
REVIEWER # 2

COMMENT # 2.1

General Comments
In this paper, the authors developed MuSA (v1.0), a standalone snow data assimilation sys-
tem. MuSA provides a comprehensive framework encapsulating FSM2 (a widespread open-
source intermediate complexity snowpack model) with six variants of ensemble bayesian data
assimilation algorithms revolving around the Ensemble Kalman Filter (EnKF), the Particle
Filter (PF) and their smoothing counterparts. As such, this framework is a great contribution
to the snow data assimilation community, as it allows to seamlessly compare different assim-
ilation strategies. It also seems accessible as an educational tool and outreach. Furthermore,
the literature only offers data assimilation implementations that are strongly bound to oper-
ational constraints (such as country-specific numerical weather prediction models or high-
performance computing infrastructures), and are therefore not transferable in space, while
MuSA could conceptually be used anywhere, anytime, something which is definitely missing
at the moment. Indeed, it is sometimes virtually impossible to compare the performance of al-
gorithms produced by different teams worldwide. The authors present the potential of MuSA
in two different assimilation experiments: assimilating drone-base high-resolution maps over
a small catchment in the Pyrenees (with a focus on a single “pixel”), and a combination of
snow cover fraction and Land Surface temperature from MODIS, which allow to exhibit the
different behaviour of the respective algorithms over two snow seasons and make a good entry
point for new users.

Reply:

The authors would like to thank Bertrand Cluzet for his positive and constructive
comments on our work. We hope that the MuSA tool will be useful in enabling a
wider audience within the snow science community to conduct their own experi-
ments in the field of data assimilation.

COMMENT # 2.2

The data assimilation algorithms implemented in MuSA are all already available in the litera-
ture. Only a tiny level of novelty resides in the use of the heuristic “redrawing from a normal
approximation of the posterior” which is introduced in l. 99-107 to fight PF degeneracy but
would deserve more stance and details. The idea is similar to approaches where the perturba-
tion parameters are not resampled, only resampling the model states (Cluzet et al., 2021), or
where perturbation are added to the posterior resampled parameters (Piazzi et al., 2018).
Then comes a very long Section 3 (17 pages) of theoretical developments and digressions
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which is rather ambitious as it tries to bring all the algorithms together into the framework of
Bayesian inference almost in a review-like style. This comes at the cost of lengthy digressions
and theoretical developments that have little interest in explaining the interest of MuSA and
the presented results but have the merit of putting everything together in one single piece
of literature, which will be really appreciated by the community outside of data assimilation
experts and is in the spirit of GMD. I strongly recommend the authors to try and make this
section more concise and accessible to such a public and am pleased to provide some sugges-
tions in the attached annotated manuscript.

Reply:

The strength of MuSA lies in its modularity. Its design facilitates the implementation
of new algorithms with different capabilities. We believe that for the first version,
it is sufficient to implement the algorithms that the community has already experi-
mented with. Note, however, that the iterative versions of ES and EnKF have yet to
receive widespread adoption for snow DA (other than 1) despite their demonstrated
strong potential in other fields (2; 3; 4). In any case, the implementation of several
new algorithms in the near future is already in the pipeline, with several prototypes
under development. Following the MuSA philosophy, we consider that Section 3
with the theoretical basis is necessary. We are committed to a demystification and
generalisation of the use of data assimilation techniques within the cryospheric sci-
ences. To the best of our knowledge, there are not many similar exercises that attempt
to explain the functioning and basic theory of the different DA algorithms that are in
common use in snow science. This gap has made the implementation of these tech-
niques difficult for groups that are unfamiliar with them. Moreover, we consider
it appropriate to introduce how a new tool works, and not simply refer to a large
number of references where explanations of the underlying theory and individual al-
gorithmic implementations are disseminated. We nonetheless agree that the section
can be reduced somewhat, and we appreciate the reviewer’s recommendations. The
reviewer’s comments have made this reduction exercise easier, and this part is now
more concise and clearer.

COMMENT # 2.3

The results represent a nice illustration of the capabilities of MuSA. They have a limited
level of scientific novelty and lack methodological depth for any significant conclusion to be
drawn. At the light of this consideration, I recommend the authors to temper or even remove
most statements regarding the conclusions drawn from their results in the discussions (see the
notes below and the attached PDF). I don’t think, for instance, that this study is substantiated
enough to discuss the relative advantages of EnKF vs. PF approaches, but it definitely lays a
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nice context to do so in further work. In this spirit, I recommend reorganizing their discussion
with the aim of highlighting the novelty and versatility of the method, detailing potential use
cases including educational purposes. More references would also be needed in that section.
I think that this would ultimately sound more GMD-like and would increase the impact of
the paper. The code is well documented and seems written in a neat way that will guarantee
its accessibility to the community and beyond. Overall, I think that this paper is relevant
for publication in GMD, as it provides a significantly new modelling tool to the snow data
assimilation community and beyond. I am confident that the authors can address the minor
recommendations detailed above. Below are listed some technical points. Please also make
sure to address all the comments and suggestions in the attached commented manuscript.

Reply:

Once again, we appreciate the positive comments. We have restructured some parts
following the reviewer’s recommendations. Below, we respond in detail one by one
to all the reviewer’s comments and suggestions. This response includes a discus-
sion of whether or not a comparison of ensemble Kalman and particle approaches is
warranted given our results.

COMMENT # 2.4

Technical notes
Several code performance/implementation features are disseminated throughout the manuscript.
This is definitively an important added value from MuSA, that would deserve more stance.
Consider grouping them?

Reply:

We have modified some statements concerning the performance and implementation
in line with the comments annotated by the reviewer in the attached PDF. These
features are now clearer. However, we consider that they are in their right place
to link theory and experiments with the actual implementation, so we prefer not to
group them together.

COMMENT # 2.5

- l. 84: a thorough description of the direct insertion is required, as this is not as trivial as
it seems: when assimilating HS, are you adding/removing mass, or do you just squeeze the
snowpack layers? How do you handle the relayering?

Reply:
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After discussion among the authors, we have opted to remove the direct insertion.
We are not convinced that this feature is in line with the MuSA philosophy. Further-
more, due to the necessary assumptions, and the problems also highlighted by the
reviewer, we cannot ensure that this feature will be supported in the future, espe-
cially if new numerical models are eventually inserted into MuSA.

COMMENT # 2.6

125-135: please improve the style, this could be written in a more concise/impacting way.

Reply:

We have followed the reviewer’s suggestion and made the following changes

Changes:

2.1 Ensemble generation
Other than for direct insertion, the

::::
The

:
DA algorithms implemented in MuSA all re-

quire a prior ensemble (i.e. a collection) of simulations to represent uncertainty. The
number of ensemble members (also known as particles; 5) in the ensemble

::::::::::::::::::::::::::::::
(or, equivalently, particles; 6)

:
,
::::::::
which

::::
we

::::::::
denote

:::
by

:::::
Ne,:should be specified by the

user, as it drastically affects both the computational cost of the experiments and
the performance of the data assimilation algorithms. To generate an ensemble of
snowpack state trajectories, MuSA perturbs the forcing and performs

::::::::::::::::
meteorological

::::::::
forcing

::
to

:::::
run an ensemble of FSM2 runs with the perturbed forcing

::::::::::::
simulations. An

arbitrary number of forcing variables can be perturbed. The perturbation of the forc-
ing is performed by drawing

:::::::::
spatially

::::::::::::::
independent random perturbation parameters

from a normal distribution defined by its standard deviation and mean, or the mean
and standard deviation of the underlying normal function in case of choosing a

::
or

log-normal probability distribution. The prior standard deviation and mean of the
distribution should be provided

:::::
these

:::::::::::::::
distributions

::::::::
should

:::
be

::::::::::
specified

:
by the user.

MuSA supports normal or log-normal probability functions to generate constant in
time additive or multiplicative perturbations respectively, depending on the phys-
ical bounds of the variable to be perturbed. For example, additive perturbations
can be used to generate air temperature time series, whereas multiplicative

::::::::::
Additive

::::::::::::::
perturbations

::::
are

::::::::::
typically

:::::
used

::::
for

:::
air

::::::::::::::
temperature.

::::::::::::::::
Multiplicative

:
perturbations are

recommended for precipitation to avoid negative values , or
::
as

:::::
well

:::
as

:::
for

:
shortwave

radiation to avoid negative values and positive night-time values.. . .

COMMENT # 2.7
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157-163: same comment.

Reply:

These lines have been changed as shown below.

Changes:

2.2 Meteorological forcing
. . .
It should be noted that the forcing is read along the time dimension. As mentioned
above, each

:::::
Each

:
grid cell is solved independently including

:::::::
which

::::::::::
includes the

reading of the forcing . However, this memory cost reduction comes with an associated
computational cost due to the potential need of reading a long time dimension

::::
that

:::::::
occurs

:::::::
along

::::
the

::::::
time

:::::::::::::
dimension.

::::::::::::::
Otherwise,

:::::
each

:::::::::
process

::::::::
would

::::::
have

::::
to

::::::
store

::::::::::::::
considerably

::::::
more

:::::
data

::
in

::::::::::
memory

::::::::
leading

:::
to

::::::
more

::::::
costly

:::::
I/O

::::::::::::
operations

::::
that

::::::::
would

:::::
slow

:::::::
down

::::
the

::::
run

::::::
time.

:::::::
Even

::::
so,

::::
just

:::::::::
reading

:::::::
along

::::
the

:::::
time

::::::::::::
dimension

::::
can

:::::::
come

:::::
with

::
a
::::::::::::::
considerable

:::::::::::::::::
computational

:::::
cost

::
if
:::::

the
:::::
time

::::::::::::
dimension

:::
is

::::::
large. To allevi-

ate this, the computational cost of MuSA
:::::
time

::::::
spent

:::::::::
reading

::::
the

:::::::::
forcing can be re-

duced by setting the chunk
::
(a

:::::::
subset

:::
of

::::
the

::::
file

:::
to

:::
be

:::::
read

:::
or

::::::::
written

:::
as

::
a
:::::::
single

:::::
I/O

:::::::::::
operation)

:
of the netCDF forcing files along the time dimension, specially with long

or large (i.e. many grid cells) simulations. To speed up the
::::::::::::
subsequent

:
relaunching

of the simulations
::::::
when

::::::::::::
smoothing

:::::
and

:::::::::
filtering, MuSA generates an intermediate

binary file with the forcing information of each cell needed to run a complete sim-
ulation . This accelerates the initialization of experiments that involve performing
different MuSA runs for the same grid cells

:::
for

:::::
each

:::::
grid

:::::
cell.

COMMENT # 2.8

168-171: While assuming independent observation errors seems a reasonable assumption,
attributing the same value for all observations of a given variable does not seem state of the
art (take the example of the snow depth model error of e.g. Magnusson et al., 2014). Consider
commenting on that since this is not much of a technical hurdle for further developments.

Reply:

This is a thought provoking comment. Firstly, it is clear that the formulation here
was somewhat imprecise, in that MuSA already offers the option to account for dif-
ferent observation error variances in the case that we have multiple observations of
the same variable from different sensors. We have now clarified this. Secondly, al-
though the example of (7) is laudable we would not consider this state of the art. In
fact, although they try to account for heteroskedastic errors in an EnKF system (e.g.
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their equation 18) their implementation is heuristic and violates the underlying the-
ory. Instead the correct way of adding heteroskedasticity, and more generally adding
sophistication to the observation error model, in DA is to modify the entire likelihood
instead of just R directly (e.g. 8; 9). Since, to the best of our knowledge, this has yet to
be pursued in snow DA it is beyond the scope of this work. It is certainly an impor-
tant topic that is worthy of further pursuit. We have added a brief discussion of this
in the relevant section as outlined below.

Changes:

2.3 Observations and masked cells
. . .
A temporally and spatially constant scalar corresponding to the assumed observa-
tion error variance must be provided for each of the observed variables that are

:::::
type

::
of

:::::::::::::
observation

:::::
that

::
is

:::
to

:::
be assimilated. This

::::::::::::
assumption

:
implies a diagonal observa-

tion error covariance matrix, R, which is tantamount to assuming that observation
errors are uncorrelated in both time and space. The geometry of the observations
must match the geometry of the forcing, i.e. both datasets must share the same
grid extent and resolution

:::::
Note

:::::
that

:::::
this

:::::::::::::
formulation

::::::::
allows

::::
the

:::::
user

:::
to

:::::::::
account

::::
for

::::::::::::
differences

:::
in

:::::::::::::
observation

::::::
error

:::::
that

::::::
arise

:::
in

::::
the

:::::
case

:::::::
when

::
a
::::::::::
variable

::
is

:::::::::::
observed

:::
by

:::::::::
multiple

:::::::::
sensors

::::::
with

:::::::::
varying

::::::::::
accuracy.

:::::
By

:::::::::::
modifying

:::::
the

::::::::::::
likelihood,

::
it

::::::::
would

::::
also

:::::::::
possible

:::
to

:::::::::
account

::::
for

:::::::::::::::
non-Gaussian

:::::::::::::
observation

:::::::
errors

:::::
(8; 9)

:
,
::::
but

:::::
this

::
is

::::
not

::::
yet

:::::::::::
supported

:::
in

:::::::
MuSA. . .

COMMENT # 2.9

- l. 172-174: while there is no conceptual shortcoming in the case of smoothers, please
give more implementation details as to how time-irregular observations are assimilated in
the sequential filter algorithms: are they assimilated ‘on the fly’, or grouped by daily/hourly
batches? For instance, I can imagine some IO bottlenecks or PF degeneracy problems in the
situation where an observation would come every 15mins and would be assimilated on the fly.

Reply:

Any time an observation (or multiple observations at the same time) occurs, the anal-
ysis is performed. It is true that if the temporal resolution of the observations is
extremely high, I/O bottlenecks will be generated in the case of filters, but this is
expected behaviour. Future developments with modified versions of FSM2 or other
models may help to solve this problem. In any case in real scenarios this problem
would only occur when assimilating data from weather stations or (less commonly)
geostationary satellites and in this case the user will have to pre-process the products
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as MuSA will not do it for them.

COMMENT # 2.10

494-512: could be removed

Reply:

We prefer to keep this section as this importance sampling theory is at the core of
the particle methods. Were we to remove this then the same logic would lead us to
remove most of Section 3. We would like to avoid this since we believe this section
provides a valuable overview of the theory that is missing in many snow DA papers.
Indeed, the reviewer also acknowledges that this section will be appreciated and is
in the spirit of GMD. In summary, we have done our best to remove text elsewhere,
but this paragraph is too important to cut.

COMMENT # 2.11

577-579: Numerical instabilities: please expand as the reference is not open source. And what
if several/all particles obtain likelihoods below the machine precision? How do you ensure that
the likelihoods are still “sorted” in a proper way?

Reply:

This reference (10) is actually open access (and the code is open source) since it is
freely available via probml.ai which is also linked on the book’s official MIT press
webpage under "Read open access". We have now also included a link to the book in
the bibtex reference to make it easier to discover the open access PDF. The problem
that the reviewer is alluding to is exactly the problem that we are addressing via the
so-called "log-sum-exp" trick described in Section 2.5.4 in (10). In terms of the code,
the implementation of this "trick" is relatively straightforwards and it is included un-
der modules/filters.py on the MuSA Github page in the pbs function. This seems to
be the standard way of addressing this numerical problem, as an equivalent solution
is also discussed on page 102 of (11) which is also open access via the book’s Springer
webpage. The reference to (11) has now been added to this sentence and we have
tried to clarify the goal of this solution.

Changes:

3.4 Particle methods
. . . In practice, to ensure numerical stability, we first compute the natural logarithm
of the weights by using the log-sum-exp trick to avoid potential overflow (10)

::::
and
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::::::::::
minimize

::::
the

:::::::
effects

:::
of

::::::::::::
underflow

::::::::
(10; 11). . .

COMMENT # 2.12

4: consider enclosing each individual algorithm into a numbered algorithm block

Reply:

Thanks for this nice suggestion, we have now added such algorithm blocks in Sec-
tion 3 for the PF (Algorithm 1), PBS (Algorithm 2), and the Ensemble Kalman anal-
ysis with MDA (Algorithm 3). Note that the bullet points containing a mixture of
text and equations within these blocks that describe these algorithms remain largely
unchanged. For clarity and conciseness, we chose not to go with full pseudocode
and retained most of the text, otherwise these blocks would be nearly double the size
with nested for loops and if statements and the like. We have also added some more
brief information about the techniques involved to ensure numerical stability, i.e. the
log-sum-exp trick (10) for the particle schemes and the pseudo inversion (12) for the
ensemble Kalman schemes. Curious readers should then be able to identify these
techniques within the respective functions under the module modules/filters.py in
the MuSA repository

COMMENT # 2.13

3.5: consider condensing the bibliography on the EnKF

Reply:

The bibliographic part on the use of ensemble Kalman methods in snow DA in Sec-
tion 3.5 is about the same length as that for the particle methods (especially after
adding new references suggested by the reviewer) in Section 3.4 which reflects their
roughly equal use in the literature. While it is true that ensemble Kalman methods are
perhaps less popular in snow DA than they were historically, i.e. before the adoption
of particle methods, we do not see why this would warrant a shorter bibliography
on these methods. As for the references from the wider field of DA, it is natural that
there are slightly more references for the ensemble Kalman methods since here we
introduce for 4 different algorithms (EnKF, EnKF-MDA, ES, ES-MDA) rather than
just 2 (PF, PBS) for the particle methods. As such, we could not justify cutting the
bibliography on the EnKF, given the already extensive bibliography in the remainder
of the paper.
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COMMENT # 2.14

6: In the first section (l. 820-840), the authors consider that the literature often lacks sufficient
justification for their DA algorithmic choice, arguing that EnKF-based algorithms (both in the
filtering and smoothing fashion), have been overlooked by the community for bad reasons (l.
827-828) (“due to the Gaussian linear assumption”). This statement is hazardous, and in
the case of Largeron et al., (2020), just false. In Sec. 4.3 of Largeron et al., (2020), they list
several additional advantages of PF vs. EnKF in the case of detailed snowpack models. Piazzi
et al., (2018) as well as Cantet et al., (2019) also discuss the advantages of PF vs. EnKF
in similar terms. These reasons may be bad or weak, but if the authors want to contradict
them, they should be cited and contradicted extensively, otherwise this discussion is just not
fair. Nevertheless, while I consider that the authors might be right, even with more literature
substance I am not sure that this fits in the scope of this paper, and I would rather see this in
a following, dedicated publication.

Reply:

We have now weakened the statement concerning EnKF-based schemes in snow DA
somewhat and tried to clarify the points that we are trying to make about actually
comparing (empirically) the performance of DA algorithms. We were surprised to
hear that our statements are hazardous or false. A case could be made that the sit-
uation is completely the opposite. In fact, no EnKF was run in any of the citations
the reviewer provides where "the advantages of PF vs. EnKF" are discussed. This is
precisely our point, not that one algorithm is superior to another but that one gener-
ally wouldn’t know this without checking because it would depend on the problem
at hand. While we do believe that many of the reasons raised in the references the re-
viewer provides can be misleading, in that they cut against our experience and (from
what we can tell) that of the wider DA community, we agree that this is not the topic
of this paper and have thus not pursued this further herein.

Changes:

6. Discussion
The results from the intercomparison of different data assimilation experiments ex-
hibited a large variability in performance and computational cost across the schemes.
This highlights the need for thorough testing, as the suitability of the assimilation al-
gorithms will vary depending on the problem at hand. Despite the fact that all

:::::
most

of the data assimilation algorithms improved the simulations compared with the
deterministic open loop

:::::::::
reference

:
simulations, their performance differed markedly.

In fact, this is sometimes not noticed
::::::
these

::::::::::::
differences

::::::
tend

::::
not

:::
to

::::
be

::::::::::
explored

:
in

the literature, where often the choice of one algorithm over others is not sufficiently
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, or at all, justified
:::::::::
justified

:::::::::::::
empirically. The lack of tools to compare the perfor-

mance of different data assimilation algorithms has probably contributed to this
problem, since it requires substantial coding effort to implement all available op-
tions in each data assimilation experiment. As an example,

::
a

:::::
case

:::::::
could

:::
be

:::::::
made

::::
that

:
ensemble Kalman-based data assimilation approaches are often

:::::::::::::
prematurely

perceived as suboptimal for snow science applications due to the Gaussian linear
assumption (Helmert et al., 2018; Largeron et al., 2020)

::::::::
(13; 14). In spite of thisview,

our first experiment showed that the iterative version of ensemble-based Kalman
smoothers outperformed the other smoother algorithms, as also found by Aalstad
et al. (2018). hese

::::
(1)

::::
and

::::
(15)

:
.
::::::::

These findings are consistent with the broader DA
literature, where basic particle methods

::::
PFs

::::::::
(based

:::
on

:::::
SIR)

:
tend to suffer more from

::::::::::::
degeneracy

:::::
due

:::
to

:
the curse of dimensionality (16).

:::
in

:::::
high

::::::::::::::
dimensional

:::::::::::
problems

::::
(16)

:
.
:::::
This

:::::::::::::
degeneracy

::::::::::
problem

::::::
tends

:::
to

:::
be

::::::
even

:::::::
worse

::::::
with

::::
the

:::::
PBS

::::::::
(based

:::
on

:::::
SIS)

::::
due

:::
to

::::
the

:::::::::
absence

::
of

:::::::::::::
resampling

::::::::::::::
(17; 6; 18; 15)

:
.

In their review, (5) suggest promising remedies to this problem with more sophis-
ticated particle methods that invoke remedies

:::::::::::::
innovations

:
such as using iterations or

proposal distributions
:::::::
better

::::::::::
proposal

::::::::::::::
distributions

:::
or

:::::::::::
iterations. The particle filter

using redraws from a normal approximation to the posterior that we implemented
in MuSA was loosely inspired by the use of proposal distributions and can over-
come the degeneracy problems in the more classic

:::::::
classic

:::::::::::
bootstrap

:
particle filter

(see Table 1). The
::::
use

:::
of

::::::::::
iterations

:::::
was

::::::::::
pursued

::::
by

::::
(3)

:::::
who

::::::
recast

:::::
the

::::::::::
ES-MDA

:::
in

:::
the

:::::::::::::
framework

:::
of

:::::::::
iterative

:::::::::
particle

:::::::::::
methods,

:::::::::
leading

:::
to

:::::::::::
improved

::::::::::::::
performance

::::
on

:::::::::::
subsurface

::::::
flow

:::::::::::
problems.

::::::
This

::::::::::
suggests

:::::
that

::
a

:::::::::::::::
hybridization

:::
of

:::::::::::
ensemble

:::::::::
Kalman

::::
and

:::::::::
particle

::::::::::
methods

:::::::::
(19; 15)

::::
may

:::::
also

:::
be

::
a
::::::::::::
promising

::::::::
avenue

::::
for

:::::::
future

:::::::
work.

:::::
We

:::::::::
reiterate

:::::
that

::::
we

::::
are

::::
not

::::::::::::
advocating

::::
for

:::::
one

::::::
class

::
of

:::::
DA

::::::::::
methods

:::::
over

::::::::::
another,

::::
the

::::::
point

:::
we

::::
are

:::::::::
making

::
is

:::::::
rather

:::::
that

:::
to

:::
do

:::
so

::::::::::::::
prematurely

:::::::
would

:::
be

:::::::::
unwise.

:::::::::::
Common

:::::::::
wisdom

:::::::::::
embodied

:::
in

::::
the

:::::
´No

:::::
Free

::::::::
Lunch’

:::::::::::
theorems

::::
for

::::::::::::::
optimization

:::::
(20)

:::::::
warns

:::
us

:::
not

:::
to

::::::::
expect

:::::
one

:::::::::::
particular

:::::::::::
algorithm

:::
to

::::::::
always

::::::::::
perform

::::::
best,

::::
but

:::::::
rather

:::::
that

:::::
this

::::
will

:::::::::
depend

::::
on

::::
the

::::::::::
problem

:::
at

::::::
hand.

::::::
The

:
power of MuSA is that it

:::
to

:::::::::
provide

::
a

::::
tool

:::::
that simplifies the task of comparing different experimental set-ups by allowing

the intercomparison of data assimilation algorithms as well as
:::::::::::
facilitating

:
the imple-

mentation of new ones. In the future, new
::::::
more data assimilation algorithms will

::::::
could

:
be implemented, including iterative versions of the PBS and particle filters as

well MCMC methods which are the gold standard for Bayesian inference (21; 22),
but have received relatively little

::::
less

:
attention from the snow community (23) due

to their often prohibitive computational cost.

COMMENT # 2.15
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I also find that that section is very badly structured, jumping back and forth between filters
and smoothers. Snyder (2008) only treats the question of Particle filtering. While I agree that
their statements can be transposed to particle smoothers, it is necessary to acknowledge that
jump. More generally, discussing the advantages of smoothers vs. filters does not seem very
interesting, as they are different solutions for different problems: reanalysis and operational
forecast, respectively.

Reply:

Thanks for pointing out the jump we were making with the (16) reference. We have
now corrected this by including a discussion of the degeneracy problem for both
the PF and the PBS, while also adding relevant references for the latter. We are not
sure exactly which discussion of smoothers vs. filters that is uninteresting because
we could not identify such a discussion in this section. When it comes to this dis-
cussion more generally, however, it is certainly not as simple as smoothers being for
reanalysis and filters being for (initializing) operational forecasts. Instead, the reason
for filtering over smoothing is almost always related to computational cost and time
constraints. Crucially, filtering can be seen as a special case of the more general (not
just batch) smoothing problem where only the latter allows information to propagate
backwards in time (c.f. 18). As such, smoother-type algorithms could certainly be
used with great effect for forecasting since they would undoubtedly provide supe-
rior initial conditions than filters, especially in land data assimilation problems with
long memory (24).

Changes:

6. Discussion
. . .

::::::
These

:
findings are consistent with the broader DA literature, where basic particle

methods
::::
PFs

:::::::
(based

:::
on

:::::
SIR)

:
tend to suffer more from

::::::::::::
degeneracy

::::
due

:::
to

:
the curse of

dimensionality (16).
::
in

:::::
high

::::::::::::::
dimensional

:::::::::::
problems

:::::
(16).

::::::
This

:::::::::::::
degeneracy

::::::::::
problem

::::::
tends

::
to

:::
be

::::::
even

:::::::
worse

::::::
with

:::
the

:::::
PBS

::::::::
(based

:::
on

:::::
SIS)

::::
due

:::
to

::::
the

:::::::::
absence

::
of

:::::::::::::
resampling

::::::::::::::
(17; 6; 18; 15).

:

COMMENT # 2.16

848-849: “The assimilation of snow depth products has been shown to be a very robust ap-
proach to SWE estimation.” This statement is not substantiated by any results from the paper.

Reply:
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It is true that we are validating the posterior snow depth (and not SWE directly)
estimates, so the sentence has been modified accordingly.

Changes:

6. Discussion
. . . MuSA was also able to assimilate hyper-resolution snow depth maps in a dis-
tributed fashion. The assimilation of snow depth products has been shown to be a
very robust approach to SWE

:::::
snow

:::::::
depth

:
estimation.. . .

COMMENT # 2.17

L849-851: “The posterior maps of the perturbation parameters showed intricately detailed
and physically-consistent spatial patterns, especially considering the fact that there is not any
cell 850 intercommunication in MuSA”. Please use another term than “physically consis-
tent”: although that’s the best we can do, it is not “physically consistent” to compensate an
unrepresented process (wind drift) by other processes (precipitation and temperature biases).

Reply:

We agree and have removed “physically consistent”.

Changes:

6. Discussion
. . . The posterior maps of the perturbation parameters showed intricately detailed
and physically-consistent spatial patterns, especially considering the fact that there is
not any cell intercommunication in MuSA. The appearance of this consistent spatial
pattern in the perturbation parameters indicates that they are compensating for a
missing processes in the model, which in this case is most likely to be the wind-
driven ablation and accumulation processes since most of the spatial variability in
melt energy is provided by MicroMet shortwave radiation routine (e.g. 25).

COMMENT # 2.18

854: “Thus, MuSA can be used to study the importance of missing snow processes in the
FSM2 model”. When looking closer at Fig. 6, the acute reader can realize that the assimi-
lation is not only compensating for unrepresented wind redistribution, but also from strong
precipitation and temperature biases coming from the downscaled ERA input: is it really pos-
sible to disentangle “missing snow processes” from input errors in such a setting? This is
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highly debatable. And a reference to Günther et al., (2019) would be required here.

Reply:

Equifinality is a well known problem in data assimilation exercises in particular and
more generally in any numerical modelling. However, in this context, it should be
considered as a feature, not a bug, since it tells us that we need more information
from observations (i.e. a higher number of observations, more accurate observations,
and/or different types of observations), more complex models that include these pro-
cesses, and/or better forcing data to disentangle missing processes from input errors.
The point here is not that we can directly disentangle these with MuSA. In fact we are
not claiming this in the manuscript. Instead, the point we are making is that tools like
MuSA are a step in the right direction in that the output spatio-temporally continu-
ous SWE and snow depth fields can (even if they are ’right for the wrong reasons’) be
used to validate or calibrate more snow complex models that try to explicitly capture
these processes.

COMMENT # 2.19

Figures
Fig3: In l 397-400, the authors assume that the snow can be reset to zero during the summer
(seasonal snow). Their theoretical developments in the corresponding section seem to rely on
this assumption. However, in the top-right and top-bottom panels of Fig3., this is clearly not
the case, with persistent snowpack through the 2019 summer. Can the authors comment on
that?

Reply:

Our choice of wording here was unfortunate as the seasonal snowpack assumption
is not actually made in MuSA itself we merely included it in this section to simplify
the presentation of the theory. This has now been clarified. Moreover, much of the
persistence of the snowpack in Figure 3 for the ensemble Kalman methods was re-
lated to a numerical problem that can occur with the matrix inversion in the Kalman
gain. This has now been remedied following the method outlined in Appendix A in
(12) which is now mentioned when the ensemble Kalman methods are presented in
the new manuscript around Algorithm 3.

Changes:

3.3. Consistency
. . . When

:::::::::
Without

:::::
loss

:::
of

:::::::::::
generality

:::::
and

:::
to

:::::::::
simplify

:::::
the

::::::::::::::
presentation

:::
of

::::
the

::::::::
theory,

:::
we

:::::::::
assume

:::::
that

:::::
we

::::
are

:
dealing with seasonal snow,

::
so

::::::
that

:
the initial prior for
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the internal
::::::
snow

:
states, p(v0), is known v0 = ν0and thus deterministic so .

:::::::
Thus

p(v0) = δ(v0 − ν0) since the annual integration period starts at the beginning of the
water year where we assume that a snowpack has not yet formed so internal

::::::
snow

state variables are either 0 (snow depth, SWE) or undefined (e.g. snow surface tem-
perature).

COMMENT # 2.20

4: the “spaghetti” representation of ensemble members with imbalanced weights must account
for the weight of the ensemble in the transparency parameter. Otherwise, this visually gives
“weight” to particle with negligible weight and can lead to very misleading conclusions. For
example, here the PBS could be completely degenerate, with only one scenario carrying all
the weights (which is actually the case, we see in the 2019 summer that the mean drops to
strictly zero (without any “tail” as with e.g. the ES-MDA) while some members have still
non-negligible snow amounts. Alternatively, one can only display ensemble statistics (mean,
quantiles) in such a situation.

Reply:

Thanks for this helpful suggestion. It is correct that our previous spaghetti represen-
tation did not account for the weights of the particles which made them misleading.
To remedy this, we now instead plot the posterior mean ±1 standard deviation for all
the DA schemes in Figure 3&4.

COMMENT # 2.21

Fig4: on the bottom-right panel, it is difficult to distinguish the timeseries at 100% zoom
factor.

Reply:

The visibility of this panel has been improved substantially by adjusting the aspect
ratio of these subplots.

COMMENT # 2.22

Fig.5: (spatial validation with independent observation) We are missing crucial pieces of in-
formation here: what are the precise dates of the assimilated maps and when is the independent
validation date? It obviously makes a big difference in the expected performance, especially
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with a smoother approach, whether the validation date is “closely surrounded” by assimilated
observations or not.

Reply:

Thanks for the suggestion, we have added the date of the observation to the caption

COMMENT # 2.23

Fig 5: the scale is not consistent with the scale in Fig. 2B

Reply:

This has been corrected so that the scale is consistent in both Figures.

COMMENT # 2.24

Fig 6: Please use fair color scales for temperature and precipitation. In saturation/greyscale,
the +1.5 K values should be indistinguishable from the -1.5K values which is not the case here.
If you’d use such a fair color scale, you’d make the strong positive bias in the prior much more
obvious. A significant prior underestimation of the precipitation would also be visible. Please
also comment on both in the results section.

Reply:

Thanks for the suggestion, we have modified the color scale of both panels accord-
ingly.

COMMENT # 2.25

Fig 7: please introduce month/year in the time axis labels. For the sake of interpretation, I
would put the SWE timeseries panel below the SST and FSCA panels, and with the same
horizontal extent.

Reply:

We have now included the month and year on the time axis labels for the timeseries
in Figure 7.

COMMENT # 2.26
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Code and Data policy
No statement on the drone observations, I think. Adding MODIS data to the zenodo archive
is necessary to facilitate full reproducibility of assimilation experiments

Reply:

The MODIS data have been added to the Zenodo archive.

COMMENT # 2.27

A statement should be made regarding the availability of the Micromet code which was used
to downscale ERA forcings.

Reply:

We have added the following sentence:

Changes:

MicroMet code is available upon request to G.E. Liston. Note that this particular
downscaling routine is not central to MuSA, and in theory a myriad of different
approaches could be used to generate the forcing data.

COMMENT # 2.28

Portability: state somewhere (as in the github repo) MuSA does not support Windows yet,
but that it seems definitely possible.

Reply:

MuSA can not be run directly in Windows, but it should be possible to generate a
Windows version. However, this is not a priority, especially due to the fact that it
can be run effortlessly (already tested) thanks to the Windows Subsystem for Linux
(WSL) which is integrated in all modern Windows versions. This information has
now been added to the Code and data availability section.

Annotations in the attached PDF
(we have added the approximate line numbers from the original manuscript)

COMMENT # 2.29
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L3: Not a native speaker, but this sounds a bit awkward

Reply:

It is a relatively common expression, there are many indexed articles that use it (even
in the title).

COMMENT # 2.30

L4: I see your point, it makes sense, but the logic is missing here. I’d recommend rather
introducing the need for opensource/community oriented tools to mutualize dev efforts

Reply:

Thanks for the suggestion, we made the following changes.

Changes:

Abstract
. . . However, to date there is no standalone, open source software

::::::::::::::::::::
community-driven

:::::::
project

:
dedicated to snow data assimilation

:::::::
which

::::::::
makes

::
it

:::::::::
difficult

::::
to

::::::::::
compare

::::::::
existing

:::::::::::::
algorithms,

:::::
and

:::::::::::
fragments

:::::::::::::::
development

::::::::
efforts. Here we introduce a new

data assimilation toolbox, the Multiscale
::::::::::
Multiple Snow Data Assimilation System

(MuSA)
:
,
:::
to

:::::
help

:::
fill

:::::
this

:::::
gap.

COMMENT # 2.31

L26: Try to find a better formulation, revolving around the spatial variability of the snowpack

Reply:

Changed as follows:

Changes:

1. Introduction
. . . In addition, due to the variable nature

:::::::::::::::::
spatio-temporal

:::::::::::
variability

:
of the snowpack

(26), even dense monitoring networks may suffer from a lack of representativeness
(27)

::::::::
(27; 28). . .

COMMENT # 2.32
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L27: this question has been revisited in Largeron et al., Frontiers (2020) and my latest paper
Cluzet et al., TC, (2022), consider

Reply:

As shown in the response above, we have added a reference to your recent study
(28) (but not (14)) since it fits well here. As a side note, we are not sure if we should
consider the problem solved with a leave-one-out approach even if it is a promising
step in the right direction.

COMMENT # 2.33

L32: not clear to which variables does this proposition applies, please clarify/reformulate

Reply:

This proposition was deleted.

COMMENT # 2.34

L35: What about Lievens et al., TC, (2022), using S1 radar backscatter to retrieve snow
depth?

Reply:

The radar backscatter approach to snow depth retrieval is certainly promising, but
here we were specifically referring to the retrieval of SWE. For snow depth there
are several promising options that are emerging in the literature that we cite in the
manuscript.

COMMENT # 2.35

L38: These references are appropriate, but not seminal consider citing Crocus/ SNOWPACK
seminal papers on that

Reply:

While we agree that those are seminal papers on complex multilayered snowpack
modeling, here we are specifically referring to the task of explicitly (i.e. not semi-
distributed) modeling of the spatiotemporal distribution of SWE in a snow hydrology
context. For that, we believe, the references we provided are more appropriate given
the intermediate complexity of these models (FSM, SnowModel) which allows them
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to be more easily run at scale.

COMMENT # 2.36

L38: Same here

Reply:

In the absence of better suggestions, these seem to be appropriate reference given that
they are some of the first studies using high-resolution atmospheric models (WRF in
both cases) to help model the snowpack at large scales.

COMMENT # 2.37

61: Unless I missed something no snowpack model uncertainty is accounted for in the present
for pf MuSA, please remove.

Reply:

It is correct that the current version of MuSA only explicitly accounts for forcing
uncertainty and not uncertainties that are internal to the model. Of course, some of
that forcing uncertainty helps to implicitly account for unresolved processes in the
model such as snow redistribution by wind. Nonetheless, to keep matters simple,
here we removed this as the reviewer suggests.

COMMENT # 2.38

L69: This formulation is a bit awkward, consider rewriting

Reply:

Reformulated as follows:

Changes:

2. Overview of the data assimilation system
. . .
FSM2 has from two to three levels of representation of different

:::::::
several

:::::::::
options

::::
for

:::
the

::::::::::::::::::::
parameterizations

:::
of key processes related to the energy and mass balance of the

snowpack.
:
.
:
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COMMENT # 2.39

L71: I found the ’instead’ wording a bit heavy, I don’ t think that you need to detail what are
the simplest parameterizations that you did not use ;)

Reply:

Removed following the reviewer’s suggestion.

Changes:

2. Overview of the data assimilation system
. . .
The most complex configuration is chosen by default in MuSA, leading to a more
detailed simulation of the internal snowpack processes. Albedo is computed from
the age of the snow, decreasing its value as snow ages and increasing it with fresh
snowfalls, instead of diagnosing it as a function of the surface temperature. Thermal
conductivity of the snowpack is computed as a function of the snow density, instead
of using a fixed value. Snow density is computed considering overburden and ther-
mal metamorphism, instead of using an empirical estimation increasing the density
as function of age or using a fixed value. Turbulent energy fluxes are computed as
a function of atmospheric stability. Melt water percolation in the snowpack is com-
puted using the gravitational drainage, instead of a bucket model. Although this is
the default configuration, it is possible to choose any other FSM2 setup, which may
result in slight performance differences both in terms of the computational cost and
accuracy of the model (29).

COMMENT # 2.40

L76: Don’t you want to suggest the possibility to include multiphysics within the ensemble?
That could be a nice place here.

Reply:

Thanks for the suggestion. We agree that this opens up a fascinating opportunity
to do model comparison, but we do not believe that this should be done within the
same ensemble that is used for state and/or parameter estimation. Instead it could
be done at the second level of inference in the Bayesian hierarchy. We nonetheless
take the chance to highlight this possibility and point towards relevant literature.

Changes:
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2. Overview of the data assimilation system
. . .

:::
As

:::::::::::
envisaged

:::
in

:::::
(30)

:
,
::::
the

::::::::::
potential

:::
to

::::
run

::::::::::
multiple

:::::::
model

::::::::::::::::
configurations

::::::::
leaves

::::
the

:::::
door

::::::
open

:::
for

::::::::::
pursuing

::::::::::
rigorous

:::::::
model

:::::::::::::
comparison

::::::
using

::::
the

:::::::
model

::::::::::
evidence

:::::::::::::
framework

:::::
(31)

::
in

::::
the

:::::::::::::
cryospheric

:::::::::
sciences.

:

COMMENT # 2.41

L81: What is this constant file used for (briefly?) not sure it is worth mentioning if you don’
t say that

Reply:

We have now included:

Changes:

2. Overview of the data assimilation system
. . .
and constants (constants.py) files that should be filled by the user

:::
to

:::::
both

:::::::::::
configure

:::
the

::::::::
MuSA

::::::::::::::
environment

:::::
and

:::::::
define

::::
the

:::::::
priors

:::::::::::::
respectively

COMMENT # 2.42

L81: I think that from the user perspective, you’ d make a better point here by briefly stating
one or two very cumbersome implementation features (parallelization? IO?) that makes the
life easier

Reply:

We have added the following:

Changes:

2. Overview of the data assimilation system
. . .
Then, it solves most of the challenges of ensemble-based snow data assimilation
frameworks for the user

:
,
:::
as

::
it

:::::::::::
internally

:::::::::
handles

::::
the

:::::
I/O

:::::
and

::::::::::::::::
parallelization

:::::::
while

:::::::::
keeping

:::::
track

:::
of

::::
the

::::::::::::
ensembles

:::::
that

::::::::
should

:::::
flow

:::
in

::::::::::
different

::::::
ways

::::::::::::
depending

:::
of

::::
the

:::::::
chosen

:::::
DA

:::::::::::
algorithm.

COMMENT # 2.43
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L88: OL usually stands for ’openloop’, i.e. the ensemble without assimilation. Is this what
you mean here? The standard name for deterministic run without assimilation/perturbation
is ’control run’, I think

Reply:

Thanks for the suggestion. We have changed several sentences in the text and figures
in order to be less ambiguous here, by using the term ’reference run’ instead of ’open
loop’ for the deterministic runs that we use as a reference to gauge the performance
of the DA experiments. Note that the terminology seems to be a bit ambiguous in the
literature, several studies (e.g. 32; 33) use open-loop also to denote what the reviewer
calls the control run while others follow the reviewer’s definition. This mixed use
of terminology is of course far from ideal. Our understanding was simply that open
loop was any (possibly ensemble) run without DA. AS such, we prefer to leave this
output file name unchanged for now. In future versions the output routines might be
modified so we will reconsider this point at that stage, thanks for the suggestion.

COMMENT # 2.44

L88: ’posterior ensemble’ or ’posterior ensemble members’, unless you refer to a group of
ensembles.

Reply:

Corrected.

COMMENT # 2.45

Figure 1: Description of No is missing

Reply:

Fixed, thanks for spotting this. It should have read d.

COMMENT # 2.46

Figure 1: DAW?

Reply:
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’Data assimilation window’, we’ve now defined this acronym in the caption.

COMMENT # 2.47

Figure 1: number of observation dates, I assume (several observations can be assimilated on
the same date)

Reply:

Corrected to "number of observation times" since dates implies strictly daily resolu-
tion.

COMMENT # 2.48

L94: For the sake of completeness. I would add direct insertion to the list, mentioning that
this is not a DA algorithm per se.

Reply:

For clarity, we have completely removed direct insertion from the manuscript.

COMMENT # 2.49

L96: I have the feeling that you are either telling too much, or too little here. Either you should
expand on the technicalities in a dedicated subsection, or keep it simple and skip any jargon
wording (’tempering’, ’proposal’, ’collapse’, ’degenerate’, ’over-inflating’). The first option
would have the virtue of clarity and put more stance or your innovative contribution with the
’heuristic resampling’

Reply:

We have now toned down the jargon here.

Changes:
2. Overview of the data assimilation system
. . .
Note that the Ensemble Kalman schemes involving multiple data assimilation are
iterative schemes based on tempering the likelihood (3; 5). For the PF, several stan-
dard resampling algorithms (see 34, for a review) are available in MuSA, namely:
bootstraping, residual resampling, stratified resampling, and systematic resampling.
In addition to these standard resampling techniques, we have also implemented a
heuristic approach based on redrawing from a normal approximation to the pos-
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terior which is loosely inspired by the idea of using a proposal distributions
::::::
more

::::::::::
advanced

:::::::::
particle

::::::::::
methods

:
(18; 5). This redrawing from the approximate poste-

rior generates new samples of perturbation parameters at each assimilation step.
In the case of a total collapse of the PF with this resampling strategy the posterior
standard deviation of the perturbation parameters is 0 (all weight is assigned to
one particle) which corresponds to a degenerate distribution. In this case, drawing
new perturbation parameters from the degenerate posterior distribution would not
generate new particles. To avoid this , in case of a complete collapse of the PF, MuSA

::::
case

:::
of

:::::::::::
complete

:::::::::::::
degeneracy,

::::::::
where

:::
all

::::
the

:::::::::
weight

::
is

::::
on

::
1

:::::::::
particle,

:::::
this

::::::::::::
redrawing

::::::::::
technique

:::::::::
instead

:
uses the prescribed prior standard deviations for generating per-

turbation parameters, corrected by a scaling factor (to be selected by the user
:
,
::::::
fixed

::
to

::::
0.3

:::
by

::::::::
default) to avoid over-inflating

::::::::::::::::
overdispersing the ensemble.

COMMENT # 2.50

L106: What scaling factor did you use then?

Reply:

The default is 0.3, which we have now added to the text (see the response above).

COMMENT # 2.51

L115: Could be removed, I think

Reply:

Removed.

COMMENT # 2.52

L120: You should probably say a word about OS portability in general here, this is the kind of
things that might be OS-dependent

Reply:

All the tmp file system operations are done using python libraries, so these should
not be OS-dependent.

COMMENT # 2.53
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L124: How is direct insertion implemented? If you assimilate HS, are you "stretching" the
layers? Are you changing the total mass or just adjusting density. This is essential.

Reply:

Thanks for the question, but we have removed direct insertion from the manuscript.

COMMENT # 2.54

L124: How is direct insertion implemented? If you assimilate HS, are you "stretching" the
layers? Are you changing the total mass or just adjusting density. This is essential.

Reply:

As previously stated, we have removed direct insertion from the manuscript.

COMMENT # 2.55

L124: This seems useless/confusing

Reply:

Removed.

COMMENT # 2.56

This is not the first mention of "particle" so please introduce it earlier. Also the reference is
not needed for that. Finally, I don’t see a problem with using the wording of particles even
when referring to EnKF ensemble members, but you’d better make that clear for the people
coming from the EnKF world.

Reply:

Although it is not the first mention (indeed it is the third if we exclude the abstract)
of particle (outside of DA algorithm names), it is the first place that the "number
of ensemble members" is introduced. Since this is synonymous with "number of
particles" it arguably makes sense to establish this link here. There is in principle no
issue using the words ensemble member and particle interchangeably, which is what
we do. This is why we added a reference which advocates this equivalence. We have
nonetheless corrected the reference which should have been (6) not (5).

Changes:
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2.1 Ensemble generation
. . . The number of ensemble members (also known as particles; 5) in the ensemble

::::::::::::::::::::::::::::::
(or, equivalently, particles; 6)

:
,
::::::::
which

::::
we

::::::::
denote

:::
by

:::::
Ne,:should be specified by the

user, as it drastically affects both the computational cost of the experiments and the
performance of the data assimilation algorithms

COMMENT # 2.57

L133: I disagree: perturbations error models are primarily related to our understanding of
how the model errors actually are, which depend on the variable. for example NWP absolute
temperature bias doesn’t depend much on the forecast value, hence an additive noise model,
while precipitation absolute error value is roughly proportional to the forecast value, hence
the multiplicative model.Then as a boundary effect we need to ensure that the perturbed input
remain physically sound, but this is not the first constraint

Reply:

The first constraint is surely that the input remains physically sound, otherwise it
would lead to nonsensical simulations that can in the worst case lead to the model
crashing. Moreover, the entire point of Bayesian DA is that we do not know what the
errors actually are for a given experiment, otherwise they could be trivially corrected,
this is why we represent them using probability distributions that encode epistemic
(i.e., related to our lack of knowledge) uncertainty about these errors. What we often
do know is the expected behaviour, in terms of magnitudes and bounds, of the vari-
able that is being perturbed. This is what guides us in constructing the prior. One
is of course also free to use independent historical data in designing the prior, which
is perhaps what the reviewer is referring to. However, this is not an imperative.
It is also advisable to check that posterior uncertainty estimates are well calibrated,
in the sense that they capture the actual errors, but this is necessarily a validation
(also known as ensemble verification) step to avoid circularity. At the heart of this
disagreement lies the interpretation of probability as a measure of epistemic uncer-
tainty (degree of belief) rather than frequency. The Bayesian approach to inference
that lies at the core of MuSA primarily follows the former epistemic interpretation.
For more on this topic see the philosophical discussions in (35) and (36). We have
now included citations to these papers, but chose not to delve into these issues in the
manuscript since they are a matter of the philosophical interpretation of probability
that we assume at the outset of this study.

Changes:
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3.1 Bayesian inference
In line with most modern approaches to DA (37; 38; 5) the assimilation schemes used
in MuSA are built on the foundation of Bayesian inference (e.g. 31; 18)

:::::::::::::::::::
(e.g. 35; 31; 18; 36)

.

COMMENT # 2.58

L157: It’ s not necessary clear for the reader that solving gird cells independently reduces the
memory cost, please expand a bit more here (I guess it comes from the potential parallelization)

Reply:

We have made the following changes to clarify this and related issues.

Changes:

2.2 Meteorological forcing
. . . It should be noted that the forcing is read along the time dimension. As mentioned
above, each

:::::
Each

:
grid cell is solved independently including

:::::::
which

::::::::::
includes the

reading of the forcing . However, this memory cost reduction comes with an associated
computational cost due to the potential need of reading a long time dimension

::::
that

:::::::
occurs

:::::::
along

::::
the

::::::
time

:::::::::::::
dimension.

::::::::::::::
Otherwise,

:::::
each

:::::::::
process

::::::::
would

::::::
have

::::
to

::::::
store

::::::::::::::
considerably

::::::
more

:::::
data

::
in

::::::::::
memory

::::::::
leading

:::
to

::::::
more

::::::
costly

:::::
I/O

::::::::::::
operations

::::
that

::::::::
would

:::::
slow

:::::::
down

::::
the

::::
run

::::::
time.

:::::::
Even

::::
so,

::::
just

:::::::::
reading

:::::::
along

::::
the

:::::
time

::::::::::::
dimension

::::
can

:::::::
come

:::::
with

::
a
::::::::::::::
considerable

:::::::::::::::::
computational

:::::
cost

::
if
:::::

the
:::::
time

::::::::::::
dimension

:::
is

::::::
large. To allevi-

ate this, the computational cost of MuSA
:::::
time

::::::
spent

:::::::::
reading

::::
the

:::::::::
forcing can be re-

duced by setting the chunk
::
(a

:::::::
subset

:::
of

::::
the

::::
file

:::
to

:::
be

:::::
read

:::
or

::::::::
written

:::
as

::
a
:::::::
single

:::::
I/O

:::::::::::
operation)

:
of the netCDF forcing files along the time dimension, specially with long

or large (i.e. many grid cells) simulations. To speed up the
::::::::::::
subsequent

:
relaunching

of the simulations
::::::
when

::::::::::::
smoothing

:::::
and

:::::::::
filtering, MuSA generates an intermediate

binary file with the forcing information of each cell needed to run a complete sim-
ulation . This accelerates the initialization of experiments that involve performing
different MuSA runs for the same grid cells

:::
for

:::::
each

:::::
grid

:::::
cell.

COMMENT # 2.59

L157; This is not clear.

Reply:
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See the answer above.

COMMENT # 2.60

L160: What is a "chunk" ? People who know that word are probably well aware of the issue,
while people who don’t may have no clue of the meaning, and the problem. Please clarify

Reply:

We have now defined chunk in the manuscript, see the response to Comment # 2.58.

COMMENT # 2.61

L161: What does relaunching mean? After an assimilation step? (then ’ model propagation’
could be more appropriate) Or relaunching a whole simulation experiment from a starting
point? Please clarify.

Reply:

The actively used forcing for a particular grid cell is stored in these intermediate files,
so the term relaunching is valid for all of these situations; i.e. either restarting from
the start of the water year when smoothing or after a filtering step. We believe that
relaunching in this context describes both situations adequately, but have clarified
this in the manuscript as shown in the response to Comment # 2.58.

COMMENT # 2.62

L161: I don’ t get that, is this a unique file covering all grid cells and timesteps? What is the
difference with a forcing file then?

Reply:

Thanks for these detailed questions, we believe our answers and changes are helping
to clarify the manuscript. As stated in the answers above (particularly the response
to Comment # 2.58), there is one intermediate file for each grid cell. So not one for all
grid cells. The difference is that the full forcing file will typically contain the entire
spatiotemporal forcing for a given experiment, which we do not need for one water
year and one particular grid cell. Keeping all that in memory or reading it several
times for each process slows down the computations considerably. Instead, these
individual temporary files are generated to simplify the ensemble simulation (which
includes relaunches) of a particular grid cell. We believe that this has been explained
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in enough detail now. Curious readers can consult the code or ask the developers
why a particular design choice was made.

COMMENT # 2.63

L162: Initialization usually hints at the preparation of the initial state rather than to the
forcing, I don’ t see the link here

Reply:

This sentence was removed.

COMMENT # 2.64

L169: More importantly, are all observations of a same variable given the same error?

Reply:

This is not the case although the reviewer’s interpretation is understandable given
the way this was initially formulated in the manuscript. Please see our answer to
Comment # 2.8.

COMMENT # 2.65

L171: repetition of l. 112-113

Reply:

Correct, we have removed this sentence to avoid repetition.

COMMENT # 2.66

L172: While this seems pretty easy with a batch smoother, I think that this would deserve
simple explanations for the filtering cases

Reply:

See the answer to Comment # 2.9.

COMMENT # 2.67
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L178: Is this really relevant if you assume a scalar error for a given variable nevertheless?
(see my comment above)

Reply:

Now that we have clarified that we assume the same scalar error for a particular
observation product (there can be many products for a particular variable) we do be-
lieve that it is important to state that we do not recommend gap filling observed data.
This is because the assumed error attached to each product is usually a result of inde-
pendent validation studies (e.g. 39) for that particular product (of course, the actual
error also varies in space and time). Crucially, doing gap-filling adds another layer
of modeling onto the observation product which would need to be accounted for in
the setting of the observation error variance for that particular gap-filled product.

COMMENT # 2.68

L180: typo

Reply:

Fixed.

COMMENT # 2.69

L194: This term has been used earlier on, without introduction, consider restructuring this

Reply:

The earlier use of likelihood was removed as part of the abolition of premature jargon
as a response to Comment #2.49.

COMMENT # 2.70

L194: This reasoning on evidence is a nice piece of theory, but I think that this is irrelevant
here, as you actually acknowledge in the last sentence. Consider removing it. I’m really look-
ing forward to reading this in a paper where you actually make use of this concept fruitfully,
though!

Reply:
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The evidence pops up quite a bit in the discussion of the theory of importance sam-
pling used in particle methods and now also in the new sentence we added as a
response to Comment # 2.40. We would thus like to keep this section.

COMMENT # 2.71

L215: I would rephrase into: in the case of the variables we assimilate within MuSA, or "in
general". One could imagine assimilating Top Of Atmosphere visible radiances, or Radar
backscatter coefficients by virtue of complex observation operators in the years to come

Reply:

Point taken, we have now gone with "Often" instead of generally. Nonetheless, in
the Bayesian inversion (or data generating model) view of the DA problem the dis-
tinction between the dynamical model and the observation operator is a bit artificial.
Arguably both are part of the data generating model linking the hidden variables (or
parameters) that we want to infer to the observed variable.

Changes:
3.1 Bayesian inference
. . . In practice

:::::::
Often,

:::
as

:::
is

::::
the

::::::
case

:::
in

::::::::
MuSA,

:
the observation operator essentially

picks out predicted observations, i.e. the state variables that correspond to observa-
tions, from the full state vector.

COMMENT # 2.72

L237: This whole paragraph seems a bit odd here. For me the main purpose only seems
to justify the use of MC methods versus variational methods. I would condense (skip the
degeneracy) and move to the introduction.

Reply:

Actually our intention was to explain that in theory the Bayesian inference at the heart
of DA is easy and boils down to simple probability calculus. What is hard is doing
it in practice beyond very simple toy models. This paragraph doesn’t have anything
to do with the particular case of degeneracy of particle filters per se, only the broader
concept of the curse of dimensionality which is just to say that the volume of the
state and/or parameter space with high posterior probability mass (the needle) is
usually smaller than that of the prior (the haystack). This is a big reason why DA is
a hard problem and why naive methods like the grid approximation are impractical
since the discretization required to resolve "the needle" given that our likelihoods
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(i.e. forward models) are too expensive to evaluate. To clarify what we mean by grid
approximation, we have included an additional citation of (31) (which is available
open access) where these naive and very costly (although potentially very accurate if
you can afford them!) methods are discussed in Chapter 21.

Changes:
3.1 Bayesian inference
In theory, evaluating the posterior simply involves taking the product of two terms.
Naïvely, this suggests that we can estimate the posterior through a simple grid ap-
proximation

::::
(31).

COMMENT # 2.73

L262: I would condense this to the maximum.

Reply:

We have made an effort to condense this without losing the essence of the message
we were trying to get across.

Changes:
3.2 Prediction, filtering, and smoothing
. . . Prediction also enters as

:::::
Since

::::::::::::
prediction

::
is

:
a step in both filtering and smoothing,

so it is helpful to understand
:::
we

::::::::
explain

:
how to implement it probabilistically. The

prediction step from timestep
::::::::::
Prediction

::::::
from

:
k−1 to k can be formulated as follows:

xk = M(xk−1) +ηk−1 , (1)

where M(·) is the dynamical model (FSM2 in this case
::::::
MuSA) while η ∼ N(0, Q) is

the additive model error (process noise) term which we assume to be independent
in time and follow a zero-mean Gaussian distribution with covariance matrix Q.
These assumptions can be relaxed without loss of generality, but their convenience
and broad justifiability mean that they are often employed in practice (38). Crucially,
the above prediction step produces Markovian (memoryless) dynamics where the
current state depends only on the previous state and white noise. This

:::::::
noise.

:::::
The

Markov property is crucial in making the filtering and smoothing problems tractable.
It implies p(xk|x0:(k−1)) = p(xk|xk−1) which lets us factorize and simplify distributions
such as the full prior as follows

p(x0:k) = p(xk|x0:(k−1))p(x0:(k−1)) = p(xk|xk−1)p(x0:(k−1)) , (2)

where the transition density is Gaussian of the form p(xk|xk−1) = N(xk|xk−1, Q). Ap-
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plying this recursively we obtain

p(x0:k) = p(xk|xk−1)p(xk−1|xk−2) . . . p(x1|x0)p(x0) = p(x0)
k∏

j=1

p(xj|xj−1) , (3)

Using this kind of factorization together with marginalization also helps us construct
the (marginal )

::::::::::
marginal predictive distribution p(xk|y1:ℓ) where ℓ < k as follows

p(xk|y1:ℓ) =

∫
p(xk, xk−1|y1:ℓ)dxk−1 =

∫
p(xk|xk−1)p(xk−1|y1:ℓ)dxk−1 . (4)

This is the Chapman-Kolmogorov equation (18) which can be applied recursively to
obtain the predictive distribution at the current time step using the transition density
together with previous predictive distributions.

From prediction we move to filtering which involves estimating
::
is

::::
the

::::::::::::
estimation

::
of

:
the current state given current and past observations: p(xk|y1:k) . This is the prob-

lem solved by sequential DA where an archetypal example is the initialization of
numerical weather predictions as new observations become available to delay the
effects of chaos (40). To construct the filtering distribution we first re-introduce our
Gaussian observation model in the dynamical context where we

::::
and

:
make the usual

assumption that the current observations are conditionally independent of both the
observation and state histories (18) resulting in the dynamic likelihood

p(yk|x0:k, y1:(k−1)) = p(yk|xk) = Akexp
(
−
1

2
[yk − ŷk]

T R−1
k [yk − ŷk]

)
, (5)

where ŷk = H(xk) are the predicted observations at the current timestep and we have
added a time index to the normalizing constant (Ak) and the observation error co-
variance matrix (R) , respectively,

::::
Rk) to emphasize that both the number and types

of observations at a given point in time may vary . Combining
:::::
may

::::::
vary

:::
in

::::::
time.

:::
By

::::::::::::
combining Markovian state dynamics with a conditionally independent observa-

tion modelmeans that
:
, we end up with a state-space or hidden Markov model (41)

where the states at each timestep are hidden (or latent) because they are not observ-
able due to measurement error. The filtering distribution can now be

::
is obtained by

combining the predictive distribution for ℓ = k− 1
:
(which serves as the prior

:
)
:
and

the dynamic likelihood through Bayes’ theorem

COMMENT # 2.74

L326: kind of repetition of l. 317, consider rewriting

Reply:
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We removed part of this to minimize repetition, but since this is an important point
we would like to keep these sentences.

Changes:

3.2 Prediction, filtering, and smoothing
. . . This backwards propagation of information is crucial to help reconstruct peak
SWE which is usually of particular

:::::::
crucial

:::
in

::::::
peak

::::::
SWE

::::::::::::::::
reconstruction

:::::::
which

:::
is

:::
of

:::::
great

:
interest to snow hydrologists (42).

COMMENT # 2.75

L333: I don’t get the purpose of this paragraph here: I think that it would increase clarity if
you state whether any of the implemented assimilation algorithms is prone to introduce this
flavour of dynamical inconsistency.

Reply:

The purpose of this paragraph is to explain what we mean by dynamical inconsis-
tency and how it can arise. In the subsequent paragraph, we clearly state that both
the PF and EnKF suffer from this flavor of dynamical inconsistency.

COMMENT # 2.76

L350: To me this is equally as important as inconsistencies introduced via the assimilation
itself so I would expand on both. For instance inconsitencies between perturbed meteorological
parameters may induce weird model reaction.

Reply:

We do not agree that we spend less time on this issue than inconsistencies from the
assimilation step, with two paragraphs used on both. Moreover, unless the perturba-
tions make the forcing completely unphysical, from our experience it is unlikely to
cause the model to crash. While it can certainly make sense in some cases to consider
adding correlation between the different forcing perturbations, or even better gener-
ate the forcing ensemble directly with atmospheric models, this is not an imperative.
Instead, we see that this need stems more from the (often implicit) interpretation of
probability as long run frequency rather than the more general measure of our epis-
temic uncertainty that we use here.
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COMMENT # 2.77

L353: Please be more specific as this does not apply to the PF

Reply:

We already made it clear that it is more of a concern for the ensemble Kalman schemes.
See the answer below.

COMMENT # 2.78

L358: I don’t see from where physical consistencies could arise from in the PF. Gaussian model
errors may be suboptimal/violate assumptions in the case of bounded variables, but how can
that introduce physical inconsistencies?

Reply:

The issue we are discussing here is quite general and not a specific criticism of the PF.
The point is just that if you use a Gaussian assumption in your forcing perturbations
or for the model error (process noise) in the state this can lead to physical inconsis-
tencies in any snow model just because of the fact that many snowpack variables are
bounded from below (e.g. SWE, snow depth) and above (e.g. albedo, FSCA). More-
over, the usual assumption of Gaussian observation error, which is a very common
choice in DA (including this study), is probably a poor choice of likelihood when
dealing with bounded observations. By pointing this out we are not trying to single
out any particular method, but just illuminate potential problems that arise if we do
not think carefully about the probabilistic models we use. There are of course simple
fixes to this that are widely used in practise, like manually enforcing the bounds, but
this is technically then a violation of the underlying probabilistic model. Instead of
just continuing with such solutions we should consider to pursue different proba-
bilistic models (e.g. 8; 9), which Gaussian anamorphosis (and other tools), can help
with.

COMMENT # 2.79

L363: This is absolutely essential. The problem with the way this section is written right now,
is that this information is hardly accessible to the reader.

Reply:
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We agree that this is essential which is why we devote most of this page to discussing
the matter, and return to it as well in Section 3.5.

COMMENT # 2.80

L363: Is gaussian anamorphosis really applied in the case of the PF variants?

Reply:

Yes, it is currently applied under the hood for the PF when we sample from the prior
for bounded variables. Unlike the ensemble Kalman methods, however, we do not
need to worry about these transformations in the assimilation step with the PF. As we
make clear in the text, it is only the ensemble Kalman schemes that make an explicit
Gaussian assumption which is why the potential for physical consistency is an even
bigger concern for these schemes. With particle methods we are in theory much more
flexible with our choice of priors and likelihoods.

COMMENT # 2.81

L374: appraoch

Reply:

Fixed.

COMMENT # 2.82

L379: Also if relevant, consider work from myself and colleagues, where we include model
uncertainty in the ensemble construction with a detailed snowpack model (Cluzet et al., 2020-
2022)

Reply:

Thanks for the suggestion, we have added these references here.

COMMENT # 2.83

L391: ( SM2)

Reply:
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Fixed.

COMMENT # 2.84

L392: This repetition is raising more ambiguity than it resolves them, please rephrase/delete

Reply:

Removed.

COMMENT # 2.85

L407: This is the kind of essential information (fundamentally different implementation be-
tween the filtering and the smoothing approaches), that the reader overwhelmed with theoret-
ical developments will miss

Reply:

Yes exactly, which is why we repeat this here for emphasis after having already men-
tioned it at the end of Section 3.2. We even repeat it briefly one more time at the end
of the current Section (3.3).

COMMENT # 2.86

L441: I’m not sure that such a level of Bibliographic detail is required here. If so, please
consider my additions in the end.

Reply:

We believe that the level of bibliographical detail is appropriate for the description of
a toolbox that includes most widely used snow data assimilation techniques. We will
thus add the suggested additions in the next comment.

COMMENT # 2.87

L458: There is more to say on that topic: In Cluzet et al., (2022), we have investigated the
propagation of information from true observations in a network of snow depth stations. Also
consider the work of Cantet et al., 2019 and Odry et al., (2022) as well as Winstral et al.
(2019)

Reply:
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We have added all but the last reference which we do not believe fits under this
section on particle methods.

Changes:

3.4 Particle methods
. . . Recent efforts , such as the synthetic study of (43),

::::::::::::::::
(44; 43; 28; 45) have focused

on the challenge of spatially propagating snowpack information from observed to
unobserved locations

::::::
when

::::::::::::::
assimilating

:::::::
in-situ

::::::
snow

:::::::
depth

:::::
and

:::::
SWE

:::::
data

:
using the

PF.

COMMENT # 2.88

L466: Non-iteratve

Reply:

Fixed.

COMMENT # 2.89

L475: Does this consideration only apply to smoothing methods? If not, consider restructur-
ing a bit.

Reply:

Good point, the last sentence here on satellite-based snow depth retrievals is quite
general so we have modified it and moved it to the discussion.

Changes:

6. Discussion
. . . Furthermore, the assimilation of hyper-resolution

:::::
high

::::::::::::
resolution

:
snow depth

maps may become a common practice in the future, even at wider scales, thanks
to the emerging remote sensing

:::::::::::::::
satellite-based

:
snow depth retrievals

::::::::::::
(46; 47; 48). .

COMMENT # 2.90

L491: Converege

Reply:
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Fixed.

COMMENT # 2.91

I don’t see the point of introducing the proposal density in this paper, since it is not used (i.e.
trivially) in this paper as stated in l. 510-512 and l. 557-559

Reply:

The point with introducing the proposal density is expressed on L520 in the former
version of the manuscript, namely that unless the proposal and the target are close
to one another then degeneracy is likely to occur. Since the prior is often not close to
the posterior, it is actually a particularly poor choice of proposal even if it is often (as
in the case of MuSA and most other snow DA we are aware of) the default and often
unconscious choice. Defining the proposal clearly here helps us to weave it into the
discussion later in the paper. Moreover, the special case where we recover direct MC
discussed on L510-512 is about using the posterior (not the prior) as the proposal.

COMMENT # 2.92

L530: what is N here?

Reply:

For clarity, we have now replaced all N with Ne throughout the text to emphasize
that this always denotes the number of ensemble members (particles) and to avoid
confusion with N(·) which we use to denote a Gaussian distribution. This is now
clearly stated the first time the concept is introduced in Section 2.1.

Changes:

2.1 Ensemble generation
. . . The number of ensemble members (also known as particles; 5) in the ensemble

::::::::::::::::::::::::::::::
(or, equivalently, particles; 6)

:
,
::::::::
which

::::
we

::::::::
denote

:::
by

:::::
Ne,:should be specified by the

user, as it drastically affects both the computational cost of the experiments and the
performance of the data assimilation algorithms.

COMMENT # 2.93

L544: Consider skipping this statement.

Reply:
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We would like to keep this statement as it indicates that there are many flavors of
particle smoothers not explored herein.

COMMENT # 2.94

L555: Fair point indeed! (perhaps state more explicitly that this is an I/O bottleneck)

Reply:

Done, thanks for the suggestion.

Changes:

3.4 Particle methods
The batch approach used in the PBS is appealing since it can be wrapped around the
model allowing the dynamics to evolve freely for the whole data assimilation win-
dow from t0 to tn without the need for

::::
I/O interruptions in the time integration, typ-

ically resulting in marked run time acceleration compared to sequential approaches.

COMMENT # 2.95

L567: Very nice pragmatic addition, although since this book is not available open-source I’d
really recommend to expand a bit.

Reply:

Thanks for the recommendation, please see our response to Comment # 2.11

COMMENT # 2.96

L575: Is there a real need to introduce this new terminology? I cannot see any conceptual dif-
ference with the coined term of particle filter "weights" defined as the normalized likelihoods?

Reply:

We have now changed this particular mention to just weights since the in-line equa-
tion makes it clear what kind of weights we are referring to. Note that by following
the nomenclature of (11) we are not advocating against the use of the general term
weights, but rather want to be more precise where there could be ambiguity. More-
over, as should be clear from the discussion of proposals, these (auto-normalized)
weights do not have to be normalized likelihoods that is just the typical (but special)
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case of using the prior as the proposal.

COMMENT # 2.97

L582: This is pretty obvious, I would skip, and keep this computational subtlety for the en-
semble statistics in the smoother as in l. 595-596

Reply:

This may not be obvious to all readers. Moreover, skipping this but keeping the corre-
sponding discussion for the PBS could be misleading since there the implementation
is different. In particular, for the PBS we use weights to calculate the posterior statis-
tics while for the PF we do not need to use the weights for this since they are equal
after resampling.

COMMENT # 2.98

L598: I don’ think that this much of a context is needed here to introduce the EnKF

Reply:

One of our goals in extensively introducing the schemes used in MuSA is to help
demystify them. To do that it helps to briefly discuss the origin of the schemes. Given
that they seemingly have a longer history, this takes a few more sentences for the
ensemble Kalman methods than with the particle methods.

COMMENT # 2.99

L621: One full page of bibliography on EnKF/ES and variants applied to snow is just too
much, please condense.

Reply:

See the answer to Comment # 2.13.

COMMENT # 2.100

L661: Again another instance of useful statement that would stand one much more in a
condensed version of the paper.

Reply:
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It should be more visible now that we have condensed this paragraph, see answer
below.

COMMENT # 2.101

L662: I would skip this, or condense it to the maximum. At this point, the reader is over-
whelmed with theoretical considerations that make very little to no difference in practice -as
aknowledged-, and I think you want to avoid that.

Reply:

We agree and have condensed this section accordingly, while retaining the relevant
references.

Changes:

3.5 Ensemble Kalman methods
. . . There are actually several variants of the ensemble Kalman analysis step (see 38).
In MuSA we use the so-called stochastic rather than deterministic (or square-root)
implementation. This stochastic formulation was proposed by (49) who suggested
adding stochastic

:::::
adds

:
perturbations to the

::::::::::
predicted

:
observations to ensure ad-

equate ensemble spread , but it was recently corrected by (50) who showed that
perturbations should actually be applied to the predicted observations. In practice,
due to the symmetry of the perturbations, this recent correction should have minimal
impact but it provides much needed clarification and is consistent

::::
and

:::::::::::::
consistency

with the underlying Bayesian theory
::::::::
(49; 50).

COMMENT # 2.102

L667: Fair enough :)

Reply:

We are not sure what the reviewer is pointing to here, but we are happy with his
constructive comments and annotations.

COMMENT # 2.103

The introduction of the iterative EnKF early on in the description like that might be a bit
puzzling, you may want to recap on that very quickly before.

Reply:
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Good point, we have added the following before jumping into the presentation of the
algorithms.

Changes:

3.5 Ensemble Kalman methods
. . .

::::
The

:::::::::
iterative

::::::::::
versions

:::::
tend

:::
to

:::::::::
perform

:::::::
better

:::::
than

::::::
their

::::::::::::::
non-iterative

::::::::::::::
counterparts

:::
for

::::::::::::
non-linear

::::::::::
problems

::::
(4).

:
Let Na denote the number of assimilation cycles (itera-

tions) performed in a pseudo (rather than model) time.

COMMENT # 2.104

L719: Please add the area.

Reply:

Added.

Changes:

4. Data and experimental setup
. . . We developed two data assimilation experiments in the

:::
55

:::
ha

:
Izas experimental

catchment (51) in the Spanish Pyrenees (see Figure 2).

COMMENT # 2.105

L726: (?Revuelto et al., 2021a)

Reply:

Fixed.

COMMENT # 2.106

L727: Consecutive

Reply:

Done.

COMMENT # 2.107
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L730: This sentence seems a bit awkward, in particular the wording of "inflating the uncer-
tainty of the forcing". (1) I don’ t see where does that come from? Is there any retroaction
loop between forcing perturbation spread and MuSA, that would lead to increase it? Please
reformulate.(2)I would expand a bit more: you expect model errors to be primarily due to
unrepresented processes, dominated by wind redistribution of snow. You expect MuSA to
compensate this by reducing/increasing precipitation amounts/ablation on a point base level.

Reply:

Agreed, modified as follows:

Changes:

4.1 Single cell and distributed assimilation of drone-based snow depth retrievals
Due to the high-resolution of the observations, we expect MuSA to be able to

::::::::::
implicitly

reproduce the wind redistribution patterns by inflating the uncertainty of the forcing

:::::::::::
modifying

::::
the

::::::::::::::
precipitation

:::::
and

::::::::::::::
temperature

::
at

:::::
grid

:::::
cell

:::::
scale

:
to compensate for the

deposition and removal of wind-blown snow.

COMMENT # 2.108

Please add litterature/minimal justification for the perturbation model and their statistic

Reply:

See the response to Comment # 2.57 above and Comment # 2.110 below.

COMMENT # 2.109

This seems quite high (standard deviation of 0.2m) for a pure measurement error, does this
include any representativeness error? I don’t know whether these make sense @5m resolu-
tion, but a minimal discussion is required here as representativeness errors would very likely
depend on observation value (Lopez-Moreno et al., 2011?)

Reply:

An RMSE of 0.2m for drone observations of snow thickness is very reasonable as
stated by the references in the text.

COMMENT # 2.110
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At this stage, it is essential to reference the section in which this implementation subtlety has
been introduced.

Reply:

Here we are once more back to the discussion of # 2.57 and the confusion between
frequency and probability which is unfortunate at least when we adopt the Bayesian
interpretation of probability theory. There is no correct or true prior out there in the
external world, instead it encodes the epistemic uncertainty that we or some other
agent (such as our model) has about a quantity. Making the mistake of attributing
prior probability to the real world is nicely (if a bit polemically) summarized by E.T.
Jaynes’ "mind projection fallacy". Note that this does not mean that all priors are
created equal, certainly the prior of a well informed expert (a real agent or a model)
will be more valuable than a completely vague prior. We nonetheless agree that our
introduction of priors lacked appropriate references and keywords that can help to
explain our choices so we made the following changes:

Changes:

3.1 Bayesian inference
. . .
The next ingredient is the prior distribution over states, p(x), which can be specified
based on initial beliefs which may include physical bounds, expert opinion, ‘objec-
tive’ defaults (using e.g. maximum entropy), or knowledge from earlier analyses

:::::::::::
(35; 31; 52). . .
4.1 Single cell and distributed assimilation of drone-based snow depth retrievals
. . .

:::
As

::::::
such,

::::::
these

::::
are

::::::::
weakly

:::::::::::::
informative

:::::::
priors

::::::::
(c.f. 52)

::
in

:::::
that

:::::
they

:::::::::
produce

:::::::::::::
predictions

::::
that

::::
we

:::::::
expect

:::::::::
a-priori

:::::
(i.e.,

:::::::::
without

:::::::::
looking

:::
at

::::
the

::::::
data)

:::
to

:::
be

::
in

::::
the

::::::
right

::::::::
correct

:::
of

::::::::::::
magnitude

::::::
while

:::::::::
obeying

::::::::::
physical

:::::::::
bounds.

:
. . .

COMMENT # 2.111

L736: mu=1?

Reply:

This is the mean of the associated normal distribution, which produces a median for
the lognormal distribution of exp(µ) = exp(0) = 1. For the justification of this partic-
ular choice of value (or more precisely, the entire prior distribution), our response is
the same as for the comment above.
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COMMENT # 2.112

L738: This seems quite high (standard deviation of 0.2m) for a pure measurement error,
does this include any representativeness error? I don’t know whether these make sense @5m
resolution, but a minimal discussion is required here as representativeness errors would very
likely depend on observation value (Lopez-Moreno et al., 2011?)

Reply:

This is not high (although it is slightly conservative) given the values reported in (53)
that we based it on. Therein, the highest RMSE at 1 m resolution are reported as being
around 0.6 m. If we assume that the errors are unbiased, independent, and identically
Gaussian distributed with this error standard deviation σ1 = 0.6 m, then using the
central limit theorem this translates into an aggregated error at 5 m resolution (so
containing 25 pixels at a resolution of 1 m) of σ5 = σ1/

√
25 = 0.12 which is of the same

order as the error standard deviation we assume of σ5 ≃
√
0.04 = 0.2 m.

COMMENT # 2.113

L740: At this stage, it is essential to reference the section in which this implementation sub-
tlety has been introduced.

Reply:

We’ve now added reference to the relevant section.

Changes:

4.1 Single cell and distributed assimilation of drone-based snow depth retrievals
. . . In the case of the single cell comparison, we followed two different resampling
strategies, the bootstrap and redraw from a normal approximation of the posterior

::::
(see

::::::::
Section

:::
2). . .

COMMENT # 2.114

L753: So the Izas catchment is covered by only one pixel?

Reply:

Yes, the area of the Izas catchment (55 ha, see Comment # 2.104) is approximately the
size of one MODIS pixel. We also make it clear (Line 753 in the original manuscript)
that we pick the pixel that is closet to the centroid of the Izas catchment.
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COMMENT # 2.115

L763: As commented earlier, this is to my opinion not the best justification.

Reply:

As should be clear by now from the preceding discussion, it seems like perhaps we
fundamentally disagree on this point (i.e., the meaning of probability) on a philo-
sophical level that is beyond the scope of this manuscript.

COMMENT # 2.116

Table 1: Please introduce these acronyms here.

Reply:

Done.

COMMENT # 2.117

Table 1: A summary description of the different algorithms (filter, smoother and their param-
eter values/configuration would help here.

Reply:

Done.

COMMENT # 2.118

L780: This is not very clear here, the reader has to dig out the information from Sec. 3, please
insert a recap (or a table, see comment above)

Reply:

We have reformulated this slightly, but want to avoid describing the methods anew
each time they are mentioned. The reader could use the search function to easily
discover what redraw means in this context.

Changes:
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5.1 Single cell and distributed assimilation of drone-based snow depth retrievals
. . . The particle filter with redraw

:::::::::::::::
redraw-based

::::::::::::
resampling

:
allowed the assimilation

process to recover from the initial collapse through particle rejuvenation, leading to
a more realistic non-degenerate ensemble simulation.

COMMENT # 2.119

L782: Please be more specific. In Fig. 3, the agreement seems pretty good in 2019-2020

Reply:

Corrected.

Changes:

5.1 Single cell and distributed assimilation of drone-based snow depth retrievals
Here, the ensemble Kalman filter

::::::
EnKF

:
produced unsatisfactory results when the

observations fall very far from the ensemble. However,
::::::::::
posterior

:::::::::::
ensemble

:::
in

::::
the

::::
first

:::::::::
season,

::::::::::::
improving

:::::::::::::::
considerably

:::
in

::::
the

:::::::::
second.

::::::::
Note,

:::::::::::
however,

:::::
that

:
we did

not observe this
:::
the

:::::::
same issue with the iterative version of the ensemble Kalman

filter
:::::::::::::
EnKF-MDA..

COMMENT # 2.120

L784: EnKF-MDA

Reply:

Corrected, see above.

COMMENT # 2.121

Figure 3: Add panel numbers

Reply:

Added.

COMMENT # 2.122
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L787: 3, bottom left)

Reply:

Added.

COMMENT # 2.123

L791: The transition from point to spatial is a bit sharp, consider at least introducing a blank
line, or a section break

Reply:

This is already a new paragraph. Note that this will looks cleaner in the final typeset
version of the manuscript were the manuscript to be accepted.

COMMENT # 2.124

L797: Since the subtle computation of the ensemble statistics have been thoroughly explained
in 3.4 l.582-586), I would remove the ’weighted’ for clarity

Reply:

Good point, we changed "weighted" to "posterior".

COMMENT # 2.125

L797: I suggest also to skip these elements on the perturbation statistics, which should be
clear at this stage

Reply:

Done.

COMMENT # 2.126

L798: Multiplier

Reply:
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Corrected.

COMMENT # 2.127

L801: Precipitation multiplier. A bias is inherently based on a substraction

Reply:

Corrected.

COMMENT # 2.128

Figure 4: What does that mean?

Reply:

Corrected.

COMMENT # 2.129

Figure 4: Sequential Importance resampling?

Reply:

Both PFs use SIR, the redraw is the heuristic approach to resampling that we tested
here and seems to work quite well. The caption has been modified to clarify which
scheme we are referring to.

COMMENT # 2.130

L830:. hese

Reply:

Corrected.

COMMENT # 2.131

L831: This review is about filters, not smoothers, while you were taking about smoothers two
sentences before: the logic is hard to follow.

Reply:
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These suggested remedies could be implemented in both filters and smoothers.

COMMENT # 2.132

L842&L845: In addition x2

Reply:

Corrected

COMMENT # 2.133

Figure 7: this is LST, not SST

Reply:

Corrected

COMMENT # 2.134

Figure 7: IKS is never defined in the text (Iterative Kalman Smoother?)

Reply:

Corrected to ES-MDA.

COMMENT # 2.135

L859: Winstral et al., 2019, Cantet et al., 2019, Odry et al., (2022), Cluzet et al., (2022) are
all necessary citations here.

Reply:

Done.

Changes:

6. Discussion
. . . Despite the fact that there are some other examples of assimilating snow depth
products, most of these have been carried out at the point scale

::::::
using

:::::::
in-situ

::::::::::::::
observations

:::::::::::
(44; 28; 45), or were developed at coarser spatiotemporal resolutions (54).

.
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COMMENT # 2.136

L866: Please consider referring to the airborne snow observatory (ASO) as it is to my knowl-
edge the only hyper-resolution remotely-sensed snow depth retrieval available.

Reply:

Thanks for the suggestion, we agree that the ASO is a fantastic mission where it is
flown. Still, we were alluding to satellite-based remote sensing of snow depth here
and have now made that clear.

Changes:

6. Discussion
. . . Furthermore, the assimilation of hyper-resolution

:::::
high

::::::::::::
resolution

:
snow depth

maps may become a common practice in the future, even at wider scales, thanks
to the emerging remote sensing

:::::::::::::::
satellite-based

:
snow depth retrievals

::::::::::::
(46; 47; 48)

COMMENT # 2.137

L869: Do you mean LST? Otherwise I don’ t understand this sentence.

Reply:

Yes, fixed.

COMMENT # 2.138

L870: This is not evidenced in this experiment, since LST and FSCA are available throughout
he season, we cannot tell whether a positive impact would still be obtained with LST alone
over the winter months. A synthetic experiment could easily be carried out to investigate this.

Reply:

We have qualified our statement accordingly.

Changes:

6. Discussion
. . . The assimilation of the FSCA provides

::::
LST

::::
has

::::
the

::::::::::
potential

:::
to

::::::::
provide

::::::::::::
additional

information when FSCA saturates at 1, i.e.
:::
for

::::::::::
example

:
during most of the snow

season in snow dominated areas, or
:::::::::::::::
accumulation

:::::::
season

:::::
and during the polar night
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in the absence of light
:::::::::
sunlight.

COMMENT # 2.139

L880: Insert blank line

Reply:

It is already a new paragraph (hence the indent). The final typesetting style will be
dependent on the style of the journal, not on us.

COMMENT # 2.140

L892: Inclusion

Reply:

Changed.

COMMENT # 2.141

L896: Interesting, but I’m not sure I see what you mean here. Please expand/reformulate

Reply:

Modified as follows:

Changes:

6. Discussion
. . . This suggests that a better encapsulation

::::::
more

::::::
direct

::::::::::::
integration

:
of FSM2 running

the snowpack simulations in memory may
::::
that

::::::::
avoids

:::::
I/O

::::::::::::
operations

:::::
and

::::::::
system

:::::
calls

::::::
could

:
improve the overall MuSA performance .

::::::::::::::
performance

::
of

:::::::::
MuSA. .

COMMENT # 2.142

L902: References?

Reply:

We have added some related references.

Changes:
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6. Discussion
The implementation of more sophisticated models that include detailed radiative
transfer schemes may provide MuSA the capability of ingesting new remotely sensed
information such as surface reflectances

:::::::::::
shortwave

:::::::::::::
reflectances

:::::
(55) or radar backscat-

ter
::::
(48).

COMMENT # 2.143

L903: Output temporal resolution. Changing internal timestep resolution is a bit more haz-
ardous (both for numerical stability and accuracy), I don’t think that you want to suggest
that

Reply:

Actually, this is what we meant. It is related to the fact that FSM2 runs with a fixed
timestep. So for large scale implementations it would be worth experimenting with
coarsening the timestep (e.g. 3 hours) and conversely for detailed site-level simula-
tions.

COMMENT # 2.144

Conclusions
L908&L909: This is very much of a detail, I would rather insist on the fact that MuSA
includes smoothers and filters, covering both real-time and reanalysis applications.

Reply:

Since the resampling strategy can impact the performance, we believe that it is worth
to keep this sentence. We have nonetheless modified it slightly.

Changes:

7. Conclusions
MuSA is a new snow data assimilation system that encapsulates the FSM2 snow-
pack model. There are 6 different ensemble-based data assimilation algorithms im-
plemented in MuSA, as outlined in detail in Section 3, with five

::::::::
several

:
different

resampling strategies in the case of particle filters . . .

COMMENT # 2.145
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Code and data availability
L922: https://...

Reply:

Added.

COMMENT # 2.146

References
L986: Part of the title is missing

Reply:

Fixed.

COMMENT # 2.147

L1136: Missing DOI

Reply:

Fixed.
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