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Abstract. The integrated distributed hydrological model ParFlow-CLM was used to predict water and energy transport 

between subsurface, land surface, and atmosphere for the Stettbach headwater catchment, Germany. Based on this model, a 

global sensitivity analysis was performed using the Latin-Hypercube (LH) sampling strategy followed by the One-factor-At-10 

a-Time (OAT) method to identify the most influential and interactive parameters affecting the main hydrologic processes. In 

total 12 parameters were evaluated including soil hydraulic properties, storage, Manning coefficient, leaf area index, stem area 

index, and aerodynamic resistance that characterize water and energy fluxes in soil and vegetation. In addition, the sensitivity 

analysis was also carried out for different slopes and meteorological conditions to test the transferability of the results to 

regions with other topographies and climates. Our results show that the simulated energy fluxes, i.e. latent heat flux and 15 

sensible heat flux are sensitive to the parameters such as wilting point, leaf area index, and stem area index, especially for 

steep slope and subarctic climate conditions. The simulated soil evaporation, plant transpiration, infiltration, and runoff, are 

most sensitive to soil porosity, the van Genuchten parameter n representing the soil pore size distribution, soil wilting point, 

and leaf area index. The subsurface soil water storage and groundwater storage are most sensitive to soil porosity, while the 

surface water storage was most sensitive to the soil roughness parameter. For the different slope and climate conditions, the 20 

rank order of input parameter sensitivity is consistent, but the magnitude of parameter sensitivity is very different. The strongest 

deviation in parameter sensitivity occurred for sensible heat flux under the different slope conditions as well as for transpiration 

under different climate conditions. Overall, this study provides an insight into the most important input parameters that control 

hydrological fluxes and how the simulated variables vary with the change in parameter values, which can improve our 

understanding of the key processes in the model and help us to reduce the computational demands of completing multiple 25 

simulations of expensive domains.   

1 Introduction 

Ever growing water demands and changing climatic conditions cause increasing pressure on surface water and groundwater 

resources. A rigorous quantitative understanding of the interactions and feedback mechanisms in the hydrological systems is 

therefore essential for a sound and sustainable water management, especially on a catchment scale (Blöschl et al., 2019; Jolly 30 

et al., 2008; Maxwell et al., 2015; Melsen and Guse, 2021; Sophocleous, 2002). This has created the need for integrated coupled 
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water flux modelling approaches that can assess the dynamics of surface water and groundwater resources as well as their 

interactions, e.g. for predicting the effects of future climatic changes on the hydrological systems, and to evaluate the 

effectiveness of adaptation measures in water management (Brunner et al., 2017; Butturini et al., 2002; Jencso et al., 2010). 

Consequently, a growing number of open source and commercial distributed hydrological models with varying degrees of 35 

complexity have been developed and applied that also consider the feedback processes between soil, vegetation, and 

atmosphere, e.g. HydroGeoSphere (Cornelissen et al., 2014; 2016); MIKE-SHE (Graham and Butts, 2005); TerrSysMP 

(Gebler et al., 2017) and ParFlow-CLM (Fang et al., 2016; 2015). The choice of the modelling platform for a given problem 

is often based on subjective criteria, on appropriateness of the available database, or simply on model availability. However, 

also inter-comparison studies of such models are available, e.g. Koch et al. (2016) applied HydroGeoSphere, MIKE-SHE, and 40 

ParFlow-CLM to a well-defined and small headwater catchment. They reported that all three models performed well in terms 

of discharge and accumulated water balance components, although ParFlow-CLM predicting more accurately the temporal 

and spatial dynamics of the water balance components at the scale of the small catchment. The rapid increase in computing 

power allows to apply models like ParFlow-CLM also to large catchments and over long time periods (Maxwell et al., 2015; 

Kollet and Maxwell, 2008a; Wood et al., 2011). 45 

Still, one of the most crucial points of all models is the quite large number of input parameters that can be defined and the 

complex underlying mathematical algorithms. Their sensitivities to the modelling results in space and time, as well as their 

combined effects, cannot be easily analysed.  Thus, there is a strong need to identify the most relevant processes and parameters 

controlling hydrological behaviour, to target a subset of parameters to be included in more computationally intensive 

sensitivity, uncertainty and parameter estimation analyses (Abdel-Khalik et al., 2013; Castaings et al., 2009; Devak and 50 

Dhanya, 2017). In addition, the identification of sensitive parameters should also help to reduce the danger of non-unique 

solutions, i.e. equifinality. This is especially important in basins where water management decisions are being made and where 

highly nonlinear-coupled hydrologic processes make it difficult to develop a predictive understanding of the hydrologic 

behavior of the system. A variety of formal sensitivity analysis approaches exist, such as elementary effects methods (Cropp 

and Braddock, 2002; Morris, 1991), variance-based methods (Saltelli et al., 2010), Fourier amplitude sensitivity testing 55 

(Saltelli et al., 1999), and hybrid methods (Abdel-Khalik et al., 2013). The global method Latin-Hypercube-One-factor-at-A-

Time (LH-OAT) strategy (van Griensven et al., 2006) enables parameter sensitivity analyses of computationally expensive 

models because of the considerably smaller number of model executions required to efficiently separate sensitive parameters 

from the insensitive ones. 

The sensitivity of model parameter depends on climate and topography of the model domain, which may have strong 60 

implications for model calibration (Abily et al., 2016; Fernandez-Pato et al., 2016; Melsen and Guse, 2021). Recently, Melsen 

and Guse (2021) investigated the impact of climate change on parameter sensitivity for three hydrological models (SAC, VIC, 

and HBV) across 605 catchments in the United States. They reported that both for the mean of discharge and the timing of the 

discharge the sensitivity of snow parameters declines, while the sensitivity of evaporation parameters shows a tendency to 

increase in the three investigated hydrological models within a plausible climate change rate. Fernandez-Pato et al. (2016) 65 
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applied a Horton/Green-Ampt model coupled with a 2D surface flow model to different slope conditions and found that the 

topography of the catchment strongly influences the calibration of infiltration parameters. Göhler et al. (2013) analysed the 

sensitivity of energy fluxes for land surface model (CLM, version 3.5) with the eigendecomposition method, they reported that 

it is important to implement specific physiological parameters for diverse crop species in order to accurately model heat and 

matter fluxes. 70 

The overall objective of this study is to use the global sensitivity analysis LH-OAT strategy to explore the parameter sensitivity 

of ParFlow-CLM, applied to a small catchment in southwestern Germany. The ParFlow-CLM model is a three-dimensional, 

finite-difference, parallel computing hydrological model that computes variably saturated surface-subsurface flow and surface-

atmosphere energy exchange fluxes in complex real-world systems (Maxwell et al., 2015; Maxwell and Miller, 2005). It 

couples the subsurface water flow model ParFlow (Maxwell, 2013, Kollet and Maxwell, 2006) with the Community Land 75 

Model-CLM (Dai et al., 2003; Oleson et al., 2008) to link water and energy fluxes among the subsurface, land surface, and 

atmosphere. We investigated the response of the energy- and water-related variables predicted by the model, e.g. latent heat 

flux, longwave radiation, sensible heat flux, evaporation, transpiration, infiltration, subsurface water storage, and runoff, to 12 

representative hydraulic and vegetation parameters based on a two-year period covering both wet and dry seasons. 

Furthermore, the effect of different climates and topographies on parameter sensitivity was investigated to test the 80 

transferability of the results to regions with other topographies and climates.     

2 Methods 

2.1 The ParFlow-CLM Model (v3.6.0) 

ParFlow is an open-source fully integrated distributed hydrological model (Kollet and Maxwell, 2006; Maxwell, 2013), which 

solves the 3D Richards Equation (Eq. 1) using a cell-centered finite difference scheme in space and a backward Euler scheme 85 

in time for variably saturated subsurface conditions and overland flow boundary. Surface flow simulations are described by 

the kinematic wave approximation of the continuity equation (Eq. 2) and flow-discharge relationships for vertical and 

horizontal direction are expressed by Manning’s equation (Eq.3).   

                                                             𝑆𝑠𝑆𝜓
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                                                                    Eq. 3 

 where Ss is the specific storage coefficient [L-1]; ψ is the pressure head of water [L]; Sψ and K(ψ) are the degree of saturation 

[-] and hydraulic conductivity [LT-1], which are a function of pressure head defined by the van Genuchten model (1980); φ is 

the porosity [-]; z is depth below the land surface [L]; qs is a general source/sink term, which includes infiltration, evaporation 

and transpiration [LT-1]; ϑ is the depth averaged velocity vector of surface runoff [LT-1]; qr represents rainfall and evaporative 95 
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fluxes [LT-1]; Sf,x and Sf,y are the friction slopes in x and y direction [-]; n is the Manning’s coefficient [TL-1/3]; ψ0 is the 

pressure head or water ponding depth at the land surface [L]; and the ||ψ0, 0|| operator is defined as the larger of the two 

quantifiers, ψ0 and 0.   

In ParFlow-CLM, the Community Land Model version 4.0 (CLM4.0, Dai et al., 2003) is included as a module within ParFlow 

over the top ten grid cells starting at the land surface and moving downward (Maxwell and Miller, 2005; Rihani et al., 2010). 100 

CLM4.0 is composed of a series of land surface modules that are called as a subroutine within the ParFlow integrated 

hydrologic model to compute energy and water fluxes (e.g., evaporation and transpiration) into and out of the land surface.  

                                                                              𝐸𝑔𝑟 = −𝛽𝜌𝑎𝜇∗𝑞∗                                                                                       Eq. 4 

                                                        𝐸𝑣𝑒𝑔 = [𝑅𝑝𝑝,𝑑𝑟𝑦 + 𝐿𝑤]𝐿𝑆𝐴𝐼[
𝜌𝑎

𝑟𝑏
(𝑞𝑠𝑎𝑡 − 𝑞𝑎𝑓)]                                                                  Eq. 5 

For example, the CLM computes the bare ground surface evaporation according to Eq. 4 and evapotranspiration for vegetated 105 

land surface according to Eq. 5. where ß is the soil resistance factor [-], ρa is air density [ML-3], μ* is friction velocity [LT-1], 

q* is humidity scaling parameter [-], rb is the air density boundary resistance factor [LT-1], qsat is saturated humidity at the land 

surface [-], qaf is the canopy humidity [-], Rpp,dry is the transpiration depends on the dry fraction of the canopy [-], Lw is the 

fraction of foliage covered by water [-], LSAI is the sum of the leaf and stem area indices [-]. A detailed description of the 

equations of ParFlow-CLM can be found in Jefferson et al. (2015) and Srivastava et al. (2014).  110 

The soil water content simulated by ParFlow is passed to CLM, and the infiltration, evaporation, and root uptake fluxes 

simulated by CLM are passed back to ParFlow, where they are treated as water fluxes into or out of the model. This creates a 

fully integrated modelling approach that links overland and subsurface flow while providing an explicit representation of the 

groundwater table and all land surface processes forced by atmospheric data. Because the groundwater table is explicitly 

represented in these simulations, regions with a strong interaction between groundwater and the land surface energy balance 115 

(i.e. critical zones) can be identified (Kollet and Maxwell, 2008a; Kollet and Maxwell, 2008b). 

2.2 The LH-OAT sensitivity analysis 

The Latin-Hypercube One-factor-at-A-Time (LH-OAT) sampling strategy (van Griensven et al., 2006) performs Latin-

Hypercube (LH) sampling (Stein, 1987) using the One-factor-at-A-Time (OAT) method (Cropp and Braddock, 2002) to reduce 

the computational cost required to propagate and understand the key sources of parameter sensitivity. First, N Latin hypercube 120 

sample points are taken for n intervals, and then each LH sample point is varied P times by changing each of the P parameters 

once, as in the OAT method. This is more efficient than LH, as the N intervals in the LH method require only a total of N*(P+1) 

runs.  In this way, the computational effort for the sensitivity analyses of complex integrated models such as ParFlow-CLM is 

greatly reduced, as a much smaller number of model runs are required to identify the most sensitive model parameters.  

After each model run, the change in output is attributed to the change in a single parameter, and the local effect at the sample 125 

point of each parameter is evaluated with the partial effect using Eq. 6. Consequently, the final effect (Si) is calculated by 

averaging these partial effects in percentage of each loop for all LH points (N loops, Eq. 7). The magnitude of Si indicates the 
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degree of parameter sensitivity and the sign of Si signifies whether the output variables will increase or decrease with changes 

of the input parameters. 

                                                             𝑆𝑖,𝑗 =

100∗[𝐹(𝑝1,…,𝑝𝑖∗(1+𝑓𝑖),…,𝑝𝑝)−𝐹(𝑝1,…𝑝𝑖,…,𝑝𝑝)]

𝐹(𝑝1,…,𝑝𝑖∗(1+𝑓𝑖),…,𝑝𝑝)+𝐹(𝑝1,…𝑝𝑖,…,𝑝𝑝)

𝑓𝑖

⁄
                                                             Eq.6                                     130 

                                                                                      𝑆𝑖 =
1

𝑁
∑ 𝑆𝑖,𝑗                                                                                         Eq.7 

Where F(•) refers to the model functions, fi is the fraction by which the parameter pi is changed and j refers to a LH point. 

2.3 Design of the sensitivity analysis  

In the following, we present the Stettbach catchment, which was used as the model domain for the ParFlow-CLM simulations, 

and the concept of sensitivity analysis including its transferability to different slope and climate conditions. The Stettach 135 

catchment was chosen for this study because of its low human impact and because it has been intensively investigated in a 

number of unpublished post and undergraduate studies at the TU Darmstadt.  

2.3.1 Characteristics of the Stettbach catchment 

The headwater catchment of the Stettbach is located in the Odenwald low mountain range in Germany and covers an area of 

about 4 km2. It represents a typical mountainous catchment, mainly covered by forests and pasture (Figure 1). It is instrumented 140 

with three discharge stations (since 2020) and one weather station (since 2018). It ranges from 184 to 445 m a.s.l. with an 

average slope of about 20%. The dominant soil texture is silty loam. The mean annual precipitation based on data from the last 

35 years is 870 mm, ranging from about 535 mm (2018) in the driest year to 1200 mm (1987) in the wettest year during the 

recording period. The mean annual temperature of the catchment is about 11 °C with January being the coldest and July the 

warmest month of the year. 145 
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Figure 1. Map of the Stettbach model domain with catchment boundary, topography and spatial distribution of vegetation  

2.3.2 Observations in Stettbach catchment 

For this study, precipitation, air temperature, solar radiation, long wave radiation, wind speed and direction, atmospheric 

pressure, and humidity at hourly resolution were obtained from the weather station within the catchment (Figure 1). Wind 150 

speed was obtained with an ultra-sonic anemometer at 1.5 m above surface (WINDSONIC1, Campbell Scientific). Air 

temperature and humidity were measured with a combined probe (CS215, Campbell Scientific) between 1.5 m and 2 m height 

above the ground surface. Air pressure was measured with barometric pressure sensor (CS106, Campbell Scientific) at the 

same height of air temperature and humidity. Incoming short- and long-wave radiation were determined using a net radiometer 

(NR-LITE2, Campbell Scientific). Precipitation was measured by a tipping bucket rain gauge (52202, Campbell Scientific). 155 

Data of all instruments including diagnostic data were recorded with a data logger (CR800, Campbell Scientific) with a one-

hour recording interval. Missing data were filled in with data from the weather stations Latertal operated by the German 

Weather Service, which are located about 6 km southeast and 19 km north of the study area, respectively. The hourly time 

series meteorological forcing data are presented in Figure A1.  

2.3.3 Description of the ParFlow-CLM model for Stettbach catchment 160 

The model domain for the Stettbach catchment was set to 2900 × 2700 m with a depth of 10 m with a horizontal grid resolution 

of 50 m and a vertical discretization of 0.2 m using the terrain following grid (TFG) option. For this, a digital elevation model 

with a resolution of 1 m (DGM1) for the catchment was obtained from the Hessian Agency for Land Management and 

Geoinformation and converted to a 50 m grid. Overland flow boundary condition was specified at the land surface, no-flow 
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boundary condition was specified for the bottom of the model domain and hydrostatic equilibrium condition was chosen for 165 

the lateral boundaries, i.e., the surface water divide. Subsurface hydraulic parameters were assumed to be homogenous and 

isotropic, and were estimated by the pedotransfer function of Rosetta (Schapp et al., 2001) using soil texture information 

measured in the lab. The hydraulic properties of the bedrock were estimated with the information from the Hessian Agency 

for Nature Conservation, Environment and Geology (HLNUG). A model spin-up is important to provide a realistic initial 

condition for the modelling (Ajami et al., 2014; Seck et al., 2015). In this study, a time series of atmospheric forcing data 170 

(1985-2016) was used for spinning up the ParFlow-CLM model until the difference between the beginning and ending of water 

and energy storage drops below a threshold value. The spatial distribution of pressure head resulting from this spin-up process 

was used to initialize all simulation runs of this study.  

2.4 Selected parameters for the sensitivity analysis 

A selected set of model parameters (as described in Table 1) have been used in the sensitivity analysis in order to capture the 175 

major processes of the ParFlow-CLM. Due to the high computational cost of the Parflow-CLM model, a reduced set of 

vegetation parameters was selected related to the CLM land cover type mixed forest. All the other CLM input parameters 

related to energy budget calculations were fixed to their default values (Jefferson et al., 2015; Srivastava et al., 2014). Thus, a 

total number of 12 parameters and 30 LHs were considered in the global sensitivity analysis (Wang, et al., 2019), resulting a 

total number of 390 model runs with different parameter combinations based on the parameter ranges summarized in Table 1. 180 

The range of these parameters used in our study were based on ranges of values given in the published literature (Jefferson et 

al., 2015; Jefferson and Maxwell, 2015; Jefferson et al., 2017; Schaap et al., 2001; Srivastava et al., 2014) or estimated from 

our field work. The simulations for the global sensitivity analysis were run on the Lichtenberg II high-performance computer 

of the TU Darmstadt with a real peak performance of over 3148 PFlop/s and a total of 257 TByte RAM. The model execution 

time depended on the difficulty level posed by combination of parameter values and it ranged from 2 hours to 6 days for each 185 

model run.  

 

Table 1 ParFlow-CLM parameters included in Global Sensitivity Analysis by the LH-OAT method. 

 Parameter name Abbreviation Distributiona Unit 

P
arflo

w
 P

aram
eters 

1 Residual saturation Sres U(0, 0.2) - 

2 Porosity ∅ U(0.3, 0.7) - 

3 van-Genuchten 𝛼 vG_𝛼 U(0.04, 12.8) m-1 

4 van-Genuchten n vG_n U(1.4, 4.8) - 

5 Hydraulic conductivity Ks U(1.00E-3, 3) mh-1 

6 Manning’s n n U(1.00E-4, 1) hm-1/3 

7 Specific storage Ss U(1.00E-8, 0.01) m-1 
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C
L

M
 p

aram
eters 

8 Field capacity fc U(0.1,0.5) - 

9 Wilting point wp U(0.1, 0.3) - 

10 Leaf area index (Maximum) LAI U(3, 9) - 

11 Stem area index SAI U(1, 3) - 

12 Aerodynamic roughness length z0 U(0.1, 1.2) m 

a U(min, max), uniform probability distribution in the range (minimum, maximum). 

2.5 Effects of topography and climate on the sensitivity analysis 190 

Furthermore, we aimed to examine to what extent the results of our sensitivity analysis can be transferred to other areas. 

Therefore, we have also performed the sensitivity analysis for model domains with modified topography and climatology from 

other regions. 

2.5.1 Topography effects  

To determine the effects of topography on the parameter sensitivity, we applied two modifications to the original slope from 195 

Stettbach catchment, i.e., low slopes (50% of the slope in Stettbach catchment) and high slopes (130% of the slope in Stettbach 

catchment; Figure 2), with the model setup otherwise remaining unchanged. The slope of the model was calculated from DEM 

with the watershed analysis tool in ArcGIS in order to get a hydrologically consistent slope for the model.  

 

Figure 2. The topographies of the three different slope variants (a) low slopes, (b) medium slopes, (c) high slopes used for the 200 

sensitivity analysis. 

2.5.2 Climate effects  

In order to analyze the effect of climate on the parameter sensitivity we used meteorological datasets from three different 

climate zones: (i) temperate climate (Stettbach catchment, Germany), (ii) semi-arid climate (Barcelona, Spain), and (iii) 

subarctic climate (Lemmenjoen Kansallispuisto, Finland; Kottek et al., 2006). Eight atmospheric variables (shortwave 205 
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radiation, longwave radiation, precipitation rate, air temperature, east-west and north-south wind speeds, atmospheric pressure 

and specific humidity) are required for the computation of the water and energy flux in ParFlow-CLM. The two and half years 

(from 2016-07-01 to 2018-12-31) hourly meteorological forcing data for Barcelona and Lemmenjoen Kansallispuisto were 

derived from the ERA5 dataset (ECMWF Reanalysis v5; Bell et al., 2021; Hersbach et al., 2020) and presented in Figure A2 

and Figure A3. The diagrams about the monthly temperature, precipitation, and evaporation of each catchment plotted in 210 

Figure 3 provided an overview (expressed in air temperature and precipitation) among the three climate conditions. The other 

model settings for the three different climatic conditions were the same as for the Stettbach catchment. 

 

Figure 3. Monthly temperature, precipitation, and total actual evaporation of each climate station, i.e.  Stettbach (Odenwald, 

German), Barcelona (Spain), and Lemmenjoen Kansallispuisto (LK, located in the Lemmenjoki national park in Finland); black 215 

line is monthly mean air temperature, blue column is monthly cumulative precipitation, and red column is month cumulative 

evaporation in 2017 and 2018.  

3 Results and Discussions 

3.1 Model performance in Stettbach catchment 

Before conducting the sensitivity study, we tested whether ParFlow-CLM is able to adequately predict the hydrological fluxes 220 

of the Stettbach catchment. Since a fully automatic calibration of the model parameters is practically not feasible due to the 

complicated hydrological model, we performed the simulations using parameters created by Latin-Hypercube method and 

selected the model run with the best agreement with the observed discharge. The simulation time period was extended to 

January 2022 in order to compare our simulated and observed runoff data at the outlet of the catchment. The best simulated 

model was plotted in Figure 4. Simulated and observed runoff agree in their temporal pattern, showing a period with high flow 225 

in winter and low flow conditions in summer. The coefficient of determination (R2), root mean square error, and Nash–Sutcliffe 

model efficiency coefficient (NSE) between our simulated and observed runoff are 0.92, 22.34 m3h-1, and 0.79, respectively. 
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This indicates that the ParFlow-CLM model can capture the main hydrological dynamics of the Stettbach catchment reasonably 

well. 

 230 

Figure 4. Simulated and observed hourly runoff of the Stettbach catchment from 01.01. 2021 to 31.01.2022. 

Water balance is an important component of catchment studies, which describes the partitioning of the incoming precipitation 

into discharge, storage and evapotranspiration. Figure 5 provides an overview of the water balance components including 

simulated and observed discharge, evaporation, transpiration, and precipitation. It can be seen that ParFlow-CLM slightly 

overestimated the discharge by about 60 mm. This indicates that there are still inaccuracies in the model parameters resulting 235 

from the fact that we only consider a spatial homogeneous soil and vegetation parameters. Therefore, in a future study, spatial 

heterogeneous soil and vegetation properties in the Stettbach catchment will be applied to better estimate the runoff and other 

variables of ParFlow-CLM. However, as this study focuses on investigating the sensitivity of the ParFlow-CLM model 

parameters, we believe that these parameter inaccuracies do not affect our results.  

 240 

Figure 5. Simulated annual cumulative water balance components precipitation, total evapotranspiration, transpiration, observed 

surface runoff, and simulated surface runoff from 01.01. 2021 to 31.01.2022. 

https://doi.org/10.5194/gmd-2022-131
Preprint. Discussion started: 23 May 2022
c© Author(s) 2022. CC BY 4.0 License.



11 

 

3.2 Sensitivity analysis of Stettbach catchment 

The average partial effects (in percentage) for all the 12 parameters of all Latin Hypercube loops are listed in Table 2, it shows 

the most sensitive and insensitive parameters with respect to selected output variables. The partial effects with larger 245 

magnitudes imply that the corresponding parameters cause more change in the model variables than those with small partial 

effects. The sign of partial effects indicates whether the model variables will increase or decrease with changes in the model 

parameters. For example, since the partial effect of leaf area index (LAI) on latent heat was positive, this indicates that latent 

heat will increase with increasing LAI. On the other hand, since the partial effect of the van Genuchten parameter n (vG_n) 

and the wilting point (wp) was negative for latent heat, the latent heat will decrease with the increase of these parameters. 250 

These relationships are consistent with physical intuition. For instance, a higher LAI favours transpiration, resulting in more 

latent heat.  

The extent to which the model variables responded to parameter changes varied greatly. For instance, the partial effects of 

longwave radiation (lwrad) and surface soil temperature (t_soil) were close to zero indicating that these variables are not very 

sensitive. The partial effects of the 12 parameters were not consistent between different energy fluxes (i.e. latent heat flux, 255 

sensible heat flux, and ground heat flux), multiple parameters were found sensitive depended on the type of energy. Such as 

sensible heat flux was most sensitive to the parameter of leaf area index (LAI), the van Genuchten parameter n (vG_n), 

aerodynamic resistance (z0), and wilting point (wp); and latent heat was most influenced by the wilting point (wp), leaf area 

index (LAI); however, the ground heat was only sensitive to vG_n. From a physical perspective, the soil moisture may have a 

strong effect on ground heat flux, because it influences both ground temperature as well as the amount of water available for 260 

evaporation and transpiration. The parameters controlling unsaturated zone flow process played an important role in controlling 

evapotranspiration loss. Such as evaporation (E) and transpiration (T) were highly sensible to the change of wp and vG_n, 

followed by the vegetative property of LAI. Thus, ET is more sensitive to soil/geologic properties than vegetative properties. 

Furthermore, the saturated hydraulic conductivity (Ks) had a negative impact on the model variables subsurface water storage 

(ssw), groundwater storage (gw), surface water storage (sw), runoff and surface saturation level (ss), while porosity (∅) showed 265 

positive effects on these model variables. Parameter Ks and ∅ have great influence on the availability of surface and subsurface 

water storage for rainfall, which in turn affect the amount of water contributing to streamflow and recharge potential for 

groundwater. 

Table 2. The partial effect (in percentage, %) of the ParFlow-CLM parameters (listed in Table 1) for different model variables on 

the basis of a two-year simulation of the Stettbach catchment, the parameters with high partial effects to different variables were 270 

marked in grey. 

 Sres ∅ vG_𝛼 vG_n Ks N Ss fc wp LAI SAI z0 

lh1 5.29 2.09 -4.25 -9.60 -3.53 0.04 0.03 -2.87 -10.32 10.04 -1.72 4.83 

lwrad2 0.11 0.02 -0.06 -0.17 -0.06 0.00 0.00 0.04 -0.32 -0.10 0.00 0.11 

sh3 -6.91 -4.27 9.75 23.83 5.34 -0.09 -0.29 4.60 12.64 -43.54 14.77 -21.77 
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1lh: latent heat flux [Wm-2]; 2lwrad: outgoing longwave radiation [Wm-2]; 3sh: sensible heat flux [Wm-2]; 4grnd: ground heat 

flux [Wm-2]; 5E: evaporation [mmhour-1]; 6T: vegetation transpiration [mmhour-1]; 7Infl: soil infiltration [mmhour-1]; 8swe: 

snow water equivalent [mm]; 9t_soil: surface soil temperature [K]; 10SSW: subsurface water storage [m3]; 11gw: groundwater 

storage[m3]; 12sw: surface water storage[m3]; 13runoff: surface water runoff [m3]; 14 ss: surface saturation degree [-].  275 

3.3 Sensitivity analysis for different slopes 

The partial effects of the parameter sensitivity for ParFlow-CLM on the basis of a two-year simulation (from 01.01.2017 to 

31.12.2018) for different slope conditions are presented in Figure 6. The slope effects on the output variable of longwave 

radiation (lwrad) and surface soil temperature (t_soil) were very low, indicating that these two model variables are only slightly 

dependent on the topography of the catchment. The sign of the partial effects of the different parameters were the same for 280 

different slope conditions, except in case of LAI for sensible heat flux, which indicates that the topography will not affect the 

increase or decrease of most output variables when the input parameters are changed. However, the magnitudes of the partial 

effects showed different behavior for different slope conditions, especially for latent heat (lh), ground heat flux (grnd), 

evaporation (E), transpiration (T), infiltration (infl), snow water equivalent (swe), surface water storage (sw), and runoff. 

Moreover, the sensitivity of soil hydraulic parameters did not significant change for the different slope conditions. However, 285 

the sensitivity of vegetation parameters, especially wilting point (wp), leaf area index (LAI), and stem area index (SAI) showed 

a clear difference between high slope and the other two slope (medium and low) conditions. The largest variation in parameter 

sensitivity was found for the sensible heat flux among the three different slope conditions, more specifically, the partial effect 

for the parameters wp, LAI, and SAI was much higher for the high slope condition compared to the low and medium slope 

conditions.  290 

grnd4 3.09 -3.54 -8.47 -12.20 -1.90 0.07 0.15 0.99 3.92 -2.52 0.84 -1.80 

E5 5.41 1.98 -4.34 -9.90 -3.43 0.03 0.03 -2.83 -10.65 10.15 -1.54 4.72 

T6 12.80 4.29 -7.48 -17.72 -9.21 0.13 -0.01 -7.34 -26.19 16.24 -9.90 -2.25 

infl7 0.06 -0.55 1.14 3.04 0.65 -0.02 -0.03 -0.12 0.30 -0.93 -1.02 -3.97 

swe8 -3.06 1.25 4.66 11.38 2.69 0.02 -0.05 -0.12 6.92 -4.44 -0.45 -18.39 

t_soil9 0.03 0.00 0.00 0.01 0.00 0.00 0.00 0.01 -0.07 -0.04 -0.02 0.00 

ssw10 -0.26 30.58 -1.70 -10.35 -7.95 -0.96 -0.08 -2.12 3.83 1.32 2.92 -3.00 

gw11 -6.16 35.90 -1.35 1.49 -18.34 -2.07 1.84 -5.71 7.52 3.71 6.95 -7.17 

sw12 -12.42 15 -10.97 6.05 -17.24 24.79 2.53 -10.07 13.97 3.65 13.91 -14.65 

runoff13 -13.17 15.92 -17.63 8.64 -7.10 -7.76 2.57 -10.25 14.99 1.95 15 -16.28 

SS14 4.38 4.91 -4.96 -28.08 -12.06 -0.78 0.53 -1.78 4.06 0.26 3.07 -3.06 
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Figure 6. Slope effect on the sensitivity analysis for the different slope variants (low slope: 50% of the slope in Stettbach, high slope: 

130% percentage of the slope in Stettbach) for the ParFlow-CLM output variables listed in Table 2. The X-axes of the subplots show 

the 12 Parflow-CLM parameters also listed in Table 1, and the Y-axes show the partial effect in percent. 

https://doi.org/10.5194/gmd-2022-131
Preprint. Discussion started: 23 May 2022
c© Author(s) 2022. CC BY 4.0 License.



14 

 

3.4 Sensitivity analysis for different climatic conditions 295 

Figure 7 shows how the parameter sensitivity of the 12 relevant parameters of the ParFlow-CLM model changes for the 

predicted energy- and water-related variables under the three different climatic conditions from 01.01.2017 to 31.12.2018. The 

model variables outgoing longwave radiation (lwrad) and soil temperature (t_soil) showed no variations to the parameters in 

different climate conditions, as both variables have very low sensitivity to changes in the model parameters in general. By 

introducing different climatic conditions, there was no change in the sign of the partial effects of the different parameters. 300 

However, the magnitude of the partial effect showed significant different for certain variables, i.e., latent heat (lh), ground heat 

flux (grnd), evaporation (E), transpiration (T), snow water equivalent (swe), surface water storage (sw), and runoff. In addition, 

transpiration was strongly influenced by the different climatic conditions, being more sensitive to LAI especially under cold 

climatic conditions than under the other two climatic conditions. The transpiration rate showed a markedly higher parameter 

sensitivity for the model parameters porosity, van Genuchten parameters α and n, saturated hydraulic conductivity and LAI 305 

under cold climate conditions compared to those under warm and relatively hot climate conditions. Differences in parameter 

sensitivity for transpiration in different climate conditions may primarily due to atmospheric forcing since vegetation is likely 
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not limited by water due to high water tables in the catchment.

 

Figure 7. Climate effect on the sensitivity analysis for Stettbach (in Germany), Barcelona (in Spania), and Lemmenjoen 310 

Kansalispuisto (in Finland) for the ParFlow-CLM output variables listed in Table 2. The X-axes of the subplots show the 12 Parflow-

CLM parameters also listed in Table 1, and the Y-axes show the partial effect in percent. 
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4 Conclusions 

We applied the hydrological model ParFlow-CLM for a two-year simulation of the energy and water balance in the Stettbach 

catchment in Germany and used a global sensitivity analysis, based on LH-OAT, for twelve selected model parameters. In 315 

addition to the actual temperate climate scenario in the Stettbach catchment, we used meteorological datasets representing a 

semi-arid climate, and a subarctic climate. We also modified the topography of the catchment resulting in lower slopes (50% 

of actual slopes) and higher slopes (130% of actual slopes). With this, the general validity of the outcome of our sensitivity 

analyses was analyzed and therefore the transferability to other catchments.  

We found that the general patterns of the parameter sensitivities were consistent for the different climatic conditions, as well 320 

as for the different terrain slopes. However, for some parameters a significantly larger span of the sensitivities in the different 

scenarios was observed, especially for vegetation parameters on sensible heat flux in the higher slope scenario, and for 

hydraulic parameters on transpiration rates in subarctic climatic conditions. In general, the variables related to energy fluxes 

are more sensitive to vegetation properties as well as the van Genuchten parameter n, and the variables related to water fluxes 

are more sensitive to both hydraulic and vegetation properties. We also found that some variables, i.e. the longwave radiation 325 

and surface soil temperature, were not sensitive for all parameters.   

It becomes more important to evaluate the sensitivity and behavior of model output such as energy and water fluxes for the 

distributed hydrology model. The consistency of our results, especially as we applied different scenarios, may provide guidance 

on the relative importance of the considered model parameters in setting up a simple and computationally cheaper domain 

which can potentially be used to provide insight into the complex domains. In addition, the sensitivity results can be used to 330 

support and complement a model upscaling process by providing insights on which parameter should be included in a more 

comprehensive spatial-variable estimation.  

5 Code and data availability 

The exact version of the ParFlow-CLM (V3.6.0) model used to produce the results used in this paper is archived on Zenodo 

(https://doi.org/10.5281/zenodo.4639761). The climate forcing data, model input files, parameter setup as well as scripts for 335 

the analysing process for this study can be download from Zenodo (https://doi.org/10.5281/zenodo.6553492) and also upon 

request from the corresponding author.    
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Appendix 

Eight atmospheric variables (shortwave radiation, longwave radiation, precipitation rate, air temperature, east-west and north-

south wind speeds, atmospheric pressure and specific humidity) are required in the computation of the water and energy flux 

for ParFlow-CLM. The two and half years (from 01.07.2016 to 31.12.2018) hourly meteorological forcing data were derived 345 

from the climate station for Stettbach catchment and from ERA5 for Barcelona (in Spain, Figure A2), and Lemmenjoen 

Kansalispuisto (in Finland, Figure A3). Hourly time series meteorological forcing data of ParFlow-CLM were presented here. 

The mean annual precipitation in Stettbach is 870 mm, ranging from about 535 mm (2018) in the driest year to 1200 mm 

(1987) in the wettest year. The mean annual precipitation in Barcelona is 381 mm, ranging from about 236 mm (2015) in the 

driest year to 632 mm (2018) in the wettest year. The mean annual precipitation in Lemmenjoen Kansallispuisto is 549 mm, 350 

ranging from about 418 mm (2015) in the driest year to 719 mm (2018) in the wettest year. Subsequently, the mean annual air 

temperatures are 11 °C in Stettbach, 16 °C in Barcelona, and 1 °C in Lemmenjoen Kansallispuisto, respectively. 
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Figure A1. Hourly incoming shortwave (SW) and longwave (LW) radiation, precipitation, air temperature, wind speed, atmospheric 

pressure, and specific humidity used as meteorology forcing for the CLM model for the period 01.07.2016 – 31.12.2018 in Stettbach 

catchment (in Germany). 355 
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Figure A2. Hourly incoming shortwave (SW) and longwave (LW) radiation, precipitation, air temperature, wind speed, atmospheric 

pressure, and specific humidity used as meteorology forcing for the CLM model for the period 01.07.2016 – 31.12.2018 in Barcelona 

(in Spain). 
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Figure A3. Hourly incoming shortwave (SW) and longwave (LW) radiation, precipitation, air temperature, wind speed, 

atmospheric pressure, and specific humidity used as meteorology forcing for the CLM model for the period 01.07.2016 – 360 

31.12.2018 in Lemmenjoen Kansalispuisto (in Finland). 
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