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Abstract. On 24th September 2021, JEDI-MPAS 1.0.0, a new data assimilation (DA) system for the Model Prediction Across

Scales - Atmosphere (MPAS-A) built on the software framework of the Joint Effort for Data assimilation Integration (JEDI),

was publicly released for community use.
::::::::
Operating

::::::
directly

:::
on

:::
the

:::::
native

::::::
MPAS

::::::::::
unstructured

::::::
mesh, JEDI-MPAS capabilities

include three-dimensional variational (3DVar) and ensemble-variational (EnVar) schemes for deterministic analyses,
::
as

::::
well

::
as

the ensemble of DAs (EDA) techniqueto produce ensembles of analyses, and dual resolution, where the analysis increment and5

the input forecast ensemble are at a lower resolution than that of the background and analysis, thus decreasing computational

requirements. Moreover, JEDI-MPAS operates directly on the native MPAS unstructured mesh and can be applied without

code modifications to all MPAS meshes, whether uniform, variable resolution, global, or regional. .
:

On the observation side,

one advanced feature in JEDI-MPAS is the full all-sky approach for satellite radiance DA with the introduction of hydrometeor

analysis variables. This paper describes the formulation and implementation of EnVar for JEDI-MPAS. JEDI-MPAS 1.0.0 is10

evaluated with month-long cycling 3DEnVar experiments with a global 30km-60km dual-resolution configuration. The robust-

ness and credible performance of JEDI-MPAS are demonstrated by establishing a benchmark non-radiance DA experiment,

then incrementally adding microwave radiances from three sources: AMSU-A temperature sounding channels in clear-sky

scenes, AMSU-A window channels in all-sky scenes, and MHS water vapor channels in clear-sky scenes. JEDI-MPAS 3DEn-

Var behaves well with substantial and significant positive impact obtained for almost all aspects of forecast verification when15

progressively adding more microwave radiance data. In particular, the day-5 forecast of the best-performing JEDI-MPAS ex-

periment yields an anomaly correlation coefficient (ACC) of 0.8 for 500 hPa geopotential height, a gap of roughly a half day

when compared to cold start forecasts initialized from operational analyses of the National Centers for Environmental Pre-

diction, whose ACC does not drop to 0.8 until a lead time of 5.5 days. This indicates JEDI-MPAS’s great potential for both
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research and operations. Further development of JEDI-MPAS is ongoing, with emphasis on 3DVar, EDA, and cloud analysis20

from all-sky radiance observations.

1 Introduction

Based upon probability theory, data assimilation (DA) seeks to find the optimal estimate of a model state by combining obser-

vations and prior information of the state (typically from a short-term model forecast) as well as the associated error charac-

terizations (Tarantola, 2005). DA systems are an integral part of Numerical Weather Prediction (NWP), as they provide initial25

conditions for numerical forecasts at operational forecast centers. Some DA systems are openly available and widely used

by the community, e.g., the Data Assimilation Research Testbed (DART) (Anderson et al., 2009) and the Weather Research

and Forecasting model’s data assimilation (WRFDA) system (Barker et al., 2012) developed by the National Center for At-

mospheric Research (NCAR), and the Gridpoint Statistical Interpolation (GSI) DA system (Shao et al., 2016) developed at

the National Centers for Environmental Prediction (NCEP). While DART implements the ensemble Kalman filter (EnKF) and30

variants, WRFDA and GSI mainly emphasize variational algorithms. Those DA systems are mainly programmed in Fortran.

Since 2018, the Joint Effort for Data assimilation Integration (JEDI) project (Trémolet and Auligné, 2020) led by the Joint

Center for Satellite Data Assimilation (JCSDA) has been developing a community DA framework centered on generic, model-

agnostic components, which can be interfaced to a variety of models such as those for atmosphere, ocean, land, and atmospheric

chemistry. JEDI adopts object-oriented and generic programming and uses a mix of C++ and Fortran (Trémolet, 2020).35

There are four main generic components in the JEDI framework. The Object Oriented Prediction System (OOPS, https :

//github.com/JCSDA/oops) defines the abstract representations of elements of several DA algorithms, including three-

and four-dimensional variational (3D/4DVar) (e.g., Lorenc, 1986; Rabier et al., 2007; Liu et al., 2020) and 3D/4D ensemble-

variational (3D/4DEnVar) (e.g., Wang et al., 2013; Kleist and Ide, 2015) techniques with several minimization algorithms

implemented. OOPS is mainly programmed in C++ using templates. The System-Agnostic Background Error Representation40

(SABER, https://github.com/JCSDA/saber) repository hosts background error covariance models. All experiments discussed

here employ the Background error on an Unstructured Mesh Package (BUMP) (Ménétrier, 2020) from SABER, which esti-

mates and applies background error covariance-related operators, defined on an unstructured mesh. Two observation-related

components are the Unified Forward Operator (UFO, https://github.com/JCSDA/ufo) and the Interface for Observation Data

Access (IODA, https://github.com/JCSDA/ioda) (Honeyager et al., 2020). UFO implements observation operators for vari-45

ous types of observations. In addition, UFO implements other observation-space functionality, including quality control, data

thinning, and bias correction. IODA provides functionality for input, output, and in-memory data access of observations. In

addition to those model-agnostic components of JEDI described above, there are model-specific implementations of interfaces

to those generic components that allow the realization of model-specific DA systems within the JEDI framework (Holdaway

et al., 2020).50

Ha et al. (2017) developed a DA system for the Model for Prediction Across Scales - Atmosphere (MPAS-A) (Skamarock

et al., 2012) based upon DART (i.e., MPAS-DART). MPAS-DART can only perform ensemble analysis with the ensemble

2

https://github.com/JCSDA/oops
https://github.com/JCSDA/oops
https://github.com/JCSDA/oops


Kalman filter and variants and lacks variational DA capability for deterministic analysis, which must be addressed, especially

given the pervasive use of variational DA systems at operational centers. We also think that it is beneficial to implement

different DA schemes for both deterministic and ensemble analyses to meet a variety of needs for research and operational55

applications using MPAS DA. JEDI provides such a software framework with various DA algorithms and standardizes to

some extent the model interfaces to different components of JEDI. Therefore, we decided to develop a new DA system for

MPAS-A based upon the JEDI framework at a similar time in 2018. In the past more than three years, we have developed

the JEDI-MPAS DA system, which consists of MPAS interfaces to JEDI (https://github.com/JCSDA/mpas-jedi) and the four

model-agnostic JEDI components. The first release JEDI-MPAS 1.0.0 was made publicly available in September 2021. JEDI-60

MPAS capabilities include three-dimensional variational (3DVar) and ensemble-variational (EnVar) schemes for deterministic

analyses, the ensemble of DAs (EDA) technique to produce ensembles of analyses, and dual resolution, where the analysis

increment and the input forecast ensemble are at a lower resolution than that of the background and analysis, thus decreasing

computational requirements. Moreover, JEDI-MPAS operates directly on the native MPAS unstructured mesh and can be

applied without code modifications to all MPAS meshes, whether uniform, variable resolution, global, or regional. On the65

observation side, one advanced feature in JEDI-MPAS is the full all-sky approach for satellite radiance DA with the introduction

of hydrometeor analysis variables.

This article describes MPAS-specific aspects of JEDI-MPAS, emphasizing its implementation of EnVar, and documents

JEDI-MPAS performance in global cycling experiments. The implementation and evaluation of JEDI-MPAS’s EDA and 3DVar

algorithms will be presented in separate articles. The next section provides a brief introduction to MPAS-A and modifications70

made for JEDI-MPAS. Section 3 describes the formulation and implementation of JEDI-MPAS’s EnVar, followed by the

experimental design in section 4. The results of global cycling experiments are presented in section 5 and the paper is concluded

with section 6.

2 MPAS-A model

MPAS-A is a nonhydrostatic model discretized horizontally on an unstructured centroidal Voronoi mesh with C-grid staggering75

of state variables (Skamarock et al., 2012). It is run-time configurable to use either quasi-uniform or variable-resolution meshes,

and for either global or regional applications (Skamarock et al., 2018). MPAS-A adopts a height-based terrain-following vertical

coordinate ζ following Klemp (2011), in which the coordinate surfaces are progressively smoothed to remove smaller-scale

terrain structure.

MPAS-A’s prognostic equations employ flux variables that are coupled with density; that is, the prognostic variables in the80

discretized equations are

X = (U,W,Θm,Qj , ρ̃d) = (ρ̃du, ρ̃dw,ρ̃dθm, ρ̃dqj , ρ̃d), (1)

where ρd is the density of dry air, ρ̃d = ρd(∂ζ/∂z)
−1, u is the normal component of horizontal velocity at cell edges, w is

the vertical velocity at cell centers, qj represents the mixing ratio of the respective water species (water vapor, cloud liquid
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water, cloud ice, rain, snow, graupel, hail) denoted by (qv, qc, qi, qr, qs, qg, qh), and θm = θd[1 + (Rv/Rd)qv] is a modified85

moist potential temperature with θd the dry potential temperature and Rd and Rv the gas constants for dry air and water vapor,

respectively. The continuous prognostic equation set can symbolically be expressed as

∂X

∂t
= F (p,

ρd
ρm

,X, ......), (2)

where pressure p is obtained diagnostically from the equation of state, and ρm = ρd(1+qv +qc+qi+qr+qs+qg +qh) is the

density of moist air.90

The fully compressible nonhydrostatic equations are solved using the time-split integration technique described by Klemp

et al. (2007). To reduce the truncation error associated with the horizontal pressure gradient terms and the roundoff error

associated with the right-hand-side terms in the vertical momentum equation, the governing equations are rewritten in terms of

perturbation thermodynamic variables (ρ′d, Θ′m, p
′) relative to a hydrostatically-balanced reference state that is only a function

of the geometric height z.95

JEDI-MPAS not only uses MPAS as the forecast model for cycling data assimilation, but also leverages and extends certain

capabilities within MPAS. Crucially, JEDI-MPAS shares with MPAS the data structures for MPAS fields and accompanying

utilities for manipulating those fields, such as construction of new instances, parallel decomposition across processors, and

reading from or writing to files. JEDI-MPAS also depends on MPAS initialization steps that occur before a model integration,

in which input variables are converted to the MPAS prognostic variables given by
:::
Eq.

:
(1) and additional thermodynamic100

variables, such as p or ρd, are diagnosed as needed. In addition, JEDI-MPAS modifies MPAS routines for reading files by

splitting static and time-varying fields into separate files and reducing the number of time-varying fields retained (relative

to a restart file). These enhancements , which greatly decrease storage requirements, build on eariler work that was never

incorporated into released MPAS code (S.-Y. Ha and W. Skamarock, personal communication, 2019)
::::
build

:::
on

:
a
::::::::::
two-stream

::::
input

::::::::
approach

:::
for

::::::
MPAS

::::
data

:::::::::::
assimilation

::::::::
developed

:::
by

::::::::
Soyoung

:::
Ha

::::
with

:::::::
William

::::::::::
Skamarock,

::::::
which

::::
was

::::::::
expanded

::::
and105

::::::::::
implemented

:::
for

:::::::::::
JEDI-MPAS

::::::
cycling

:::::::::::
experiments. All changes necessary for JEDI-MPAS 1.0.0 are in a modified version of

MPAS-A (https://github.com/JCSDA/MPAS-Model) that is based upon the latest MPAS-A version 7.1.

The methodology of JEDI-MPAS DA in updating the MPAS model variables using the EnVar technique is given in the next

section.

3 Methodology of JEDI-MPAS EnVar110

3.1 Incremental variational analysis

The non-quadratic form of the cost function for a variational analysis is expressed as

J(x) =
1

2
(x−xb)

TB−1(x−xb) +
1

2
[H(x)−y]

1

2
[h(x)−y]

::::::::::

TR−1[H(x)−y]−1[h(x)−y]
::::::::::

, (3)

where the column vector x represents the model analysis variables distributed in a model’s horizontal grid and vertical co-

ordinate (and at different times if it is for a four-dimensional analysis), the subscript b indicates a background field which is115
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typically from a short-term model forecast, and the column vector y is the various types of observations irregularly distributed

in space and time. H
:
h is the observation operator that interpolates the model fields to observation locations and transforms

the analysis variables x to the observed quantities. B and R are the background and observation error covariance matrices,

respectively. The superscripts “–1” and “T” denote the inverse of a matrix and the transpose of a column vector, respectively.

With the introduction of a first-guess variable xg and letting δx = x−xg and δxg = xb−xg ,
:::
Eq.

:
(3) can be rewritten in120

the incremental form (Courtier et al., 1994) as

J(δx) =
1

2
(δx− δxg)TB−1(δx− δxg) +

1

2
(Hδx−d)TR−1(Hδx−d), (4)

where d = y−H(xg) ::::::::::::
d = y−h(xg) is the first-guess departure to observations (also called "the innovation vector") and H

is the linearized version of H
:
h
:
in the vicinity of xg . The gradient of the cost function with respect to δx

∇δxJ(δx) = B−1(δx− δxg) +HTR−1(Hδx−d) (5)125

shall vanish at the value δxa that minimizes the cost function, which leads to

(B−1 +HTR−1H)δxa = B−1δxg +HTR−1d. (6)

(6) is a linear algebra system Aδxa = b that can be solved iteratively with a minimization algorithm. The analysis of the full

field can be found with xa = xg+δxa. It is common practice that the minimization iterations (also referred to as "inner loop")

start from xg = xb and δxg = 0. Multiple outer loops can be used with the first guess xg (and thus δxg) updated from the130

analysis of the previous outer loop. In each outer loop, d is recalculated and H is re-linearized using the updated xg .

Several minimization algorithms are available in OOPS and the most extensively tested one in JEDI-MPAS is the “Derber-

Rosati” Inexact Preconditioned Conjugate Gradient (DRIPCG) algorithm (Golub and Ye, 1999; Derber and Rosati, 1989),

which is documented in https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-hosted.com/en/latest/inside/jedi-

components/oops/algorithmic_details/solvers.html. It is important to note that the DRIPCG algorithm introduces an additional135

initial vector δ̂xg = B−1δxg at the beginning of the inner loop so that the application of B−1 can be avoided if the initial guess

is taken as δxg = 0 (the case of the first outer loop), or if both δxg and δ̂xg are retained from a previous outer loop. In each

iteration of minimization, DRIPCG only requires the application of the background error covariance matrix B, which will be

described in the next subsection.

3.2 Background error covariance model for EnVar140

The modeling of the background error covariance matrix B is a key component of variational DA systems. OOPS’s hybrid-

EnVar follows the original form of Hamill and Snyder (2000), in which B in
:::
Eq. (4) is the weighted sum of the static back-

ground error covariance Bs and an ensemble-based covariance Be, i.e.,

B = βsBs +βeL ◦Be, (7)

where βs and βe are the scalar weights with βs +βe = 1, and L ◦Be denotes the Schur product (element-by-element) of the145

localization matrix L and the sample covariance matrix Be of the ensemble. Note that L is a correlation matrix with diagonal
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elements being 1 and off-diagonal elements smaller than 1 that reduce to zero for a certain distance between two model grid

points. Localization ameliorates the detrimental effects of sampling noise in Be by reducing spurious correlations between state

variables separated by large distances and by increasing the rank of the localized sample covariance relative to Be (Hamill et al.,

2001; Houtekamer and Mitchell, 2001).150

The modeling of the static covariance Bs for JEDI-MPAS will be presented in a separate paper. This article only describes

the pure EnVar algorithm, in which the weight of the static covariance is zero with βs = 0 and βe = 1. In each iteration of

DRIPCG minimization, Brk is calculated, where rk = b−Aδxk is the residual vector at the kth iteration and A and b are

defined by
:::
Eq. (6). In the case of pure EnVar with B = L ◦Be, Brk is actually evaluated in OOPS in the form

(L ◦Be)r =

Ne∑
m=1

x′
m ◦ [L(x′

m ◦ r)] , (8)155

where Ne is the ensemble size and x′m is (Ne− 1)−1/2 times the deviation of the mth member from the ensemble mean. That

is, (L ◦Be)r is given by taking the Schur product of each x′m with r, passing the result through L, taking the Schur product

of the result again with x′m, and finally summing over m.

To see that
:::
Eq. (8) is correct, write (L ◦Be)ij = Lij

∑Ne

m=1x
′
imx

′
jm and so the ith element of the vector (L ◦Be)r

[(L ◦Be)r]i =

Nx∑
j=1

Ne∑
m=1

Lijx
′
imx

′
jmrj =

Ne∑
m=1

x′im

Nx∑
j=1

Lij x
′
jmrj =

Ne∑
m=1

x′im[L(x′m ◦ r)]i, (9)160

where Nx is the dimension of the state vector. This gives
::
Eq.

:
(8). It is worth mentioning that OOPS does not take the α control

variable form of the hybrid-EnVar cost function used in other DA systems (e.g., Lorenc, 2003; Wang, 2010; Wang et al., 2013;

Schwartz et al., 2015), which do not perform the explicit calculation of
:::
Eq. (8).

Since the dimension of the localization matrix L is Nx×Nx, in-memory storage of the full matrix L is prohibitive and

the multiplication of L with a vector of size Nx can be computationally expensive for a high-resolution setting of the model.165

JEDI-MPAS 1.0.0 adopts the Normalized Interpolated Convolution from an Adaptive Subgrid (NICAS) method to model L

such that

L = NSCSTNT, (10)

where the correlation matrix C is defined on a coarse grid (i.e., subgrid), S is an interpolation operator to transform C on the

coarse grid to L on the full grid, and the diagonal normalization matrix N ensures that resulting L has diagonal entries equal170

to 1. The local resolution of the subgrid in NICAS adapts to the correlation length-scale to reduce computational cost while

retaining a reasonable approximation of the underlying continuous correlation function. Therefore, the convolution of L with

a vector becomes a sequence of computationally less-expensive operations with reduced memory usage compared to the use

of the full matrix L. NICAS is available in the BUMP, part of the SABER code repository.

BUMP/NICAS is implemented based upon an unstructured mesh that is naturally suited for JEDI-MPAS (also built on an175

unstructured mesh). This is a key feature that enables JEDI-MPAS to work seamlessly for global or regional domains with
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a quasi-uniform or variable-resolution MPAS mesh. More details about BUMP and NICAS are given by Ménétrier (2020)

(https://github.com/benjaminmenetrier/nicas_doc/blob/master/nicas_doc.pdf).

To further reduce the computational cost, a dual-resolution capability is implemented in JEDI-MPAS’s EnVar, in which the

background and analysis (thus first guess departure calculation) are at the same resolution as that for the model forecast, but180

the analysis increment and ensemble input (thus inner loop minimization) are at a lower resolution. While this study evaluated

3DEnVar, JEDI-MPAS can be run with the 4DEnVar mode, which assimilates observations at more appropriate times by having

the background and analysis files as well as the ensemble input at multiple times within the assimilation time window.

3.3 Analysis variables and variable transforms

One important aspect in designing a DA system is the choice of analysis variables (i.e., x). JEDI-MPAS uses as analysis185

variables the cell-center values of temperature (T ), specific humidity (q), zonal and meridional components of horizontal

velocity (v), and surface pressure (ps). Optionally, mixing ratios of five hydrometeors (cloud liquid water, cloud ice, rain,

snow, and graupel) can also be included as analysis variables when assimilating cloud-/precipitation-affected observations. We

chose these analysis variables because of our experience with modeling background-error covariances for similar variables

in WRFDA and because use of T rather than θ will reduce nonlinearity in the observation operators for many conventional190

observations and for satellite radiances.

After obtaining the analysis increment for (T , q, v, ps) by iteratively solving
::
Eq.

:
(6), several additional steps are followed

to arrive at a full-field analysis for variables closer to the MPAS prognostic variables:

1. Transform the cell-center v increments to increments of u, the normal component of horizontal velocity at cell edges, by

averaging the corresponding component of the v increment from the cells adjacent a given edge. Obtain the full-field analysis195

of u by adding increments to the first guess.

2. Get the full field analyses of T , q, and ps (and optionally hydrometeors) by adding analysis increments to the first guess.

Calculate the water vapor mixing ratio analysis with qv = q/(1− q).

3. Diagnose the full field analyses of 3D pressure p and dry air density ρd using T , qv , and ps by applying the hypsomet-

ric equation p(z2) = p(z1)exp(− g
Rd

∫ z2
z1

dz
Tv

) and the equation of state of moist air ρd = p/[(1 + qv + ...)RdTv] with virtual200

temperature Tv = (1 + 0.608qv)T . Note that the hypsometric equation, which implies hydrostatic balance, is applied upward

layer-by-layer starting from the ground with the analysis field of ps.

4. Update dry potential temperature θd = T

(
p0
p

)Rd/cp

, with cp the specific heat of dry air at constant pressure and p0 =

1000hPa a reference pressure.

Sensitivity experiments showed that the hydrostatic balance constraint in Step 3 is important for JEDI-MPAS to cycle stably205

by allowing surface pressure observations to constrain upper air fields.
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3.4 Observation handling and all-sky radiance DA

In JEDI-MPAS, observations I/O and in-memory storage are handled through IODA, which is one of model-agnostic com-

ponents of JEDI and reads specific netCDF4 (based on hdf5) format observation input files, and outputs DA feedback files.

UFO, another model-agnostic component of JEDI, consists of non-linear observation operators and associated tangent linear210

and adjoint (TL/AD) (and/or Jacobian) operators. At the time of this study, quality control (QC) procedures and radiance bias

correction algorithms within the UFO are still under development, and thus the GSI DA system (Shao et al., 2016) is used

as a data preprocessor to perform QC of observations and radiance bias correction. GSI observation feedback files in the so-

called gsi-ncdiag format are converted into the IODA-v2 format and then assimilated into JEDI-MPAS. Therefore, mainly two

QC filters are applied in JEDI-MPAS experiments (see section 4). One uses QC flags generated by GSI and another is the215

"background check" filter, which discards observations with first guess departures larger than three times the observation error

standard deviation. For surface pressure (ps) data, additional QC is applied to reject observations with differences between the

model terrain height and station elevation larger than 200 meters. Terrain correction is also applied to ps data following Ingleby

(2014).

In recent years, leading operational NWP centers assimilate increasingly more satellite radiance data under cloudy situations,220

with most successes in using all-sky microwave radiances (e.g., Geer et al., 2017, 2018; Zhu et al., 2016, 2019; Migliorini and

Candy, 2019). JEDI-MPAS allows the assimilation of all-sky radiance data with the introduction of hydrometeor analysis

variables, cloudy radiance observation operator via the Community Radiative Transfer Model (CRTM) (Liu and Weng, 2006),

and situation-dependent all-sky observation error models (Geer and Bauer, 2011). While all-sky radiance DA in JEDI-MPAS

can be applied to data from both microwave and infrared sensors, this study evaluates only microwave all-sky radiance DA from225

AMSU-A window channels 1-4 and 15 over water. The AMSU-A all-sky radiance error model follows Zhu et al. (2016), in

which the observation error is a piecewise-linear ramp function (see section 4) of the model-observation-averaged cloud liquid

water path (cobs+cfg)/2 retrieved from the AMSU-A channel 1’s and 2’s brightness temperatures. Zhu et al. (2016) assimilated

AMSU-A window channels only for non-precipitating clouds due to the lack of precipitation variables in the microphysics

scheme used in their study. In contrast, with the WSM6 microphysics scheme (Hong and Lim, 2006) used in this study and230

all five hydrometeor variables included in the analysis variables, JEDI-MPAS assimilates AMSU-A window channel radiances

in both non-precipitating and precipitating cloudy situations with a full all-sky approach. Note that microwave radiances are

assimilated in terms of brightness temperature in units of Kelvin. For the sake of simplicity, we will interchangeably use

radiance and brightness temperature throughout the article.

4 Experimental design235

We evaluate JEDI-MPAS 3DEnVar’s performance with month-long (April 15 - May 14, 2018) cycling experiments. Although

this is not an observational impact study, incrementally adding satellite radiance data and evaluating their impact is informative

about the implementation correctness and the robustness and performance of the system. In this regard, four 6-hourly cycling

dual-resolution 3DEnVar experiments are conducted with a global quasi-uniform 30-km
::
30

:::
km mesh for high-resolution anal-
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Table 1. Observations assimilated in the four cycling 3DEnVar experiments.

Experiments Assimilated Obs

conv radiosondes, aircraft, GPS refractivity, atmospheric motion vectors, surface pressure

clrama obs in conv + clear-sky AMSU-A radiances (ch 5-9) from NOAA-15/18/19, METOP-A/B, Aqua

cldama obs in clrama + all-sky over-water AMSU-A radiances (ch 1-4, 15) from NOAA-15/18/19, METOP-A/B

clrmhs obs in cldama + clear-sky MHS radiances (ch 3-5) from NOAA-18/19, METOP-A/B

ysis/background and a 60-km
::
60

:::
km

:
mesh for low-resolution increment and ensemble input. The first analysis is at 0000 UTC240

15 April 2018 with the background being a 6-h
:
6
::
h forecast initialized from the NCEP’s Global Forecast System (GFS) analysis

at 1800 UTC 14 April. From the second analysis through the final analysis at 1800 UTC 14 May, the background is a 6-h
:
6
::
h

forecast initialized from the previous cycle’s JEDI-MPAS analysis. The first guess departure is computed using the 30-km
::
30

:::
km background and the minimization is performed on the 60-km

::
60

:::
km

:
mesh. Each DA analysis uses two outer loops, each

with 60 inner iterations. 20-member
:::::::::::::
Twenty-member

:
ensemble input on the 60-km

::
60

:::
km

:
mesh is generated from 6-h

:
6
::
h245

MPAS model forecasts initialized from the NCEP’s 20-member Global Ensemble Forecast System (GEFS) ensemble analysis

(Zhou et al., 2017).

The four experiments differ from each other by assimilating different sets of observations, as listed in Table 1. The conv

experiment assimilates: temperature, specific humidity, and zonal and meridional wind components from radiosondes and

aircraft; GPS refractivity; atmospheric motion vectors (AMVs) retrieved from geostationary and polar-orbiting satellite sensors;250

and surface pressure (ps). In addition to the observations used in conv, the clrama experiment assimilates clear-sky AMSU-

A radiances (channels 5-9) from six satellites (NOAA-15/18/19, METOP-A/B, Aqua; omitting platforms and channels that

had failed before the experimental period). The cldama experiment further adds over-water AMSU-A window channels

(channels 1-4 and 15) all-sky radiances from five satellites. Note that Aqua AMSU-A channels 1 and 2, which are needed

for the all-sky observation error model (see section 3.4), are not available, and thus Aqua AMSU-A window channels are255

excluded in cldama. We use the fourth experiment, clrmhs, to evaluate the additional benefit of assimilating three water

vapor channels from MHS onboard four satellites (NOAA-18/19, METOP-A/B) under clear sky conditions. Data thinning is

applied to AMSU-A and MHS radiance data with a 145 km thinning mesh. All four experiments use a ±3-h
:
3
:
h
:
time window.

All-sky observation error statistics were computed separately for five AMSU-A sensors using the observations minus the

CRTM-simulated brightness temperatures from the 6-h
:
6

:
h
:
forecast background fields (i.e., O minus B) of the clrama exper-260

iment over the month-long period. Figure 1 gives an example of the all-sky observation error model for NOAA-19 AMSU-A

channel 15 at 89 GHz. The blue curve is the statistics of the standard deviation of O minus B as a function of the model-

observation-averaged cloud liquid water path c= (cobs + cfg)/2. The red curve gives the number of observations (the right

y-axis) used in each bin’s statistics (0.01 kg/m2 bin interval). The dashed black curve is the fitted piecewise-linear ramp
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Table 2. Parameterisation schemes in the ‘mesoscale reference’ physics suite.

Parameterisation Scheme

Convection New Tiedtke (Tiedtke, 1989; Zhang and Wang, 2017)

Microphysics WSM6 (Hong and Lim, 2006)

Land surface Noah (Chen and Dudhia, 2001)

Boundary layer YSU (Hong et al., 2006)

Surface layer Monin-Obukhov (Jiménez et al., 2012)

Radiation, longwave/shortwave RRTMG (Iacono et al., 2008)

Cloud fraction for radiation Xu-Randall (Xu and Randall, 1996)

Gravity wave drag by orography YSU (Choi and Hong, 2015)

function of the blue curve in the form (Geer and Bauer, 2011)265

σo =


σclr, if c≤cclr
σclr + (σcld−σclr) c−cclr

ccld−cclr , if cclr <c≤ccld
σcld, if c >ccld

, (11)

which serves as the observation error model for this particular channel with cclr = 0.03, ccld = 0.24, σclr = 6.33, and σcld =

19.24. The four numbers for each of channels 1-4 and 15 of five AMSU-A sensors are provided in the supplemental configu-

ration file of JEDI-MPAS (jedi_mpas.yaml), which specifically describes the configuration for the clrmhs experiment.

BUMP has the ability to diagnose horizontal and vertical localization length scales with geographical variation. For a rela-270

tively small ensemble size, however, BUMP-diagnosed localization length scales may not be optimal. Therefore, we used the

fixed localization scale values in this study, which is not uncommon for ensemble DA. After some sensitivity testing, we use

1200 km and 6 km for the horizontal and vertical full widths of Gaspari and Cohn (1999) localization function (Eq. 4.10),

respectively. That function reduces the spatial correlation to zero when the distance between two locations is greater than the

full width.275

The MPAS-A model is configured with a 30-km
::
30

:::
km

:
quasi-uniform mesh and 55 vertical levels with a 30 km model

top. The "mesoscale reference" physics suite is used with the parameterization schemes listed in Table 2. A time step of 180

seconds is applied for the model time integration. We used the same "mesoscale reference" physics suite to generate the 6-h
:
6

:
h
:
MPAS ensemble forecasts on the 60 km mesh that comprise the sample ensemble covariances.
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5 Evaluation Results280

5.1 Short-term forecasts

Here we assess the DA cycling performance of the four experiments by examining the first guess departure (i.e., observa-

tion minus background or OMB) statistics, similar to the diagnostic commonly monitored at operational NWP centers (e.g.,

https : //www.ecmwf.int/en/forecasts/charts/obstat/). Additionally, we present error statistics of 6-h
:
6

::
h forecast

backgrounds with respect to the NCEP’s GFS analysis to more clearly assess the geographic and vertical variations of the285

cycling performance.

5.1.1 Observation space verification

Figure 2 displays time series of mean and root mean square (RMS) values of OMB for AMV zonal and meridional wind

components from the four experiments. Overall the mean and RMS give the same indication regarding
::::::::
consistent

:::::::::::
performance

::::::::
indication

:::
for

:
the four experiments’ relative performances. For zonal wind, the conv experiment has the largest bias and290

RMSE; adding clear-sky AMSU-A radiances leads to substantial error reduction in terms of both bias and RMSE; further

adding all-sky AMSU-A window-channels’ radiances additionally reduces the RMSE. The red curves (clrmhs) are basically

overlaid with the green curves (cldama), indicating a neutral impact on 6-h
:
6

:
h
:
wind forecasts by adding clear-sky MHS water

vapor radiances to all-sky AMSU-A radiances. The statistics of OMB for AMV meridional wind component indicate similar

relative experiment performances overall, except for a slightly positive impact for clrmhs versus cldama.295

Figure 3 compares the 6-h
:
6

:
h
:
forecast fits to radiosonde observations from the three radiance DA experiments with that of

the conv experiment. Shown in Fig. 3 are relative differences between RMS of OMB from the three radiance DA experiments

and that from the conv experiment, given by

ratio= 100× (RMSEXP −RMSconv)/RMSconv, (12)

where EXP can be clrama, cldama, or clrmhs. Negative ratios indicate positive impacts from EXP relative to conv,300

and vice versa. Different magnitudes of ratio among the three radiance experiments give their relative performance. A 95%

confidence interval is shown at each pressure level as an error bar, which is computed using bootstrap re-sampling (Hamill,

1999), with a re-sample size of 10,000. The RMS difference betweenEXP and conv at each cycle is treated as an independent

sample in the bootstrap. Assimilating clear-sky temperature sounding channels from clrama has small impacts on humidity

(blue curve in Fig. 3b), whereas large positive impacts on moisture are obtained by adding all-sky AMSU-A and clear-sky305

MHS radiances. The impact on virtual temperature (Tv) is mostly from AMSU-A clear-sky temperature sounding channels,

and the additional benefit on Tv from all-sky AMSU-A and clear-sky MHS radiances is relatively small (Fig. 3a). Note
:::
The

:::::
reason

:::
we

:::::
show

::::
here

:::
Tv ::::::

instead
::
of

::
T

::
is
:
that the majority of radiosonde temperature observations in GSI’s ncdiag files is

:::
are

expressed in terms of Tv . RMS decreases up to 5% for zonal wind (Fig. 3c) and 2% for meridional wind (Fig. 3d) from clrama,

likely caused by the mass-wind balance implied in the ensemble background error covariance. The extra benefit on wind fields310

from AMSU-A all-sky window channel radiances is confined to 200 - 800 hPa. Additional positive impact on winds between
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300 hPa and 650 hPa is achieved by adding MHS clear-sky water vapor channels’ radiances. Each of the three radiance DA

experiments exhibit, to a different extent, improvement with respect to the conv experiment for all four observed radiosonde

variables at almost all pressure levels.

Among the four experiments, both cldama and clrmhs assimilate AMSU-A all-sky radiances from the window channels315

(ch 1-4 and 15). It is expected apriori that assimilating MHS water vapor channels’ radiances in cldmhs
:::::::
clrmhs will im-

prove background fitting to those AMSU-A all-sky radiances. That is indeed the case in Fig. 4. clrmhs achieves statistically

significant improvement up to 2.5% at tropical latitudes for AMSU-A channel 1 (Fig. 4a), while positive impacts from MHS

radiances are smaller and less significant for other AMSU-A window channels (Figs. 4b-d). This is because AMSU-A channel

1 (23.8 GHz) is more sensitive to water vapor and clouds than other AMSU-A window channels.320

5.1.2 Model space verification

Similar to Figs. 2-4, Figures 5-7 evaluate the 6-h
:
6
:
h
:
forecast backgrounds in model space relative to GFS analyses. Figure 5

shows the time series of global RMSE of the four experiments for four surface variables. Note that the background for the first

analysis at 0000 UTC 15 April 2018 is a 6-h
:
6

:
h forecast initialized from the GFS analysis. GFS utilizes a hybrid-4DEnVar DA

technique via the GSI system (Kleist and Ide, 2015), and includes assimilation of many more satellite observations than those325

used in our own cycling experiments. Smaller RMSEs for the first 2-3 days come from the memory of the superior performance

of the operational analysis. Cycling performance quickly converges to a stable level for the three radiance DA experiments due

to the good global coverage of observations. Gradually increasing errors are clearly seen in the conv experiment for 2-meter

temperature (T2), 10-m
::::::::
10-meter zonal wind (u10), and ps, which is caused by sparse coverage of non-radiance data over the

Southern Hemisphere. The impacts of AMSU-A clear-sky and all-sky radiances and MHS clear-sky radiances are consistent330

with those shown in upper air observation space of Fig. 3.

Similar to Fig. 3, Figure 6 presents the vertical distribution of the global percentage RMSE difference of cldama and

clrmhs relative to clrama. Figure 6 yields similar conclusions as Fig. 3, but the magnitudes of improvement in model space

(Fig. 6) are larger than those in observation space (Fig. 3), because the model space verification covers the entire globe. The

most drastic improvement is for water vapor mixing ratio with nearly 20% RMSE decrease at model level 15 (∼2.2 km or335

∼700 hPa) by assimilating AMSU-A all-sky radiances and >20% improvement at model level 30 (∼8.8 km or ∼330 hPa)

when adding both AMSU-A all-sky radiances and MHS clear-sky radiances (Fig. 6b). One noticeable issue is the negative

impact for temperature near the model top (Fig. 6a), which is believed to be related to an increasing cold bias during the

cycling (not shown). A biased model top makes radiance DA less effective. Note that the MPAS-A model currently lacks

processes for representing O3 chemistry and that a climatological O3 field is used, leading to inaccurate radiation calculations340

attributed to O3. Work is underway to add a parameterized O3 chemistry scheme (McCormack et al., 2006) and include O3 as

a prognostic variable in MPAS-A.

Figure 7 is similar to Fig. 6, but depicts the latitudinal variation of relative RMSE reduction for several variables. For ps, the

greatest impact is between 25◦ S-50◦ S (Fig. 7a), and large RMSE reductions are also seen in North and South Pole regions for

the clrmhs experiment (Fig. 7a). The large RMSE reduction from clrmhs in the Arctic is apparently associated with a reduc-345
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tion of a ∼1 hPa low pressure bias in the conv, clrama, and cldama experiments (not shown). For the other three variables,

the greatest impact is within tropical regions (Figs. 7b-d). In addition to the large benefit on moisture from the addition of

MHS water vapor channels’ radiances (Fig. 7b), the impact of MHS radiances on the meridional wind component (Fig. 7d) is

also substantial and significant, possibly indicating an improved representation of equatorial convergence-divergence patterns

associated with convective activity.350

These observation-space and model-space evaluations of short-term forecasts demonstrate that the JEDI-MPAS 3DEnVar

scheme behaves well for the assimilation of clear-sky and all-sky microwave radiance data. More accurate background fields

are obtained by adding more and more radiance data.

5.2 1-to-10-day forecasts

This subsection examines the 1-to-10-day forecast performance relative to GFS analyses, independent radiance data from the355

Advanced Himawari Imager (AHI), and a global precipitation product. Twenty-seven 10-day forecasts initialized each day at

0000 UTC from 18 April to 14 May, 2018 are used to produce the error statistics. The first three days (15 - 17 April) are

considered as the spin-up period for each experiment to converge from the GFS climatology to JEDI-MPAS’s own cycling

climatology and thus are not included in the forecast evaluation. The three radiance DA experiments significantly outperform

the conv experiment. Therefore, we only evaluate the cldama and cldmhs
:::::::
clrmhs experiments, from here considering the360

clrama experiment as the benchmark.

5.2.1 Model space verification

Figure 8 displays relative RMSE reductions (with respect to GFS analyses) as a function of forecast lead time for three surface

and three upper air variables. Due to a temperature bias at the model top, as described in Sec. 5.1 in relation to Fig. 6a,

the evaluation on temperature is limited to below model level 30. We also exclude the moisture assessment above model365

level 30, where the air is very dry. In general, adding AMSU-A all-sky radiances produces more accurate forecasts for all

variables compared to the AMSU-A clear-sky radiance experiment, and extra MHS clear-sky radiances further reduce forecast

errors. Percentage improvements and associated statistical significance decrease with forecast range, but can last up to 10

days, especially for the clrmhs experiment. Note that forecast errors increase with forecast lead time and thus absolute

error reduction could be increased or flat at certain forecast lead times even with decreasing percentage improvement. The370

greatest improvement from clrmhs is for upper air moisture with up to 10% and >1% RMSE reduction for day-1 and day-10,

respectively (Fig. 8e). The improvement for moisture remains statistically significant for the whole 10-day forecast range, while

that is not the case for other variables. This result is consistent with AMSU-A window channels’ and the three MHS channels’

large sensitivity to water vapor (and clouds for AMSU-A all-sky radiances). Large impacts are also seen on Q2m (Fig. 8b),

though to a lesser extent than is seen for upper air moisture. Conversely, the impact is the smallest on temperature (Fig. 8d)375

with only ∼1% and 3% improvement for the day-1 forecast from cldama and clrmhs, respectively. The magnitudes of

improvement on ps and the zonal wind are comparable to each other, gradually decreasing from an initial∼5% RMS reduction

for the day-1 forecast.
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Figure 9 shows the impact on moisture and zonal wind over three different regions. The largest impact is over the tropical

region for both variables, which is consistent with the short-term forecast impact as shown in Figs. 7b-c. The smallest impact is380

between 30◦ N and 90◦ N, where conventional observations have good coverage. One interesting thing is that the impact over

the Tropics exhibits a clear decreasing trend with forecast range, but this decreasing trend is not always present poleward of

30◦ . This might be related to the different levels of convective weather activity between low and middle/high latitudes.

Figure 10 more clearly depicts the relative impact of clrmhs with respect to cldama for four upper air variables. Again,

the greatest and most significant improvement (up to 7 days) achieved by adding MHS water vapor channels’ radiances is on385

moisture with 2.5% RMSE reduction for day-1 and still retaining ∼1% for day-7 (Fig. 10b). The magnitude of MHS radiance

impact on temperature (Fig. 10a) is comparable with that of moisture, but less statistically significant. The MHS impact on the

wind field is smaller, but the percentage of improvement remains nearly unchanged with the forecast lead time for up to day-8

for zonal wind (Fig. 10c) and day-6 for meridional wind (Fig. 10d). Similar to the impact on short-term forecasts shown in Fig.

7, the MHS radiance impact on meridional wind (∼1.5%) is 50% greater than that for the zonal wind (∼1%) up to day-6.390

5.2.2 Verification against AHI radiances

JEDI-MPAS also has the capability of simulating and assimilating clear-sky and cloudy infrared (IR) radiances such as those

from the geostationary satellite sensor Advanced Himawari Imager (AHI). CRTM’s cloudy IR radiance simulation capability

with JEDI-MPAS is used to evaluate 1-to-10-day forecasts using independent (i.e., not assimilated) AHI full-disk radiance

data centered at 140.7◦ E. Using the JEDI-MPAS HofX3D application, and in conjunction with UFO, CRTM takes the forecast395

temperature, moisture, and hydrometeor profiles at AHI locations to compute modeled AHI radiances. Then we compare

the simulated and observed AHI brightness temperatures offline. Before being ingested into JEDI-MPAS, the raw AHI IR

channels’ data at 2 km resolution undergo cloud detection at each pixel following Wu et al. (2020) and are preprocessed into

super-observations averaged over 15x15 pixels. The cloud detection and super-obbing are carried out offline using WRFDA.

These super-observations better match the model’s 30-km
::
30

:::
km

:
mesh, reducing representativeness errors. A by-product of400

cloud detection on the raw AHI pixels and super-obbing is the cloud fraction for each super-observation, which allows statistical

evaluation separately over clear, partly cloudy, and overcast observations.

Figure 11 shows the relative RMSE reduction as a function of forecast range in AHI radiance space for all super-obbed

pixels of six channels. Among them, channels 8-10 are water vapor (WV) channels sensing the middle-to-upper tropospheric

moisture and bands 13-15 are window channels sensitive to surface properties and clouds. The patterns of the RMSE reduction405

across different channels are very similar and overall consistent with those in the model space variables shown in Figs 8-9.

The impact of cldama and clrmhs for the higher peaking channel 8 (350-400 hPa) is larger than that for the lower peaking

channel 10 (600-700 hPa), which is consistent with the vertical distribution of humidity RMSE reduction shown in Fig. 6b.

Improved fitting to the three window channels (relative to clrama) is most likely evidence of improved cloud forecasts, with

significance at least up to day-4. Figure 12 further splits error statistics into clear, partly cloudy, and fully cloudy pixels for410

the lower peaking WV channel 10. Over the verification period, clear, partly cloudy, and fully cloudy pixels account for 28%,
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33%, and 39% of observations, respectively. The relative impact from cldama and clrmhs decreases with more cloudiness.

The absolute RMSE reduction, however, is comparable for the three categories due to increased RMSE with more cloudiness.

5.2.3 Precipitation forecast verification

24-h
::::::::::::::
Twenty-four-hour

:
accumulated precipitation forecasts from the four experiments are verified against the Climate Predic-415

tion Center’s morphing technique (CMORPH) 0.25◦ precipitation product (Xie et al., 2017). Figure 13a gives the Gilbert Skill

Scores (GSS) (also known as Equitable Threat Score, ETS) (Hogan et al., 2010) computed for the observed and predicted

24-h
::
24

::
h accumulated rainfall ≥ 10 mm using the Model Evaluation Tool (MET) (Brown et al., 2021). The GSS ranges from

-1/3 to 1 with ≤0 corresponding to no skill and 1 to perfect skill.
:::
An

:::::::::::
improvement

::
of

:
5-8% improvement is gained up to

day-7 precipitation forecast from AMSU-A temperature-sounding radiance DA when compared to the non-radiance DA ex-420

periment. A further 5-12% improvement is achieved by adding AMSU-A all-sky radiances and MHS radiances for up to day-6

(Fig. 13b). From precipitation forecast verification here and other aspects of forecast verification shown earlier, JEDI-MPAS’s

AMSU-A all-sky DA exhibits a larger positive impact than those at operational centers (e.g., Zhu et al., 2016; Migliorini and

Candy, 2019). This might be partly related to the use of the full all-sky approach in JEDI-MPAS whereas Zhu et al. (2016)

and Migliorini and Candy (2019) assimilated AMSU-A all-sky radiances only under non-precipitating conditions. Also, ob-425

taining additional benefit above a well-tuned operational system with abundant satellite observations, as in Zhu et al. (2016)

and Migliorini and Candy (2019), is much harder than for the benchmark experimental settings used in this study.

5.2.4 Anomaly correlation coefficient for 500 hPa geopotential height

Figure 14 provides global Anomaly Correlation Coefficients (ACC) of 500 hPa geopotential height as a function of forecast

range for the four JEDI-MPAS experiments together with the cold start forecast experiment using GFS analyses as initial con-430

ditions (light blue, marked as cold). The climatology derived from the 1980-2010 NCEP/NCAR reanalysis products (Kalnay

et al., 1996) is used in the ACC calculation. The largest improvement on ACC is from AMSU-A temperature sounding chan-

nels, gaining a half day of skill (from 4.5 days to 5 days) with respect to the non-radiance experiment for 0.8 ACC level.

Further ACC improvement by adding AMSU-A all-sky window channels and MHS clear-sky WV channels is visible, but

much smaller than that gained by AMSU-A clear-sky temperature-sensitive channels. This could be understandable with the435

tight link between temperature and geopotential height. The cold start forecasts from GFS analyses reach 5.5 days for 0.8 ACC

level and outperforms JEDI-MPAS’s three radiance DA experiments by half a day. Given that the operational GFS analysis is

produced with a more advanced hybrid-4DEnVar algorithm (Kleist and Ide, 2015) at a higher resolution and with ensemble

covariances formed by 80-member ensemble input, plus the assimilation of many more satellite observations, this half day gap

on ACC is not surprising with a less advanced
:::::::::::
less-advanced

:
pure 3DEnVar algorithm, a smaller ensemble size, and less

:::::
fewer440

observations assimilated in JEDI-MPAS experiments.
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6 Conclusions and future perspectives

A new DA system for the MPAS-A model has been developed based upon the JEDI software framework and was publicly

released as JEDI-MPAS 1.0.0 for community use. This article describes the EnVar’s formulation and technical implementation

of JEDI-MPAS and evaluates its robustness and performance through four global cycling 3DEnVar experiments. JEDI-MPAS445

is robust with stable cycling over a month-long period and behaves well, with positive impacts obtained when adding more and

more microwave radiance data for most aspects of assessment in both observation- and model-space. One advanced feature

developed with JEDI-MPAS is all-sky radiance DA capability along with the introduction of hydrometeor analysis variables,

which is first applied to the assimilation of all-sky radiances from AMSU-A’s five window channels. Large impacts are achieved

from AMSU-A all-sky DA, especially for moisture, clouds, and precipitation forecasts. Credible forecast skill is seen from the450

assimilation of a subset of conventional and satellite observations used in operational NWP centers, with a half day skill gap

relative to forecasts initialized from GFS analyses for the 0.8 ACC level of 500 hPa geopotential height. It is expected that the

forecast performance can be further improved to be closer to operational skill by using a more advanced DA algorithm such as

4DEnVar, a larger ensemble size, more satellite data, a higher model resolution, and fine tuning of DA settings, as well as by

improving the MPAS model. JEDI-MPAS can also perform deterministic analyses using 3DVar and ensemble analyses using455

the EDA technique. The implementation and evaluation of 3DVar and EDA will be described in separate articles. JEDI-MPAS

in regional mode and with a variable resolution will also be evaluated with higher resolutions.

The general JEDI software framework and more specific JEDI-MPAS DA system are still undergoing active development

since the JEDI-MPAS 1.0.0 release. One new development specific to JEDI-MPAS is to change the hydrostatic balance con-

straint in the full fields to the increment fields, which can still allow surface pressure observations to constrain the upper air460

variables but is better suited for the non-hydrostatic MPAS-A model. Initial tests of this new linear hydrostatic balance con-

straint show improvement, especially near the model top. Other ongoing work on the model side is to introduce a parameterized

O3 chemistry scheme (McCormack et al., 2006) and include O3 as a prognostic variable in MPAS-A, which should reduce

temperature bias in the stratrosphere and also allow the assimilation of satellite-based O3 observations. Improving stratro-

sphere processes will allow the use of a high model top, that will enable the assimilation of higher-peaking radiance data.465

All-sky radiance DA for both microwave and infrared sensors continues to be refined with JEDI-MPAS. One important feature

missing in the released JEDI/UFO, but available in the "develop" branch of the UFO, is the variational bias correction (VarBC)

for satellite radiance data (Auligné et al., 2007; Dee and Uppala, 2009; Zhu et al., 2013), which is undergoing active testing

and evaluation with JEDI-MPAS at the time of this writing. The quality control procedures of several types of observations

implemented in the UFO are also being tested with assimilation of raw NCEP-bufr converted observation input files with the470

goal of eliminating reliance on GSI for quality control. Moreover, the computational efficiency of JEDI is being improved. We

intend to periodically release new and improved versions of JEDI-MPAS in upcoming years.
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Figure 1. All-sky observation error model for NOAA-19 AMSU-A channel 15. See text
:::
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Figure 2. Time series (0000 UTC 15 April - 1800 UTC 14 May, 2018) of (a, b) mean and (c, d) RMS of OMB for AMV (a, c) zonal and (b,

d) meridional wind components
:::::
(units:

:::::
ms−1)

:
from the four experiments. The background is a 6-h

:
6
::
h forecast. Statistics are computed over

the globe and averaged for all vertical levels.
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Figure 3. Vertical distributions of relative RMS reduction of OMB for radiosonde’s (a) virtual temperature(Tv), (b) specific humidity(q),

(c) zonal wind, and (d) meridional wind. Statistics are computed over the period from 0000 UTC 18 April to 1800 UTC 14 May 2018

for the three radiance DA experiments against the conv experiment. Negative percentage indicates the positive impact from radiance DA

experiments relative to the non-radiance DA experiment.
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Figure 4. Similar to Fig. 3, but for latitudinal variation of relative RMS reduction of OMB for NOAA-19 AMSU-A ch 1-3 and 15 for

clrmhs versus cldama.
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Figure 5. Time series (0000 UTC 15 April - 1800 UTC 14 May, 2018) of RMSE of cycling background with respect to GFS analyses for

global (a) temperature
::::
(units:

::::::
Kelvin)

:
and (b) specific humidity

:::::
(units:

:
g
:::::
kg−1)

:
at 2 meters, (c) zonal wind component

:::::
(units:

::::::
ms−1) at 10

meters, and (d) surface pressure
:::::
(units:

:::
Pa) from the four experiments.
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Figure 6. Vertical distributions of relative RMSE reduction (with respect to GFS analyses) reduction of cycling background for global (a)

temperature, (b) water vapor mixing ratio, (c) zonal wind, and (d) meridional wind (cldama and clrmhs versus clrama). Statistics are

for the period from 0000 UTC 18 April to 1800 UTC 14 May, 2018.
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Figure 7. Similar to Fig. 6, but for latitudinal variations of RMSE reduction for (a) surface pressure, (b) water vapor mixing ratio of model

level 21 to 30, and the whole column (c) zonal wind and (d) meridional wind.
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Figure 8. Relative RMSE reductions (with respect to GFS analyses) as a function of forecast lead time for global (a) surface pressure, (b)

specific humidity at 2 meters, (c) zonal wind at 10 meters, (d) temperature and (e) water vapor mixing ratio below model level 30, and (f) the

whole column zonal wind (cldama and clrmhs versus clrama). Statistics are aggregated over all 27 forecasts.
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Figure 9. Similar to Fig. 8, but for water vapor mixing ratio below model level 30 and zonal wind over the three regions (NXTro: 30◦ N -

90◦ N; Tro: 30◦ S - 30◦ N; SXTro: 30◦ S - 90◦ S)
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Figure 10. Similar to Fig. 8, but for clrmhs versus clrdma of four upper air variables
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Figure 11. Similar to Fig. 8, but for RMSE in AHI six channels’ brightness temperature space.

Figure 12. Similar to Fig. 11, but for AHI channel 10’s error statistics over
::
(a)

:
clear,

::
(b) partly cloudy, and

::
(c)

:
fully cloudy pixels, respectively.
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Figure 13. (a) Gilbert Skill Scores (GSS) of 24-h
:
24

::
h
:
accumulated precipitation forecast verified against CMORPH observations for a

threshold of 10 mm; (b) Relative difference of GSS between cldama/clrmhs and clrama, also for a threshold of 10 mm.
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Figure 14. Global Anomaly Correlation Coefficients of 500 hPa geopotential height as a function of forecast lead time for the four cycling

experiments together with the cold start forecast initalised
:::::::
forecasts

:::::::
initialized

:
from GFS analyses (light blue).
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