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Abstract. The Modular Assessment of Rainfall–Runoff Models Toolbox (MARRMoT) is a flexible modelling framework 

reproducing the behaviour of 47 established hydrological models. MARRMoT can be used to calibrate and run models in a 

user-friendly and consistent way and is designed to facilitate the sharing of model code for reproducibility and to support 10 

intercomparison between hydrological models. Additionally, it allows users to create or modify models using components of 

existing ones. We present a new MARRMoT release (v2.1) designed for improved speed and ease of use. Whereas improved 

computational efficiency was the main driver for this redevelopment, MARRMoT v2.1 also succeeds in drastically reducing 

the verbosity and repetitiveness of the code, which improves readability and facilitates debugging. The process to create new 

models or modify existing ones within the toolbox is also simplified in this version, making MARRMoT v2.1 accessible for 15 

researchers and practitioners at all levels of expertise. These improvements were achieved by implementing an object-oriented 

structure and aggregating all common model operations into a single class definition that all models inherit from. The new 

modelling framework maintains and improves on several of the good practices built into the original MARRMoT and includes 

a number of new features such as the possibility of retrieving more output in different formats, which simplifies 

troubleshooting, and a new functionality that simplifies the calibration process. We compare outputs of 36 of the models in the 20 

framework to an earlier published analysis and demonstrate that MARRMoT v2.1 is highly consistent with the previous version 

of MARRMoT (v1.4), while achieving a 3.6-fold improvement in runtime on average. The new version of the toolbox and 

user manual, including several workflow examples for common application, are available from GitHub 

(https://github.com/wknoben/MARRMoT, last accessed 12/5/2022. DOI: 10.5281/zenodo.6484372). 

1 Introduction 25 

The Modular Assessment of Rainfall-Runoff Models Toolbox (MARRMoT) is a flexible modelling framework which 

reproduces components and behaviours of established conceptual hydrologic models, while allowing for their modification 

and reshuffling (Knoben et al., 2019). MARRMoT implements 47 conceptual hydrologic models in MATLAB in a consistent 

way. The models coded in the framework are all established conceptual hydrologic models commonly used in academia and 
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industry, they include GR4J (Perrin et al., 2003), Sacramento (Burnash, 1995), HBV (Lindström et al., 1997), VIC (Liang et 30 

al., 1994) and TOPMODEL (Beven and Kirkby, 1979), amongst others. The framework supports research reproducibility by 

making it easy to access and share versioned model code. Additionally, MARRMoT’s consistent implementation of these 

models facilitates intercomparison studies, encouraging a more active approach to model evaluation and selection for specific 

applications, hence reducing researcher bias (Herath et al., 2020; Peel and McMahon, 2020). The possibility to easily modify 

individual model components and routines, both from scratch or by substituting in components from other models, encourages 35 

the use of models for hypotheses testing (Clark et al., 2011) and simplifies processes for model diagnosis and improvement 

(e.g. Westra et al., 2014). On top of fostering a culture of innovation and experimentation with regards to hydrologic model 

development and application, flexible frameworks such as MARRMoT provide easy-to-use tools with built-in mechanisms 

that ensure the use of good and consistent modelling practices and numerical approximation schemes, hence lowering the 

threshold for creating new, good quality model structures and modifying existing ones. 40 

MARRMoT follows a number of good practices for model development when encoding hydrologic models within the 

framework (Knoben et al., 2019). Specifically, MARRMoT models are defined in terms of their constituting ordinary 

differential equations (ODEs) in state-space formulation and their definition is separate from the numerical methods used to 

solve them, which allows for clearer identification of model processes and behaviour and differentiation of sources of errors, 

while facilitating parameter estimation (Clark and Kavetski, 2010; Kavetski and Clark, 2010). When it comes to solving ODEs, 45 

MARRMoT uses a fixed-step implicit Euler scheme as default, which, compared to explicit schemes, provides more accurate 

and stable estimations (Kavetski et al., 2006). Numerical stability is also enhanced by using mathematical smoothing (through 

a logistic function) of storage and temperature thresholds in the constitutive equations; this also contributes to better parameter 

estimation (Kavetski and Kuczera, 2007). Finally, whenever possible, MARRMoT avoids operator-splitting numerical 

approximations by solving all model ODEs at once, hence sidestepping the need to make assumptions on the order of model 50 

fluxes which could prove physically inaccurate (Fenicia et al., 2011). 

In its current format, MARRMoT prioritises readability and implementing robust mathematical approaches over speed 

(Knoben et al., 2019) and feedback from the users suggests runtime to be the largest obstacle to widespread use of the 

framework. With the principal aim of improving runtime efficiency, we radically restructured MARRMoT following the tenets 

of object-oriented programming (see Section 2 below). Compared to the previously available versions (MARRMoT v1), the 55 

version presented here (MARRMoT v2.1) simultaneously achieves better speed, readability and user-friendliness. 

Additionally, it drastically reduces the verbosity and repetitiveness of the code, and hence the possibility of errors due to typos; 

it allows for simultaneous solving of model equations in all cases, including when routing functions operate in-between stores; 

it provides greater control on model outputs with enhanced capabilities for debugging and error detection; and it lowers the 

threshold for implementing new (or modifying existing) model structures. 60 

While working on this update, care was taken to ensure the maximum possible compatibility with previous versions of 

MARRMoT (v1) in order to facilitate transition as much as possible for existing MARRMoT users. In this regard, inputs and 

outputs remain identical in this version of MARRMoT to ensure reusability of any pre- or post-processing routines; whereas 
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commands to run simulations and calibrate models changed minimally. Details on minimum requirements to update 

MARRMoT v1 code for v2 are given in the user manual (Section 2.5) included in the repository. MARRMoT v2.1 runs in 65 

Octave as well as MATLAB.   

2 Technical improvements 

A schematic overview of the structure of the new object-oriented MARRMoT v2.1 framework is shown in Figure 1. Compared 

to MARRMoT v1, where models were defined as functions (see Knoben et al., 2019 Figure 1), each model in the framework 

is here conceptualised as an object class. In object-oriented programming, a class is a descriptor of similar objects (Stefik and 70 

Bobrow, 1985); classes are defined in terms of state variables (known as attributes or properties) and behaviours (or methods) 

and can be thought of as templates or placeholders that may be populated in different ways depending on context. Objects, on 

the other hand, are instances or realisations of the class they belong to (Stefik and Bobrow, 1985). Crucially, within an object-

oriented project, it is possible to define trees or lattices of classes which allow objects to inherit not only the attributes and 

methods defined in their own class, but also all those defined in each superclass (or parent class) that their (sub)class is a child 75 

of (Stefik and Bobrow, 1985). As an example, consider a conceptualisation of your house pets Fido the dog and Wanda the 

fish: Fido and Wanda are objects, or instances of their classes, dog and fish respectively. The dog class would define dog-

specific methods such as fetch, whereas the fish class might include a swim method; additionally, both classes would have a 

superclass such as animal as their parent, which would contain definitions of methods common to all animals, such as feed or 

sleep; in this way Fido would inherit methods fetch, feed and sleep, whereas Wanda’s methods would include swim instead of 80 

fetch, but still include feed and sleep from its parent class animal.  

In MARRMoT v2.1, we have defined a simple two-level class tree. At the top level is the superclass known as 

MARRMoT_model, which defines all operations that are common to all models (see Section 3.1.1 of the user manual for a list 

of these common methods). Each of the 47 individual model structures is then defined as its own child class inheriting all 

common operations from the superclass and with additional methods defined to match the specific model formulation. 85 

Instances of these classes, the model objects, act as containers for the data and procedures needed to run the framework on 

specific case studies. The user takes these model objects, populates them with parameters, initial state variables and other 

necessary inputs and uses them to run model simulations.  
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Figure 1: Schematic overview of the MARRMoT framework in it v2.1 implementation. A detailed description of the object-oriented 
MARRMoT implementation can be found in Sections 2.1 and 2.2.  
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2.1 The MARRMoT_model superclass 

The creation and definition of a superclass was motivated and guided by the observation that all models in the framework share 

many common operations, such as a those handling meteorological inputs, defining numerical solver settings, and generating 95 

outputs. Consolidating all of these in a common location has major advantages as it significantly simplifies the individual 

model files (i.e. the class definition files of each individual model). This enhances readability and facilitates debugging when 

running modelling studied, additionally, it lowers the threshold for implementing new model structures and reduces the risk 

of typos or copy-paste errors. Additionally, it simplifies and streamlines the process of deploying and testing changes (e.g. to 

the equation solving routine or the output format) across all models, by simply modifying the MARRMoT_model definition 100 

file, which all model classes inherit from. 

In terms of attributes and methods, in the superclass we declare all model attributes and define a number of common model 

methods. Attributes are only declared as empty templates in memory and no attribute is populated (i.e. assigned a specific 

value) directly in the superclass definition file. For example, the superclass declares that all models have attributes called 

numParams, numStores and theta to store the number of model parameters, number of stores and a set of parameters 105 

respectively, but the values of these properties, being model- or simulation-specific, are assigned later. We distinguish model 

attributes in three groups. Firstly, static attributes, which are model-specific and common to all instances of the same model 

(e.g. number of parameters or stores).  Secondly, user-defined attributes, which are simulation-specific and static throughout 

a simulation; they are populated from input by the user directly (e.g. set of parameters, initial store values, climate data) or 

inference from the specified parameter set (e.g. store maxima and minima).  Finally, dynamic attributes, which are populated 110 

and modified internally throughout a model run (e.g. store or flux values at every timestep). 

In addition, methods to perform all common model operations are defined in the superclass. On top of helper methods to check 

and manage user input formats or specify default options and settings, model methods perform three key operations: create 

approximation of models’ ordinary differential equations (ODEs) from model-specific constitutive equations and numerically 

solve them (Section 2.1.1); step through a simulation and return its output to the user (Section 2.1.2); and, newly introduced 115 

in this version of MARRMoT, calibrate a model to a set of observations (Section 2.1.3). The following paragraphs provide 

further details on each of these operations, focusing on functional differences from MARRMoT v1 (Knoben et al., 2019). 

2.1.1 Numerical ODEs approximation and solving 

As mentioned in the Introduction, the principal aim for the development of MARRMoT v2.1 was to improve runtime 

efficiency. This was achieved by modifying the way model ODE approximations are solved (see Section 3.2 and Figure 5). In 120 

a sense, the new object-oriented structure is actually a by-product of this modification. With the new structure, we concentrated 

the solving routine for all models into a single place, which allows changing and experimenting with the solving routine much 

easier to deploy across all models, without the need to modify each individual model files. 
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As with previous versions, all models’ constitutive ODEs are approximated in MARRMoT v2.1 using a fixed-step implicit 

Euler numerical scheme  (following suggestion by Clark and Kavetski, 2010).  However, the details of how this is solved vary 125 

from the previous MARRMoT version. There, MATLAB’s proprietary root-finding functions fsolve and lsqnonlin were used: 

the former as a first attempt and, if a suitable solution is not found within the specified tolerance, the latter as a more robust, 

but slower alternative. In MARRMoT v2.1, the solution is initially attempted using an open source implementation of the 

Newton-Raphson algorithm enhanced by line searches (also following Clark and Kavetski, 2010). In most cases, the Newton-

Raphson solver used in MARRMoT v2.1 is sufficient to identify a suitable solution; when this doesn’t happen, the framework 130 

reverts to the same fsolve and lsqnonlin functions used in the previous versions. A solution is deemed suitable if the norm of 

its residuals is below a pre-determined acceptance threshold, passed by the used together with other necessary options (see 

Section 2.2 of the user manual). 

The object structure also easily allows keeping a log of the operations of the equation solving routine as an attribute to the 

model object. For every step, this includes solver used, value of the error on the ODEs’ approximation and number of iterations 135 

needed to reach the solution. This can be retrieved after a simulation to check the quality of the solutions and adjust settings 

and parameters if needed. 

Finally, there were certain circumstances where the previous versions were programmed not to attempt concurrent solving of 

equations, and this has been improved in the updated version. Specifically, in MARRMoT v1, when a model had fluxes routed 

through unit hydrographs (UH) in-between stores, the solver would solve stores up- and downstream of the UH separately, 140 

effectively using a form of operator-splitting (OS). OS approaches have a number of limitations and can incur numerical errors 

due to the physically unrealistic assumption that processes in hydrological systems operate in a predetermined order (Fenicia 

et al., 2011). Whereas the structure of the previous MARRMoT version made this form of OS particularly complicated to 

remove, the new object-oriented structure allowed us to more easily code MARRMoT v2.1 to solve model equations 

simultaneously in all cases, and this is set as the default method in the new version. 145 

2.1.2 Simulation and output retrieval 

The syntax to run a model simulation and the format of the outputs are kept as consistent as possible to those of MARRMoT 

v1 to facilitate transition to the new version for users already familiar with the framework. However, the new implementation 

is more flexible, allowing to both run a simulation and retrieve its outputs in a variety of ways to match different workflows 

(see the Sections 2.2 and 2.3 of user manual for details). Additionally, the object-oriented structure of MARRMoT v2.1 allows 150 

for all outputs and information about a model run to be stored as attributes of the model object itself at the end of a simulation. 

These include: 

 values of all stores and fluxes at all timesteps; 

 information about the operation of the numerical solver used and the quality of the solution found (as mentioned 

above); 155 

 a copy of the parameter set, initial store values and the climate data used to force the model; 
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 the settings and tolerances set for the numerical solver; and 

 the final state of the UHs, containing values of fluxes that are still to be routed at the end of the simulation. 

Storing outputs as attributes not only makes them easier to retrieve after a simulation, but also allows the user to save the 

model object that contains this information for later retrieval. 160 

2.1.3 Model calibration 

The MARRMoT_model superclass contains a default calibration method to help fit a model to a set of observations. Whereas 

MARRMoT’s outputs can be fed into any external optimisation algorithm for calibration (like users would do with MARRMoT 

v1), the calibrate method simplifies the calibration process. To use the method, the user needs to define what objective function 

and optimiser should be used for the calibration process. Whereas these can take any functional form, they must have the 165 

correct input-output format. For the objective function, a number of commonly used objective functions are implemented in 

the MARRMoT repository (already in version v1) for the user to choose or to use as templates to create their own function. 

For the optimisers, the calibration method expects this to have the same input-output format as MATLAB’s proprietary 

optimisers (e.g. fminsearch) which can therefore be used directly within the method. Additionally, the MARRMoT v2.1 

repository also contains an implementation of the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm 170 

(Hansen and Ostermeier, 1996; Hansen et al., 2003) that matches the expected format and is ready to be used with the calibrate 

method within MARRMoT v2.1. CMA-ES is widely used in a variety of fields (Hansen, 2009) and it was shown to perform 

favourably in hydrological model calibration compared to other algorithms (Arsenault et al., 2014). More detail on the new 

calibration method is found in the user manual, Section 2.4. 

2.2 Individual model classes 175 

Given that the guiding principle when defining the superclass was to include in it everything that is shared between all models, 

when writing model-definition classes or model files, the goal was to reduce these to their bare minimum, only including in 

them the definition of each individual model’s structure. As already mentioned, each model class is a child of the 

MARRMoT_model superclass from which it inherits all attribute and methods described above. All model classes retain the 

same naming convention as the model functions in MARRMoT v1, which includes a progressive identifier of the model within 180 

the framework, the general name of the model (replaced by the location of first application for unnamed models) and indicators 

of the numbers of parameters and stores of the model; for example the MARRMoT model class for GR4J (Perrin et al., 2003) 

is called m_07_gr4j_4p_2s indicating that it is the seventh model in the framework and has four parameters and two store. 

To simplify the process of creating new and/or modifying existing model classes, these all have the same structure, and all the 

model-specific information is contained in four methods: 185 

1. Creator method: The creator method runs every time a model object is created and populates all static model 

attributes (e.g. number and names of stores and fluxes, parameter ranges). 
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2. Initialiser: The initialiser runs once at the beginning of every simulation, to set up the model run, for example by 

calculating store maxima and minima from parameters, initialising unit hydrographs or calculating additional derived 

parameters. 190 

3. Within-timestep calculations: The functions defining the inner functioning of the model are coded in state-space 

formulation as an additional method which is called by the solver method from the superclass at every timestep to 

solve the model’s ODEs. 

4. Between-timestep updating: The stepping method which runs at the end of every timestep and is primarily used to 

update unit hydrographs and other routing mechanisms. 195 

Compared to the way individual models are coded in MARRMoT v1, this structure substantially reduces opportunities for 

typing errors by reducing the verbosity of the code (e.g. in MARRMoT v1 model constitutive equations were repeated in each 

model file at least twice, whereas now, they only need to be coded once). Additionally, structuring the model definition into 

four well-defined methods makes the inner structure and functioning of the models clearer, hence making it easier for 

unfamiliar users to create new models and modify existing ones. The definition of model equations as a dedicated method in 200 

the model file provides a clear separation between ODEs definition and their approximation and solving, which happens at the 

superclass level. A more detailed explanation of model class definition files is given in Section 4.1 of the user manual.  

2.3 Other changes 

MARRMoT v2.1 contains additional changes to the structure and form of helper functions to ensure that they work efficiently 

with the new model structure. Compared to MARRMoT v1, flux files, i.e. the files defining the form of individual fluxes that 205 

make up the model constitutive equations, have been changed from anonymous functions to regular functions, without loss of 

readability thanks to the object oriented structure. Unit-hydrograph functions have also been simplified in their form and 

structure without affecting their functionality. Additionally, two helper functions route and update_uh are now used to simplify 

the use of unit hydrographs when creating new models or modifying the existing ones, substantially improving readability and 

ease of use (see Section 4.5 of the user manual for more details of unit-hydrographs in MARRMoT). Finally, the code of the 210 

example objective functions was modified to allow the user to set what timesteps to calculate the fitness on; using this function 

together with the calibration method allows to set up warm-up periods and specify what periods (even non-contiguously) to 

use to for calibrating the models. For more details on how the selection of timesteps is supported in calibration, see Section 

2.4 of the user manual. 

3 Test cases 215 

We compare the performance of MARRMoT v2.1 against MARRMoT v1.4, which is the next-most-recent version of 

MARRMoT published in the MARRMoT GitHub repository. In order to evaluate the consistency of the simulations of 

MARRMoT v2.1 to the previous version, we use an intermediate version (MARRMoT v2.0) which implements the object-
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oriented structure described above, but maintains the same equation solving routine as MARRMoT v1.4. This allows us to 

distinguish the effects of the change in structure from those of the new root-solving scheme. Table 1 summarises the differences 220 

between the versions of MARRMoT. Versions 1.4, 2.0 and 2.1 are used for the application test.  Note: even though Versions 

1.0-1.4 are outside of the scope of the MARRMoT updates being reported in this article, we feel it is a useful resource for 

users to have a table that gives full details of the different versions, which is why all details (including bug fixes, etc.) are 

reported in Table 1 regardless of the version they relate to.   

 225 

 

Table 1: Summary of differences between the versions of MARRMoT used for the application test. 

Version Change from previous version DOI 

v1.0 MARRMoT submitted for peer-review 10.5281/zenodo.2482542 

v1.1 Peer-reviewed MARRMoT (Knoben et al., 2019).  

Bugs fixed: typo in logisitic smoothing function. Added pure time 

delay Unit Hydrograph to m05. 

10.5281/zenodo.2677728 

v1.2 Added parameter range display during runs 10.5281/zenodo.3235664 

v1.3 Bugs fixed: added missing constraint in interflow_9 flux 10.5281/zenodo.3552961 

v1.4 Bugs fixed: timestep size in water balance calculation; timestep size 

of certain fluxes used by m05, m15, m37, m44; sign error in m09 and 

m07 model function; arguments to evap_16() in m17, m25; input to 

saturation_1() in m30, m31, m32, m34; missing flux in m36. Updated 

workflow example 4 to work with Octave. Added model m47. Added 

several efficiency metrics and ability to specify warm-up period in 

metric calculation. Reduced numerical instabilities in m37. 

10.5281/zenodo.6460624 

v2.0 Object-oriented structure 10.5281/zenodo.6483914 

v2.1 New root-finding routine using Newton-Raphson solver 10.5281/zenodo.6484372 

3.1 Methodology for test cases 

We use data from the 559 catchments in the CAMELS data set (Addor et al., 2017) already used to calibrate and test 36 of the 

models in MARRMoT v1.0 (Knoben et al., 2020). Here we test the same 36 models in MARRMoT versions 1.4, 2.0 and 2.1 230 

(Table 1) and use the parameter sets calibrated by Knoben et al. (2020). The authors calibrated the models using the Covariance 

Matrix Adaptation Evolution Strategy (CMA-ES) algorithm (Hansen and Ostermeier, 1996; Hansen et al., 2003) to optimise 

the Kling-Gupta Efficiency (KGE, Gupta et al., 2009). The parameter values they found are available as supplementary 

material to Knoben et al. (2020). We also retain all MARRMoT settings as specified by Knoben et al. (2020). In order to ensure 
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that the new object-oriented structure does not modify the internal workings of the models, we compare the outputs from v1.4 235 

and v2.0 and look at all model fluxes (internal and external) and stores at every timestep. Additionally, the effect of the new 

root-finding routine is evaluated by comparing the outputs of v2.0 to v2.1.  Since the first test ensured that the internal processes 

are not altered, in the second test it is sufficient to look at the streamflow leaving the model to ensure consistency. 

We use the Nash-Sutcliffe efficiency (NSE, Nash and Sutcliffe, 1970) to measure consistency of outcomes, where the 

timeseries produced by the version of MARRMoT with the lower version number is always used as the “true” timeseries. In 240 

order to avoid the large drops in NSE that may occur with even very small absolute differences in fluxes when the values of 

the “true” timeseries are very close to zero, we perturb both timeseries by the same random sequence of values in the order of 

1 × 10ି଺𝑚𝑚, which effectively makes any difference smaller than this value irrelevant. 

All simulations are run as specified by Knoben et al. (2020): models are warmed-up to stabilise the stores by forcing them 

repeatedly with data for the year 1989 for a pre-set number of times (specified by Knoben et al. (2020) as the number necessary 245 

for the store values to stabilize within a prescribed tolerance and using 50 iterations as the pre-set maximum, the number of 

warm-up years for each catchment-model combination is available as supplementary material to their paper) and the simulation 

itself is run from 1 January 1989 to 31 December 2009, at daily temporal resolution. To compare runtimes, all simulations are 

run individually on a single core from an Intel(R) Xeon(R) Gold 6254 CPU @ 3.10GHz reserved for the purpose. 

3.2 Results 250 

Out of the 36 models tested, 30 returned the exact same output in their v2.0 implementation as they did in their v1.4 version 

for all fluxes and stores at all timesteps (within MATLAB’s default precision of 1 × 10ିଵ଺). For the remaining six models, 

the absolute values of the difference in the annual water balance for all fluxes between the two versions are shown in Figure 

2. These are never higher than 0.29 𝑚𝑚/𝑦𝑒𝑎𝑟 and in the greatest majority of cases several orders of magnitude lower. Note 

that the four models where the differences are relatively higher (m_07_gr4j, m_21_flexb, m_26_flexi and m_34_flexis) contain 255 

a routing function in-between stores and their equations are therefore solved in two steps in MARRMoT v1.4 and in only one 

step in MARRMoT v2.0. This may introduce errors in v1.4 that are not present when all stores are solved simultaneously in 

v2.0. The differences in annual water balance of the remaining two models (m_14_topmodel and m_27_tank) never exceed 

4.64 × 10ି଻𝑚𝑚/𝑦𝑒𝑎𝑟. Discrepancies in daily storage values have similar orders of magnitude (see Figures S1-S6). 
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 260 

With high confidence that the change to an object-oriented structure does not modify the way models operate, we compare the 

outputs of v2.1 and v2.0 to evaluate the effect of the change in root-finding routine. In contrast to v1, both of these versions 

allow retrieval of information about the quality of the ODE solution found at every timestep. Figure 3 shows the number of 

simulations where models in each of these two versions of MARRMoT were not able to find a solution within the specified 

convergence threshold (0.1 𝑚𝑚) for at least one timestep; this means that none of the solvers (fsolve, lsqnonlin and Newton-265 

Raphson, if applicable) was able to find a solution. In this scenario the simulation accepts the best solution found and continues. 

The 27 models not shown here solved the ODEs within tolerance for all timesteps and all catchments in both MARRMoT 

versions. As the figure highlights, the new root-finding routine found acceptable solutions in more catchments than the old 

solver for all models except for two (m_02_wetland and m_37_hbv). Note that the simulations where MARRMoT v2.0 (i.e. 

Figure 2: Absolute differences between annual water balance components of simulations from MARRMoT v1.4 and v2.0. All models 
not shown have differences smaller than 𝟏 × 𝟏𝟎ି𝟏𝟔𝒎𝒎 for all fluxes. For each model and flux, the cumulative distributions shown
indicate the percentage of simulation years (out of 5590 = 559 catchments × 10 years) with a difference in annual cumulative flux 
between the two versions lower than the values on the x-axis (in log scale). In other words, the highest value on each x-axis is the 
largest difference in cummulative annual flux values encountered for each model. 
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the old solver) was not able to find acceptable solutions at all timesteps were not further considered when assessing the 270 

consistency of outputs with the new solver. 

 

Figure 3: Number of cases (out of 559) where at least one timestep is not solved within the convergence threshold for MARRMoT 
v2.0 and v2.1. All models not shown solved all timesteps of all simulations for both versions of MARRMoT. 

The final step to ensure that the output of MARRMoT v2.1 is consistent with previous versions of MARRMoT is the 275 

comparison of simulated streamflow between v2.1 and v2.0 with the NSE metric. For this comparison 30 of the 36 models 

achieved NSE > 0.999 for all 559 simulations. NSE values for the remaining six models are shown in Figure 4. As shown in 

the figure, all models have NSEs of at least 0.975 for all simulations, which  indicates a very high level of consistency between 

the old and the new root-finding routines. The only exception to this is m_17_penman where simulations for 28 catchments 

(5% of cases) have NSEs below this value and as low as 0.269. As indicated by the absence of m_17_penman from Figure 3, 280 

both versions of the model solve all timesteps satisfactorily for all simulations, suggesting that this model structure might be 

prone to issues of equifinality at the scale of the timestepping solver – that is, two or more solutions provide a satisfactory 

solution to the timestepping ODE implicit Euler scheme (as opposed to timeseries-wide calibration, which is the usual context 

of the word equifinality).  
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 285 

Finally, in Figure 5 we show the changes in runtime between the three versions used for this application test. Specifically, the 

plots show the ratios of runtime for models implemented in MARRMoT v2.1 (Figure 5a) and v2.0 (Figure 5b) to their runtimes 

in their MARRMoT v1.4 implementation. On average, models in their v2.1 implementaion ran 3.6 times faster than in their 

v1.4 implementation, however, improvements were on average higher for multi-store models with higher runtimes to start 

with. Figure 5b shows that these improvements were generally due to the new root-finding routine rather than the object 290 

structure itself: despite there being some large differences across models, the object-oriented structure had on average nearly 

no impact on runtime (-1.2%). Nevertheless, the object structure was crucial for testing and deploying the new more efficient 

root-finding routine easily across all models. 

Figure 4: Exceedance curves of NSE values calculated between streamflow simulated with MARRMoT v2.0 and v2.1. All models not 
shown have NSE>0.999 for all simulations. The exceedance curves indicate the percentage of simulations (out of 559) with NSE 
scores higher than the values on the x-axis. 
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4 Discussion 295 

Amongst the other benefits highlighted in the previous sections, the object-oriented structure of MARRMoT v2 described here 

allowed for some additional insight into the hydrological models tested. In particular, the possibility to retrieve information 

about the quality of the ODEs’ solution at every timestep highlighted that there are a handful of models in the framework 

whose ODEs are particularly challenging to solve. Many of those models (namely m_02_wetland, m_13_hillslope, 

m_28_xinanjiang and m_29_hymod) share the flux process saturation_2, a nonlinear saturation excess from a store with 300 

different degrees of saturation, in their constitutive equations. While not all models containing this flux have instances where 

the framework cannot find a suitable solution (e.g. it is also contained in the equations of m_22_vic, whose equations are 

always solved satisfactorily within the test cases presented here), it is likely that the functional form of this flux definition 

causes the resulting ODEs to be particularly challenging to approximate and solve. Note that MARRMoT v2.1 tries to solve 

the ODEs using three different solvers and several starting positions. While the new MARRMoT structure and root-finding 305 

routine used generally improved the ability of the framework to find acceptable solutions to these ODEs, this issue still persists 

in this version of the framework, however now it is known and actions can be taken in a future update to improve the 

Figure 5: Ratio of runtimes for models in MARRMoT v2.1 (a) and v2.0 (b) to their runtimes in version v1.4. Models are ordered by 
descending average runtime in v1.4 (see colour scale). Ratios < 1 indicate that the newer version is more computationally efficient 
than MARRMoT v1.4. Note that x-axes scales, albeit different, are logarithmic in both plots. 
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framework’s ability to solve model equations in these cases. This could be achieved, for example, by implementing adaptive 

time-stepping schemes based on error estimates (Clark and Kavetski, 2010). 

A similar approach could also help solve the significant discrepancies observed between equally valid solutions to the implicit 310 

Euler approximation of the ODEs for the model m_17_penman, of which at most a single one corresponds to the actual solution 

of the ODEs. This highlights the importance of separating the definition of models’ constitutive equations to their 

approximation and solution in order to better understand and reduce possible sources of errors and uncertainty. Specifically, 

the application test described here suggests that the ODEs of m_17_penman may not be sufficiently constrained as they can 

accept multiple equally valid solutions. Nevertheless, it is reassuring to observe that the discrepancies only occurred in a very 315 

small percentage of the catchments tested, especially considering that the same or very similar equations to m_17_penman are 

also contained in a handful of other models (e.g. m_25_tcm) that did not experience the same issues with this set of catchments. 

This issue was not explored further for this MARRMoT release, but its better understanding and solution, through the 

implementation in the framework of an appropriate error control mechanism, is expected to be prioritised for a future release. 

5 Conclusions 320 

In this paper, we presented a radical restructuring of the MARRMoT framework for hydrological modelling. The new 

published version of the toolbox (v2.1) uses an object-oriented approach to represent model structures. Whereas the motivation 

for the restructuring was to improve runtimes, we acknowledge that the improvements shown here, albeit significant, still fall 

short of the speed-ups that may be expected from using languages such as Fortran or C. Nevertheless, as already mentioned 

by Knoben et al. (2019) in their presentation of the toolbox, slower runtimes are the trade-off to accept for a toolbox that is 325 

easy to use and understand and flexible enough to emulate a variety of model structures. 

Overall, the version of MARRMoT presented here manages to find a balance between these competing objectives succeeding 

to improve upon the previous versions of MARRMoT in terms of runtime and quality of the simulations, as well as readability 

and ease of use. Additionally, it provides enhanced features to assess and debug errors and problems with model structures or 

simulation parameters. Finally, it drastically simplifies the procedure for creating new and modifying existing models, by 330 

providing a clear template for generating model class definitions as well as a fully developed superclass which already provides 

most of the necessary code to run a model following the current best practices for model development. Ultimately, MARRMoT 

offers accessible and shareable versioned code for many commonly used hydrological models. It provides an easy-to-use 

framework for model calibration and simulation, model comparison and objective testing of modelling hypotheses. 

Additionally, it allows hydrologists at all levels of academia and industry to experiment and play with model components and 335 

equations within a well-designed modelling environment. We hope with this release to foster a culture of reproducible research, 

code availability, curiosity and scrutiny towards our modelling tools and the ways they represent real hydrological systems 

and eventually contribute to a deeper understanding of hydrological processes and the development of the next generation of 

hydrological models. 
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Code availability 340 

MARRMoT is provided under the terms of the GNU General Public License version 3.0. The MARRMoT v2.1 (Trotter and 

Knoben, 2022) code and user manual can be downloaded from https://github.com/wknoben/MARRMoT (last access: 

12/05/2022, DOI: 10.5281/zenodo.6484372). MARRMoT has been developed on MATLAB version 9.11.0.1873467 

(R2021b) and tested with Octave 6.4.0. To run in MATLAB, the Optimization Toolbox is required, while Octave requires the 

“optim” package. The user manual contains detailed description of the features of the framework and the models included; 345 

instructions and examples on how to run and calibrate models; and guidance on how to create new model structures, modify 

existing ones and contribute to the development of MARRMoT. 
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