Energy Exascale Earth System Model) project,
partly focuses on the inclusion of a spectral wave model, WAVEWATCH III (WW3), into the E3SM to improve the
simulation of coastal processes within E3SM. To make WW3 within E3SM feasible for long term global integrations,
we need to make it computationally less expensive.

Computer architectures are evolving rapidly, especially in the high-performance computing environment, from
traditional homogeneous machines with multicore central processing units (CPUs) to heterogeneous machines with
multi-node accelerators such as graphics processing unit (GPUs) and multicore CPUs. Moreover, the number of CPU-
GPU heterogeneous machines in top 10 of the TOP500 supercomputer increases from 2 in November 2015 (https://
www.top500.org/lists/top500/2015/11/) to 7 in November 26242022 (https://www.top500.org/lists/top500/2022/
11/). The advent of heterogeneous super-computing platforms, together with the increasing computing power and
low energy to performance ratio of GPUs, has motivated the use of GPUs to accelerate climate and weather models.
In recent years, numerous studies have reported successful GPU porting of full or partial weather and climate models

with improved performances (Hanappe et al., 2011; Xu et al., 2015; Yuan et al., 2020; Zhang et al., 2020; Bieringer
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et al., 2021; Mielikainen et al., 2011; Michalakes and Vachharajani, 2008; Shimokawabe et al., 2010; Govett et al.,
2017; Li and Van Roekel, 2021; Xiao et al., 2013; Norman et al., 2017, Norman et al., 2022; Bertagna et al., 2020).
GPU programming model is tetaly—different than CPU code, so programmers must recode or use directives to
port codes to GPU. Because climate and weather models consist of million lines of code, a majority of the GPU-
based climate simulations only operate on certain hot spots (most computationally operations) of the model while
leaving a large portion of the model on CPUs. In recent years, however, efforts have been made to run an entire
model component on the GPU. For example, Xu et al. (2015) port the entire Princeton Ocean Model to GPU
and achieved a 6.9x speedup. Similarly, the entire E3SM atmosphere including SCREAM (Simple Cloud-Resolving
E3SM Atmosphere Model) is running on the GPU (https://github.com/E3SM-Project/scream). Taking advantage
of the recent advancements of GPU programming in climate sciences together with the heterogeneous architectures
at DOE leadership computing facilities, this study seeks to identify and move the computationally intensive parts
of WW3 to GPU through the use of OpenACC pragmas.

The rest of the paper is structured as follows. In Section 2, we first present an overview of the WW3 model and
its parallelization techniques, give an introduction to the OpenACC programming model, describe the hardware and
software environment of our testing platforms, and finally present the test case configuration used in this study.

The resultresults section, Section 3, presents WW3 profiling analysis on CPU, discusses the challenges encountered,

GPU-specific optimization techniques and compares the GPU results with the original FORTRAN code. Section 4

concludes the paper.

2 Model Description and Porting Methodology
2.1 WAVEWATCH III

WW3 is a third-generation spectral wave model developed at the US National Centers for Environmental Prediction
(NOAA/NCEP) (Kemen—et-al-1994WAVEWATCH III® Development Group, 2019) from the WAve Model (WAM)
(The Wamdi Group, 1988). It has been used widely to simulate ocean waves in many oceanic regions for various
science and engineering applications (Chawla et al., 2013b; Alves et al., 2014; Cornett, 2008; Wang and Oey, 2008).
To propagate waves, WW3 solves the random phase spectral action density balance equation, N(¢,\,0,0,t), for
wavenumber-direction spectra. The intrinsic frequency (o) relates the action density spectrum to the energy spectrum
(F), N = g For large scale application, the evolution of the wave action density in WW3 is expressed in spherical

coordinates as follows:

(1)

ON (CoN)  O(CAN)  8(C,N) | d(CoN) .
o " T ae T on t a0 T o0 _;SZ

Eqgn. 1 is solved by discretizing in both physical space (A, ¢) and spectral space (0.0). Where F' is the Energy

density; ¢ is the longitude; A is the latitude; o is the relative frequency; 6 is the direction; ¢ is the time and S


https://github.com/E3SM-Project/scream

90

95

100

105

110

115

120

represent the source and sinks terms. The net source-sink terms consist of several physical processes responsible
for generation, dissipation and redistribution of energy. The net source-sink terms available in WW3 are waves
generation due to wind (S;, ), dissipation (Sgs), non-linear quadruplet interactions (Sy,;), bottom friction (S ), and
depth-limited breaking (Sap), Triad wave-wave interactions (S, ), scattering of waves by bottom features (Ss.), wave-
ice interactions (S;cc) -and reflection off shorelines or floating objects(Syc)s

. Details of each source term can be found in the WW3 manual (WAVEWATCH

- S e g 3 user
ITI® Development Group, 2019). The primary source-sink terms used in this work are Sj,, Sas, Sni, Ser and Sgp.
Several modules are used for the calculation of source terms. However, module w3srcemd.ftn W3SRCEMD manages the
general calculation and integration source terms.

When moving code between different architectures, it is necessary to understand its structure. For the purposes of

our study, Fig. 1 shows a representation of the WW3 algorithm structure. WW3 is divided into several submodules,
but the actual wave model is the w3wavemaw3wAvEMD, which runs the wave model for a given time interval. Within
w3wavemdW3WAVEMD, several modules are called at each time interval to handle initializations, interpolation of winds
and currents, spatial propagation, intra-spectral propagation, calculation and integration of source terms, output file
processing, etc. In our work we found that w3srcemd W3SRCEMD is the most computationally intensive part of WW3, thus
we focus our attention on this module. According to Fig. 1a, w3srcemd w3SRCEMD is being called at each spatial grid point,
which implies that the spatial grid loop is not contained in w3srcemdw3SRCEMD, but rather in w3wavemaw3wAveMp. Fig. 1b,
which represents w3srcemdw3sRCEMD, contains a dynamic integration time loop that can only be executed sequentially.
It also calls a number of submodules, such as w3srcamd W3skcaMp for computation of the wind input and wave breaking
dissipation source terms. w3srcemd W3SRCEMD consists of collapsed spectral loops (NSPECH = NK x NTH), where
NK is the number of frequencies (o) and NTH is the number of wave directions (6). Lastly, the w3src4nd W3SRC4MD
Fig. lc consists of only frequency (NENK) loops. The structure of other source terms submodules is similar to

w3src4mdW3SRC4MD.
2.2 WW3 Grids and Parallel Concepts

The current version of WW3 can be run and compiled for both single and multi-processor (MPI) compute environ-
ments with regular grid, two-way nested (mosaic) grids (Tolman, 2008), spherical multi-cell (SMC) grids (Li, 2012),
and unstructured triangular meshes (Roland, 2008, Brus et al., 2021). In this study, we ran and compiled WW3
using MPI with unstructured triangular meshes as the grid configuration. In WW3, the unstructured grid can be
parallelized in physical space using either Card Deck (CD) (Tolman, 2002) or domain decomposition (Abdolali et al.,
2020). Following Brus et al. (2021), we used the CD approach as the parallelization strategy. The ocean (active) grid

cells are sorted and distributed linearly between processors in a round-robin fashion using n = mod (m —1,N) i.e.
grid m-cell m is assigned to processor s—Where-N-n. Where [V is the total number of processor and M-M is the total

number of ocean grids. If N-NV is divisible by M, every processor n has the same number of grids, NSEAL (Fig.
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la). The source term calculation as well as the intra-spectral propagation are computed using the aforementioned

parallel strategy, but data are gathered on a single processor to perform the spatial propagation.
2.3 OpenACC

To demonstrate the promise of GPU computing for WW3, we used the OpenACC programming model. OpenACC

is a directive-based parallel programming model developed £ s-to run codes on accelerators

without significant programming effort. Programmers incorporate compiler directives in the form of comments into
FORTRAN, C, or C++ source codes to assign the computationally intensive the sections of the code to be executed
on the accelerator. OpenACC helps to simplify GPU programming because the programmer is not preoccupied
with the code parallelism details, unlike CUDA and OpenCL where you need to change the code structure to
achieve GPU compatibility. OpenACC compiler automatically transfer calculations and data between two different
architectures, the host (CPU) and the accelerator device (GPU). OpenACC works together with OpenMP, MPI and
CUDA, supporting heterogeneous parallel environments. Starting from version 4.5, the OpenMP API (Application
Programming Interface) specification has been extended to include GPU offloading and GPU parallel directives.

While OpenMP and OpenACC have similar constructs, OpenMP is more prescriptive. Prescriptive directives describe

the exact computation that should be performed and provide the compiler no flexibility.

)

—Our study focuses solely on OpenACC since it is-has
the most mature APIorNVIDIA-implementation using the NVIDIA compiler on NVIDIA GPUs at the time of
analysis.

OpenACC has three-levels of parallelism (Fig. 2) namely: vector, worker and gangs, corresponding to thread;
warp-and-bloek-threadldx.x, threadldx.y and blockldx.x in CUDA terminology . A gang is group of workers, where
multiple gangs ean-work independently without synchronization. Workers are groups of vector /threads within a gang
and vector is the finest level of parallelism operating with single-instruction, multiple data—SEMBthread (SIMT).
Gang, worker, and vector can be added to a loop region needed to be executed on GPU. An example of Fortran
code with and without OpenACC directives is shown in Fig. 3. The OpenACC directives are shown in green as
comments starting with !$acc (e.g. lines 6 & 12). In Fig. 3a, line 6 is a declaration directive for allocating memory
for variables on GPU, line 8 is the data region to move data into the GPU, line 11 updates data already present on
GPU with new values from the CPU, line 12 launches the parallel region at the gang level and then dispatches the
parallel threads at the worker and vector levels, line 8 updates CPU data with new values from the GPU and line
28 deletes the data on GPU after computation. To learn more about all OpenACC directives, please refer to the
NVIDIA (2017) or Chandrasekaran and Juckeland (2017)

2.4 Test Case Configuration

In this study, the WW3 model was configured and simulated over the global ocean with an unstructured mesh of

of 1°global resolution and 0.25°in regions with depth less than 4km e.g. 1°at the equator and 0.25°at the coastal
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regions (Brus et al., 2021). The number of the unstructured mesh nodes is 59,072 (ranges from 1°- equator to

0.5°- coastlines; hereafter 59K). In addition, we demonstrate the effect of scaling the problem size on speedup by

o

using an unstructured mesh with 228,540 nodes (ranges from 0.5°- equator to 0.25°- coastlines; hereafter 228K). For
Following Chawla et al. (2013a), for both spatial grid configurations —the-speetral-grid-we use a spectral grid that
has 36 directions and 50 frequency bands that range exponentially from 0.04 to 0.5 H=;separated-Hz , sparated by a
factor of 1.1{Chavwda—et-al-2043a). In WW3, the combinations and types of the source terms in Eqn. 1 depends on the
research question being answered. WW3 has several source term packages which can be implemented by activating
different switches. However, since the goal of this study is purely computational, we selected the commonly used
source-sink terms switches, ST4, DB1, BT1 and NL1. The ST4 switch (Ardhuin et al., 2010) consist of the wind input
(Sin) and wave breaking dissipation (Sgs) source terms, DB1 switch is for the depth-induced breaking (Sgp) source
term, BT1 switch consist of bottom friction (Sp;) source term parameterizations and the non-linear quadruplet wave

interactions (Sy;) are computed in the model using the NL1 switch.

Te-aeeelerate-We develop and test our accelerated WW3 code on GPU on GPU;—we-employed-two computational

platforms with heterogeneous architectures, namely:

1. Kodiak cluster from the Parallel Reconfigurable Observational Environment (PROBE) (Gibson et al., 2013)
of Los Alamos National Laboratory. Kodiak has 133 compute nodes. Each node contains Intel(R) Xeon(R)
CPU E5-2695 v4 @ 2.10GHz 36 CPU cores and 4 NVIDIA Tesla P100 SXM2 GPGPUs, each with 16 GB of

memory.

2. Summit, a high performance computing system at the Oak Ridge National Laboratory at Oak Ridge National
Laboratory (ORNL). Summit has 4,608 nodes, each contains 2 IBM POWER9 CPUs and 6 NVIDIA Tesla V100
GPUs, each with 80 streaming multiprocessors. All connected together with NVIDIA’s high-speed NVLink.

Summit is the fastest supercomputer in the US and the second fastest in the world —in 2021.

Table 2 shows the configuration of each compute node for both platforms. For a more accurate comparison of
CPU and GPU codes, we used the same compiler. On Kodiak, the CPU FORTRAN code was compiled using the
flags -g -03 -acc. Similarly, the OpenACC code was compiled with flags -g -03 -acc -Minfo=accel -ta=tesla,ptxinfo,
maxregcount :n. Likewise on Summit, the flags for the CPU code are -g -02, and that of the OpenACC are -g -02
-acc -ta=tesla,ptxinfo,maxregcount:n -Minfo=accel. Options -ta=tesla:ptxinfo,maxregcount:n are the optimization flags
! used in this study (Section 3.2). Adding the option -ta=tesla:ptxinfo to the compile flags provides information
about the amount of shared memory used per kernel (a function that is called by the CPU for execution on the

GPU) as well the registers per thread. The flag -ta=tesla:maxregcount:n, where “n” is the number of registers, sets

the maximum number of registers to use per thread.

1

WW3 hangs when the -O3 optimization flag is used
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As a test case, we performed a 5-hour simulation from 2005/06/01 00:00:00 - 05:00:00 by forcing WW3 with
atmospheric winds derived from the US National Center for Atmospheric Research renalysis (NCAR). We validate
verify the GPU model using—simulated—{for correctness using significant wave heights (SWH) from the CPU onl

3 Results and Evaluations

In this section, we first describe the performance of WW3 on CPU and its computationally intensive sections.

Furthermore, we discuss the challenges encounteredand-, how GPU optimization is done —Jastly—we-present-and
resent the performance result of porting WW3 on GPU. Lastly, we discuss the performance limitation using roofline

3.1 WW3 Profiling Analysis on CPU

With model optimization, an important step is to find the runtime bottlenecks by measuring the performance of
various sections in units of time and operations. In order not to waste time and resources improving the performances
performance of rarely used subroutines, we first need to figure out where WW3 spends most of its time. The technical
term for this process is called profiling. For this purpose, we profile WW3 by running the Callgrind profilier from
the Valgrind tool and then visualize the output using a KCachegrind tool (Weidendorfer, 2008). An application’s
performance can be 10 to 50 times slower when profiling it with callgrind, however, the proportions of times remain
the same. Figure 4 shows the callgraph obtained by profiling WW3 with 8-MPIpreeesses300 MPI ranks. The source
term subroutine, W3SRCEMDu3srcEMD, can easily be spotted as the consumer of 78~82% of the total execution time
and resources. Within the W3SREEMPB-w3srcEMD subroutine, the dissipation source term Sy, uses more than 40% of
the total runtime because it contains numerous time consuming spectral loops. In fact, profiling WW3 with another
profilier (not shown), Intel Advisor (Intel Corporation , 2021), specifically highlights the spectral time consuming
loops. In WW3, each processor serially un—runs through its sets of allocated spatial grids (described in Section
2.2) with each containing a-speetzal-grid-peoints—and-udsrcend spectral gridpoints, and wasrceMp has a time-dynamic
integration (Fig. 1b) procedure which can not be parallelized. Looping through spectral grids and the time-dynamic
integration procedure are plausible reasons why w3srcemd W3sSRCEMD is the bottleneck of WW3. We name WW3 model
with GPU accelerated W3SREEMD-w3srcemd as WW3-W3SRCEMD.gpu and WW3.cpu as the CPU only version.

Fortunately, W-3SREGEMD-w3srcEMD does not contain neighboring grid dependencies in both spatial and spectral
i.e. no parallel data transfers, W-3SREGEMDB-w3srcEMD can therefore be ported to GPUs with less difficulty. We moved
the entire WW3 source terms computation to GPU as shown in Fig. 3b.
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3.2 Challenges & Optimization

Once the program hotspot is paratlelized-and-ported to the GPU, the GPU code needs to be optimized in order to
improve its performance. Conventionally, optimization of GPU codes involves loop optimization (fusion and collapse),
data transfer management (CPU to GPU and GPU to CPU), memory management and occupancy. Some of these
optimization techniques are interrelated e.g. memory management and occupancy. The WW3 model contains very
few collapsible loops, so loop fusing and loop collapsing did not effectively optimize the code (figure not shown).
To successfully port WW3-W3SRCEMD.gpu and achieve the best performance, two challenges had to be overcome

in this study. The first is a data transfer issue caused by the WW3 data structure, while the second is a memory

management and occupancy issue caused by the use of

arrays, sometimes of spectral length, and scalars within w3SRCEMD MWQ@

3.2.1 Data Transfer Management

It is important to understand the layout of data structures in the program before porting to GPU. WW3 outlines
its data structures by using modules e.g. w3adatnd, w3gdatmd, & w3odatmd (lines 2 & 3 of Fig. 3). Depending on the
variable required, each subroutine uses these modules. These variables are called global external variables. Since
it is not possible to move data within a compute kernel in GPU, all necessary data must be present on the GPU
prior to launching the kernel that calls W3SRCEMD. The structure of WW3 requires the use of routine directive
(!$acc routine) to create a device version of wasrceMD, as well as other subroutines in it. In FORTRAN, the routine
directive appears in the subprogram specification section or its interface block. Due to the use of routine directives,
OpenACC declare directives(!$acc declare create; line 6 of Fig. 3b) were added to the data structures module to
inform the compiler that global variables need to be created in the device memory as well as the host memory.

All data must be allocated on the host before being created on a device, unless it has been declared device
resident. In WW3, however, arrays whose size are determined by spatial-spectral grid information are allocated at
runtime rather than within the data structure modules. Thus, creating data on the device within the WW3 data
modules poses a problem. Due to this restriction, it was then necessary to explicitly move all the required data to
GPU before launching the kernel. -

than-01%of GPU-+time—For managing data transfers between iteration cycles, we use !$acc update device(variables)

and !$acc update self(variables) (lines 11 & 21 in Fig. 3b). However, it would be easier to use unified memory, which
offers a unified memory address space to both CPUs and GPUs, rather than tracking each and every data that needs
to be sent to the GPU, but the latest OpenACC version does not support the use of unified memory with routine
directives. In the future, having this feature would save time spent tracking data transfers in programs with many

variables such as WW3.
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3.2.2 Memory management and Occupancy

Occupancy is defined as the ratio of active warps (workers) on a streaming multiprocessor (SM) to the maximum
number of active warps supported by the SM. On Kodiak and Summit, the maximum threads per SM is 2048. A
warp consists of 32 threads which implies that the total number of possible warps per SM is 8. Even if the kernel
launch configuration maximizes the number of threads per SM, other GPU resources, such as shared memory and
registers, may also limit the number of maximum threads, thus indirectly affecting GPU occupancy. A register is a
small amount of fast storage available to each thread, whereas shared memory is the memory shared by all threads
in each SM. As seen in Table 2, the maximum memory per SM for Kodiak and Summit is 256 KB, but the maximum
shared memory for Kodiak is 64KB (P100) and 94KB for Summit (V100). In terms of total register file size per
GPU, Kodiak and Summit have 14336KB and 20480KB, respectively.

To estimate GPU usage, we use the CUDA occupancy calculator available on https://docs.nvidia.com/cuda/cuda-
occupancy-calculator/CUDA__ Occupancy__ Calculator.xls. In this study, the kernel launch configurations consist
of NSEAL gangs, where NSEAL refers to the number of grids on each node, and each gang has 32 vector lengths
(or threads). With this configuration, the achievable GPU occupancy (regardless of other resources) is 50%. Adding
-ta=tesla:pxtinfo to the compiler flags gives the information about the size of registers, memory spills (movement of
variables out of the register space to the main memory) and shared memory allocated during compilation. Kodiak
and Summit both allocate the maximum 255KB register per thread, reducing GPU occupancy to 13%. In addition,
a full register leads to spilling of memory into the L1 cache (shared memory). A spill to cache is fine, but a spill to
the global memory will severely affect performance because the time required to get data from the global memory
is longer than that from a register, latency. Latency is the amount of time required to move data from one point
to the other. Therefore, an increase (decrease) in register size causes two different things simultaneously: a decrease
(increase) in occupancy and decrease (increase) in latency. There is always a trade off between register, latency and
occupancy, and the the trick is to find the spot that maximizes performance. One can set the maximum number of
registers per thread via the flag -ta=tesla:maxregcount:n where “n” is the number of registers.

Figure 5 illustrates how the trade off between latency and occupancy affects the GPU performance based on the
number of registers. Our analysis was based only on the performance of running 228K grid-mesh configuration with
16 MPI tasks. For Summit, as the number of registers increases from 16 to 64, the GPU occupancy remains constant
at 50% and GPU performance improved due to the movement of more variables to the fast memory. As indicated by
the blue part of line, this is a latency-dominant region. However, as the number of register increases from 64 to 192,
GPU occupancy gradually decreases from 50% to 13%. This degraded performance despite moving more data into
the fast memory. Therefore, this is an occupancy-dominant region as indicated by the red part of the line (Fig. 5b).
From 192 to the maximum register count, the occupancy remains constant at 13% and GPU performance remains

relatively constant. As occupancy is constant, latency is expected to dominate this region, which is represented by

10
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the green part of the line in Fig. 5b. However, we observe no memory spill for registers between 192 and 255 and thus
latency effect remains unchanged. Therefore, constant latency and occupancy leads to the constant performances in
this region.

Fig. 5b shows that 64 registers produced the best performance (minimum runtime) on Summit. For brevity, the
previously described trade-off analysis also applies to Kodiak, and 96 register count produced the best performance
(&eFig. 5a). On Kodiak, the register count that achieved the best performance is higher than on Summit, probably
due to Summit’s larger L1 and L2 caches (Table 2). With larger L1 and L2 caches, more data can be stored,
reducing memory spillover to global memory and thus reducing latency. Optimizing the register count increases the

GPU performance by approximately 20% on Kodiak and 14% on Summit.
3.3 GPU Accelerated W3SRCEMD

This section compares the performance of WW3.cpu and WW3-W3SRCEMD .gpu. Ta-thisstudy—ene-CPU-and-ene

STTOWS: o CaoIo > COTHES G—per1o 9 OV DECTW - v a a o o0

versions—Note that the speedups in this section are achieved by parallelizing the local grids loop, which calls the
W3SRCEMD function, using the OpenACC parallel directives (Fig. 3b). In wasrcemp and its dependent subroutines,
we introduced the OpenACC routine directive (!$ace routine) which instructs the compiler to build a device version
of the subroutine so that it may be called from a device region by each gang. In addition, at the start of the time
integration, we moved the needed constants data to the GPU (line 8 of Fig. 3b). Using the average over the late
2-hour simulation, Fig. 7 compares the output results of CPU and WW3-W3SRCEMD.gpu codes and their relative

difference for significant wave height (SWH). According to the validation results, the SWH is nearly identical, and

the error is negligible and acceptable. It is possible that the error stems from the difference in mathematical precision
between the GPU and CPU.

For simplicity, we start by mapping one MPI rank to one GPU. Comparing the performance of a single GPU with
a single CPU core (Table 2) on Kodiak, a 2.3x & 2.4x speedup was achieved for 59K (Fig—223-and 228K {Fig—22

grids-respectively—meshes respectively. Here, the speedup is relative on a single CPU core. Similarly on Summit,
we achieved speedups of 4.7x & 6.6x for 59K {Fig—?74-and 228K {Fig—??)-grids-meshes respectively. On Summit,
the GPU performance of 228K nodes is better because the CPU gets extremely slow. Summit’s speedup is greater
than Kodiak’s because the Tesla V100-SXM2-16GB GPU is faster than the Tesla P100-PCIE-16GB GPU (NVIDIA,

2017). Due to the reduction in GPU workload, speedups gradually decline as the number of MPI ranks increases
Table 2).
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3.3.1 Fair Comparison Using Multi-Process Service (MPS

The following sections focus exclusively on Summit’s results. Fach summit compute node is equipped with six GPUs
and 42 CPU cores. As an initial step, we used only six MPI ranks on each node so that each process could offload
its work to one GPU. In order to properly compare CPUs and GPUs on a single node, we must use the whole
CPU and GPU resources on a node. The NVIDIA Volta GPUs support multiprocess services. When running with
a mesh size greater than 59K and assigning multiple MPI ranks to a single GPU, the GPU heapsize overflows with

The auto allocation problem is solved by setting the environment variable *PGI__ ACC_CUDA_HEAPSIZE” to a
minimum allowed number based on the mesh size and MPI ranks per GPU. By mapping 7 MPI ranks per GPU on
summit, a speedup of 1.36_(1.41) was achieved for the 59K (228K) mesh size (Fig. 6) over the whole CPU cores.
We also ran 4, 3 and 2 MPI ranks per GPU configurations. The results of the different multi-process configurations
and the two mesh sizes are shown in Table 3. Note that the speedups of all the GPU configurations are compared
with the full CPU 42 cores run. By varying the number of MPI ranks per GPU-OnKodiak-{Summit)—the-sealing

oz Q2 EQZ (1AO0Z\ oo iol D

{94%-on—eicht-GPUs—Thesealing—efficieney—dropsrapidly—4 and 3 MPI ranks per GPU (24 and 18 MPI ranks in
total) have higher speedups than 7 MPIs per GPU for the 59K mesh size. Even with 2 MPI ranks per GPU (total of

12 ranks), the speedup is 1.23x. The speedup for the 228K gradually decreases from 1.41x to 1.12x as the number

of GRPUs-inereases;e—e—MPI ranks per GPU decreases from 7 to 2. The workload (distributed grids) per MPI rank

reduces as the number of MPI ranks increases. As a result of the reduced workload, GPU utilization falls. The overall

erformance of a GPU depends on both the number of MPI ranks per GPU and the number of grid size per MPI rank.

Table 4 shows the results of scaling the 228K mesh size over multiple nodes. We used the full GPU configuration
here by launching 7 MPT ranks on each GPU. In the results. it can be scen that the speedup is relatively uniform
across multiple nodes. Likewise, as the gridpoints per MPT rank decreases with increasing nodes, speedup decreases
gradually due to reduced GPU utilization. However, speedup is always the highest whenever the number of gridpoints
per MPI rank is ~ around 2500 e.g. speedup of 2 nodes in Table 4 for 228K and the speedup of 24 MPT ranks for
59K mesh in Table 3. This is most likely due to the tail effect - load imbalance between SMs. Based our kernel
launch_configuration, 64 i i ¢ exhibi sete-seat

register and 32 block size, the number
of possible blocks per SM is limited to 32. With 80 SM on a V100 GPU, the number-maximum total number of
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blocks (gangs i.e. gridpoints) that could be executed simultaneously is 80 x 32 (2560).

All previous speedups are based on the whole WW3 code, However, only wssrceMp is being accelerated on the GPU.
and the rest of the code run on CPU. So when comparing 24 MPL ranks GPU configuration with all the 42 CPU
mmwmmmewa W%m%&m&%w
"WW3-W3SRCEMD.gpu against 42 MPT
ranks for the WW3.cpu. Therefore, it is necessary to also consider only the speedup of wssrcemp_ on GPU over the
CPU. The last row of Table 3 (also Fig. 6) shows the runtimes and the achieved speedup of wssrcemp subroutine for
288K mesh size on summit node. In comparison with the speedup based on the whole WW3 code, waskceMp speedup.
increases for all configurations with a maximum speedup of 1.61x.

3.4 W3SRCEMD Roofline Plot

The roofline model helps us understand the trade-off between data-movement and computation, so we can find
out what’s limiting our code and how close we are to it. The roofline (Fig. 8) indicates that, as expected from a

memory-intensive model, the kernel is limited by the data transfer bandwidth between the CPU and the GPU.
Most of the kernel’s time is spent in executing memory (load/GPU—DBue—to-a—redueed—workload GPUutilization

%WWWWW%MMMQW
a compute throughput and a memory bandwidth that are both below 40% of its peak performance. Therefore, it
appears that, while the computation is waiting for the GPU to provide needed data, the GPU is waiting for the
CPU to transfer data. Similarly, the roofline shows that the kernel memory bandwidth is approximately equal to the
NVLink bandwidth, Thus, the wssrcemp kernel is limited by the bandwidth between the CPU and the GPU memory.

and integer loaded from DRAM. Arithmetic intensity is a measure of floating-point operations (FLOPs) performed

relative to the amount of memory accesses in bytes that are needed for those operations. For our 5-hour simulation, the
kernel is being launched 21 times and therefore 42 data movements between the host and the device for non-constant
variables. Unfortunately. the large arrays need to be updated on both device and host at each time step. As an
example, VA, the spectra storage array, is approximately 5Gb (20Gb) for a spatial mesh size of 59,000 (228,000

and spectral resolution of 50x36. In summary, W3SRCE subroutine is simply too big and complicated to be ported
efficiently using OpenACC routine directives and therefore requires significant refactoring. 3bj—Jn-ssrcemp and-its
dependentsubroutines, we introduced-the Open ACCroutine divective {Sace routine} whichinstructs the compiler

13



385

390

395

400

405

410

415

4 Conclusions

Climate science is increasingly moving towards higher spatial resolution models and additional components to better
simulate previously paramaterized or excluded processes. In recent decades, the use of GPUs to accelerate scientific
problems has increased expenentially—significantly due to the emergence of supercomputers with heterogeneous
architectures.

Wind generated waves play an important role in modifying physical processes at the atmosphere ocean interface.
They have generally been excluded from most coupled Earth system models partly due to its high computational
cost. However, the Energy Exascale Earth System Model (E3SM) project seeks to include a wave model (WW3)

and introducing WW3 to E3SM would increase the computational time and usage of resources.

In this study, we identified and accelerated the computationally intensive section of WW3 on GPU using Ope-
nACC. Using Valgrind & callgrind tools, we found that the source term subroutine, W-3SRGEMDwW3SRCEMD, consumes
78% of the execution time. The W3SRCEMDB-w3srcEMD subroutine has no neighboring grid-peints—gridpoints de-

pendencies, and is therefore well suited for implementation on GPU. On two different computational platforms,
Kodiak with a-four P100 GPU-GPUs and Summit with a-six V100 GPUYGPUs on each node, we performed 5-hour
simulation experiments using two global unstructured meshes with 59,072 and 228,540 nodes. Our—resutts—showed

{%997—2—)—116&6%—1&6%?86\%1%‘6}?’—011 average, running W3RCE en-by offloading one MPI per GPU gives approximately
4x (2x)

S ARgevc\l/ggxover CPU version on Summit (Kodiak). Fer

to-inelude On a fair comparison, by using all the 42 CPU cores and 6 GPUs on a summit node, a speedup of 1.4x
was achieved using 7 MPI ranks per GPU. However, the GPU speedup over the 42 CPU cores remain relatively
unchanged (~1.3x) even when using 4 MPI ranks per GPU (24 ranks in total) and 3 MPI ranks per GPU (18 ranks

The large number of local scalars and arrays within the w3srceMp subroutine and the huge size of memory required to
run WW3 i
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lateneyis currently hurting the GPU utilization, thus the achievable speedup. Too many constants in WW3 occupy
the register (fast memory) and then spill over to the L1 and L2 caches or the GPU global memory. To increase the
GPU performance, the grid loop counter within W3WAVEMD must be pushed into the wssrcemp, thereby moving the
gang level parallelization into wssrceMp, This require major code refactoring starting with modification of WW3 data
structures. There are other parts of WW3 code that can be ported to GPU. such as spatial and spectral propagation.

Coupling CESM with WW3 at low resolution, Li et al., 2016 found 36% and 28% increase in computational cost
for ocean-wave only and fully coupled simulations when running WW3 on a 3.2°x 4°latitude-longitude grid with 25
frequency and 24 directional bins with 3°resolution ocean model and T31 atmosphere. Likewise, in a one-way coupling
of WW3 to E3SM atmospheric component, WW3 increases the number of processors by ~35% and its runtime is
44% more than the ocean model. From our first attempt at GPU-based spectral wave modeling, runtime decreased by
35-40% and resource usage decreased by 40-55%. Thus, leveraging heterogeneous architectures reduces the amount of
time and resources required to include WW3 in global climate models. It is important to note that WW3 will become
a bottleneck as the ocean and atmosphere models in E3SM move towards heterogeneous architectures. Consequently,
WW3 needs huge refactoring to take advantage of GPU capabilities and be fully prepared for Exascale regime.

After refactoring the WW3 code, we also need to investigate how different WW3 setups (grid parallelization

method, source term switches, propagation schemes, etc.) affect GPU performance. The performance of GPU-

accelerated WW3 using OpenMP and-estimate-the-amount-of-effort-it-will- take to-convert-ourO ACCparallelizati
strueture-into-OpenMPshould also be considered for future work. The success of this work has laid the foundation

for future work in global spectral wave modeling, and it is also a major step toward expanding E3SM’s capability

to run with waves on heterogeneous architectures in the near future.

Code and data availability. Model configuration and input files can be assessed at https://doi.org/10.5281/zenodo.6483480
.The official repository of WAVEWATCH III CPU code can be found here: https://github.com/NOAA-EMC/WW3. The new
WW3-W3SRCEMD.gpu code used in this work is available at https://doi.org/10.5281/zenodo.6483401
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(A)

MODULE W3WAVEMD

DO IT=ITO, NT !Time loop

* DO JSEA=1, NSEAL !Grids loop

CALL W3SRCE(variable list)
END DO
END DO [Time Loop

END MODULE W3WAVEMD

o] (B)

KEYS
NSEAL: Number of grid points in each processor
JSEA: The local grid counter
NK: Size of wavenumber
NTH: Size of wave direction
NSPECH = NK*NTH: Spectral counter

Figure 1. A schematic representation

MODULE W3SRCEMD

Icalculate source term
* DO ! dynamic integration loop

CALL W3SIN1(VSIN, variable list)

CALL W3SBT1(VSBT, variable list)
CALL W3SDS4(VSDS, variable list)

+ DO IS = 1S1, NSPECH
VS(1S) = VSIN(IS) + VSBT(IS) &
VSDS(IS) + ...
END DO

END DO

END MODULE W3SRCEMD

—— (C)
MODULE W3SRCAMD
* DO IK=1, NK

EB(IK) = EB(IK) * DDEN(IK) / CG(IK)

END DO
END MODULE W3SRC4MD

of WAVEWATCH III code structure
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Figure 2. The map of gangs, workers, and vectors (adapted from Jiang et al., 2019)
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MODULE W3WAVEMD
USE CONSTANTS
USE W3GDATMD
!'! use other modules !!

REAL Variables

!'! BUNCH OF CODES !!

DO IT=ITO, NT !Time loop

!'! BUNCH OF CODES !!

DO JSEA=1, NSEAL !grids 1loop

!'! BUNCH OF CODES !!

CALL W3SRCEMD(variable list)

! BUNCH OF CODES !!

END DO

!'! BUNCH OF CODES !!

END DO !'Time Loop

!'! BUNCH OF CODES !!

END MODULE W3WAVEMD

N}

MODULE W3WAVEMD
USE CONSTANTS
USE W3GDATMD
!'! use other modules !!
REAL Variables
!'$acc declare create(needed variables on GPU)
!'! BUNCH OF CODES !!
!$acc enter data copyin(variables to GPU)
DO IT=ITO, NT !Time loop
!'! BUNCH OF CODES !!
!$acc update device (GPU data)
!'$acc parallel copy(NSEAL) num_gangs (NSEAL)
!$acc loop gang
DO JSEA=1, NSEAL !grids loop
!'! BUNCH OF CODES !!
CALL W3SRCEMD(variable 1list)
!'! BUNCH OF CODES !!
END DO

!'$acc end parallel

lacc update host(needed variables on CPU)

!'! BUNCH OF CODES !!

END DO !'Time Loop
!'! BUNCH OF CODES !!

!$acc exit data delete(all GPU variables)
END MODULE W3WAVEMD

(a)

Figure 3. A schematic representation of WAVEWATCH III Original FORTRAN source code for the W3WAVEMD module

(a) and its OpenACC directives version (b)
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MAIN_

(199.91%

l CJ3x
w3wavemd_w3wave_

[195.73 %

72 x \ 1702 x
w3wavemd_w3gath_ w3srcemd_w3srce_
1892 % 118192 %
/ 72 x 861 x 117870 x 18611«
0x0000000010004540 w3srcdmd_w3sdsd_ w3srcdmd_w3sind_ w3snlimd_w3snl1_
[18.80 % [(J146.97 % 1967 % 12017 %

Figure 4. The Callgraph obtained by profiling WAVEWATCHIII with 8-cPUs300 CPU cores on Summit. Each box includes

the name of the subroutine and its relative execution time as a percentage
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Table 1. GPU hardware specifications.

SUMMIT (V100)

KODIAK (P100)

Compute Capability 7 6

Global memory size 16 GB 16 GB
L1 cache 10 MB 1.3 MB
L2 cache 6 MB 4 MB
Shared memory size / SM Configurable up to 96 KB 49 KB
Constant memory 64 KB 64 KB

Register File Size

256 KB (per SM)

256 KB (per SM)

32-bit Registers

65536 (per SM)

65536 (per SM)

Max registers per thread 255 255
Number of multiprocessors (SMs) 80 56
Warp size 32 threads 32 threads
Maximum resident warps per SM 64 64
Maximum resident blocks per SM 32 32
Maximum resident threads per SM 2048 2048
Maximum threads per block 1024 1024
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Table 2. The speedups and simulation times associated with offloading one MPI rank exclusively to one GPU on Kodiak
and Summit with 59K and 228K mesh sizes for MPI ranks ranging from 1 to 32

L 668897 | 142092 | 47
2 334784 | 74839 | 45
4 1685.4 386.4 4.4
59K =~ O s
8 84291 | 20545 | 41
16 1355 | 11363 | 38
32 236.84 64.39 3.7

SUMMIT —= e =
L 389821 | 590557 | 6.6
2 19827.3 | 304259 | 65
4 9901.16 1544.22 6.4
228K — = R —=
8 324 | 7845 | 44
16 172087 | 39959 | 43
32 87805 | 219 40
L 557438 | 247738 | 23
4 1564.3 700.68 2.2
59K —~ e = —=
8 87305 | 37378 | 23
16 39854 | 19599 | 20
32 239.64 114.2 2.1
KODIAK —= e —=
L 2286427 | 9636.75 | 2.4
4 6313.02 2964.1 2.1

228K ~ e s
8 342355 | 144844 | 24
16 158675 | 74627 | 21
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Table 3. Node baseline comparison runtime (seconds) with different MPI ranks per GPU configuration on a Summit node.

The bold numbers in [ | are the speedup relative to the whole CPU on a summit node (42 MPI ranks). In the last row, we

resent the speedups and simulation times when comparing only the GPU-accelerated subroutine, W3SRCEMD.

CPU GPU
MESH SIZE 42 ranks | 42 ranks 24 ranks 18 ranks 12 ranks
(7/GPU) | (4/GPU) | (3/GPU) | (2/GPU)
59K 180.72 133.18 124.28 127.17 146.34
[1.36x] [1.45x%] [1.42x] [1.23x]
228K 683.66_ 483.22 523.91 533.08 612.60
[1.41x] [1.30x] [1.24x] [1.12x]
228K (W3SRCEMD) 589.56_ 389.12 407.54 366.00 395.31
[1.52x] [1.45%] [1.61x] [1.49%]
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Table 4. The speedup of multiple nodes for the 228k mesh size on summit. We used all the 42 CPU cores and 6 GPU on
each node with a configuration of 7 MPI ranks per GPU.

NODES | Gridpoints | CPU | GPU | Speedup
(Per rank)

L a4l [ 68366 [ 48322 | Laix

2 2210 | 35402 | 22069 | L58x

3 1814 [23802 [ 1715 | 1.39x

4 1360 | 19559 | 14144 | 1.38x

5 1088 [ 15417 [1268s | 122x
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Figure 5.
WW3-W3SRCEMD.gpu runtime (primary vertical axis) and occupancy (secondary vertical axis in orange) based on register
counts on Kodiak (a) and Summit (b). For the runtime, the light blue part of the line represents the latency-dominant
region, the red part represents the occupancy-dominant region, and the green part represents the neutral region. We

analyzed the result of running 228546-grids-228K mesh size on 16 GPUs and CPUs.
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Figure 6. The runtime of WW3.cpu (orange) and WW3-W3SRCEMD.gpu (green) for 42 CPU cores and 7 MPI ranks
er GPU on a Summit node with 59K and 228K meshes. The last bar chart is the runtimes for only the GPU-accelerated
subroutine, W3SRCEMD on 228K grid size. The black line represents the speedups of WW3-W3SRCEMD.gpu over WW3.cpu.
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- Single Precision Achieved Value

Arithmetic Intensity [FLOP/byte]: 0.70!

Performance [FLOP/s]: 28,680,334,301.82

Double Precision Achieved Value
Arithmetic Intensity [FLOP/byte]: 0.00
Performance [FLOP/s]: 34,446,904.28

0.0 0.1 1,000

Arithmetic Intensity (FLOP/byte)

Performance (GFLOP/s)

Figure 8. Roofline model for W3SRCEMD kernel from NVIDIA Nsight Compute. The red and green dots are the double
and single precision values respectively.
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