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Abstract. Accurate knowledge of the seasonal snow distribution is vital in several domains including ecology, water resources

management, and tourism. Current spaceborne sensors provide a useful but incomplete description of the snowpack. Many

studies suggest that the assimilation of remotely sensed products in physically based snowpack models is a promising path

forward to estimate the spatial distribution of snow water equivalent (SWE). However, to date there is no standalone, open

source software
:::::::::::::::
community-driven

::::::
project

:
dedicated to snow data assimilation

:::::
which

:::::
makes

::
it
:::::::
difficult

::
to

::::::::
compare

:::::::
existing5

:::::::::
algorithms,

::::
and

::::::::
fragments

:::::::::::
development

::::::
efforts. Here we introduce a new data assimilation toolbox, the Multiscale

:::::::
Multiple

Snow Data Assimilation System (MuSA)
:
,
::
to

::::
help

::
fill

::::
this

:::
gap. MuSA was developed to fuse remotely sensed information

:::
that

:
is
::::::::
available

::
at

::::::::
different

:::::::::
timescales with the energy and mass balance Flexible Snow Model (FSM2). MuSA was designed to

be user-friendly and scalable. It enables assimilation of different state variables such as the snow depth, SWE, snow surface

temperature, binary or fractional snow-covered area, and snow albedo and could be easily upgraded to assimilate other variables10

such as liquid water content or snow density in the future. MuSA allows the joint assimilation of an arbitrary number of these

variables, through the generation of an ensemble of FSM2 simulations. The characteristics of the ensemble (i.e. the number of

particles and their
::::
prior covariance) may be controlled by the user, and it is generated by perturbing the meteorological forcing

of FSM2. The observational variables may be assimilated using different algorithms including the particle filters and smoothers

as well as ensemble Kalman filters and smoothers along with their iterative variants. We demonstrate the wide capabilities of15

MuSA through two snow data assimilation experiments. First, 5 m resolution snow depth maps derived from drone surveys are

assimilated in a distributed fashion in the Izas catchment (Central Pyrenees). Furthermore, we conducted a joint assimilation

experiment, fusing MODIS land surface temperature and fractional snow-covered area with FSM2 in a single cell experiment.

In light of these experiments, we discuss the pros and cons of
::
the

:
assimilation algorithms, including their computational cost.
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1 Introduction20

The snow cover has a profound effect on the water cycle (García-Ruiz et al., 2011) and ecosystems (Lin and West, 2022) of high

latitude and mountain regions. It represents a natural reservoir of freshwater resources, sustaining crop irrigation, hydropower

generation and drinking water supply to a fifth of humanity (Barnett et al., 2005). In addition, the ski industry is an important

economic driver in many mountain areas. As a consequence, a good knowledge of the snow cover properties has a strong

scientific, societal, and economic value (Sturm et al., 2017).25

Due to the harsh environmental conditions that often prevail in snow dominated areas, in situ monitoring of the snowpack

based on automatic devices and weather stations is both costly and logistically challenging. In addition, due to the variable

nature
::::::::::::
spatio-temporal

:::::::::
variability

:
of the snowpack (López-Moreno et al., 2011), even dense monitoring networks may suf-

fer from a lack of representativeness (Molotch and Bales, 2006)
:::::::::::::::::::::::::::::::::::::
(Molotch and Bales, 2006; Cluzet et al., 2022). Yet, estimating

SWE spatial distribution is important to make accurate predictions of snowmelt runoff in alpine catchments. Satellite remote30

sensing provides spatial information about snow-related variables including (i) snow cover spatial extent at various spatio-

temporal scales (Aalstad et al., 2020; Gascoin et al., 2019; Hall et al., 2002; Hüsler et al., 2014), (ii) snow depth (Lievens et al.,

2019; Marti et al., 2016), (iii) albedo (Kokhanovsky et al., 2020) or (iv) snow
::::
land surface temperature (Bhardwaj et al., 2017)at

the global scale. However, the direct estimation of key variables such as the snow water equivalent (SWE) or density by means

of remote sensing techniques, remains challenging (Dozier et al., 2016). The only remote sensing tools that have shown some35

potential to retrieve SWE are passive microwave sensors. Unfortunately, their coarse resolution and the fact that they tend to

saturate above a certain SWE threshold, prevents their usage over mountainous regions or areas with a thick snowpack (Luojus

et al., 2021).

Numerical modeling allows the estimation
::::::
models

:::
can

:::::::
estimate

:::
the

::::::::::
distribution of SWE at different spatio-temporal scales

using meteorological information derived from automatic weather stations (Essery, 2015; Liston and Elder, 2006a) or atmo-40

spheric models (Alonso-González et al., 2018; Wrzesien et al., 2018). Nonetheless,
::::
such snowpack models exhibit a number

of limitations that may cause strong biases in the SWE simulations (Wrzesien et al., 2017). Snowpack model uncertainties

originate partly from their simplified representation of physical processes (Günther et al., 2019; Fayad and Gascoin, 2020), but

most importantly from errors in the meteorological forcing (Raleigh et al., 2015). In this context, the fusion of remote sensing

products with snowpack models using data assimilation is key to improve snowpack simulations (Girotto et al., 2020; Largeron45

et al., 2020).

Several remotely sensed products may be used to update snowpack models. Snow covered area
::::::::
Fractional

::::::::::::
snow-covered

:::
area

:::::::
(FSCA)

:
from optical sensors was the first product to be assimilated (Clark et al., 2006; Durand et al., 2008; Kolberg and

Gottschalk, 2006). Snow cover area (SCA)
:::::
FSCA

:
assimilation remains extensively used in both distributed (Margulis et al.,

2016) and semi-distributed models (Thirel et al., 2013) due to the long time series of SCA observations and the development of50

new higher resolution products (Baba et al., 2018). It is possible to further improve snowpack simulations by assimilating snow

depths (Deschamps-Berger et al., 2022; Smyth et al., 2020). The assimilation of remotely sensed surface reflectances may also

be beneficial (Charrois et al., 2016; Cluzet et al., 2020; ?)
::::::::::::::::::::::::::::::::::::::::::::::::::::
(Charrois et al., 2016; Cluzet et al., 2020; Revuelto et al., 2021b), but
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further research is needed on this topic to demonstrate advantages over assimilating derived higher level products such as

fractional snow cover area (FSCA )
:::::
FSCA and albedo.55

Whereas snowpack models are increasingly available as open source software and remote sensing products as open data,

to our knowledge there is no standalone open source application to develop
::::::
multiple

:
snow data assimilation experiments.

This specific issue was highlighted by Fayad et al. (2017) as a strong limitation to advance knowledge on the snow cover in

regions which receive less attention from the mainstream research community. In addition, some data assimilation frameworks

are based on highly specific implementations tied to operational constraints (Cluzet et al., 2021). This situation prevents the60

development of reproducible snow data assimilation studies and challenges the comparison of the performance of different

snow data assimilation algorithms.

This is why we have developed a new open source data assimilation toolbox, the Multiscale
:::::::
Multiple Snow Data Assimilation

system (MuSA). MuSA is an ensemble-based snow data assimilation tool. It enables the fusion of multiple observations with

a physically based snowpack model while taking into account various sources of model, forcing ,
::::::
forcing

:
and measurement65

uncertainty. It is an open-source collaborative project entirely written in the Python programming language. It should facilitate

the development of snow data assimilation experiments, as well as the generation of snowpack reanalyses and near real time

snowpack monitoring. It was designed with a modular structure to foster collaborative development, allowing advanced users

to seamlessly implement new features with minimal effort. In the following sections, we describe the features of MuSA and

show different examples of its usage, assimilating remote sensing products of different spatio-temporal resolutions.70

2 Overview of the data assimilation system

The core of MuSA is the energy and mass balance of the snowpack model, the Flexible Snow Model (FSM2 Essery, 2015).

FSM2 has from two to three levels of representation of different
:::::
several

:::::::
options

:::
for

:::
the

::::::::::::::
parameterizations

::
of
:
key processes re-

lated to the energy and mass balance of the snowpack..
:
The most complex configuration is chosen by default in MuSA, leading

to a more detailed simulation of the internal snowpack processes. Albedo is computed from the age of the snow, decreasing its75

value as snow ages and increasing it with fresh snowfalls, instead of diagnosing it as a function of the surface temperature. Ther-

mal conductivity of the snowpack is computed as a function of the snow density, instead of using a fixed value. Snow density is

computed considering overburden and thermal metamorphism, instead of using an empirical estimation increasing the density

as function of age or using a fixed value. Turbulent energy fluxes are computed as a function of atmospheric stability. Melt

water percolation in the snowpack is computed using the gravitational drainage, instead of a bucket model. Although this is the80

default configuration, it is possible to choose any other FSM2 setup, which may result in slight performance differences both

in terms of the computational cost and accuracy of the model (Günther et al., 2019).
:::
As

::::::::
envisaged

::
in

:::::::::::::::::::::
Westermann et al. (2022)

:
,
:::
the

:::::::
potential

::
to
::::

run
:::::::
multiple

::::::
model

::::::::::::
configurations

:::::
leaves

:::
the

:::::
door

::::
open

:::
for

::::::::
pursuing

:::::::
rigorous

::::::
model

::::::::::
comparison

:::::
using

:::
the

:::::
model

:::::::::
evidence

:::::::::
framework

::::::::::::::
(MacKay, 2003)

::
in

::
the

::::::::::
cryospheric

::::::::
sciences.

MuSA was designed as a Python program encapsulating the FSM2 Fortran code (Figure 1). It handles the forcing and85

initial files as well as the FSM2 runs and outputs, by internally generating the needed
::::::
required

:
ensemble of simulations from
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simple configuration (config.py) and constants (constants.py) files that should be filled by the user
:
to

::::
both

::::::::
configure

:::
the

::::::
MuSA

::::::::::
environment

:::
and

::::::
define

::
the

::::::
priors

::::::::::
respectively. Then, it solves most of the challenges of ensemble-based snow data assimilation

frameworks for the user
:
,
::
as

::
it

::::::::
internally

:::::::
handles

:::
the

:::
I/O

:::
and

:::::::::::::
parallelization

:::::
while

::::::
keeping

:::::
track

::
of

:::
the

:::::::::
ensembles

::::
that

::::::
should

::::
flow

:
in
::::::::
different

::::
ways

:::::::::
depending

::
of

:::
the

::::::
chosen

:::
DA

::::::::
algorithm. The data assimilation algorithms are independently implemented90

on a grid cell basis, allowing both point scale
::::
single

::::
cell and parallel spatially distributed simulations. Also, in its current version

MuSA provides support for the direct insertion of snow depth. However this feature may not be maintained in the future as it

involves strong assumptions especially with multilayer geometries. The outputs of MuSA consist of the posterior mean snow

simulation from FSM2 (updated_idx_idy.csv), the posterior standard deviations of the FSM2 ensemble (sd_idx_idy.csv), and

information related to the posterior perturbation parameters and the observations (DA_idx_idy.csv)
:
, and the original simulation95

without perturbation (OL_idx_idy.csv). Additionally, it is possible to store the posterior ensembles
::::::::
ensemble of every cell.

Figure 1. MuSA internal workflow. k, d, ℓ, Na,
:::::
DAW, idx, and idy refer to the timing of the analysis step, number of observations

:::::::::
observation

::::
times, Kalman iteration

:::::
current

:::::::::
assimilation

:::::
cycle number, total number of assimilation cycles,

:::
data

:::::::::
assimilation

:::::::
window,

:
longitude cell

index,
:
and latitude cell index,

:
respectively.

The following data assimilation algorithms are currently implemented in MuSA:

– Particle Filter (PF; Gordon et al., 1993; van Leeuwen et al., 2019)
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– Ensemble Kalman Filter (EnKF; Evensen, 1994; van Leeuwen, 2020)

– Ensemble Kalman filter with Multiple Data Assimilation (EnKF-MDA; Emerick and Reynolds, 2012)100

– Particle Batch Smoother (PBS; Margulis et al., 2015), a batch smoother variant of the PF.

– Ensemble Smoother (ES; van Leeuwen and Evensen, 1996), a batch smoother variant of the EnKF.

– Ensemble Smoother with Multiple Data Assimilation (ES-MDA; Emerick and Reynolds, 2013)

::
In

::
its

::::::
current

:::::::
version,

::::::
MuSA

::
is

::::
able

::
to

::::::::
assimilate

:::
the

::::::::
following

:::::::::
variables:

–
::::
SWE

:::::
(mm)

:
105

–
:::::
Snow

::::
depth

::::
(m)

–
::::
Land

::::::
surface

::::::::::
temperature

::::
(K)

–
::::::::
Fractional

::::::::::::
snow-covered

::::
area

::
(-)

:

–
::::::
Albedo

::
(-)

:

–
:::::::
Sensible

::::
heat

:::
flux

::
to

:::
the

::::::::::
atmosphere

:::
(W

:::::
m−2)110

–
:::::
Latent

::::
heat

::::
flux

::
to

:::
the

:::::::::
atmosphere

:::
(W

::::::
m−2)"

:

:::
We

:::::
expect

::
to

:::::::
provide

::::::
support

:::
for

::::
even

:::::
more

:::::::
variables

::
in

:::
the

::::::
future. Note that the Ensemble Kalman schemes involving multiple

data assimilation are iterative schemes based on tempering the likelihood (Stordal and Elsheikh, 2015; van Leeuwen et al.,

2019). For the PF, several standard resampling algorithms (see Li et al., 2015, for a review) are available in MuSA, namely:

bootstraping, residual resampling, stratified resampling, and systematic resampling. In addition to these standard resampling115

techniques, we have also implemented a heuristic approach based on redrawing from a normal approximation to the posterior

which is loosely inspired by the idea of using a proposal distributions
::::
more

::::::::
advanced

:::::::
particle

::::::::
methods (Särkkä, 2013; van

Leeuwen et al., 2019). This redrawing from the approximate posterior generates new samples of perturbation parameters at

each assimilation step. In the case of a total collapse of the PF with this resampling strategy the posterior standard deviation

of the perturbation parameters is 0 (all weight is assigned to one particle) which corresponds to a degenerate distribution. In120

this case, drawing new perturbation parameters from the degenerate posterior distribution would not generate new particles. To

avoid this , in case of a complete collapse of the PF, MuSA
:::
case

::
of

::::::::
complete

::::::::::
degeneracy,

:::::
where

:::
all

:::
the

::::::
weight

::
is

::
on

::
1

:::::::
particle,

:::
this

::::::::
redrawing

:::::::::
technique

::::::
instead uses the prescribed prior standard deviations for generating perturbation parameters, corrected

by a scaling factor (to be selected by the user
:
,
::::
fixed

::
to

:::
0.3

:::
by

::::::
default) to avoid over-inflating

::::::::::::
overdispersing the ensemble.

The inputs of MuSA are composed of (i) gridded meteorological forcing to generate the ensemble of FSM2 simulations and125

(ii) gridded observations which are assimilated. Optionally, it is possible to provide a mask, covering areas where simulations

should not be implemented in order to save computational resources or restrict the runs to a specific area inside the provided
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domain. These inputs must be provided as files encoded in the Network Common Data Form (NetCDF; Rew and Davis, 1990)

format. MuSA is able to handle different observational products as long as the meteorological forcing and the observations

share the same geometry (i.e. same number of cells in the longitudinal and latitudinal dimensions). As in many other distributed130

snowpack models, there is currently no communication between grid cells in MuSA. This makes MuSA easily parallelizable

as each cell is simulated and updated completely independently of the others (i.e., embarrassingly parallel). As a result, the

computational cost of the runs scales almost linearly with the number of computational units or the number of cells to solve

respectively. Different parallelization schemes are already implemented, including multiprocessing for single node runs and

message passing interface (MPI) and Portable Batch System job arrays, providing
:
to

:::::::
provide

:
support for computing clusters.135

Due to the embarrassingly parallel nature (no communication between tasks) of the MuSA computational problem, other

parallelization schemes can easily be implemented. All the data processing is done by default in the temporary file system, but

the user can choose any other location such as a specific temporary folder in a multi-node cluster or a random access memory

drive in a local workstation to speed up the I/O processes.

2.1 Ensemble generation140

Other than for direct insertion, the
:::
The DA algorithms implemented in MuSA all require a prior ensemble (i.e. a collection) of

simulations to represent uncertainty. The number of ensemble members (also known as particles; van Leeuwen et al., 2019) in

the ensemble
::::::::::::::::::::::::::::::::::::::
(or, equivalently, particles; van Leeuwen, 2009)

:
,
:::::
which

:::
we

::::::
denote

:::
by

:::
Ne,

:
should be specified by the user, as it

drastically affects both the computational cost of the experiments and the performance of the data assimilation algorithms. To

generate an ensemble of snowpack state trajectories, MuSA perturbs the forcing and performs
::::::::::::
meteorological

::::::
forcing

::
to
::::

run145

an ensemble of FSM2 runs with the perturbed forcing
::::::::::
simulations. An arbitrary number of forcing variables can be perturbed.

The perturbation of the forcing is performed by drawing
::::::
spatially

:::::::::::
independent random perturbation parameters from a normal

distribution defined by its standard deviation and mean, or the mean and standard deviation of the underlying normal function

in case of choosing a
:
or

:
log-normal probability distribution. The prior standard deviation and mean of the distribution should

be provided
::::
these

:::::::::::
distributions

::::::
should

::
be

::::::::
specified by the user. MuSA supports normal or log-normal probability functions to150

generate constant in time additive or multiplicative perturbations respectively, depending on the physical bounds of the variable

to be perturbed. For example, additive perturbations can be used to generate air temperaturetime series, whereas multiplicative

:::::::
Additive

:::::::::::
perturbations

:::
are

::::::::
typically

::::
used

:::
for

:::
air

::::::::::
temperature.

::::::::::::
Multiplicative

:
perturbations are recommended for precipitation

to avoid negative values , or
:
as
::::
well

:::
as

::
for

:
shortwave radiation to avoid negative values and positive night-time values.

Once the forcing is perturbed, MuSA partitions the precipitation between the liquid and solid phase. To estimate the phase155

of the precipitation, two different approaches are implemented. The simpler approach is based on a logistic function of the 2

m air temperature (Kavetski and Kuczera, 2007). A more complex psychrometric energy balance method is also implemented

in MuSA. This approach uses the relative humidity and 2 m air temperature to infer the surface temperature of the falling

hydrometeors, from which the phase of the precipitation can be estimated (Harder and Pomeroy, 2013).
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2.2 Meteorological forcing160

The variables required as forcing to run MuSA include downwelling (i.e., incoming) shortwave and longwave radiation

[W m−2], total (sum of liquid and solid) precipitation [kg m−2s−1], surface atmospheric pressure [Pa], 2 m air temperature

[K], relative humidity [%], and 10 m wind speed [m s−1]. In the current version of MuSA, the forcing must be provided in

the netCDF format at an hourly time step in a grid based geometry, without any specific requirement on the native spatial

resolution. The most likely candidates to be used as meteorological forcing for MuSA will be the outputs of atmospheric165

simulations or automatic weather station data. These include atmospheric reanalyses, such as ERA5 (Hersbach et al., 2020)

or MERRA-2 (Gelaro et al., 2017) and regional climate model outputs (Alonso-González et al., 2021) as well the outputs of

different downscaling approaches driven by the aforementioned datasets (e.g. Fiddes and Gruber, 2014; Gutmann et al., 2016;

Havens et al., 2017; Fiddes et al., 2022; Liston and Elder, 2006b). Other sources of information include automatic weather

stations or gridded products derived from the interpolation of point scale meteorological information. The forcing variables170

should be provided in the International System of Units, but it is possible to perform simple unit transformations internally to

facilitate the preprocessing of different forcing data sources, using the following affine transformation.

ψk = aϕk + b , (1)

where ϕk (for k = 0, . . . ,n) is a forcing time series provided by the user with units [Φ] and ψk with converted units [Ψ] is the

transformed forcing time series after scaling by a with units [ΨΦ−1] and translating by b with units [Ψ].175

It should be noted that the forcing is read along the time dimension. As mentioned above, each
::::
Each

:
grid cell is solved

independently including
:::::
which

::::::::
includes the reading of the forcing . However, this memory cost reduction comes with an

associated computational cost due to the potential need of reading a long time dimension
:::
that

::::::
occurs

:::::
along

::
the

::::
time

::::::::::
dimension.

:::::::::
Otherwise,

::::
each

:::::::
process

:::::
would

:::::
have

::
to

:::::
store

::::::::::
considerably

:::::
more

::::
data

::
in
::::::::

memory
::::::
leading

:::
to

::::
more

::::::
costly

:::
I/O

:::::::::
operations

::::
that

:::::
would

::::
slow

:::::
down

:::
the

::::
run

::::
time.

:::::
Even

:::
so,

:::
just

:::::::
reading

:::::
along

:::
the

::::
time

:::::::::
dimension

:::
can

:::::
come

::::
with

::
a
:::::::::::
considerable

::::::::::::
computational180

:::
cost

::
if
:::
the

::::
time

:::::::::
dimension

::
is
:::::
large. To alleviate this, the computational cost of MuSA

::::
time

:::::
spent

::::::
reading

:::
the

:::::::
forcing can be

reduced by setting the chunk
::
(a

:::::
subset

::
of

:::
the

:::
file

::
to

::
be

::::
read

::
or

::::::
written

::
as

:
a
::::::
single

:::
I/O

::::::::
operation)

:
of the netCDF forcing files along

the time dimension, specially with long or large (i.e. many grid cells) simulations. To speed up the
:::::::::
subsequent relaunching of

the simulations
::::
when

:::::::::
smoothing

:::
and

:::::::
filtering, MuSA generates an intermediate binary file with the forcing information of each

cell needed to run a complete simulation . This accelerates the initialization of experiments that involve performing different185

MuSA runs for the same grid cells
::
for

::::
each

::::
grid

:::
cell.

2.3 Observations and masked cells

MuSA is able to assimilate an arbitrary number of different observations that can be irregularly distributed in time and space.

It is also possible to develop
::::::
perform

:
joint assimilation experiments that assimilate more than one variable type at the same

time. To date, MuSA offers support to assimilate snow depth [m], snow water equivalent (SWE) [mm], surface temperature190

[K], snow-covered area (either binary or fractional) [-] and albedo [-]. A temporally and spatially constant scalar corresponding
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to the assumed observation error variance must be provided for each of the observed variables that are
:::
type

:::
of

::::::::::
observation

:::
that

::
is

::
to

:::
be assimilated. This

:::::::::
assumption

:
implies a diagonal observation error covariance matrix, R, which is tantamount to

assuming that observation errors are uncorrelated in both time and space. The geometry of the observations must match the

geometry of the forcing, i.e. both datasets must share the same grid extent and resolution
:::
Note

::::
that

::::
this

::::::::::
formulation

::::::
allows195

::
the

::::
user

:::
to

::::::
account

:::
for

::::::::::
differences

::
in

::::::::::
observation

::::
error

::::
that

::::
arise

::
in

:::
the

::::
case

:::::
when

::
a
:::::::
variable

::
is

:::::::
observed

:::
by

:::::::
multiple

:::::::
sensors

::::
with

::::::
varying

::::::::
accuracy.

:::
By

:::::::::
modifying

::::
the

:::::::::
likelihood,

::
it

:::::
would

::::
also

::::::::
possible

::
to

:::::::
account

:::
for

:::::::::::
non-Gaussian

::::::::::
observation

::::::
errors

::::::::::::::::::::::::::::::::::::::::::::::::::
(Fletcher and Zupanski, 2006; Fowler and van Leeuwen, 2013)

:
,
:::
but

:::
this

::
is

:::
not

:::
yet

::::::::
supported

::
in

::::::
MuSA. The time step , however,

::
of

:::
the

::::::::::
observations

:
does not have to be the same

:
as

::::
that

::
of

:::
the

::::::
forcing so that the observations can be irregularly spaced in time.

Also, it is not necessary that the observations of the different variables occur at the same time step, allowing the assimilation200

of products from different satellite platforms with different orbits. Optionally, a binary mask can be provided in a separate

file to delineate the basin of interest. If provided, MuSA will skip the cells that are not covered by the mask. Again, the

mask must be provided on the same grid as the forcing and the observations. Many remotely sensed products exhibit gaps

due to the presence of clouds or failures in the close sensing devices. As a general rule we do not recommend filling the gaps

of the observed series. This filled data would exhibit a different error variance than the direct estimations from the remote205

sensors, introducing uncertainties which are not compatible with the data assimilation process. MuSA will internally handle

the gaps in the observations, provided that the netcdf
:::::::
netCDF files are generated using the regular

::::::::::::
aforementioned

:
conventions,

assimilating just the timesteps where the information is available.

3 Data assimilation

Data assimilation (DA) is the exercise of fusing uncertain information from observations and (typically) geoscientific models210

(Evensen et al., 2022; Reich and Cotter, 2015). The DA schemes used in MuSA vary in their approach to state
:::
and

:::::::::
parameter

estimation as well as in the underlying assumptions and algorithms employed. In this section we provide an overview of these

schemes as well as the underlying theory.

3.1 Bayesian inference

In line with most modern approaches to DA (Wikle and Berliner, 2007; Carrassi et al., 2018; van Leeuwen et al., 2019) the215

assimilation schemes used in MuSA are built on the foundation of Bayesian inference (e.g. MacKay, 2003; Särkkä, 2013)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Lindley, 2000; MacKay, 2003; Särkkä, 2013; Nearing et al., 2016). In this approach, the target quantity is the posterior

distribution p(x|y), the probability of the model state x ∈ Rm given the observations y ∈ Rd, which can be inferred using

Bayes’ rule

p(x|y) = p(y|x)p(x)
p(y)

, (2)220

in which p(y|x), the probability of the observed data given a model state, is called the likelihood while p(x), the probability

of the state before considering the observations, is known as the prior. According to the likelihood principle, the likelihood
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should be seen as a function of the model state, not the fixed observations. So it is implicitly understood that the state is as

a vector of random variables, while the observation vector is deterministic. In this Bayesian interpretation, rather than being

narrowly synonymous with frequency, probability is a broad measure of uncertainty. The evidence (or marginal likelihood) in225

the denominator of (2) is given by

p(y) =

∫
p(x,y)dx=

∫
p(y|x)p(x)dx , (3)

where the range of integration is understood to be over all possible values of x, namely the support of the prior. This evidence is

just a function of the observations, which are fixed, obtained by integrating the numerator (product of prior and the likelihood),

so it simply serves as normalizing constant in this incarnation of Bayes’ theorem which we can thus rewrite as230

p(x|y)∝ p(y|x)p(x) , (4)

to emphasize that the posterior is proportional to the product of the likelihood (what the data tells us) and the prior (what we

knew
:::::::
believed before considering the data). As

:::::
These

:::
are

::::::
usually

::::::::::
probability

::::::
density

:::::
rather

::::
than

:::::
mass

::::::::
functions

::
as we tend to

deal with continuous variables in DA, the are usually probability density rather than mass functions. Since the posterior must

integrate to one, we can safely ignore the evidence term as long as we are just dealing with the usual first level of inference235

where we fit a specific model. The evidence is nonetheless vital in the second level of inference where we compare models

::::::::::::::::
(see MacKay, 2003), but we do not pursue that here(see MacKay, 2003). Thus, we will henceforth use the notation Z = p(y)

to emphasize that the evidence simply serves as a normalizing constant in this overview.

To get the Bayesian engine to run and infer the posterior, we need to specify the two input distributions on the right hand

side of (2), namely the prior and the likelihood. To construct the likelihood, we specify an observation (or equivalently: mea-240

surement, data generating, forward) model of the form

y =H(x⋆)+ ϵ , (5)

where x⋆ contains the true values of the state variables, H(·) is the observation operator which maps from state to observation

space, and ϵ is the observation error. In practice
:::::
Often,

::
as

::
is
:::
the

::::
case

::
in
:::::::
MuSA, the observation operator essentially picks out

predicted observations, i.e. the state variables that correspond to observations, from the full state vector. As is commonly done245

in DA (Carrassi et al., 2018), we assume that the observation errors are additive, unbiased, and follow a Gaussian distribution,

i.e. ϵ∼ N(0,R) where R is the observation error covariance matrix. Thereby the likelihood becomes

p(y|x) =Aexp
(
−1

2
ϵTR−1ϵ

)
=Aexp

(
−1

2
[y− ŷ]

T
R−1 [y− ŷ]

)
, (6)

where A= det(2πR)
−1/2 is a normalizing constant, (·)T denotes the transpose, ŷ =H(x) are the predicted observations, and

we have used that ϵ= y− ŷ conditional on x being true. Roughly speaking, the likelihood can be seen as a model misfit term250

which quantifies how likely the actual observations are given a particular model state. The states with a higher likelihood will

correspond to those with predicted observations closer to the actual observations. The next ingredient is the prior distribution

over states, p(x), which can be specified based on initial beliefs which may include physical bounds, expert opinion, ‘objective’
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defaults (using e.g. maximum entropy), or knowledge from earlier analyses
:::::::::::::::::::::::::::::::::::::::::
(Lindley, 2000; MacKay, 2003; Banner et al., 2020)

. For the latter, consider the case of assimilating two conditionally independent observations y1 and y2 . Then the posterior can255

be obtained using either batch or recursive estimation (Särkkä, 2013). The batch approach involves solving directly for

p(x|y1,y2)∝ p(y1,y2|x)p(x) = p(y2|x)p(y1|x)p(x) , (7)

while for the recursive approach we note that

p(x|y1)∝ p(y1|x)p(x) , (8)

so we can split up the batch solution by first conditioning on y1 to get an intermediate posterior, then use this as a prior when260

updating with y2 to get the full posterior as follows

p(x|y1,y2)∝ p(y2|x)p(x|y1) . (9)

This recursive approach will give the same answer as the batch approach, but it can often be helpful to split the inference into

smaller chunks especially for dynamic problems. We can extend recursive estimation to an arbitrary number of observations as

long as they are conditionally independent.265

In theory, evaluating the posterior simply involves taking the product of two terms. Naïvely, this suggests that we can

estimate the posterior through a simple grid approximation
:::::::::::::
(MacKay, 2003). Unfortunately, inferring the posterior is usually

akin to looking for a needle in a haystack due to the curse of dimensionality (Snyder et al., 2008) which manifests when

we have a high dimensional state space and/or highly informative data. As such, we need to adopt efficient algorithms when

doing DA in practice. Roughly speaking, the most widely used Bayesian DA schemes can be split into two major computational270

approaches: variational techniques and Monte Carlo methods (Carrassi et al., 2018). Despite success in operational meteorology

(Bannister, 2017), the variational approach has received little
:::
less attention in cryospheric applications (Dumont et al., 2012)

since it involves gradient terms that are difficult to implement and has not yet shown any clear gains in performance over Monte

Carlo. As such, in MuSA we restrict ourselves to Monte Carlo methods where the naming reflects that these approaches rely

on using (pseudo) random numbers to sample from probability distributions (MacKay, 2003).275

3.2 Prediction, filtering, and smoothing

The subset of Monte Carlo methods used in MuSA can be split into two classes: those derived from the EnKF (Evensen, 1994)

and the PF (Gordon et al., 1993). These can be further subdivided into filters and smoothers depending on how time dynamics

are handled (Carrassi et al., 2018). As such, it is instructive to appreciate the differences between stochastic prediction, filtering,

and smoothing (see Jazwinski, 1970; Särkkä, 2013) as well as how these are implemented in MuSA. To do so, we introduce280

the following notation: we consider discrete points in time tk = t0+k∆t for k = 0, . . . ,n where t0 is the initial time and ∆t is

the model timestep and we let xk = x(tk) denote the state at a given time. We employ analogous notation for the observations

yk, but (without loss of generality) we assume that the initial time is unobserved. Note that in practice we usually do not

have observations at every model time step, we have just assumed this here to simplify notation. The extension of filters and
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smoothers to the more realistic case with sparse observations in time is straightforward and merely requires a slight change in285

indexing so that filtering and smoothing only takes place using predicted observations at observation times.

In DA, prediction involves estimating the future state given past observations: p(xk|y1:ℓ) where y = [y1, . . . ,yℓ] ::::::::::::::
y1:ℓ = [y1, . . . ,yℓ]

and ℓ < k . The archetypal example of this is the familiar task of weather forecasting through ensemble-based numerical

weather prediction (Bauer et al., 2015). In the context of prediction, the concept of future and past are just relative to one

another and not necessarily real time. So one can also do predictions of the past, as long as any observations considered are290

from the even more distant past. Prediction also enters as
::::
Since

:::::::::
prediction

::
is a step in both filtering and smoothing, so it is

helpful to understand
:::
we

::::::
explain how to implement it probabilistically. The prediction step from timestep

::::::::
Prediction

::::
from

:
k−1

to k can be formulated as follows:

xk =M(xk−1)+ηk−1 , (10)

where M(·) is the dynamical model (FSM2 in this case
:::::
MuSA) while η ∼ N(0,Q) is the additive model error (process noise)295

term which we assume to be independent in time and follow a zero-mean Gaussian distribution with covariance matrix Q.

These assumptions can be relaxed without loss of generality, but their convenience and broad justifiability mean that they

are often employed in practice (Carrassi et al., 2018). Crucially, the above prediction step produces Markovian (memoryless)

dynamics where the current state depends only on the previous state and white noise. This
:::::
noise.

:::
The

:
Markov property is crucial

in making the filtering and smoothing problems tractable. It implies p(xk|x0:(k−1)) = p(xk|xk−1) which lets us factorize and300

simplify distributions such as the full prior as follows

p(x0:k) = p(xk|x0:(k−1))p(x0:(k−1)) = p(xk|xk−1)p(x0:(k−1)) , (11)

where the transition density is Gaussian of the form p(xk|xk−1) = N(xk|xk−1,Q). Applying this recursively we obtain

p(x0:k) = p(xk|xk−1)p(xk−1|xk−2) . . .p(x1|x0)p(x0) = p(x0)

k∏
j=1

p(xj |xj−1) , (12)

Using this kind of factorization together with marginalization also helps us construct the (marginal )
:::::::
marginal

:
predictive305

distribution p(xk|y1:ℓ) where ℓ < k as follows

p(xk|y1:ℓ) =

∫
p(xk,xk−1|y1:ℓ)dxk−1 =

∫
p(xk|xk−1)p(xk−1|y1:ℓ)dxk−1 . (13)

This is the Chapman-Kolmogorov equation (Särkkä, 2013) which can be applied recursively to obtain the predictive distribution

at the current time step using the transition density together with previous predictive distributions.

From prediction we move to filtering which involves estimating
:
is

:::
the

:::::::::
estimation

::
of

:
the current state given current and past310

observations: p(xk|y1:k) . This is the problem solved by sequential DA where an archetypal example is the initialization of

numerical weather predictions as new observations become available to delay the effects of chaos (Bauer et al., 2015). To

construct the filtering distribution we first re-introduce our Gaussian observation model in the dynamical context where we

:::
and make the usual assumption that the current observations are conditionally independent of both the observation and state
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histories (Särkkä, 2013) resulting in the dynamic likelihood315

p(yk|x0:k,y1:(k−1)) = p(yk|xk) =Akexp
(
−1

2
[yk − ŷk]

T
R−1

k [yk − ŷk]

)
, (14)

where ŷk =H(xk) are the predicted observations at the current timestep and we have added a time index to the normalizing

constant (Ak) and the observation error covariance matrix (R) , respectively,
::::
Rk) to emphasize that both the number and types

of observations at a given point in time may vary . Combining
:::
may

:::::
vary

::
in

::::
time.

:::
By

::::::::::
combining Markovian state dynamics

with a conditionally independent observation modelmeans that
:
, we end up with a state-space or hidden Markov model (Cappé320

et al., 2005) where the states at each timestep are hidden (or latent) because they are not observable due to measurement error.

The filtering distribution can now be
::
is obtained by combining the predictive distribution for ℓ= k− 1

:
(which serves as the

prior
:
) and the dynamic likelihood through Bayes’ theorem as follows

p(xk|y1:k)∝ p(yk|xk)p(xk|y1:(k−1)) . (15)

As such, prediction and filtering can be applied one after the other in time to sequentially obtain the filtering distributions325

of interest for all integration time-steps k = 1, . . . ,n . That is, starting from the initial prior p(x0) we run the dynamical

model to k = 1 to get the transition density in the product p(x1|x0)p(x0) and marginalize to obtain the predictive distribution

p(x1) which we use as the prior when assimilating the observations y1 to estimate the filtering distribution p(x1|y1) . We

continue this cycle, running the dynamical model to k = 2 to obtain p(x2|x1)p(x1|y1) and marginalize to obtain p(x2|y1)

which we use as the prior when assimilating y2 to arrive at p(x2|y1:2) . This filtering process of “online” assimilation as330

observations become available sequentially in time is appealing for operational forecasting since it can continue indefinitely

with low memory requirements while outputting the filtering and prediction distributions of interest. In practice when using

Monte Carlo methods, we do not operate with the distributions themselves but rather with an ensemble (i.e. a collection) of

samples from these. Typically, due to the often prohibitively large size of a full spatio-temporal ensemble, one would only store

summary statistics such as the posterior mean and standard deviation of the state for each point in space and time as the outputs335

of the analysis.

In addition to filtering, we are also able to solve some smoothing problems in MuSA. The key difference between filtering

and smoothing is that the later considers future observations, i.e. the (marginal) smoothing distribution is p(xk|y1:ℓ :::::::::
p(xk|y1:ℓ)

where ℓ > k . Several types of smoothing problems exist (Cosme et al., 2012; Särkkä, 2013), namely: fixed-lag smoothing

(ℓ= k+ l with l constant) which is equivalent to filtering but where the state is lagged relative to the observations, fixed-point340

smoothing (k is fixed) where the posterior at a fixed point in time (such as an initial condition) is conditioned on both past and

future observations, and fixed-interval smoothing (ℓ is fixed) where we estimate the posterior for points in a time interval given

all observations in that interval. In MuSA we focus on a form of the fixed-interval smoothing known as batch smoothing in

which the states within the time interval, henceforth called the data assimilation window (DAW), are updated in a single batch

using all observations such that ℓ= n.345

The batch smoothing approach has been shown to be especially well suited for reanalysis type problems in land and snow data

assimilation since it allows for backward propagation of information
::::::::::
information

::::
from

:::::::::::
observations

::
to

:::::::::
propagate

:::::::::
backwards
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::
in

::::
time (Dunne and Entekhabi, 2005; Durand et al., 2008). We will restrict our attention to strong-constraint batch smoothing

with indirect updates (Evensen, 2019; Evensen et al., 2022) where it is assumed that the dynamical model is perfect (i.e., no

model error η) and that all uncertainty stems from parameters that are constant within the DAW. This approach is adopted350

both for simplicity as well as the fact that it ensures that the updated states are dynamically consistent with the physics in the

model. It also has the advantage of implicitly ensuring that state variables such as snow depth or SWE remain within their

physically non-negative bounds. In this approach, an ensemble of realizations of the model are run forward for an entire DAW

during which all the observations and the corresponding predicted observations from the model are stored. At the end of the

DAW, these observations are all assimilated simultaneously in a batch update to provide samples from the posterior parameter355

distribution. For seasonal snow the water year becomes a natural choice for the DAW. With this choice, potentially highly

informative observations made during the ablation season are able to inform the preceding accumulation season (Margulis

et al., 2015). This backwards propagation of information is crucial to help reconstruct peak SWE which is usually of particular

:::::
crucial

::
in
:::::
peak

::::
SWE

::::::::::::
reconstruction

::::::
which

::
is

::
of

::::
great

:
interest to snow hydrologists (Dozier et al., 2016).

3.3 Consistency360

A potential problem in DA is that the stochastic perturbations and updates that are imposed on the model and the resulting

dynamics may lead to inconsistent model states. We can define (at least) two different types of inconsistencies: (i) dynamical

inconsistency and (ii) physical inconsistency where model states and/or parameters violate their physical bounds.

Dynamical inconsistency with respect to the underlying deterministic model can enter into the DA exercise either through

stochastic model error terms in prediction steps or through the assimilation step itself. In the case of weak constraint DA,365

where imperfections in the model are represented by stochastic model error terms, this kind of weak inconsistency exists by

design and is a feature rather than a bug. In particular, the dynamical inconsistency created by the stochastic terms is meant to

explicitly account for model uncertainty arising for example due to unresolved processes (Palmer, 2019). As such, the open-

loop (no DA) stochastic model dynamics will be inconsistent with a deterministic version of the model. Arguably calling such

a stochastic model dynamically inconsistent is somewhat of a misnomer, since it aspires to be more consistent with reality than370

a purely deterministic version of the same model.

The assimilation step itself can also introduce dynamical inconsistencies, particularly when applying filtering algorithms

(Dunne and Entekhabi, 2005). For the EnKF these manifest as sawtooth-like patterns (jumps) in the dynamics at each assim-

ilation step due to the fact that the Kalman-based analysis actually moves the ensemble from being samples of the prior to

being (approximate) samples from the posterior. For the PF dynamical inconsistency also enters at the assimilation step when-375

ever resampling is performed. The resampling step tends to kill off unpromising low weight particles while reproducing more

promising higher weight particles. Since this evolutionary step is implemented sequentially in time when filtering, it will also

introduce discontinuities in the dynamics of the model ensemble. In the case of both the EnKF and the PF, the discontinuity

introduced at the assimilation step is an expected result of filtering. If one wishes to avoid this behavior, one should instead

turn to smoothing algorithms.380
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Physical inconsistency can also enter both through stochastic perturbations and the assimilation step itself. Many snowpack

state variables (and potential observables) have a relatively limited dynamic range and are either low bounded, e.g. snow

depth and SWE are non-negative, or double bounded, e.g. snow albedo and FSCA are physically confined to the range [0,1].

This means that directly applying assimilation routines which assume unbounded (e.g. Gaussian) distributions on the prior,

likelihood, or the model error can lead to physical inconsistencies in snow DA.385

A simple but naive solution is to just explicitly enforce state variables to lie within their physical bounds using minimum

and/or maximum functions. Unfortunately, this is the same as truncating the underlying probability distributions and may

degrade the performance of the assimilation scheme due to a strong violation of assumptions. Although this is a major concern

for the EnKF-based schemes, which make explicit assumptions about Gaussianity, in practice it may also impact the PF

where Gaussian distributions remain a convenient choice. A better way to deal with issues around physical inconsistency390

is to apply transformations to bounded random variables. Typically, these transformations will map such random variables

from the bounded physical space to an unbounded space that can accommodate Gaussian distributions through Gaussian

anamorphosis techniques (Bertino et al., 2003)). This can be carried out using transforms that have been empirically constructed

or using analytic functions. In MuSA, following (Aalstad et al., 2018)
::::::::::::::::
Aalstad et al. (2018), we employ analytical Gaussian

anamorphosis where we use a logarithm transform for variables that are physically lower bounded and a logit transform for395

variables that are physically double bounded. The corresponding inverse functions, i.e. the exponential and logistic transforms,

can be used to map these unbounded variables back to the bounded physical space. For bounded variables we will often

construct the prior distributions using these transforms. For example, assigning a lognormal prior can ensure that a variable

never exceeds its lower bounds. In such a case the assimilation step takes place in the unbounded log transformed space where

this variable is normally (i.e. Gaussian) distributed while the model integration takes place in the bounded physical space,400

which can be recovered using the exponential transform, where the variable is lognormally (i.e. log-Gaussian) distributed.

A key step taken in MuSA to reduce inconsistencies in snow data assimilation is to split the state vector in two: x= [uv]

::::::::
x= [u, v]

:
where u ∈ Rmp are parameters while v ∈ Rms are internal model states. Only the parameters, which can include

both internal model parameters and forcing perturbation parameters, are assumed to be random variables in MuSA. This

appraoch
:::::::
approach

:
corresponds to the so-called forcing formulation (as opposed to the model-state formulation) of the DA405

problem (Evensen et al., 2022). The internal model states are taken to be deterministic given these parameters. Such a setup is

tantamount to assuming that all the uncertainty in the model dynamics stems from the forcing data and internal parameters. This

assumption is largely in line with previous findings (Raleigh et al., 2015) particularly for intermediate complexity snow models

such as FSM2 (Günther et al., 2019). This is gradually becoming a relatively standard setup in snow data assimilation experi-

ments (Margulis et al., 2015; Magnusson et al., 2017; Aalstad et al., 2018; Alonso-González et al., 2021)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Margulis et al., 2015; Magnusson et al., 2017; Aalstad et al., 2018; Alonso-González et al., 2021; Cluzet et al., 2020, 2022)410

although it has arguably not been as properly formalized as elsewhere in the DA literature (Evensen, 2019; Evensen et al.,

2022). Through such a split we ensure that internal model states remain both dynamically and physically consistent given the

parameters. The parameters, in turn, are made physically consistent by applying analytical Gaussian anamorphosis transforms

in the DA scheme. As such, we will let
:
u

:
denote anamorphosed parameters that have undergone a forward transform to the
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unbounded space. It is implicitly assumed that these are inverse transformed to the physical space before they are passed to the415

model
::::::
FSM2 to help evolve the internal states forward in time.

In the filtering algorithms in MuSA, both the stochastic parameters and the conditionally deterministic internal states are

dynamic. The parameter dynamics evolve according to simple jitter (Farchi and Bocquet, 2018) of the form:

uk = uk−1 +ηk−1 , (16)

where we recall that ηk−1 ∼ N(0,Q) and that the parameters are defined in the unbounded transformed space. Probabilisti-420

cally, this corresponds to the Markovian transition density p(uk|uk−1) = N(uk|uk−1,Q). The internal state variables, on the

other hand, evolve according to the full dynamical model (FSM2) which also depends on the dynamic parameters uk through

vk =M(uk,vk−1). We reiterate that it is implicitly understood that these parameters are transformed back to physical space

when they are used in the dynamical model. These dynamics corresponds to the transition density (e.g. Evensen, 2018)

p(vk|uk,vk−1) = δ (vk −M(uk,vk−1)) , (17)425

where δ(·) is the Dirac delta function which emphasizes that the internal state is not only Markovian but also conditionally

deterministic given the parameters. This just formalizes that the only uncertainty in the internal state dynamics stems from

the parameters to which we assign an initial prior p(u0). When
::::::
Without

::::
loss

::
of

::::::::
generality

::::
and

::
to

:::::::
simplify

:::
the

:::::::::::
presentation

::
of

::
the

:::::::
theory,

:::
we

::::::
assume

::::
that

:::
we

:::
are dealing with seasonal snow,

:
so

::::
that

:
the initial prior for the internal

::::
snow

:
states, p(v0), is

known v0 = ν0and thus deterministic so
:
.
::::
Thus

:
p(v0) = δ(v0−ν0) since the annual integration period starts at the beginning430

of the water year where we assume that a snowpack has not yet formed so internal
::::
snow

:
state variables are either 0 (snow

depth, SWE) or undefined (e.g. snow surface temperature). Together with the dynamic likelihood p(yk|uk), these distributions

can be used to construct the target marginal filtering distribution p(uk|y1:k) which we can estimate with ensemble Kalman

or particle filtering algorithms. By combining this marginal with appropriate densities we can also estimate the joint filtering

distribution p(uk,vk|y1:k) from which we can compute posterior expectations for the internal states of interest. The derivation435

of this distribution is relatively analogous to that for the smoother below, but involves more steps and is thus not included

herein. In practice, (approximate) samples from this joint filtering distribution are obtained from the posterior ensemble after

each observation time and the subsequent assimilation step while running the filtering schemes in MuSA.

For the smoothing algorithms in MuSA, we instead assume that the dynamical model is perfect so the components of u

are constant (i.e. time-invariant) but uncertain parameters, which can be either internal parameters or related to the forcing,440

while v0:n = [v0, . . . ,vk, . . . ,vn] remain the dynamic internal state variables with initial state v0 at t0 and final state vn at tn

which is the end of what is now an annual DAW. The prediction step with the assumed perfect dynamical model then becomes

vk =M(u,vk−1) which implies the following transition density:

p(vk|vk−1,u) = δ (vk −M(u,vk−1)) . (18)

This is just a formal way of denoting that the only uncertainty in the dynamics stems from time invariant but uncertain pa-445

rameters to which we assign a prior. Thereby
::
As

:::::
noted

:::
by

:::::::::::::
Evensen (2019),

:::::
when

:::::
these

::::::::::
perturbation

::::::::::
parameters

:::
are

:::::::::
interpreted
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::
as

:::::
errors

:::
this

::::
can

::
be

:::::::
viewed

::
as

:
a
:::::::
limiting

::::
case

:::
of

::::::
perfect

:::::::::::::
time-correlation

::::::
where

:::
the

:::::
errors

:::::::
become

:::::::
constant

::::::
biases.

::::
The

::::
lack

::
of

::::::::
dynamics

::
in

:::
the

:::::::::::
perturbation

:::::::::
parameters

::
is
::::
thus

::::
akin

:::
to

::::::::
assuming

:::
that

::::::
errors

::
in

:::
the

:::::::
forcing

:::
are

:::::::
constant

::
in

::::
time

::::::
within

::
a

::::::::
particular

:::::
water

::::
year.

::::
This

::::::::::
simplifying

::::::::::
assumption

:::::::
imposes

:
a
::::::
longer

:::::::
memory

::
in

:::
the

::::::
system

::::
than

:::::
with

::::
jitter

:::
and

:::::::::
facilitates

:::
the

::::::::::
propagation

::
of

::::::::::
information

:::::::::
backwards

::
in

::::
time

:::::
using

:::::::::
smoothers.

:::::
Given

:::
this

:::::::::
transition

::::::
density, the full prior for the entire DAW450

can be factorized as follows

p(x) = p(u,v0:n) = p(v0:n|u)p(u) = p(u)p(v0)

n∏
k=1

p(vk|vk−1,u) , (19)

where as before p(v0) = δ(v0 −ν0) is the prior for the initial condition of the state. The full posterior then becomes

p(x|y1:n) = p(u,v0:n|y1:n)∝ p(y1:n|u)p(u,v0:n) , (20)

which can be marginalized to obtain the marginal posterior for the parameters455

p(u|y1:n)∝
∫
p(y1:n|u)p(u,v0:n)dv0:n = p(y1:n|u)p(u) , (21)

where the batch likelihood is

p(y1:n|u) =A1:nexp
(
−1

2
[y1:n − ŷ1:n]

TR−1
1:n[y1:n − ŷ1:n]

)
, (22)

in which ŷ1:n = [ŷ1, . . . , ŷk, . . . , ŷn] contains the predicted observations ŷk =H (u,vk) for all observation time steps, while

A1:n = det(2πR1:n)
−1/2 where R1:n = diag(R1, . . . ,Rk, . . . ,Rn) is the batch observation error covariance matrix which is460

a block diagonal matrix containing the observation error covariance matrices for all observation time steps. Note
::::
since

:
that

the state v0:n is conditionally deterministic given u, it is not explicitly included in the batch likelihood. By combining the

batch likelihood with the prior for the parameters, we have all that we need to estimate the posterior for the parameters

p(u|y1:n)∝ p(y1:n|u)p(u). The main difference to the filtering distribution is that all the data are assimilated in a single batch

to update static parameters. Once we have obtained the posterior for the parameters, due to the strong constraint, we recall that465

we can easily recover the joint posterior for the states and parameters p(v0:n,u|y1:n)∝ p(v0:n|u)p(u|y1:n) from which we

can compute posterior expectations for the internal states of interest. In practice, the steps involved in estimating the posterior

and subsequent expectations depend on which batch smoothing algorithm is used.

3.4 Particle methods

Particle methods (Särkkä, 2013)
:::::::::::::::::::::::::::::
(van Leeuwen, 2009; Särkkä, 2013), also known as Sequential Monte Carlo (Cappé et al.,470

2005; Chopin and Papaspiliopoulos, 2020), are appealing since they impose few assumptions, can be relatively easy to de-

rive, and are simple to implement in their basic form. In principle, they can be used to solve any Bayesian inference problem,

including the aforementioned filtering and smoothing problems. The so-called bootstrap filter described by Gordon et al. (1993)

arguably marks the introduction of particle filters to the wider scientific community. Nonetheless, the underlying idea of se-

quential importance resampling (SIR) was already well known in statistics literature from which it emerged (see Smith and475
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Gelfand, 1992, and references therein). For a more up to date perspective, van Leeuwen et al. (2019) provide a comprehen-

sive review of particle methods for geoscientific data assimilation, including a discussion of the state-of-the-art and promising

avenues for further developments.

Particle methods have rapid
:::::
rapidly

:
become the most widely adopted approach to data assimilation within the snow science

community. The PF, in particular, has become increasingly popular in snow data assimilation studies. This began with the480

seminal work of Leisenring and Moradkhani (2011) and Dechant and Moradkhani (2011) showing how the PF can outperform

the EnKF in snow data assimilation applications, assimilating SNOTEL SWE and passive microwave data, at least if relatively

simple models and a large ensemble is used. Charrois et al. (2016) subsequently applied the PF in synthetic (twin) experiments

that assimilated MODIS-like reflectance data into the Crocus snow model for a site in the French Alps. Magnusson et al.

(2017) showed how snow depth assimilation using the PF improved the estimation of several variables, including SWE and485

snowmelt runoff, in an intermediate complexity snow model for many sites across the Alps. The study of Baba et al. (2018)

applied the PF to assimilate novel SCA satellite retrievals from Sentinel-2, demonstrating marked improvements in snowpack

simulations across the sparsely instrumented High-Atlas mountains of Morocco. Piazzi et al. (2018) investigated the potential

of performing a joint (i.e., multivariate) assimilation of several snowpack variables obtained from ground-based observations at

3 sites in the Alps using the PF, noting that degeneracy was more likely to occur for this setup than in more typical uni-variate490

snow data assimilation experiments. Smyth et al. (2019) assimilated monthly snow depth observations into an intermediate

complexity snow model with the PF at a well instrumented site in the California Sierra Nevada, improving both snow density

and SWE estimates with promising implications for the assimilation of snapshots of snow depth retrieved from airborne and

space-borne platforms. These results were confirmed by Deschamps-Berger et al. (2022) who showed that the assimilation of a

single snow depth map per season is sufficient to improve the simulated spatial variability of the snowpack. Recent efforts , such495

as the synthetic study of Cluzet et al. (2021),
::::::::::::::::::::::::::::::::::::::::::::::::::::
(Cantet et al., 2019; Cluzet et al., 2021, 2022; Odry et al., 2022) have focused on

the challenge of spatially propagating snowpack information from observed to unobserved locations
::::
when

::::::::::
assimilating

::::::
in-situ

::::
snow

:::::
depth

::::
and

::::
SWE

::::
data

:
using the PF.

Another line of studies has adopted particle smoothing schemes, particularly the particle batch smoother (PBS Margulis

et al., 2015), for snow reanalysis. Here a batch of remotely sensed, typically FSCA, observations are assimilated simulta-500

neously to weight (assign probability mass to) an ensemble of model trajectories for the entire water year. Margulis et al.

(2016) used the PBS to perform a 90 meter resolution snow reanalysis for the California Sierra Nevada covering the entire

Landsat-era from 1985 to 2015. Cortés and Margulis (2017) applied a similar setup to conduct a snow reanalysis for the ex-

tratropical Andes. Aalstad et al. (2018) compared the performance of the PBS with ensemble Kalman-based smoothers when

assimilating FSCA data from Sentinel-2 and MODIS for sites in the high-Arctic and found that the PBS markedly outper-505

formed non-iteratve
::::::::::
non-iterative ensemble Kalman-based smoothers in line with Margulis et al. (2015). Baldo and Margulis

(2018) developed a multi-resolution snow reanalysis framework using the PBS and demonstrated, through tests in a basin in

Colorado, that this could match the performance of the original single-resolution approach at a fraction of the computational

cost. In DA experiments in the Swiss Alps, Fiddes et al. (2019) showed how clustering offers an alternative promising avenue

for speeding up snow DA with the PBS, allowing for hyper-resolution reanalyses. Alonso-González et al. (2018) carried out510
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a snow reanalysis over the sparsely instrumented Lebanese mountains by forcing FSM with quasi-dynamically downscaled

meteorological reanalysis data and subsequently assimilating MODIS-based FSCA retrievals with the PBS. Liu et al. (2021)

recently performed an 18-year 500 m resolution snow reanalysis for High Mountain Asia by using the PBS to jointly assimilate

MODIS and Landsat FSCA data. Although all of these studies have focused on using FSCA data for snow reanalysis, other

remotely sensed retrievals could also be considered. For example, the work of Margulis et al. (2019) has shown that the PBS515

can also be used to assimilate infrequent lidar-based snow depth retrievals with marked improvements in the estimation of

snowpack-related variables. The next logical step would thus be to jointly assimilate FSCA and emerging satellite-based snow

depth retrievals Marti et al. (2016); Treichler and Kääb (2017); Lievens et al. (2019).

Importance sampling is key to understanding these particle methods. Despite what the name may suggest, this is actually

not an approach to directly generate samples from a target distribution of interest. Instead, it allows us to estimate expectations520

of functions with respect to a target distribution by drawing from another distribution that it is easier to sample from (MacKay,

2003). In DA, the posterior is the target distribution of interest and the expectation of some function g(x) with respect to the

posterior is defined as follows (Särkkä, 2013)

E [g(x)|y] =
∫
g(x)p(x|y)dx , (23)

where the expectation of g(x) = x yields the posterior mean µ̂ while the expectation of g(x) = (x− µ̂)2 yields the posterior525

variance σ2
::
σ̂2. If we could generate N

::
Ne:

independent samples from the posterior, x(i) ∼ p(x|y), we could estimate the

expectation in (23) numerically using direct Monte Carlo integration as follows

E [g(x)|y]≃ 1

N

1

Ne
::

∑
i=1

NNe

::
g
(
x(i)

)
, (24)

where the x(i) with i= 1, . . . ,N denote N
::::::::::
i= 1, . . . ,Ne::::::

denote
:::
Ne:

independent samples from the posterior. Thanks to the

law of large numbers and the central limit theorem, we know that this approximation will converge almost surely to the true530

expectation as N →∞
:::::::
Ne →∞

:
with a standard error inversely proportional to

√
N

::::

√
Ne:

(Chopin and Papaspiliopoulos,

2020). Unfortunately, we are rarely able to generate independent samples directly from the posterior.

In importance sampling, we instead use a proposal (or importance) distribution q(x) that we know how to sample from

which must have at least the same support as the posterior (i.e. q(x)> 0 wherever p(x|y)> 0 ). Then, by multiplying the

integrand with 1 = q(x)/q(x) , we can solve (23) using importance sampling-based Monte Carlo integration535

E [g(x)|y] =
∫
g(x)

p(x|y)
q(x)

q(x)dx≃ 1

N

1

Ne
::

∑
i=1

NNe

::
g(x(i))

p(x(i))

q(x(i))

p(x(i)|y)
q(x(i))

:::::::

=
1

N

1

Ne
::

∑
i=1

NNe

::
g(x(i))ŵ(x(i)) , (25)

where the x(i) are now samples from the proposal and we have defined the normalized weights ŵ(x) = p(x|y)/q(x). Following

the nomenclature of Chopin and Papaspiliopoulos (2020), these weights are normalized in the sense that their expectation with

respect to q(x) equals 1.
:
A
:
hurdle remains in that we only know the posterior up to an unknown normalizing constant (i.e., the

evidence Z) so in practice we can only evaluate the un-normalized posterior. Recalling the definition of the evidence in (3), we540
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can nonetheless use importance sampling to approximate it as follows

Z =

∫
f(x)dx=

∫
f(x)

q(x)
q(x)dx≃ 1

N

1

Ne
::

∑
i=1

NNe

::
w̃(x(i)) , (26)

where f(x) = p(y|x)p(x) is the un-normalized posterior and we have defined the un-normalized weights w̃(x) = f(x)/q(x)

which no longer have an expectation of 1 with respect to q(x). Using the samples x(i) ∼ q(x), this evidence approximation,

and that p(x|y) = f(x)/Z, we can now solve (23) as follows545

E [g(x)|y] = 1

Z

∫
f(x)

q(x)
q(x)dx≃

∑
i=1

NNe

::
g(x(i))w(x(i)) , (27)

where, lettingw(i) = w(x(i)) for economy, the auto-normalized weights are given byw(i) = w̃(i)
(∑N

j=1 w̃
(j)

)−1

::::::::::::::::::::::
w(i) = w̃(i)

(∑Ne

j=1 w̃
(j)

)−1

with the property that
∑N

i=1w
(i) = 1

::::::::::::

∑Ne

i=1w
(i) = 1. Note that with these auto-normalized weights q(x) also only needs to be

known up to a normalizing constant Zq since any such constants cancel out in the auto-normalization step. Furthermore, direct

Monte Carlo integration can be seen as a special case of importance sampling where the proposal is the target distribution itself550

which leads to uniformly equal weights with a value of 1/N
:::::
1/Ne.

Mathematically, importance sampling is tantamount to a particle representation of the posterior through a sum of weighted

Dirac delta functions centered on the sampled states x(i) ∼ q(x) of the form p(x|y)≃
∑N

i=1w
(i)δ(x−x(i))

:::::::::::::::::::::::::
p(x|y)≃

∑Ne

i=1w
(i)δ(x−x(i))

(Särkkä, 2013). We can see this by recalling that the Dirac delta has the properties that
∫
δ(x−x(i))dx= 1 and

∫
g(x)δ(x−

x(i))dx= g
(
x(i)

)
, such that by inserting the particle representation in (23) we have555

E [g(x)|y]≃
∫ ∑

i=1

NNe

::
g(x)w(i)δ

(
x−x(i)

)
dx=

∑
i=1

NNe

::
g(x(i))w(i) , (28)

which is equal to the result in (27). This particle representation is helpful since we can conceptualize distributions as consisting

of a set of particles (or points) in state space whose probability mass are given by their weights.

The catch with importance sampling is that, unless the proposal is nearly identical to the target distribution, all the probability

mass tends to collapse onto just a few particles as the dimensions of a problem increase (MacKay, 2003). This is the so-called560

degeneracy problem of particle methods which is closely tied to the aforementioned curse of dimensionality (Farchi and

Bocquet, 2018; Snyder et al., 2008). One way to partly circumvent degeneracy in a sequential setting is to employ resampling

techniques (see Li et al., 2015) where a new set of equally weighted particles is drawn based on the weights (i.e., probability

masses) of the existing particles. Effectively, resampling tends to reproduce particles with a higher weight while removing

particles with lower weight. Resampling thus provides obvious links between particle methods and more heuristic genetic565

algorithms since the weights can be interpreted as a kind of “fitness” (Chopin and Papaspiliopoulos, 2020). The standard

metric (e.g. Särkkä, 2013) for monitoring symptoms of degeneracy is the effective sample size

Neff =
1∑N

i=1

(
w(i)

)2 1∑Ne

i=1

(
w(i)

)2
:::::::::::

, (29)

where a healthy ensemble of particles would have Neff =N
::::::::
Neff =Ne:

while a completely degenerated ensemble has Neff = 1.

This metric can be used to adaptively determine the need for resampling based on a requirement that the ratio Neff/N :::::::
Neff/Ne570
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stays above some “healthy” threshold. Although resampling ensures that weight is more evenly spread among the particles, the

occurrence of several identical particles results in sample impoverishment which can in the worst case also lead to a degenerate

representation of the posterior. Particle diversity can nonetheless often be rejuvenated implicitly through stochastic terms (jitter)

in the dynamical model or more explicitly with a few iterations of Markov Chain Monte Carlo (MCMC; Gilks and Berzuini,

2001).575

Having explained importance
:::::::
outlined

:::::::::
importance

::::::::
sampling

::::
and resampling, the final step is to tie this

::::
these

:::::
steps together

with the sequential aspect of particle methods. In the context of both particle filtering and smoothing, importance resampling

:::::::
sampling

:
can be applied sequentially in time as observations become available to the state space model. For the particle filter,

this occurs by first drawing particles from the initial prior x(i)
0 ∼ p(x0), then for k = 1, . . . ,n perform SIR:

1. Propagate the particles forward in time through the dynamical model from time k− 1 to k where new observations are580

available.

2. Calculate the auto-normalized weights w(i)
k given the current observations.

3. Resample the particles, possibly only if the ratio Neff/N ::::::
Neff/Ne:

is below some threshold.

The recipes for implementing most flavors of particle smoothers tend to be a little bit more involved (Särkkä, 2013). Fortu-

nately, the particle batch smoother (PBS) in MuSA is relatively straightforward since in practice it is equivalent to standard585

sequential importance sampling (SIS) which is just SIR without the resampling step. As such, SIS is quite prone to degeneracy.

Nonetheless, an advantage with SIS is that, due to the absence of resampling, the dynamical state history of each particle will

be completely consistent with the dynamical model. For the PBS we are only interested in the final (i.e. at time tn) weights

w
(i)
n which, when attached to the full state histories, give us an approximation to the full posterior p(x0:n|y1:n) rather than the

filtering distribution p(xk|y1:k). This is advantageous in snow data assimilation since it allows information from observations590

during the ablation season to propagate backwards in time and influence states in the preceding accumulation season. The final

weights can either be computed sequentially using SIS or in a batch update, since these are equivalent when the dynamics are

Markovian and the observations are conditionally independent in time. The batch approach used in the PBS is appealing since

it can be wrapped around the model allowing the dynamics to evolve freely for the whole data assimilation window from t0 to

tn without the need for
:::
I/O interruptions in the time integration, typically resulting in marked run time acceleration compared595

to sequential approaches.

Having discussed
::::
Nwo

::::
that

:::
we

::::
have

:::::::::
introduced

:
the particle methodsin some detail, what remains is to outline

:::::::
describe

their implementation in MuSA and in particular the choice of proposal distribution. For simplicity, we adopt the standard and

simplest approach for particle methods which is to use the prior as the proposal (van Leeuwen and Evensen, 1996). Note

that this analogous to what was done in the seminal bootstrap filter of Gordon et al. (1993), and is to our knowledge the only600

approach considered so far for snow data assimilation. Thereby, recalling that f(x) = p(y|x)p(x) and inserting for q(x) = p(x)
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then f(x)/q(x) = p(y|x) which gives us the following simple expression for the auto-normalized weights

w(i) =
f(x(i))/q(x(i))∑N
j=1 f(x

(j))/q(x(j))

f(x(i))/q(x(i))∑Ne

j=1 f(x
(j))/q(x(j))

::::::::::::::::::

=
p(y|x(i))∑N
j=1 p(y|x(j))

p(y|x(i))∑Ne

j=1 p(y|x(j))
:::::::::::::

, (30)

which is simply the normalized likelihood of the prior particles x(i) ∼ p(x). With the usual Gaussian likelihood employed in

MuSA these weights are given by605

w(i) =
exp

(
− 1

2

[
y− ŷ(i)

]T
R−1

[
y− ŷ(i)

])
∑N

j=1 exp
(
− 1

2

[
y− ŷ(j)

]T
R−1

[
y− ŷ(j)

]) exp
(
− 1

2

[
y− ŷ(i)

]T
R−1

[
y− ŷ(i)

])
∑Ne

j=1 exp
(
− 1

2

[
y− ŷ(j)

]T
R−1

[
y− ŷ(j)

])
::::::::::::::::::::::::::::::::::::

, (31)

where ŷ(i) =H(x(i)) are the predicted observations for the i-th particle. In practice, to ensure numerical stability, we first

compute the natural logarithm of the weights by using the log-sum-exp trick to avoid potential overflow (Murphy, 2022)

:::
and

::::::::
minimize

:::
the

::::::
effects

::
of

::::::::
underflow

:::::::::::::::::::::::::::::::::::::::::::
(Murphy, 2022; Chopin and Papaspiliopoulos, 2020). Subsequently, the weights can be

diagnosed by taking the exponential of these stable logarithms.610

In the current version of MuSA we apply resampling at each observation timestep for the PF independently of what the

effective sample size is. Furthermore the state x is split into parameters u and internal states v. The PF
:
in
:::::::

MuSA is then

implemented by first drawing the initial parameters
:
as
:::::::::
described

::
in

::
the

::::::::::
pseudocode

::
in

:::::::::
Algorithm

::
1.

:::
For

::::::
clarity,

:::
this

:::::::::::
pseudo-code

::::
omits

::::::
details

:::::
such

::
as

:::
the

:::::::::::
log-sum-exp

:::::
trick

::::::::::::::
(Murphy, 2022)

::
and

::::
the

::::
way

:::
that

::::::::::
resampling

::
is

:::::::::
performed

:::::
given

::::
that

:::::
there

:::
are

::::::
several

::::::
options

::::::::
available

:::::::::::::
(Li et al., 2015).

:
615

Algorithm 1
::::::
Particle

::::
filter

Require: Ne ensemble members, n time steps

1:
::::
Draw

:::
Ne:::::

prior
:::::::
particles

:
from the prior u(i) ∼ p(u) then for k = 1, . . . ,n timesteps:

::::::::::
u
(i)
0 ∼ p(u0):

2: for k = 1 to n do

3: For all particles (i= 1, . . . ,n
::::::::::
i= 1, . . . ,Ne) jitter the parameters u(i)

k = u
(i)
k−1+η

(i)
k−1:::::

where
::::::::::::::
η
(i)
k−1 ∼ N(0,Q) and run the

dynamical model forward in time vk =M(uk,vk−1). If this is a timestep with observations
:::::::::::::::::::
v
(i)
k =M(u

(i)
k ,v

(i)
k−1).

4:
:
If
::::::::::::

observations
:::
yk:::::

exist, update the ensemble of particles by calculating the auto-normalized weights w
(i)
k ∝

exp
(
− 1

2 [yk − ŷ
(i)
k ]TR−1

k [yk − ŷ
(i)
k ]

)
:::
for

::::
each

:::::::
particle

:
using the current observations yk and predicted observations

ŷ
(i)
k =H

(
u
(i)
k ,v

(i)
k

)
. If this is a timestep with observations

5:
:
If
:::::::::::
observations

:::
yk ::::

exist, resample the particles based on their weights w(i)
k and then reset all the weights to be equal, i.e.

w
(i)
k = 1/N .

6: end for

Note that the particles will all have a posterior weight equal to
::::
1/Ne:

due to the resampling which happens at each observation

timestep. Combined with the transition density, these weights form the prior for the next observation time. This explains why

no weights from the prior enter into the posterior weight calculation, since these are all equal and so cancel in the auto-

normalization. For the PF, the DAW can be understood to be the time interval between two neighboring observation times. The
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prior mean and variance of the internal states can be obtained by taking the (unweighted) ensemble means and variances of620

the particle trajectories v(i)
k in the DAW before the resampling step. The posterior means and variances of the internal states

can be obtained by taking the (unweighted) ensemble mean and variance of the particle trajectories v(i)
k in the DAW after the

resampling step.

In MuSA, the PBS is even more straightforwards to implement than the PF.
::::::::::
Pseudocode

::
for

:::
the

::::
PBS

::::::::
algorithm

::
as

:::::::::::
implemented

::
in

:::::
MuSA

::
is
:::::::
outlined

::
in
:::::::::

Algorithm
::
2.
:::::
Here

:::
too

:::
we

::::
have

::::::::::
emphasized

::::::
clarity

::
in

:::
the

::::::::::
pseudocode

:::
and

::::
omit

::::::
details

::::
from

:::
the

::::::
actual625

::::
code

::::
such

::
as

:::
the

:::::::::::
log-sum-exp

::::
trick

:
.

Algorithm 2
::::::
Particle

:::::
batch

::::::::
smoother

Require: Ne ensemble members, n time steps

1:
::::
Draw

:::
Ne:::::

prior
:::::::
particles

::::
from

:::
the

:::::
prior

::::::::::
u(i) ∼ p(u)

2: for k = 1 to n do

3:
:::
For

::
all

::::::::
particles

::::::::::::
(i= 1, . . . ,Ne)

:::
run

:::
the

:::::::::
dynamical

:::::
model

:::::::
forward

::
in

:::::
time,

::::::::::::::::::
v
(i)
k =M(u(i),v

(i)
k−1).:

4:
:
If
:::::::::::
observations

:::
yk ::::

exist,
:::::::
append

::::
these

::::
and

:::
the

::::::::
predicted

::::::::::
observations

:::::::::::::::::
ŷ
(i)
k =H(u(i),v

(i)
k )

:::
for

::::
each

::::::
particle

::
to
:::

the
:::::
batch

::
of

::::::::::
observations

::
y

:::
and

::::::::
predicted

:::::::::::
observations

::::
ŷ(i),

::::::::::
respectively.

:

5:
:
If
:::::::
k = n,

::::::::
calculate

:::
the

:::::::
weights

::::
for

:::
the

::::::
entire

:::::
DAW

:::::
using

::::
the

:::::
batch

:::
of

:::::::::::
observations

::::
and

::::::::
predicted

:::::::::::
observations

:::::::::::::::::::::::::::::::::::
w(i) ∝ exp

(
− 1

2 [y− ŷ(i)]TR−1[y− ŷ(i)]
)
.

6: end for

3.5 Ensemble Kalman methods

The ensemble Kalman filter (EnKF) was originally proposed by Evensen (1994) as a Monte Carlo version of the original

Kalman filter (KF; see Jazwinski, 1970; Särkkä, 2013). The original KF assumes that all distributions involved in filtering are

Gaussian and that both the dynamical and observation models are linear. These assumptions come on top of the usual filtering630

assumptions of Markovian state dynamics and conditionally independent observations. If all these assumptions are met, the

exact filtering distribution turns out to be a Gaussian of the form p(xk|y1:k) = N(xk|mk,Pk) and there is a set of closed form

(i.e. analytical) equations for the mean mk and covariance Pk, which completely defines this Gaussian filtering distribution,

known as the KF equations (Särkkä, 2013). Geoscientific models are almost never linear so these equations can usually not be

applied directly in practice. Even when they can, the need to explicitly store and update the state covariance matrix Pk with635

dimensions m×m can be computationally prohibitive in high dimensional problems typical in geoscience (Carrassi et al.,

2018).

There exist several modified versions of the KF such as the extended KF (EKF) based on Taylor series approximations

and the unscented KF (UKF) based on the unscented transform that can both partly circumvent the linearity assumption

(Särkkä, 2013). Since both the EKF and UKF also require an explicit covariance matrix update and are considerably more640

challenging to implement than the KF, they have only rarely been used for geoscientific DA. Instead, since its introduction

by Evensen (1994), it is the EnKF that has become one of the methods of choice for DA. The reasons for this are that the
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EnKF is relatively straightforward to implement and understand (Katzfuss et al., 2016), it can handle non-linear models, the

state covariance evolves implicitly with the ensemble, and it has proven to work well in very high dimensional operational

applications both in meteorology and oceanography (see Carrassi et al., 2018, for a review). Although it makes the same645

Gaussian linear assumptions as the KF, in practice it can often still function well when these assumptions are strongly violated

thanks to techniques such as Gaussian anamorphosis (Bertino et al., 2003) and iterations (Emerick and Reynolds, 2013). The

ensemble Kalman approach can also be applied to solve smoothing problems as first shown by van Leeuwen and Evensen

(1996). These smoothers, particularly the so-called ensemble smoother (ES), play an important role in solving reanalysis

problems that arise in both land surface and snow data assimilation (Dunne and Entekhabi, 2005; Durand and Margulis, 2006).650

The EnKF was one of the first schemes to be used for snow data assimilation. Slater and Clark (2006) used the EnKF to

assimilate SWE data into a conceptual snow model at several sites in Colorado, leading to marked improvements in SWE

estimates compared to both the control model runs and interpolated observations. Clark et al. (2006) used a snow depletion

curve to assimilate synthetic satellite retrievals of FSCA into a conceptual snow hydrology model of a catchment in Colorado,

leading to minor improvements in simulated streamflow. Durand and Margulis (2006) jointly assimilated synthetic satellite655

retrievals of brightness temperature and albedo into the SSiB3 model using the EnKF at
:
a site in the California Sierra Nevada

to yield marked improvements compared to the open loop. Andreadis and Lettenmaier (2006) used the EnKF to assimilate

MODIS FSCA into the VIC model for the Snake River basin in the Pacific Northwest region of the USA, improving model

estimates of both FSCA and SWE.

Following on from these initial studies there have been several more recent snow DA applications using the EnKF. In a660

synthetic experiment in northern Colorado, De Lannoy et al. (2010) showed how the EnKF can be used to assimilate coarse

scale passive microwave SWE observations into high resolution runs of the Noah land surface model, leading to large reductions

of error in SWE estimation compared to the open loop. In a follow up studyat the same site, De Lannoy et al. (2012) jointly

assimilated real MODIS FSCA and AMSR-E SWE retrievals into the Noah model to demonstrate the complementary nature

of these types of satellite observations for SWE estimation. Magnusson et al. (2014) used the EnKF to assimilate data from665

ground-based stations in the Swiss Alps and showed that assimilating fluxes (snowmelt and snowfall), rather than directly

assimilating SWE data, improved the SWE estimation. The study of Huang et al. (2017) demonstrated that the assimilation

of in-situ SWE data into a hydrological model with the EnKF could improve streamflow simulations for several basins in

the western USA. Stigter et al. (2017) performed a joint assimilation of in-situ snow depth data and FSCA satellite retrievals

with the EnKF to optimize parameters and subsequently estimate the climate sensitivity of SWE and snowmelt runoff for a670

Himalayan catchment. More recently, Hou et al. (2021) showed how machine learning techniques can be used to construct

empirical observation operators to assimilate satellite-based FSCA with the EnKF.

The ensemble smoother (ES), the batch smoother version of the EnKF, has also been used extensively for snow DA, mainly

for reanalysis. Durand et al. (2008) were the first to demonstrate the value of the ES for snow reanalysis by noting that it could

be used in a more robust Bayesian
:
as

::
a
::::
new approach to solve the traditional problem of snow reconstruction. They showed675

substantial improvements in SWE estimation for the posterior compared to the prior after having assimilated synthetic FSCA

observations into SSiB3. A key advantage of the ES over the EnKF is that it allows information to propagate backwards in
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time, so that observations made in the ablation season can update the preceding accumulation season. Following up this study

with a real experiment assimilating Landsat FSCA retrievals into SSiB3 using the ES at a basin in the California Sierra Nevada,

Girotto et al. (2014a) demonstrated explicitly how snow reanalysis using the ES is a more robust probabilistic generalization680

of the traditional deterministic approach to snow reconstruction. Subsequently, Girotto et al. (2014b) applied the same ES

snow reanalysis framework to produce a multi-decadal high resolution snow reanalysis for the Kern River watershed in the

California Sierra Nevada. Oaida et al. (2019) used the ES to assimilate MODIS FSCA observations into the VIC model to

produce a kilometer-scale snow reanalysis over the entire western USA. Aalstad et al. (2018) introduced an iterative version

of the ES, the ensemble smoother with multiple data assimilation scheme (ES-MDA; Emerick and Reynolds, 2013), for snow685

reanalysis and showed how this could outperform both the ES and the PBS when assimilating FSCA retrievals at sites on

the high-Arctic Svalbard archipelago.
::
In

:::
this

:::::::
iterative

:::::::
scheme

:::
the

::::
prior

:::::::::
ensemble

:::::
moves

:::::::::
gradually

::
to

:::
the

::::::::
posterior

::::::::
ensemble

::::::
through

::
a

::::::::
tempering

::::::::
procedure

::::::::::::::::::::::::::::::::::::::::::::::
(see Stordal and Elsheikh, 2015, and references therein).

::::
The

:::::::
iterations

::::
thus

:::::::
mitigate

:::
the

::::::
impact

::
of

:::
the

:::::::
linearity

:::::::::
assumption

:::::::
inherent

::
in
::::::::
ensemble

:::::::
Kalman

:::::::
methods

::::::::::::::
(Evensen, 2018)

:
,
:::::::
typically

::::::
leading

::
to
:::::::
marked

::::::::::::
improvements

::::::::
compared

::
to

:::
the

:::
ES

::::
for

::::::::
nonlinear

::::::
models

:::::::
without

:::
the

::::
risk

::
of
::::::::::

degeneracy
:::::::::

associated
:::::
with

::::::
particle

::::::::
methods

::
as

:::
the

:::::
curse

:::
of690

::::::::::::
dimensionality

::::
rears

:::
its

::::
head

:::::::::::::::::::::::::::::::
(Snyder et al., 2008; Pirk et al., 2022).

:

A derivation of the KF equations, which the EnKF and ES are largely based on, is beyond the scope of this work. Full

multivariate Bayesian derivations of these equations can be found on page 197 of Jazwinski (1970) and Section 4.3 of Särkkä

(2013). The EnKF itself is thoroughly derived in Evensen (2009) and Evensen et al. (2022). There are actually several variants

of the ensemble Kalman analysis step (see Carrassi et al., 2018). In MuSA we use the so-called stochastic rather than determin-695

istic (or square-root) implementation. This stochastic formulation was proposed by Burgers et al. (1998) who suggested adding

stochastic
::::
adds

:
perturbations to the

:::::::
predicted

:
observations to ensure adequate ensemble spread , but it was recently corrected

by van Leeuwen (2020) who showed that perturbations should actually be applied to the predicted observations. In practice,

due to the symmetry of the perturbations, this recent correction should have minimal impact but it provides much needed

clarification and is consistent
:::
and

:::::::::
consistency

:
with the underlying Bayesian theory

::::::::::::::::::::::::::::::::::
(Burgers et al., 1998; van Leeuwen, 2020).700

Here we present the equations for both the stochastic EnKF (van Leeuwen, 2020) and the ES (van Leeuwen and Evensen,

1996), as well as their iterative versions based on the multiple data assimilation (MDA) scheme of Emerick and Reynolds

(2012, 2013), in the form that they are used in MuSA.
:::
The

::::::::
iterative

:::::::
versions

::::
tend

::
to

:::::::
perform

::::::
better

::::
than

::::
their

:::::::::::
non-iterative

::::::::::
counterparts

:::
for

::::::::
non-linear

::::::::
problems

::::::::::::::
(Evensen, 2018).

:
Let Na denote the number of assimilation cycles (iterations) performed

in a pseudo (rather than model) time. For the standard EnKF and ES we setNa = 1 while for their iterative variantsNa > 1, typ-705

ically with Na = 4 (Emerick and Reynolds, 2013; Aalstad et al., 2018). The superscript ℓ is used to index these iterations. Let

U(ℓ) =
[
u(1)(ℓ), . . . ,u(i)(ℓ), . . . ,u(N)(ℓ)

]
denote the mp ×N

:::::::::::::::::::::::::::::::::
U(ℓ) =

[
u(1)(ℓ), . . . ,u(i)(ℓ), . . . ,u(Ne)(ℓ)

]
::::::
denote

:::
the

::::::::
mp ×Ne pa-

rameter matrix containing the ensemble (i= 1, . . . ,n) of parameter vectors u(i)(ℓ) for iteration ℓ . Recall that the subset of these

parameters that are physically bounded have undergone the relevant analytic transformations for Gaussian anamorphosis, and

the corresponding inverse transforms are applied back to physical space when these are passed through the dynamical model710

(see Aalstad et al., 2018). Similarly, let Ŷ(ℓ) =
[
ŷ(1)(ℓ), . . . , ŷ(i)(ℓ), . . . , ŷ(N)(ℓ)

]
:::::::::::::::::::::::::::::::::
Ŷ(ℓ) =

[
ŷ(1)(ℓ), . . . , ŷ(i)(ℓ), . . . , ŷ(Ne)(ℓ)

]
de-

note the predicted observation matrix containing the ensemble of predicted observations ŷ(i)(ℓ) =H
(
u(i)(ℓ),v(i)(ℓ)

)
. Then
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::::::::
Adopting

:::
this

::::::::
notation, the stochastic ensemble Kalman methods proceed by first drawing the initial parameters

::
in

::::::
MuSA

:::
are

::::::::::
implemented

:::
as

::::::::
described

::
in

:::
the

::::::::::
pseudocode

::
in
:::::::::
algorithm

::
3.

:::
For

::::::
clarity,

::::
this

::::::::::
pseudo-code

::::
also

:::::
omits

::::::
details

::::
such

:::
as

::::
how

:::
the

:::::
matrix

::::::::
inversion

:::
for

:::
the

:::::::::
ensemble

:::::::
Kalman

::::
gain

::
in

::::::::
Equation

:
(32)

:
is
::::::
carried

::::
out.

::::
For

:::
this

:::
we

::::::
follow

:::
the

:::::::::::::
pseudo-inverse

::::
and715

:::::::
rescaling

::::::::
approach

:::::::
outlined

::
in

:::::::::
Appendix

:
A
:::
of

::::::::::::::::::::::::
Emerick and Reynolds (2012)

:
.
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Algorithm 3
::::::::
Ensemble

:::::::
Kalman

:::::::
analysis

::::
with

:::::::
multiple

::::
data

::::::::::
assimilation

Require: Ne ensemble members, Na assimilation cycles

1:
::::
Draw

:::::::::::
i= 1, . . . ,Ne:::::

prior
:::::::
particles

:
from the prior u(ℓ= 0)∼ p(u), then for ℓ= 0 :Na iterations:

:::::::::::::
u(i)(ℓ=0) ∼ p(u)

:

2: for ℓ= 0 to Na do

3: Run the dynamical model forward in time for all ensemble members i to obtain the internal states v(i)(ℓ) and predicted

observations ŷ(i)(l) corresponding to the ensemble of parameter vectors u(i)(ℓ). If ℓ < Na perform the ensemble Kalman

analysis step

U(ℓ+1) =U(ℓ) +K(ℓ)
[
Y−

(
Ŷ(ℓ) +E(ℓ)

α

)]
,

4: if ℓ < Na then

5:
:::::::
Generate

::
a

::::::
d×Ne :::::

matrix
::
of

:::::::
inflated

:::::::::
observation

:::::
errors

:::::::::::::::::::
E(ℓ)
α =

√
α(ℓ)R1/2ϵ(ℓ) where Y is an d×N matrix containing

N copies of the observation vector y while the observation error term is given by

E(ℓ)
α =

√
α(ℓ)R1/2ϵ(ℓ) ,

in which ϵ(ℓ) is an d×N matrix containing draws from a standard Gaussian N(0,1)
:::::::::::
ϵ(ℓ) ∼ N(0,I)

::
is
:::
an

::::::
d×Ne

:::::
matrix

:
and α(ℓ) =Na is the observation error inflation coefficient. The (ensemble) Kalman gain K(ℓ) is an mp × d

matrix given by

K(ℓ) =C
(ℓ)

UŶ

(
C

(ℓ)

ŶŶ
+α(ℓ)R

)−1

,

where, in these ensemble Kalman methods, the model-based covariance matrices are estimated from the ensemble

such that

6:
:::::::
Compute

:
the mp × d

::::::::
ensemble parameter-predicted observation covariance matrix is given by

C
(ℓ)

UŶ
=

1

N
U(ℓ)′Ŷ(ℓ)′T ,

while the d× d predicted observation covariance matrix is given by

C
(ℓ)

ŶŶ
=

1

N
Ŷ(ℓ)′Ŷ(ℓ)′T ,

:::::::::::::::::::
C

(ℓ)

UŶ
= 1

NU(ℓ)′Ŷ(ℓ)′T where primes (·)′ denote deviations from the ensemble mean.

7:
:::::::
Compute

:::
the

:::::
d× d

::::::::
ensemble

::::::::
predicted

::::::::::
observation

:::::::::
covariance

::::::
matrix

:::::::::::::::::::
C

(ℓ)

ŶŶ
= 1

N Ŷ(ℓ)′Ŷ(ℓ)′T

8:
:::::::
Compute

:::
the

:::::::
mp × d

::::::::
ensemble

:::::::
Kalman

::::
gain

:::::
matrix

:

K(ℓ) =C
(ℓ)

UŶ

(
C

(ℓ)

ŶŶ
+α(ℓ)R

)−1

.
::::::::::::::::::::::::::::

(32)

9:
:::::::
Perform

::
the

:::::::::
ensemble

::::::
Kalman

:::::::
analysis

::::
step

::
to

::::::
update

:::
the

::::::::
parameter

::::::::
ensemble

:::
U

U(ℓ+1) =U(ℓ) +K(ℓ)
[
Y−

(
Ŷ(ℓ) +E(ℓ)

α

)]
,

:::::::::::::::::::::::::::::::::::::

(33)

:::::
where

::
Y

::
is

::
an

:::::::
d×Ne :::::

matrix
:::::::::
containing

:::
Ne::::::

copies
::
of

:::
the

::::::::::
observation

:::::
vector

::
y.

:

10: end if

11: end for
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Recall that for Na = 1 we recover the non-iterative stochastic EnKF and ES, while for Na > 1 we are using iterative ver-

sions of these schemes that involve multiple data assimilation with inflated observation errors. This
:::
The

:::::
term

::::::::
"multiple

::::
data

::::::::::
assimilation"

::::::
refers

::
to

:::
the

::::::::::
assimilation

:::
of

:::
the

::::
same

::::
data

::::::::
multiple

:::::
times

:::::
rather

::::
than

:::
an

::::::::::
assimilation

::
of

::::::::
different

::::
types

:::
of

::::
data

::::
(joint

::::::::::::
assimilation).

:::
We

:::::
speak

::
of

:::::::
inflated

::::::::::
observation

:::::
errors

:::::
since

:::
the

:::
role

:::
of

:::
the

:::::::::
coefficients

::::
α(ℓ)

::
is
::
to

::::::
inflate

:::
the

::::::::::
observation720

::::
error

:::::::::
covariance

:::
R

::
in

:::
the

:::::::
Kalman

::::
gain

:::
Kℓ

:::
as

::::
well

::
as

:::
the

::::::::::
observation

:::::
error

::::
term

:::::
E(ℓ)
α .

::::
This

:::::::
inflation

:
is tantamount to tem-

pering the likelihood as discussed by Stordal and Elsheikh (2015); van Leeuwen et al. (2019)
:::::::::::::::::::::::
Stordal and Elsheikh (2015)

:::
and

:::::::::::::::::::::
van Leeuwen et al. (2019) which explains why these iterative schemes perform better than their non-iterative counterparts for

non-linear models in that they involve a more gradual transition from the prior to the posterior. Despite what the name might

suggest, this multiple data assimilation approach does not actually violate the consistency of Bayesian inference by using725

the data more than once due to the way the observation error inflation is constructed, particularly due to the constraint that∑Na]
ℓ=1 = 1

:::::::::::::::

∑Na

ℓ=1 1/α
(ℓ) = 1.

::::::
Simply

::::::
stated,

:::
this

::::::::
constraint

:::::::
ensures

::::::::
consistent

::::::
results

::::
with

::
a

:::::
linear

:::::
model

:::::
since

::
by

:::::::::::
construction

::
we

:::
get

:::
the

:::::
same

:::::
result

::
by

:::::::::::
assimilating

::
the

::::
data

:::::
once

::::
with

:::
the

::::::
original

:::::::::
uninflated

::::::
(α= 1)

::::::::::
observation

:::::
errors

:::
as

::::::::::
assimilating

:::
the

::::
same

::::
data

:::::::
multiple

:::::
times

::::
with

:::
an

:::::::
inflated

::::::
(α > 1)

::::::::::
observation

::::::
errors.

:::::
With

:
a
::::::::
nonlinear

::::::
model,

:::::::
practice

::::
has

:::::
shown

::::
that

:::::
these

:::::::
iterations

:::
of

:::
the

::::::::
ensemble

:::::::
Kalman

:::::::
analysis

:::::
ensure

::::
that

:::
the

:::::::::::
approximate

:::::::
posterior

::
is

:::::
closer

:::
to

:::
the

:::
true

::::::::
posterior

::::
than

::
if

:
a
:::::
more730

::::::::::
conventional

:::::
single

:::::::::
uninflated

:::::::
iteration

::
is

::::
used

:::::::::::::
(Evensen, 2018). It is possible to satisfy this constraint

::
the

:::::::::
constraint

::
on

:::
the

::::
α(ℓ)

both with uniform and non-uniform inflation coefficients (c.f. Evensen, 2019). For simplicity, following Emerick and Reynolds

(2013), we currently opt for former as a default in MuSA by setting α(ℓ) =Na set α(ℓ) =Na ::
for

:::
all

:
ℓ
::
by

::::::
default

:
while allowing

for the latter
::::::::::
non-uniform

::::::::::
coefficients

:
as an option.

To keep the notation as simple as possible, we have not explicitly introduced time indices for these ensemble Kalman735

methods. Instead we can simply note that for the iterative and non-iterative EnKF the for loop above runs inside another outer

loop that runs across all observation times. That is to say, the ℓ loop is run several times sequentially for multiple DAWs where

each window is from one observation time to the next, such that the posterior parameters and internal states obtained at ℓ=Na

for the current DAW that ran up to the current observation time becomes the initial prior at ℓ= 0 for the next DAW that runs

from the current observation time up to the next observation time. Recall that the parameters also undergo jitter dynamics when740

filtering.

For the non-iterative and iterative ensemble batch Kalman smoothers used in MuSA, namely the ES and the ES-MDA,

there is no longer an outer time loop encapsulating the iterations. Instead, the DAW is the entire water year. In these smoother

schemes, the parameters do not undergo any jitter. As such, the entire prior and posterior ensemble of state trajectories for a

given water year will be consistent with the prior and posterior ensemble of parameters, respectively, that are both static for745

the water year in question
::::
static

::::::::::
parameters

:::
for

:::
the

:::::
entire

:::::
water

::::
year. Recall that each water year is treated

:::::::
typically

:::::::
updated

independently in MuSA which currently focuses on seasonal snow.
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4 Data and experimental setup

In the following section, we illustrate the capabilities of MuSA using a case study and perform a benchmarking of the imple-

mented data assimilation algorithms. We developed two data assimilation experiments in the
::
55

:::
ha Izas experimental catchment750

(Revuelto et al., 2017) in the Spanish Pyrenees (see Figure 2). The first experiment shows the capabilities of MuSA to assim-

ilate hyper-resolution products in both a single cell and distributed fashion, whereas the second demonstrates the capabilities

to develop joint assimilation experiments. First, we
::::
Note

::::
that

::
all

:::
the

::::::::
variables

:::
that

:::
we

:::::::::
assimilate

::
in

::::
these

:::::::::::
experiments

:::
are

::::
state

:::::::
variables

::
in

::::::
FSM2.

::::
We generated hourly meteorological forcing at 5 m resolution over the Izas catchment by means of

:::::
using

the MicroMet meteorological distribution system (Liston and Elder, 2006b) , forced by
::
to

:::::::::
downscale the ERA5 atmospheric755

reanalysis (Hersbach et al., 2020).

Figure 2. Location of the Izas experimental basin in the Pyrenees (A) and topography (B). The red circle indicates the location of the cell

used for the intercomparison of algorithms described below.

4.1 Drone data
:::::
Single

:::
cell

::::
and

::::::::::
distributed assimilation experiment

:
of

:::::::::::
drone-based

:::::
snow

::::::
depth

::::::::
retrievals

For the first experiment, we ran MuSA to assimilate snow depth retrievals obtained from a fixed wing drone (Revuelto et al.,

2021b, a), over two different snow seasons (2018/2019 and 2019/2020) in the Izas catchment using different data assimilation

algorithms. The drone surveys were not equally distributed in time along the seasons, and the surveys present spatial gaps760

in some of the cells. The whole drone dataset is composed of 18 temporally distributed snow depth maps retrieved at 5m

spatial resolution. Due to the high-resolution of the observations, we expect MuSA to be able to
::::::::
implicitly reproduce the wind

redistribution patterns by inflating the uncertainty of the forcing
::::::::
modifying

:::
the

:::::::::::
precipitation

:::
and

::::::::::
temperature

::
at

::::
grid

:::
cell

:::::
scale

to compensate for the deposition and removal of wind-blown snow.
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The simulation ensemble was composed of 200
::::::::
Ne = 200

:
particles. The generation of the

::::
prior ensemble for both the single765

cell and distributed simulation was developed by perturbing only the temperature and precipitation fields. The temperature was

perturbed with a constant additive bias parameter, randomly drawn from a normal distribution defined by its mean (µ= 0)

and standard deviation (σ = 2). Similarly, the precipitation was perturbed by a multiplicative fixed in time bias parameter,

drawn from a log-normal distribution defined by the mean (µ= 0) and standard deviation (σ = 0.63) of the underlying normal

distribution. These prior distributions were defined based on prior predictive testing (not shown here).
:::
As

::::
such,

:::::
these

:::
are

::::::
weakly770

:::::::::
informative

:::::
priors

:::::::::::::::::::::
(c.f. Banner et al., 2020)

:
in
::::
that

::::
they

:::::::
produce

:::::::::
predictions

::::
that

::
we

::::::
expect

:::::::
a-priori

::::
(i.e.,

::::::
without

:::::::
looking

::
at

:::
the

::::
data)

::
to

:::
be

::
in

:::
the

::::
right

::::::
correct

::
of

:::::::::
magnitude

:::::
while

:::::::
obeying

::::::::
physical

::::::
bounds.

:
The variances of the observation errors were set

to 0.04 [m2] and was estimated from comparison with terrestrial laser scanning snow depth maps (Revuelto et al., 2021b, a).

In the case of the single cell comparison, we followed two different resampling strategies, the bootstrap and redraw from a

normal approximation of the posterior
:::
(see

:::::::
Section

::
2). In the iterative versions of the ensemble Kalman based approaches we775

fixed the number of assimilation cycles to Na = 4
::
as

:
a
:::::::::::
compromise

:::::::
between

::::::::::::
computational

::::
cost

:::
and

:::::::::::
performance.

::::
The

::::::
former

:
is
:::::::
directly

::::::::::
proportional

::
to
::::
Na ::::

while
:::

the
:::::
latter

:::::::::
converges

::
to

::
an

::::::::
optimum

::
as

:::
Na::::::::

increases.
::::
This

::::::
choice

::
of

:::
Na::

is
::::
also

::
in

::::
line

::::
with

::::::::
sensitivity

:::::::
analyses

:::::::::
performed

:::::::::
elsewhere

::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Emerick and Reynolds, 2013; Aalstad et al., 2018; Evensen, 2018).

The single cell simulations were performed in a cell located in a topographic concavity within the catchment, and therefore

with exceptional accumulations and snow depth up to 6 m due to wind redistribution and preferential deposition (Comola et al.,780

2019). This is a challenge for the data assimilation process, as the observations fell very far from the
::::::
central prior range of

the ensemble of snow depths predicted by FSM2. The distributed simulation was developed in a supercomputing cluster using

20 nodes with 10 cores each. For this case study, we choose the most computationally efficient data assimilation algorithm,

namely the PBS, to speed up the calculations. We subsequently compared the spatial distribution of the snowpack with one of

the snow depth maps
:::::::::::
(03/02/2020) derived from the drone surveys that were not included in the assimilation.785

4.2 Joint satellite data assimilation experiment
::
of

::::::::::::
satellite-based

:::::
LST

:::
and

::::::
FSCA

:::::::::
retrievals

For the second experiment, we performed a coarser 1 km resolution experiment over the same area. We developed a single

cell joint assimilation experiment, updating the FSM2 simulations with FSCA and land surface temperature (LST) retrievals

from the MODIS sensor on board the Terra satellite, by using version 6 of the products MOD11A1 (Hall and Riggs, 2016)

:::::::::::::::
(Wan et al., 2015) and MOD10A1 (Wan et al., 2015)

::::::::::::::::::
(Hall and Riggs, 2016), respectively. The selected pixel for the MODIS790

retrievals was the one whose centroid fell closest to the Izas catchment centroid. While the FSCA retrievals from MODIS have

a 500 m spatial resolution, the LST products have a resolution of 1000 m. To assimilate this information into FSM2 using the

MuSA platform, we aggregated the FSCA products to match the 1 km LST grid. The forcing was generated by aggregating the

5 m forcing from the previous distributed data assimilation experiment. The variances of the observation errors were set to 0.15

and 10 [K2] for the FSCA and the LST, respectively. The data assimilation experiment was done using the ES-MDA scheme.795

This data assimilation scheme was chosen because it showed a better accuracy compared with
::::::::
performed

:::::
better

::::
than

:
the other

algorithms (not shown here), that in some cases were not able to meaningfully update the simulations with the observations at

all.
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The number of iterations was again set toNa = 4. The ensemble was composed ofN = 300
:::::::
Ne = 300

:
particles by perturbing

all the forcing variables (temperature, precipitation, short and longwave radiation, wind speed, relative humidity and surface800

air pressure) with normal additive or lognormal multiplicative random noise depending on whether or not the forcing variable

has negative support so as to not generate physically impossible values.

4.3 Computational benchmarks

Finally, we developed a single cell benchmark, to measure the computational cost in terms of wall clock time for each algorithm.

The benchmark was developed in a local machine with an Intel(R) Core(TM) i5-1145G7 processor and 32GB of memory805

running an Ubuntu 20.04 system. The comparison was performed using 100, 200 and 300 particles and four iterations for the

iterative ensemble Kalman approaches in a single cell,
::::::::::
assimilating

:::::
drone

:::::
snow

:::::
depth

:::::::
retrievals

::
at
::
a
::::::
random

:::::::
location

::
in

:::
the

::::
Izas

::::::::
catchment. The reported values of the benchmarks are the average of 10 MuSA runs, and includes the FSM2 compilation time

(≃2 seconds using the GNU Fortran compiler 10.3.0 in the aforementioned local machine) which is negligible compared with

the whole run.810

5 Results

5.1 Single cell and distributed hyper-resolution drone data assimilation
::
of

:::::::::::
drone-based

:::::
snow

:::::
depth

:::::::::
retrievals

The results show how the performance of the different data assimilation algorithms differs, even with the same initial conditions

and experimental setup(Figure 3 and Figure 4, single cell test comparison,
:::::
when

:::
the

:::::::
posterior

:::::::::
ensembles

:::
are

:::::::::
compared

::::::
against

::
the

::::::::::
assimilated

:::::
snow

:::::
depth

:::::::::::
observations

:::::
(Table

::
1,

:::::::
Figures

::::
3&4). The deterministic open loop

::::::::
reference simulation exhibited815

a root mean squared error (RMSE) compared with the observations of 3.1
:::
3.18

:
m, higher than the posterior average

:::::
mean

of any of the algorithms implemented in MuSAas ,
::::::
except

:::
for

:::
the

:::
PF

::::
with

::::::::
bootstrap

::::::::::
resampling

:::::
which

::::::::
collapses

:::::
early

::
in

:::
the

:::::::::
simulation.

::::
The

:::::
results

:::
are

:
shown in Table 1:

Scheme

Metric PF-c
:::
Ref

:::
PF-b

:
PF-r EnKF EnKF-MDA PBS ES ES-MDA

RMSE [m] 1.51 0.04
::::
3.18 0.98

:::
4.46 0.34 0.17

:::
1.65 0.16

:::
0.73 0.09

:::
0.63

::
0.7

: :::
0.39

Table 1. Evaluation metrics
:::::
RMSE for the

::::::
reference

:::
run

:::::
(Ref),

::::::
particle

::::
filter

::::
with

:::::::
bootstrap

:::::::::
resampling

:::::
(PF-b),

::::::
particle

::::
filter

::::
with

::::::
redraw

::::::::
resampling

:::::
(PF-r),

::::::::
ensemble

::::::
Kalman

::::
filter

:::::::
(EnKF),

:::::::
ensemble

:::::::
Kalman

::::
filter

:::
with

:::::::
multiple

::::
data

:::::::::
assimilation

:::::::::::
(EnKF-MDA),

::::::
particle

:::::
batch

:::::::
smoother

:::::
(PBS),

:::::::
ensemble

:::::::
smoother

:::::
(ES),

:::
and

:::::::
ensemble

:::::::
smoother

::::
with

::::::
multiple

::::
data

:::::::::
assimilation

:::::::::
(ES-MDA).

:::::
These

::::
errors

::::
were

::::::::
computed

::::
using

:::
the

::::::::
assimilated

::::::::::
drone-based

::::
snow

::::
depth

::::::::::
observations

::
as

:::
the

::::
truth

:::
and

::::
using

:
the posterior ensemble mean based on

:
as
:

the assimilated

observations
::::::
estimate

::::
from

:::
the

::::::::
respective

:::
DA

:::::::
schemes.

:::
All

:::
the

:::::::
schemes

::::
were

:::
run

::::
with

::::::::
Ne = 200

:::::::
particles

:::
and

:::
the

:::::
MDA

:::::::
schemes

::::
used

::::::
Na = 4

:::::::
iterations.
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The particle filter
:::
PF collapsed early in the singe cell simulation where all the weight is shared by just a few and eventually

a single particle (see Figure 3), due to the large difference between the observations and the ensemble of predictions at the first820

assimilation step. The particle filter with redraw
:::::::::::
redraw-based

:::::::::
resampling

:
allowed the assimilation process to recover from

the initial collapse through particle rejuvenation, leading to a more realistic non-degenerate ensemble simulation. Conversely,

the ensemble Kalman-based approaches were less prone to ensemble degeneracy. Here, the ensemble Kalman filter
:::::
EnKF

produced unsatisfactory results when the observations fall very far from the ensemble. However,
:::::::
posterior

::::::::
ensemble

::
in

:::
the

::::
first

::::::
season,

:::::::::
improving

:::::::::::
considerably

::
in

:::
the

:::::::
second.

:::::
Note,

:::::::
however,

::::
that

:
we did not observe this

:::
the

:::::
same issue with the iterative825

version of the ensemble Kalman filter
::::::::::
EnKF-MDA.

Figure 3. Intercomparison of filter based
::::::::
filter-based data assimilation experiments

::
in

:::
the

:::::
single

:::
cell

::
of

:::
the

:::
Izas

::::::::
catchment

:::::::::
highlighted

::
in

:::::
Figure

:
2. The black line is a deterministic (no perturbations) open-loop simulation

::
for

:::::::
reference

:
and the red dots are the observations, the

light blue lines are the ensemble of posterior state while the dark blue
::::
green

:
line is

:::::::
(shading)

:::::
shows the ensemble

::::::
posterior

:
mean

::
(±

::
1

::::::
standard

::::::::
deviation).

Figure 4 shows the results of the experiment using the smoother based approaches. In this particular case, the posterior snow

depth time series generated by using the PBS are much closer to the observations than when using particle filters with the

bootstrap resampling (Figure3
:::
3A). In addition, due to the absence of resampling, the PBS did not generate discontinuities

in the series that can be observed in the particle filters posteriors (Figure 3). The ensemble (Kalman) smoothers also outper-830
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formed their filter counterpart in this particular case. Moreover, the iterative ensemble (Kalman) smoother
::::::::
ES-MDA produced

simulations closer to the observations compared to the other smoothers as confirmed in Table 1).

Figure 4. Intercomparison of smoother based
:::::::::::
smoother-based

:
data assimilation experiments and intercomparison of

::
the

:::::::
posterior

:::::
mean

::
of

all the data assimilation algorithms
:::::
(letters

::::
A-G

:::::::::
correspond

::
to

:::
the

:::::
panels

::
in

:::::
which

:::
the

::::::::
individual

::::::
schemes

:::
are

:::::
shown

::
in
::::::

Figures
:::::

3&4)
::
in

::
the

:::::
single

:::
cell

::
of

:::
the

:::
Izas

::::::::
catchment

:::::::::
highlighted

::
in

:::::
Figure

::
2. The black line is a deterministic (no perturbations) open-loop simulation

::
for

:::::::
reference and the red dots are the observations, the light blue lines are the ensemble of posterior state while the dark blue

::::
green

:
line is the

ensemble mean. PF-c, PF-r, I and OL refers to particle filter (classic resampling
:::::
shading) , particle filter (redraw from

::::
shows

:::
the posterior

resampling
::::
mean

::
(±

::
1
::::::
standard

:::::::
deviation), iterative versions of the algorithms and the open loop, respectively.

There is an obvious improvement in the snow depth spatial distribution patterns after running MuSA compared with the

open-loop
:::::::
reference

:
simulations for the hyper-resolution distributed simulation as shown in Figure 5. The updated SWE prod-

ucts exhibited very consistent spatial patterns compared with the independent (i.e. non-assimilated) drone-based snow depth835

map, while the open loop
:::::::
reference

:
simulations exhibited a much lower and less realistic spatial variability. Similarly, the

updated FSM2 snow depth simulations were very consistent with the non-assimilated snow depth maps with a coefficient of

determination of R2=0.96 while the open loop
:::::::::
R2 = 0.96

:::::
while

:::
the

::::::::
reference simulation exhibited an R2=0.03

:::::::::
R2 = 0.03.

Figure 6 shows the spatial distribution of the weighted
:::::::
posterior

:
mean temperature bias (based on a normal prior distribution,

i.e. an additive factor) and precipitation bias (based on log-normal prior distribution, i.e. a multiplicative factor)
:::
and

::::::::::
precipitation840

::::::::
multiplier over the Izas catchment after the assimilation of the drone-based snow depth retrievals. The distribution of the pertur-
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Figure 5. Open loop FSM
::::
Snow

:::::
depth

:::::::
estimates

::
for

::::
Izas

::
on

:::
the

:::::::::
03/02/2020:

:::::::
reference simulation and updated FSM

:::
(top

::::
left),

::::
PBS

:::::::
posterior

::::
mean simulation (upper panels

::
top

::::
right). Independent drone snow depths compared to the open loop

:
,
:::::::::
independent

::::::::::
drone-based

:::::::
retrievals

(black
::::::
bottom

::
left)and ,

::::::::
evaluation

::
of

:
the posterior

::::::::
simulations

:
(
:::::
black:

:::::::
reference,

:
red:

::::
PBS) , respectively

:::::
relative

::
to

:::
the

:::::::::
drone-based

:::::::
retrievals

(lower panels
:::::
bottom

::::
right).

bation parameters showed spatial patterns consistent with the topography of Izas in both of the variables, ranging from -4 to 2

[K] in the case of the additive temperature bias and from 0.5 to 3 in the case of the multiplicative precipitation bias.
::::::::::
precipitation

::::::::
multiplier.

5.2 Coarser-scale joint satellite data
:::::
Joint assimilation

::
of

::::::::::::
satellite-based

:::::
LST

:::
and

::::::
FSCA

::::::::
retrievals845

The results of the
:::::
result

::
of

::::::
jointly

::::::::::
assimilating LST and FSCA joint assimilation is shown in Figure 7. As expected, the differ-

ence between the observations and the updated simulations was reduced, compared with the open loop
:::::::
reference

:
simulations.

The root mean squared error (RMSE) between the observations and the open loop
::::::::
reference LST was 7.2 [K] compared to 5.1

[K] for the updated simulations. Similarly, the RMSE between the observations and the open loop
:::::::
reference

:
FSCA was 0.38,

compared to 0.14 for the updated simulations. Such modifications of the FSCA and LST state variables resulted in a completely850
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Figure 6. Posterior perturbation parameters for the precipitation [
::::::::::::
non-dimensional] (multiplicative) and temperature [

:
K] (additive).

different SWE simulation, that reached values up to 900 mm of peak SWE compared to the 300 mm reached by the open loop

:::::::
reference

:
simulation.

5.3 Computational benchmarks

In a single cell benchmark experiment, the different data assimilation algorithms showed large variations in computational

cost (Figure 8). In this comparison the values
::::
with

::::::::
Ne = 100

::::::::
particles

:::
the

::::::::::::
computational

::::
cost

::::::::
measured

::
in
::::

wall
:::::

clock
:::::

time855

ranged from 39
:::::
(PBS)

::
to

::::
270

::::::::::::
(EnKF-MDA,

:::::::
Na = 4)

:
seconds per cell per year[s c−1 y−1] in the case of the PBS to 270

[s c−1 y−1] for 100 particles and 4 iterations in the case of the EnKF-MDA. These benchmarks showed that for all the cases the

computational cost increased almost linearly with the number of particles. As expected, the iterative versions of the ensemble

Kalman approaches are more demanding in terms of computational cost, due to the larger number of FSM2 simulations required

by the data assimilation algorithm. Filtering is also generally more expensive than (batch) smoothing since it invokes more860

frequent calls to I/O operations. This is especially clear for the costly iterative ensemble Kalman methods, but note that

the relative increase in wall clock time for filtering relative to smoothing is more or less the same across all methods and

corresponds to a factor of roughly 1.5.

6 Discussion

The results from the intercomparison of different data assimilation experiments exhibited a large variability in performance and865

computational cost across the schemes. This highlights the need for thorough testing, as the suitability of the assimilation algo-

rithms will vary depending on the problem at hand. Despite the fact that all
:::
most

:
of the data assimilation algorithms improved
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Figure 7. Joint LSTA
:::
LST

:
(top panels) and FSCA (middle panels) data assimilation, and its influence on the SWE simulations (bottom

panel).).

the simulations compared with the deterministic open loop
::::::::
reference simulations, their performance differed markedly. In fact,

this is sometimes not noticed
:::::
these

:::::::::
differences

::::
tend

:::
not

::
to

::
be

::::::::
explored in the literature, where often the choice of one algorithm

over others is not sufficiently , or at all, justified
:::::::
justified

:::::::::
empirically. The lack of tools to compare the performance of different870

data assimilation algorithms has probably contributed to this problem, since it requires substantial coding effort to implement
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Figure 8. Benchmarks for the computational cost, expressed in terms of wall clock time, of the different assimilation schemes implemented

in MuSA.

all available options in each data assimilation experiment. As an example,
:
a
::::
case

:::::
could

::
be

:::::
made

::::
that ensemble Kalman-based

data assimilation approaches are often
::::::::::
prematurely perceived as suboptimal for snow science applications due to the Gaussian

linear assumption (Helmert et al., 2018; Largeron et al., 2020)
:::::::::::::::::::::::::::::::::::
(Helmert et al., 2018; Largeron et al., 2020). In spite of thisview,

our first experiment showed that the iterative version of ensemble-based Kalman smoothers outperformed the other smoother875

algorithms, as also found by Aalstad et al. (2018). hese
:::::::::::::::::
Aalstad et al. (2018)

:::
and

::::::::::::::
Pirk et al. (2022)

:
.
:::::
These findings are consistent

with the broader DA literature, where basic particle methods
:::
PFs

::::::
(based

:::
on

::::
SIR)

:
tend to suffer more from

:::::::::
degeneracy

::::
due

::
to

the curse of dimensionality (Snyder et al., 2008).
::
in

::::
high

::::::::::
dimensional

::::::::
problems

:::::::::::::::::
(Snyder et al., 2008).

::::
This

::::::::::
degeneracy

:::::::
problem

::::
tends

::
to

::
be

:::::
even

:::::
worse

::::
with

::
the

::::
PBS

::::::
(based

::
on

::::
SIS)

::::
due

:
to
:::
the

:::::::
absence

::
of

:::::::::
resampling

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
van Leeuwen and Evensen (1996); van Leeuwen (2009); Särkkä (2013); Pirk et al. (2022)

:
.880

In their review, van Leeuwen et al. (2019) suggest promising remedies to this problem with more sophisticated particle

methods that invoke remedies
:::::::::
innovations

:
such as using iterations or proposal distributions

::::
better

::::::::
proposal

::::::::::
distributions

:::
or

:::::::
iterations. The particle filter using redraws from a normal approximation to the posterior that we implemented in MuSA

was loosely inspired by the use of proposal distributions and can overcome the degeneracy problems in the more classic

:::::
classic

::::::::
bootstrap

:
particle filter (see Table 1). The

::
use

:::
of

::::::::
iterations

:::
was

:::::::
pursued

:::
by

:::::::::::::::::::::::
Stordal and Elsheikh (2015)

::::
who

:::::
recast

:::
the885

::::::::
ES-MDA

::
in

:::
the

:::::::::
framework

::
of

:::::::
iterative

:::::::
particle

:::::::
methods,

:::::::
leading

::
to

::::::::
improved

:::::::::::
performance

::
on

:::::::::
subsurface

::::
flow

:::::::::
problems.

::::
This

:::::::
suggests

:::
that

::
a
:::::::::::
hybridization

::
of

::::::::
ensemble

:::::::
Kalman

::::
and

::::::
particle

:::::::
methods

::::::::::::::::::::::::::::::::::
(Papadakis et al., 2010; Pirk et al., 2022)

::::
may

:::
also

:::
be

:
a
:::::::::
promising

::::::
avenue

:::
for

:::::
future

::::::
work.

:::
We

:::::::
reiterate

::::
that

:::
we

:::
are

:::
not

:::::::::
advocating

:::
for

::::
one

::::
class

:::
of

:::
DA

:::::::
methods

:::::
over

:::::::
another,

:::
the

::::
point

:::
we

:::
are

::::::
making

::
is
:::::
rather

::::
that

::
to

::
do

:::
so

::::::::::
prematurely

:::::
would

:::
be

::::::
unwise.

::::::::
Common

:::::::
wisdom

::::::::
embodied

:::
in

::
the

::::
´No

::::
Free

:::::::
Lunch’

:::::::
theorems

:::
for

:::::::::::
optimization

::::::::::::::::::::::::::
(Wolpert and Macready, 1997)

:::::
warns

::
us

:::
not

::
to

::::::
expect

::::
one

::::::::
particular

::::::::
algorithm

:::
to

::::::
always

:::::::
perform890
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::::
best,

:::
but

:::::
rather

:::
that

::::
this

:::
will

:::::::
depend

::
on

:::
the

:::::::
problem

::
at
:::::
hand.

::::
The power of MuSA is that it

:
to
:::::::
provide

:
a
::::
tool

:::
that

:
simplifies the

task of comparing different experimental set-ups by allowing the intercomparison of data assimilation algorithms as well as

:::::::::
facilitating the implementation of new ones. In the future, new

::::
more

:
data assimilation algorithms will

:::::
could be implemented,

including iterative versions of the PBS and particle filters as well MCMC methods which are the gold standard for Bayesian

inference (Neal, 1993; Apte et al., 2007), but have received relatively little
:::
less attention from the snow community (Kolberg895

and Gottschalk, 2006) due to their often prohibitive computational cost.

The selection of the data assimilation algorithm is not the only possible source of variability in the updated simulations. As

an example, MuSA has two different precipitation partitioning methods implemented. In addition to the fact that the selection

of the precipitation phase partitioning method would have in the deterministic simulations, the perturbations in the forcing

can also impact precipitation phase in different ways depending on the selected partitioning method. For example, perturbing900

the relative humidity forcing would only impact precipitation phase for one of the partitioning methods in FSM2. In addition,

different
::::::::
Different strategies to generate the prior ensemble of simulations may

::::::::
markedly impact the performance of the data

assimilation algorithms especially in the case of PBS and particle filters which are prone to degeneracy.

MuSA was also able to assimilate hyper-resolution snow depth maps in a distributed fashion. The assimilation of snow

depth products has been shown to be a very robust approach to SWE
::::
snow

::::::
depth estimation. The posterior maps of the905

perturbation parameters showed intricately detailed and physically-consistent spatial patterns, especially considering the fact

that there is not any cell intercommunication in MuSA. The appearance of this consistent spatial pattern in the perturbation

parameters indicates that they are compensating for a missing processes in the model, which in this case is most likely to

be the wind-driven ablation and accumulation processes since most of the spatial variability in melt energy is provided by

MicroMet shortwave radiation routine (e.g. Baba et al., 2019). Thus, MuSA can be used to study the importance of missing910

snow processes in the FSM2 model. In the particular case of the assimilation of hyper resolution snow depth maps, it may help

to address the unresolved problem of wind redistribution in numerical snowpack modeling (Vionnet et al., 2021) by providing

spatio-temporally continuous (i.e. gap free) and physically consistent reconstructions of the snowpack dynamics that can be

used as a target when designing and calibrating new process parameterizations in snow model development.

Despite the fact that there are some other examples of assimilating snow depth products, most of these have been carried915

out at the point scale
:::::
using

:::::
in-situ

:::::::::::
observations

::::::::::::::::::::::::::::::::::::::::::::::
(Cantet et al., 2019; Cluzet et al., 2022; Odry et al., 2022), or were developed at

coarser spatiotemporal resolutions (Deschamps-Berger et al., 2022). To our knowledge the assimilation experiment performed

in Section 5.1 is the first test of assimilating drone retrievals in a numerical snow model. This approach should be useful for the

monitoring of hydrological experimental catchments in snow dominated areas, providing a cost effective method to generate

spatially and temporally continuous reconstruction of the SWE distribution. Using MuSA in combination with the ever increas-920

ing capabilities of drones, it is possible to develop joint assimilation experiments using snow depth and other variables such as

snow surface temperature
::::
LST or albedo at unprecedented resolutions. Furthermore, the assimilation of hyper-resolution

::::
high

::::::::
resolution snow depth maps may become a common practice in the future, even at wider scales, thanks to the emerging remote

sensing
::::::::::::
satellite-based snow depth retrievals

:::::::::::::::::::::::::::::::::::::::::::::::::::::
(Marti et al., 2016; Treichler and Kääb, 2017; Lievens et al., 2019).

37



The joint assimilation of FSCA and LST retrievals from MODIS , had a large impact in the updated SWE simulations.925

The assimilation of the FSCA provides
:::
LST

::::
has

:::
the

:::::::
potential

:::
to

::::::
provide

:::::::::
additional

:
information when FSCA saturates at 1,

i.e.
::
for

::::::::
example during most of the snow season in snow dominated areas, or

:::::::::::
accumulation

::::::
season

::::
and during the polar night

in the absence of light
:::::::
sunlight. This preliminary experiment suggests that the joint assimilation of LST and FSCA may be

beneficial to improve distributed snow reanalyses at larger scales. There are several examples of assimilating SCA in both its

binary and fractional form (e.g. Margulis et al., 2016). However, the assimilation of LST in numerical snow models remains930

largely underexplored (Navari et al., 2016). This is probably due to the relative lack of accurate LST information at the desired

scale for snow applications especially over complex terrain, as the currently available satellite sensors that are able to provide

LST information either exhibit a spatial resolution that can be too coarse or revisit times that are too infrequent (Largeron et

al., 2020). Nonetheless, given the agenda of several space agencies, LST information will be readily available in the future

at high spatiotemporal resolutions. This includes the Thermal infraRed Imaging Satellite for High-resolution Natural resource935

Assessment (TRISHNA; Lagouarde et al., 2018) satellite from the Centre National d’Études Spatiales (CNES) or the Land

Surface Temperature Monitoring (LSTM) mission from the European Space Agency (ESA)
:::::::
missions.

:::::::
Another

::::::
logical

::::
next

::::
step

::
to

::::::
explore

::
in

:::::
terms

::
of

::::
joint

::::::::::
assimilation

::::::
would

::
be

::
to

::::::::
assimilate

::::::
FSCA

:::
and

::::
LST

:::::::
together

::::
with

:::
the

:::::::::::::
aforementioned

::::::::::::
satellite-based

::::
snow

:::::
depth

::::::::
retrievals

::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Marti et al., 2016; Treichler and Kääb, 2017; Lievens et al., 2019).

The computational cost of each data assimilation algorithm and implementation depends on different
::::::
several factors. First,940

the computational cost of the Particle Filter and PBS approaches is different to the Kalman and the iterative Kalman approaches.

This is due to the number of FSM2 runs required to run each algorithm. In the Particle Filter and PBS approaches, the number

of FSM2 runs areNr =Ne whereNr denotes the number of runs (per grid cell) andNe is the number of particles. On the other

hand, the computational cost in terms of the number of FSM2 runs in the EnKF and ES will be Nr = 2Ne. For the iterative

versions of these ensemble Kalman-based approaches the number of runs will be Nr = (Na +1)Ne where Na is the number945

of assimilation cycles, i.e. the number of iterations in the ensemble Kalman update equations, selected by the user as explained

in Section 3.5. In general, the ensemble Kalman techniques require more runs because they actually move (rather than just

reweight) the parameter ensemble after assimilating the observations. To get the corresponding updated states (and predicted

observations) FSM2 must be rerun with the updated parameters. In the non-iterative case this effectively requires a single rerun

of the FSM2 ensemble, while for the iterative case it requires Na reruns of the FSM2 ensemble.950

However, the number of FSM2 runs is not the only source of computational cost. The current version of MuSA is a wrapper

around the FSM2 model. This simplifies the implementation
:::::::
inclusion

:
of other snow models if required by the user. It also

means that MuSA can easily incorporate FSM2 upgrades. Nonetheless, this implementation comes with a computational cost

due to the I/O operations and the system calls that are done in the background when the MuSA system is running. The time ex-

pended on I/O operations and system calls will be higher in the parallel runs due to the use of disk space from different processes955

at the same time. This suggests that a better encapsulation
::::
more

:::::
direct

:::::::::
integration

:
of FSM2 running the snowpack simulations

in memory may
:::
that

::::::
avoids

:::
I/O

:::::::::
operations

:::
and

:::::::
system

::::
calls

:::::
could

:
improve the overall MuSA performance

::::::::::
performance

:::
of

:::::
MuSA.
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It is worth noting that MuSA may be also used to implement simpler (and therefore) faster snowpack models (e.g. Aalstad

et al., 2018), if numerical efficiency is required. Conversely, more sophisticated multilayer models such as Crocus (Vionnet960

et al., 2012) and SNOWPACK (Bartelt and Lehning, 2002) could also be encapsulated in MuSA in the future. The imple-

mentation of more sophisticated models that include detailed radiative transfer schemes may provide MuSA the capability of

ingesting new remotely sensed information such as surface reflectances
::::::::
shortwave

::::::::::
reflectances

:::::::::::::::::
(Cluzet et al., 2020) or radar

backscatter
:::::::::::::::::
(Lievens et al., 2019). In addition, as FSM2 has support for different temporal resolutions, the future versions of

MuSA will support different timesteps, allowing to reduce the computational cost both in terms of run time and data storage965

requirements. As such, there is room for reducing the computational cost of MuSA if necessary, which would open up the

possibility of implementing it even at continental and hemispheric scales.

7 Conclusions

MuSA is a new snow data assimilation system that encapsulates the FSM2 snowpack model. There are 6 different ensemble-

based data assimilation algorithms implemented in MuSA, as outlined in detail in Section 3, with five
:::::
several

:
different re-970

sampling strategies in the case of particle filters. MuSA also supports direct insertion in the case of snow depth. The data

assimilation algorithms and the characteristics of the ensemble generation are provided by the user through simple config-

uration files. MuSA is able to assimilate different observational variables either independently or jointly (i.e. in the same

assimilation step), even if these variables do not share the same time-step or if they have gaps. The system is highly scalable,

such that it is possible to run it both on local machines and supercomputing infrastructures.975

We used the MuSA system to assimilate snow depth maps derived from drone retrievals over the Izas experimental catchment

for two different seasons at 5 meters spatial resolution. The behavior of each data assimilation algorithm differed considerably,

demonstrating that case-specific testing of algorithms rather than just relying on the literature can be very helpful for designing

successful snow data assimilation experiments. In addition, we developed a single cell data assimilation experiment, fusing

LST and FSCA retrievals from MODIS with the FSM2 model. The results indicated a strong potential in the joint exploitation980

of these remotely sensed variables, suggesting that more research is needed on this regard. Finally, we presented a benchmark

of the computing cost of the data assimilation algorithms. The choice of data assimilation algorithms had a considerable impact

on the computational expense of the system, and should be considered for high resolution or large scale runs.

Code and data availability. The MuSA code is available at https://github.com/ealonsogzl/MuSA, the version of MuSA used for this paper

(with a subset of input data) can be found at https://doi.org/10.5281/zenodo.7014570 while the complete input data for Izas used in the present985

study can be found at https://doi.org/10.5281/zenodo.7248635. The original FSM2 code is found at github.com/RichardEssery/FSM2, and in

the MuSA repository with slight modifications from the original version. The MODIS data used herein, namely MOD10A1 (Hall et al., 2002)

and MOD11A1 (Wan et al., 2015), are available for download from NSIDC and the NASA EOSDIS Land Processes DAAC, respectively.

ERA5 data is available for download from the Copernicus Climate Data Store. MuSA can be launched on Linux/macOS or Windows

platforms (via Windows Subsystem for Linux). MicroMet code is available upon request to G.E. Liston.990
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