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Abstract. At present, only approximately 10% of the global seafloor topography has 14 

been finely modeled, and the rest are either lacking in data or not accurate enough to 15 

meet practical requirements. On the one hand, satellite altimeter has the advantages of 16 

large-scale and real-time observation, thus is widely used in the measurement of 17 

bathymetry, the core of seafloor topography. However, there is often room for 18 

improvement in its precision. On the other hand, multibeam echosounder bathymetric 19 

data is highly precise but normally limited to a smaller coverage, which forms a 20 

complementary relationship with the bathymetry derived from satellite altimetry. To 21 

combine the advantages of satellite altimetry-derived and multibeam sonar-derived 22 

bathymetry, we apply deep learning, which is powerful in the field of digital image 23 

automation, to perform multibeam sonar-based bathymetry correction for satellite 24 

altimetry bathymetry data. Specifically, we modify and improve a pretrained VGGNet 25 

neural network model with a depth of 19 layers to train on three sets of bathymetry data 26 

from the West Pacific, Southern Ocean, and East Pacific, respectively. Experiments 27 

show that the correlation of bathymetry data before and after correction can reach a 28 

high level, with the performance of R2 being as high as 0.81 and the RMSE improved 29 

over 19% compared with previous research. We then explore the relationship between 30 

R2 and water depth and conclude that it varies at different depths and thus the terrain 31 

specificity was a factor that affects the precision of correction. Finally, we use the 32 

difference of water depth before and after the correction to evaluate the correction 33 

results, and find that our method can improve by more than 17% compared with 34 

previous research. The results show that using the deep learning VGGNet model can 35 

better perform the correction of the bathymetry derived from satellite altimetry, thus 36 

providing a method for accurate modeling of the seafloor topography. 37 

 38 
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1 Introduction 39 

Submarine topographic survey is a basic marine surveying and mapping work, 40 

whose purpose is to obtain the three-dimensional coordinates of submarine topographic 41 

points, including measurement position, water depth, water level, sound speed, attitude, 42 

azimuth and other information, the core of which is water depth measurement. Modern 43 

multibeam sounding systems began to rise in the 1960s. Fox et al. (1992) conducted a 44 

quantitative analysis of the changes in the submarine topography caused by the 45 

submarine volcanic eruption based on the multibeam sonar data and the submarine 46 

robot's measured images. Wu (2001) put forward the key statistical parameters to attain 47 

the seafloor tracking of the multibeam sounding system and established the 48 

mathematical model and expert system for real-time tracking of the seafloor terrain. 49 

Schimel et al. (2015) analyzed the continuous observation of multibeam data and found 50 

that the uncertainty information provided by the multibeam processing algorithm 51 

CUBE can be used to better calculate the displacement of the sediment volume. Ma et 52 

al. (2006) found that full coverage and high-efficiency multibeam sonar can be 53 

combined with side-scan sonar, which has good complementarity when detecting 54 

submarine targets, and can improve the accuracy of target recognition. Ji (2017) applied 55 

backpropagation (BP) neural network to build a feature database of seabed terrain based 56 

on multibeam data to attain automatic classification of seabed terrain complexity. Pike 57 

et al. (2019) combined Pleiades multispectral imagery and multibeam data to measure 58 

the water depth of two shallow waters in the northeastern Caribbean. Cooper et al. (2021) 59 

proposed a method that uses small unmanned aerial vehicle (sUAV) photogrammetry 60 

as well as multibeam sonar data to generate a complete bathymetry map of a reservoir. 61 

The multibeam sounding method has the advantage of high spatial precision, which 62 

enables the underwater sounding mode to achieve a high-quality leap from point to line 63 

and from line to surface (Li, 1999). However, with the low efficiency, high cost and 64 

long measurement time required, these shortcomings make it difficult to conduct 65 

submarine surveys in a wide range of sea areas. Thus, the coverage of shipborne 66 

soundings is still very sparse at present. It’s estimated that only about 10% of the global 67 

sea area is covered with shipborne survey data, and a considerable part of it, especially 68 

in the deep ocean areas, consists of analog signals from 1950 to 1967, whose accuracy 69 

is relatively low (Becker et al., 2009). 70 

Satellite altimetry is a space measurement technology that uses artificial satellites 71 

as a carrier to measure the distance of the satellite from the surface of the earth using 72 

radar, laser, and other ranging technologies, to obtain the surface terrain of the earth, 73 

through which a gravity field model and terrain features of the ocean can be constructed. 74 

Parker (1972) derived the expression of gravity in the frequency domain and put 75 

forward the material interface of the model of abnormal gravity changes caused by 76 

fluctuations, which laid the foundation for the development of seafloor topography 77 

inversion. Since the launch of the Seasat in 1978, many researchers have used satellite 78 

altimetry data to model water depth, such as Dixon et al. (1983), Smith and Sandwell 79 

(1994), Ramillien and Cazenave (1997), and Arabelos (1997). Calmant and Baudry 80 

(1996) provided a comprehensive overview of the techniques and data used in 81 
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bathymetric models. Yeu et al. (2018) combined multibeam sonar, satellite altimetry-82 

derived gravity anomalies and airborne LiDAR data and managed to effectively 83 

improve the accuracy of water depth measurement for up to 0.2 m in shallow waters 84 

less than 5 m. Brêda et al. (2019) introduced and evaluated several data assimilation 85 

(DA) methods for satellite altimetry data, which has reduced the biased bathymetry 86 

errors in the hydrodynamic model for up to 65% compared to past observations while 87 

at the same time increased the optimizer runtime to 103 times. Wölfl et al. (2019) 88 

summarized the significance, technology, data sources, development, and challenges of 89 

global seafloor topography surveys and researches and proposed recommendations for 90 

the goal of a precise global bathymetry map inspired by GEBCO Seabed 2030 Project. 91 

Sepúlveda et al. (2020) established a sea depth uncertainty model for satellite altimetry, 92 

quantified the high-wavenumber content within the satellite-derived data and proved 93 

the model in the bathymetry generated from the forecast of tsunami, with certain 94 

parameters varied regionally. 95 

The emergence of satellite altimetry has made seabed topography measurement no 96 

longer limited to the shipborne sonar, and has provided new technical means for large-97 

scale, real-time global measurement. However, existing researches have shown that 98 

compared with the multibeam-derived bathymetry, it still has the limitation on spatial 99 

resolution and thus is influenced by submarine parameters such as depth, surrounding 100 

topography, computational scales and so on (Dierssen et al., 2020; Dettmering et al., 101 

2020; Wu et al., 2021). 102 

In recent years, deep learning has become an important scientific computing tool 103 

and made great contributions and development in various aspects such as image 104 

classification (Mou et al., 2017; Li et al., 2019; Hong et al., 2021), object detection 105 

(Girshick et al., 2014), feature extraction (Evans and Ruf et al., 2021), etc., making 106 

multisource big data-based ocean observations available and efficient and consequently 107 

being applied to the field of seafloor topography inversion. Jena et al. (2012) developed 108 

an artificial neural network (ANN) model based on radial basis function (RBF) to 109 

predict the water depth based on satellite-derived gravity data, with the results 110 

demonstrating that the precision of the ANN model is higher than other submarine 111 

topography models. Jha et al. (2013) used the geostatistical direct sampling (DS) based 112 

multi-point statistics (MPS) algorithm, merging the low-frequency high-resolution 113 

multibeam sonar data and high-frequency low-coverage shipborne survey data, 114 

utilizing the former to provide prior constraining information to simulate and generate 115 

fine depth maps. Moran (2020) discussed the global viability of machine learning 116 

models for inversing bathymetry and the probability of an enhanced global model by 117 

experiment and concluded machine learning could help with the determination of a 118 

decision boundary when generating models. Ghorbanidehno et al. (2021) introduced a 119 

principal component analysis (PCA) connected deep neural network (DNN) to perform 120 

bathymetry inversion using flow velocity observations, proving its accuracy and 121 

availability for a high-dimensional riverbed topography model with sparse 122 

measurements. 123 

By attaining the unification of the spatial resolution of multibeam data and the 124 

spatial coverage of satellite altimetry data, it can provide a new means for high-125 
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precision, real-time global seafloor topography surveying. In this paper, we proposed a 126 

novel optimization algorithm based on VGGNet, a model for application of 127 

convolutional neural network (CNN), aiming to enhance the precision of satellite 128 

altimetry-derived bathymetry, which mostly lies on the range of the estimated average 129 

of global ocean depth, by the input of multibeam sonar bathymetry data (Charette et al., 130 

2010). 131 

The main contributions of this article are as follows. 132 

1. A data combination of high-spatial-resolution multibeam sonar-derived 133 

bathymetry (truth data) and high-coverage satellite altimetry-derived bathymetry (to-134 

be-corrected data) is synthesized to obtain a corrected version of the latter, with the 135 

advantage from both sides. 136 

2. A convolutional neural network (CNN) based VGGNet algorithm framework is 137 

for the first time proposed to compute the distance (loss) between the two inputs - to-138 

be-corrected data and truth data, where the former is transformed by minimizing the 139 

distance between them with backpropagation, generating an image that best match the 140 

latter. 141 

3. Experiments are conducted in West Pacific, Southern Ocean, and East Pacific, 142 

to test the performance of the algorithm, with the results showing that the improvement 143 

in computational precision can be over 17% in comparison with previous researches as 144 

far as we conclude. 145 

 146 

The rest of the article is organized as follows. An introduction to the background 147 

of VGG-19 framework and the methodology of the correction of satellite altimetry-148 

derived bathymetry data using multibeam sonar data is elaborated in Section II. The 149 

neural network experiments and their results are presented in Section III. Finally, 150 

Section IV concludes the article. 151 

 152 

2 Proposed Methodology 153 

In this section, we elaborate the related background of the CNN-based VGGNet 154 

(VGG-19) algorithm and its detailed application to the correction of the bathymetry 155 

data. As shown in Figure 1, the structure of the proposed network consists of mainly 156 

three parts: 1) the input of the truth and to-be-corrected bathymetry data; 2) the 157 

designation of network model, requiring a pretrained VGG-19 framework, a loss 158 

function, gradient descent, and the optimization loop; 3) the output of the corrected 159 

version of satellite altimetry-derived bathymetry data. 160 
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 161 
Fig.1 Main structure of the proposed network. 162 

 163 

2.1 Framework of VGG-19 164 

The convolutional neural network (CNN) models have been improved and updated 165 

for better application of large-scale image recognition, such as AlexNet (Krizhevsky et 166 

al., 2012), CaffeNet (Jia et al., 2014), LeNet (LeCun et al., 1998) and VGGNet 167 

(Simonyan et al., 2014), etc. Compared with most previous CNN-originated models 168 

that have 4 – 7 layers, VGG-19, a form of VGGNet, is constructed by 19 layers, which 169 

includes 16 convolutional layers and 3 fully connected layers, enabling it to extract the 170 

more abstract and deeper image features and reduce the amount of parameters while 171 

still retain the same receptive field, thus has improved the efficiency and accuracy of 172 

image computing (Huo et al., 2020; Islam et al., 2020; Schulz et al., 2020). 173 

The structure of VGG-19 is displayed in Figure 2. The entire network uses the same 174 

size of convolution kernels (3x3) and maximum pooling kernels (2x2). The 175 

combination of several small filter (3x3) convolutional layers is better than a large one 176 

(5x5 or 7x7) in the previous models. Since the convolution kernel focuses on expanding 177 

the number of channels and the pooling kernel focuses on reducing the width and height, 178 

the architecture is deeper and wider while the increase of calculation slows down, 179 

showing the network a larger receptive field. At the same time, the network parameters 180 

are reduced, and the ReLU (Rectified Linear Unit) activation function is used multiple 181 

times to create more linear transformations to enhance the learning ability40. 182 
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 183 
Fig. 2 Architecture of VGGNet model used in this paper. The boxes represent the size of each 184 

layer. 185 

 186 

2.2 Model Training Steps 187 

The correction of the bathymetry is conducted under the model of VGG-19. The 188 

principle of the correction model is to define a distance function that describes how 189 

different the two input images are. The multibeam-derived data image and the satellite 190 

altimetry-derived data image covering the same area are passed to the model, which is 191 

supposed to return the intermediate layer outputs from the model. The distance function 192 

𝐿 that we use is shown below: 193 

𝐿𝑙(𝑥, 𝑝) = ∑ (𝐹𝑖𝑗
𝑙 (𝑥) − 𝑃𝑖𝑗

𝑙 (𝑝))
2

𝑖,𝑗

(1) 194 

 195 

where 𝑥 stands for the multibeam sonar-derived bathymetry image, 𝑝 stands for 196 

the satellite altimetry-derived bathymetry image, and 𝑖, 𝑗 stand for the serial number 197 

of pixel points of the input images. Let 𝑉𝑛𝑛 be a pre-trained VGG-19 network and 𝑋 198 

be any image, then 𝑉𝑛𝑛(𝑋) is the network fed by 𝑋. Let 𝐹𝑖𝑗
𝑙 (𝑥)∈𝑉𝑛𝑛(𝑥) and 𝑃𝑖𝑗

𝑙 (𝑝)199 

∈𝑉𝑛𝑛(𝑝) describe the respective intermediate feature representation of the network 200 

with the inputs 𝑥  and 𝑝  at layer 𝑙 . At last, optimizers update rules are applied to 201 

iteratively update the images, which minimize a given loss with respect to the inputs. 202 

The evaluation of the precision of correction is based on the comparisons with 203 

previous study. In order to quantify the differences and connections between the 204 

predicted value and truth value, here we choose two evaluation measurement, root mean 205 

square error (RMSE), normalized RMSE (NRMSE), and coefficient of determination 206 

(R2), as follows respectively: 207 

𝑅𝑀𝑆𝐸 = √∑ (𝑓𝑖̂ − 𝑦𝑖)
2𝑛

𝑖=1

𝑛
(2) 208 

 209 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛

(3) 210 
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 211 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑓𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦)2𝑛
𝑖=1

(4) 212 

 213 

where 𝑛 represents the number of the values from dataset, 𝑖 represents the serial 214 

number of the value from the dataset, 𝑓  represents the predicted values and 𝑦 215 

represents the truth values. The normalization of RMSE can make data sets of different 216 

numerical ranges easier to compare. 𝑁𝑅𝑀𝑆𝐸 and 𝑅2 normally range from 0 – 1. The 217 

smaller 𝑅𝑀𝑆𝐸, 𝑁𝑅𝑀𝑆𝐸 and the bigger 𝑅2 mean the higher correlation between the 218 

datasets. 219 

Using the multibeam-derived data as the content image to match, we input and 220 

transformed the satellite altimetry-derived data under the framework of VGG-19 to 221 

minimize the losses and distances between them so that we could attain an improved 222 

bathymetry data that combined the advantages of both – the high spatial precision of 223 

multibeam data and the wide spatial coverage of satellite data. 224 

3 Experiments and Results 225 

3.1 Experiment Data 226 

The original shipborne multibeam sonar bathymetry data used in the experiment is 227 

acquired at NOAA National Geophysical Data Center (2009). The interpolation 228 

preprocessing on the raw data is carried out to output the gridded digital elevation model 229 

(DBM) data. Meanwhile, the satellite altimetry data used in the experiment is acquired 230 

and extracted from NGDC’s ETOPO1 1 arc-minute global relief model, clipped with 231 

the same range as that of the multibeam sonar data above (NOAA National Geophysical 232 

Data Center, 2004). The grid resampling of the satellite altimetry data is performed 233 

according to the resolution of the corresponding multibeam data, in order to unify the 234 

resolutions of the pairs to facilitate subsequent operations. 235 

We use a total of three pairs of multibeam-satellite bathymetry data respectively 236 

from the West Pacific, Southern Ocean, and East Pacific, and conduct experimental 237 

analysis. The location and parameters of the data are shown in Figure 3 and Table 1. 238 

For the VGG-19 model, the input parameter is a pair of multibeam-satellite 239 

bathymetry data, and the output parameter is the corrected satellite altimetry data. In 240 

the dataset, 50% of them are randomly selected as the training set to initially fit the 241 

model and update the parameters, and the remaining 50% are created as the validation 242 

set to provide an unbiased evaluation of the model fitted on the training set, which is 243 

the prediction results. 244 
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 245 

Fig. 3 Location of the bathymetry data in (a) West Pacific, (b) Southern Ocean, and (c) East 246 

Pacific. 247 

 248 

Table 1 The parameters of bathymetry data. 249 

 Grid 

resolution (m) 

Dataset size Area (km2) Depth range (m) 

West Pacific 103 12,624,868 133,937 -8,987 – -369 

Southern 

Ocean 

93 5,097,104 43,700 -4,077 – -211 

East Pacific 93 9,135,007 78,318 -3,921 – -1,266 

 250 

3.2 Analysis of Results 251 

The output of the deep learning model is the corrected satellite altimetry bathymetry 252 

data. Under the processing of the VGG-19 model, the surface texture of the satellite 253 

altimetry-derived seabed topography from West Pacific, Southern Ocean and East 254 

Pacific has been refined, and the water depth range has been corrected, resulting in a 255 

reduction in the distance from the truth value. 256 

 257 
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 258 

Fig.4 The loss of the training set and validation set from the model of (a) West Pacific, (b) 259 

Southern Ocean and (c) East Pacific. 260 

 261 

The loss function is used to estimate the gap between the output value of the model 262 

and the truth value to guide the subsequent optimization steps of the model. The smaller 263 

the loss function value, the better the model. The loss on training and test sets are shown 264 

in Figure 4. In the three experimental areas, the loss of the model has dropped sharply 265 

to around 0.2 after 20 epochs, and starts to decrease gradually, especially after 70 epochs. 266 

Moreover, it shows that no obvious overfitting phenomenon is found during the 267 

computing process. It can be concluded that the machine learning of the VGG-19 model 268 

can effectively reduce the loss for the experimental data from the three sea areas. 269 

The parameters of the performance of the model are evaluated by running tests on 270 

50% of the multibeam sonar data from validation set, with its outcome listed in Table 271 

2. From the perspective of R2, there is a high correlation between the corrected datasets 272 

from the West Pacific, Southern Ocean and East Pacific, respectively 0.80, 0.81 and 273 

0.77, and the truth datasets, indicating an excellent fit. In terms of RMSE and NRMSE, 274 

the figures show that the correction algorithm results in errors of 267 meters, 102 meters, 275 

and 87 meters in the Western Pacific, Southern Ocean, and Eastern Pacific datasets, 276 

along with NRMSE being 0.031, 0.026, and 0.033, respectively. Compared with 277 

previous similar studies [26] [29], our algorithm is able to improve the NRMSE of the 278 

datasets by more than 19%, proving its potential. In addition, there is a consistent trend 279 

in the changes of R2 and RMSE, with the correction effect of the data in Southern Ocean 280 

is the best, followed by the West Pacific, and then the East Pacific. 281 

 282 

Table 2 The precision of satellite altimetry correction. 283 

 R2 RMSE (m) NRMSE 

West Pacific 0.80 267 0.031 

Southern Ocean 0.81 102 0.026 
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East Pacific 0.77 87 0.033 

 284 

In experiments, we find that the precision of correction, taking R2 as an example, 285 

varies with water depth, as shown in Figure 5. As can be seen from the figure, in general, 286 

the minimum of R2 is above 0.2, which occurs at the extreme value of water depth, 287 

while the maximum can reach more than 0.9 and the water depth in each water area 288 

varies, with maximum and minimum values for each sea area being almost identical. In 289 

the West Pacific data, R2 is higher than 0.8 in the water depth range of about -4,500 to 290 

-1,900 meters, showing a strong correlation, with a maximum at about -3,200 meters. 291 

For the Southern Ocean data, R2 is strongly correlated at around -500 m and around -292 

1,800 m to -2,400 m, with a maximum around -2,200 m. For the eastern Pacific data, 293 

R2 is strongly correlated in the range of about -2,400m to -3,600m, with a maximum 294 

around -3,500m. 295 

According to experiences, the precision of machine learning is positively correlated 296 

with the volume of data in the samples from dataset. Without considering other 297 

parameters, the larger the sample size, the higher the learning precision tends to be, and 298 

vice versa. In this experiment, this theory has also been verified. Combined with the 299 

histogram of water depth values, the depths where the distribution of bathymetry data 300 

points are scattered and the variance is large are often the areas where R2 shows a low 301 

level, and the depths with high R2 often also have more concentrated distribution and 302 

small variance. Specifically, at the maximum and minimum values of the water depths 303 

in these three sea areas, due to the small amount of sample data, the precision of 304 

machine learning is also low. Precision in the depth range where the largest sample size 305 

is distributed is highly correlated. The rise and fall of the R2 value curves in the figure 306 

at certain water depths also reflect the particularity of the distribution of the bathymetry 307 

values of the local seabed topography to a certain extent. Experiments show that with 308 

the input of sufficient data volume, the satellite altimetry-derived bathymetry data 309 

corrected by the VGG-19 model can be highly fitted with the multibeam-derived data 310 

in specific water depth ranges. 311 

 312 
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Fig.5 Relationship between water depth and precision (R2) in (a) West Pacific, (b) Southern Ocean 313 

and (c) East Pacific. 314 

 315 

We subtract the corrected water depth value of satellite altimetry data from the truth 316 

value of multibeam sonar data and find that the distribution of errors between the two 317 

is in the form of high in the middle (zero) and low on both sides, that is, the closer the 318 

error is to 0, the greater the number of data points, and vice versa, as shown in Figure 319 

6. In the West Pacific data, the data point with zero error as the maximum value is 320 

isolated, not continuous with the rest of the curve, indicating that the algorithm results 321 

in significantly more error-free bathymetry points. In the other two data, the data curves 322 

are relatively continuous, decreasing from the maximum value of zero to both sides, 323 

while the curve of the Southern Ocean data is more convergent near zero than the East 324 

Pacific one, indicating that its correction effect is better. 325 

For a more intuitive representation, we use the absolute value of the results above 326 

to calculate the percentage of the data within the range of 2%, 1% and 0.5% to the total 327 

depth of each data, with the values representing the errors from the truth value, as listed 328 

in Table 3. As the error range decreases, the number of data points increases gradually. 329 

On average, the data points with an error within the range of 2% of the depth value 330 

account for 70.58% of the total, 49.21% within the 1% range, and 30.01% within the 331 

0.5% range. Compared with previous studies, the correction precision of the deep 332 

learning VGG-19 model can be effectively improved by over 17%. 333 

Among the depth range indicators, the accuracy of the corrected Southern Ocean 334 

data is consistently better than the other two by a relatively large margin. In the 2% 335 

range, the East Pacific and West Pacific data performed almost indistinguishably, with 336 

the East Pacific data slightly higher. Under the strictest standard of 0.5% range, the 337 

performance results of the two are widened, with the West Pacific data being better. 338 

Combined with Table 2, it can be found that the changes of the parameters in the two 339 

tables show relative consistency, with the data of the Southern Ocean having the best 340 

correction effect, while the data of the West Pacific and East Pacific being the second 341 

and lowest respectively in most cases. 342 
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 343 

Fig.6 Differences between corrected and truth values in (a) West Pacific, (b) Southern Ocean and 344 

(c) East Pacific. 345 

 346 

Table 3 Proportion of corrected errors from truth values within 2%, 1% and 0.5% depth range. 347 

 2% of depth (%) 1% of depth (%) 

West Pacific 67.25 45.73 

Southern Ocean 76.19 60.34 

East Pacific 68.30 41.55 

 348 

4 Conclusions 349 

In this study, we propose a deep learning-based VGGNet pretrained algorithm 350 

model to correct the satellite altimetry-derived bathymetry data with multibeam sonar-351 

derived bathymetry as truth data. The core idea of the correction model is to define and 352 

minimize the distance (loss) between the truth data and the data to be corrected and 353 

finally output the corrected satellite altimetry seafloor topography accordingly. We then 354 

evaluate the model performance using three pairs of bathymetric data from the West 355 

Pacific, Southern Ocean, and East Pacific. In the process of testing, the loss of training 356 

set and validation set of the data has been effectively reduced, which proves the 357 

effectiveness of the model. 358 

We selected three indicators, R2, RMSE and its derived NRMSE to evaluate the 359 

correction results of the data, showing excellent outcomes and the NRMSE indicator 360 

being over 19% higher than previous research. Further, by analyzing the difference of 361 

R2 values at different water depths, we find that the correction precision of deep learning 362 

has a positive correlation trend with the sample size, that is, the accuracy of the depth 363 

values with more data points is higher, and vice versa. Finally, after finding that the 364 

difference between the truth value and the corrected value gradually decreases from the 365 
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maximum value at zero to both sides of the number axis, we analyze the proportion of 366 

the absolute value of the difference to the overall water depth and find that our model 367 

can improve the correction precision by more than 17% comparing with previous 368 

research. Overall, among the three test areas, the Southern Ocean data has the highest 369 

correction precision, followed by the West Pacific data, and the East Pacific data ranked 370 

last. 371 
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