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Abstract 10 

Operational water-resource forecasters, such as the Colorado Basin River Forecast Center (CBRFC) in the Western United States 

rely on historical records to calibrate the temperature-index models currently used for snowmelt runoff predictions. This data 

dependence is increasingly challenged, with global and regional climatological factors changing the seasonal snowpack in 

mountain watersheds. To evaluate and improve the CBRFC modeling options, this work ran the physically based snow energy 

balance iSnobal model, forced with outputs from the High-Resolution Rapid Refresh (HRRR) numerical weather model across 15 

four years in a subset region. Compared to in-situ, remotely sensed, and the current operational CBRFC model, the iSnobal-HRRR 

coupling showed well-reconstructed snow depths until peak accumulation (Mean differences between -0.20 and +0.28 m). Once 

snowmelt set in, iSnobal-HRRR showed that simulated snowmelt was slower relative to observations, depleting snow on average 

up to 34 days later. The melting period is a critical component for water forecasting. Based on the results, there is a need for revised 

energy balance calculations in iSnobal, which is a recommended future improvement to the model. Nevertheless, the presented 20 

performance and architecture make iSnobal-HRRR a promising combination for the CBRFC production needs, where there is a 

demonstrated change to the seasonal snow in the mountain ranges around the Colorado River Basin. Long term goal is to introduce 

the iSnobal-HRRR coupling in day-to-day CBRFC operations, and this work created the foundation to expand and evaluate larger 

domains.   
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1. Introduction 25 

Freshwater supply, originating as melt from seasonal snowpack runoff, has experienced a shift in timing and magnitude in recent 

decades (Mote et al., 2018; Stewart, 2009). Higher observed temperatures during the winter (Musselman et al., 2021), for instance, 

lead to precipitation phase changes resulting in more precipitation as rain over snow in low elevation areas (Feng and Hu, 2007; 

Knowles et al., 2006). The magnitude of the changes varies regionally (Harpold et al., 2012; Skiles and Painter, 2017) increasing 

the complexity of understanding and forecasting impacts Changing snowpack trends are expected to continue, as evidenced by 30 

simulations with predicted future climate conditions (Cho et al., 2021; Ikeda et al., 2021; Li et al., 2017; Musselman et al., 2017). 

This presents a challenge from a modeling perspective, especially in operational settings. A consistent and accurate estimate of 

snowpack runoff is getting harder with the increasingly different snow accumulation, snow melt, and snow cover extents across 

the seasonally snow-covered mountain ranges supplying freshwater to the downstream regions. 

Presently, a subset of the hydrologic forecast agencies in the United States use temperature-index models, such as SNOW-17 35 

(Anderson 1976), which have historically performed well in operational settings while requiring few meteorological observations 

(Franz et al., 2008). In principle, SNOW-17 calculates the snowmelt using the correlation between air temperature and available 

melt energy from net solar radiation and a calibration factor, which increases as the melt period progresses (Anderson, 1976; Franz 

et al., 2010). The best model predictions are with domain-specific calibration parameters from historical data with the modeled 

year following the snow accumulation and melt conditions from the past (He et al., 2011). Once conditions depart from the 40 

historical average, such as lower snow albedo from highly variable inter-annual dust deposition events (Bryant et al., 2013), the 

SNOW-17 model forecast errors increase and requires significant forecaster interaction to account for the variable conditions. One 

effort to improve the accuracy of SNOW-17 applied the Bayesian Model Averaging method across an ensemble of twelve snow 

models, each consisting of different components from SNOW-17 (Franz et al., 2010). Although the results improved compared to 

running SNOW-17 as a standalone application, the setup was only tested at the 1d point scale and required different weights for 45 

the individual models between test locations. This increased complexity makes the method challenging to apply across larger 

spatial scales in daily operations. Ultimately, temperature-index models cannot adapt to rapidly changing snow accumulation and 

melt conditions without adding more meteorological inputs, and the long-term historical records (30 to 40 years) are becoming 

less representative to calibrate the model parameters. 

One option to improve forecasting results is the use of physically based models that incorporate more meteorological 50 

measurements. Physically based modeling is also referred to as 'energy-balance' or 'process-based' in the literature, and in the 

context of this work, we will use 'physically based'. In general, physically based models use weather observations such as relative 

humidity, wind speeds, and radiation, among others, to resolve the mass and energy balances of the snowpack, which determines 

the snowmelt rate and meltwater runoff (Marks and Dozier, 1992). Although there are several physically based snow models (e.g., 

CROCUS, Brun, et al., 1989; Factorial Snow Model, Essery, 2015; SNOWPACK, Lehning et al., 2002; SnowModel, Liston and 55 

Elder, 2006), this work focused on iSnobal. Initially, iSnobal (Snobal for the point version) was developed as a two-layer snowpack 

model (Marks and Dozier, 1992; Marks et al., 1992) and evolved later to a spatially distributed version (Marks et al., 1999), 

maintaining the point-level architecture and relatively simple input data requirements. A recent addition to the modeling pipeline 

is the Spatial Modeling for Resource Framework (SMRF, Havens et al., 2017), which assists in distributing the forcing data across 

the model domain. To streamline the workflow and increase reproducibility, the Automated Water Supply Model (AWSM) 60 

integrated iSnobal and SMRF into a central execution environment (Havens et al., 2020). To this date, iSnobal has been 

successfully deployed to simulate snowpacks in watersheds sizes from less than 1 km2 to over 1000 km2 (Garen and Marks, 2005; 

Hedrick et al., 2018, 2020; Kormos et al., 2014). 
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The increased meteorological measurement requirements to calculate the mass and energy balances of physically based models 

cannot always be satisfied by in-situ observation networks. Where instrumentation sites are present in the modeled domain, the 65 

available observations are not guaranteed to provide all required model inputs such as wind speed or radiation, can have data gaps 

through time, or do not satisfy the necessary data quality. An alternative to in-situ stations is using outputs from numerical weather 

prediction (NWP) models, which are generally spatially and temporally complete and provide all the required forcing variables 

from a single source. The adaptation of NWP model output to provide forcing data for snow models is ongoing and has been 

successfully tested as a standalone source for point simulations (Bellaire et al., 2011, 2013; Iwamoto et al., 2008) or spatially in 70 

combination with data assimilation and filtering techniques (Griessinger et al., 2019; Vernay et al., 2021). Adding NWP as a 

possible weather measurement input source to iSnobal was first evaluated in (Havens et al., 2019), where downscaled and bias-

corrected observations from Weather Research and Forecasting (WRF) Model had the best results. A follow-up effort to the WRF 

integration into iSnobal also added support for the High-Resolution Rapid Refresh (HRRR) model (Benjamin et al., 2016) from 

the National Oceanic and Atmospheric Administration (NOAA). HRRR assimilates available radar observations every hour and 75 

produces forecasts up to 18-hours in advance at the 3 km spatial resolution. The HRRR model has been under active development 

since it became the United States National Weather Service’s (NWS) operational forecast model in late 2014 (Bytheway et al., 

2017) and is currently in its fourth iteration. The HRRR data are publicly available via different providers (Google Cloud Platform, 

Amazon Web Services, NOAA) and are readily integrable for research and operational purposes (Gowan et al., 2022). 

Among the many regions impacted by the changing seasonal snow and environmental conditions around the globe (Ayers et al., 80 

2016; Cho et al., 2021; Christensen and Lettenmaier, 2007; Dettinger et al., 2015) is the Western United States of America, where 

53% to 70% of the annual freshwater supply originates from seasonal snowmelt (Li et al., 2017). For example, the Colorado River 

Basin (CRB), with its headwaters located in the Rocky Mountains, is currently trending towards a shorter duration and reduced 

extent of snow cover in the winter based on in-situ measurements from 1984 to 2009 (Harpold et al., 2012) and earlier dates for 

maximum snow water equivalent (SWE) compared to long-term historical records (Musselman et al., 2021). The CRB region also 85 

has an increase in snow darkening following the deposition of light-absorbing particles (Skiles and Painter, 2017; Skiles et al., 

2012), which accelerates snowmelt timing and magnitude (Painter et al., 2018). Freshwater supply forecasting in this region is 

done by the Colorado Basin River Forecast Center (CBRFC), part of the National Weather Service (NWS) in the United States of 

America. The CBRFC uses SNOW-17 as part of their operational water availability forecasting model and faces increased 

challenges in adapting to the observed and predicted seasonal snow changes. The underlying long-term historical calibration 90 

records from the CBRFC do not fully account for climate variability and will continue to be less representative in the future. 

Capturing the different timing and magnitudes of snowmelt requires new methods. 

In this paper, the iSnobal-HRRR coupling is documented and described for the first time and assessed across four water years 

(2018 – 2021) in the East River Watershed, Colorado, USA. The model evaluation was in collaboration with the CBRFC to gauge 

the feasibility of supplementing SNOW-17 with a physically based model. Physically based models have been identified by the 95 

United States Bureau of Reclamation as an underutilized emerging technology for snow measurements, and iSnobal was evaluated 

as a “flight qualified” product through tests and demonstration (The Bureau of Reclamation, 2022). In contrast to the current 

literature evaluating iSnobal in operational environments, this work focuses on HRRR as a standalone forcing input source without 

bias corrections (Havens et al., 2019) or updates from spatial observations (Hedrick et al., 2018, 2020). Removing input data 

corrections or model updates through in-situ observations increases the CBRFC’s ability to adapt the workflow into their daily 100 

operations and speeds up model preparation and execution times. For the overall iSnobal model assessment, the simulated snow 

depth was compared against measured observations at discrete in-situ snow measurement stations and spatially at discrete points 

in time against aerial snow depth maps. The iSnobal simulated runoff was compared to the basin hydrograph for basin-averaged 
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assessment. Finally, iSnobal-HRRR precipitation inputs and SWE outputs were compared to SNOW-17 to assess the differences 

between the models. This work is an effort to support the increased inclusion of physically based models in operational water 105 

supply forecasting in snow-dominated environments. Broadly, this work also contributes to the NWS Advanced Hydrologic 

Prediction Service program operational goals (Council, 2006) by aiming to make hydrological forecasting more accurate and 

resilient in the face of change. 

2. Study Area 

The East River Watershed (ERW) is a high alpine watershed located in the Upper Gunnison River Basin, part of the Colorado 110 

River Basin. The East River is one of two primary tributaries of the Gunnison River, which discharges downstream into the 

Colorado River (Figure 1). A stream gauge station at an elevation of 2440 m near Almont, CO is operated by the United States 

Geological Survey (USGS) and monitors the streamflow of the East River year-round. This station is the central discharge point 

for seasonal snow runoff in the watershed. The ERW has representative characteristics for mountain watersheds in Colorado with 

an average elevation of 3266 m, high vertical elevation relief (1420 m; Hubbard et al., 2018), and a mixture of different vegetation 115 

types (bush and grassland or mixed conifer and aspen trees). 

There are three Snow Telemetry (SNOTEL) stations that are operated by the United States Department of Agriculture National 

Resource Conservation Service (USDA-NRCS) in the modeled domain: Schofield Pass (elevation: 3261 m), Butte (elevation: 3097 

m), and Upper Taylor (elevation: 3243 m). The Upper Taylor station does not sit within the ERW boundaries but was included in 

this study to expand the number of available in-situ comparison sites within the model domain. The CBRFC divides the ERW into 120 

three topographical hydrologic response units (HRU); lower, middle, and upper (Figure 1). Each HRU is based on elevation and 

are modeled independent from each other (Council, 2006). The division will be used in this work to refer to the respected spatial 

area. 

Figure 1 – Overview of the East River Watershed (black boundaries) and iSnobal modal domain (orange outline) are shown on the left. 
There are three SNOTEL sites along with the stream gauge station. The watershed is divided into three HRUs by the CBRFC. The 
location of the watershed and area of the Colorado River Basin is shown on the right. Basemap (right): © ESRI 
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3. Model Setup 

3.1 Model Description 125 

Using temporally complete meteorological input data, the iSnobal model simulates snowpack evolution by solving energy and 

mass balance fluxes. As a two-layer model, the top layer is designated for all energy and mass exchanges between the snow surface 

and the atmosphere. The bottom layer acts as an interface for mass and energy exchanges between the top and soil layers. Once 

the net energy fluxes of the two snowpack layers exceed the cold content (the energy required to raise the entire snowpack to 0 ˚C 

temperature) and the snow meltwater amount exceeds the maximum liquid water holding capacity of the snowpack, the water 130 

outflow at the base of the snowpack is calculated (i.e., surface water input (SWI) hereinafter).  

The required forcing input data to calculate energy and mass balance fluxes include air temperature, relative humidity, incoming 

solar radiation, wind speed and direction, and total precipitation. These may originate from distributed point measurements or 

gridded data (e.g., NWP models). Before calculating the fluxes, the input data are spatially interpolated and distributed for the 

model domain in SMRF, which also solves for additional essential variables for the energy balance calculations in iSnobal. For 135 

instance, net solar radiation, a function of incoming shortwave radiation and snow albedo is resolved internally in SMRF. A detailed 

description of the energy balance equations and data preparation can be found in Marks et al. (1992), Marks et al. (1999), Link et 

al. (2004), and Havens et al. (2017; 2020). All energy and mass balance calculations in iSnobal are based on a fixed spatial grid 

and a configurable time interval. The main driver for the chosen time interval to update the snowpack conditions is the temporal 

resolution of the input data, which needs to be fine enough to resolve diurnal climatic variations (e.g., temperature or solar 140 

radiation).  

3.2 Software Architecture 

A complete installation of the iSnobal model requires several components and are available as open-source software. All 

components were written and are maintained by the United States Department of Agriculture, Agriculture Research Service 

(USDA-ARS) in Boise, ID, USA, and downloadable as Docker containers or installable from source via GitHub 145 

(https://github.com). Before executing iSnobal, the model domain is set up and requires collecting the domain information such as 

elevation data, output resolution, and vegetation data. This step is a one-time process, not repeated between simulation years, and 

assisted by the Basin Setup tool (https://github.com/USDA-ARS-NWRC/basin_setup). 

Once the model domain setup is completed, the model itself needs to be installed. The main components necessary to run iSnobal 

are Katana (https://github.com/USDA-ARS-NWRC/katana), SMRF (https://github.com/USDA-ARS-NWRC/smrf), and the 150 

Automated Water Supply Model (AWSM, https://github.com/USDA-ARS-NWRC/awsm). Katana is a pre-processing module that 

uses the WindNinja model (Forthofer 2014) to downscale the 

HRRR wind data to the model resolution (e.g., 3 km to 50 m). 

WindNinja, initially designed for wildfire applications, simulates 

wind speeds at high spatial resolutions over complex topography. 155 

AWSM automates the execution of SMRF and iSnobal for each 

time step and acts as overarching control software. AWSM and 

SMRF are additionally available as installable and documented 

Python packages. An overview of the architecture and workflow, 

including the data in- and outflow, is visualized in Figure 2 and is 160 

fully described in Havens et al. (2020).  

Figure 2 – Overview of the iSnobal model architecture, 
including the input data to setup the model domain and 
forcing data to run an individual day. At the end of an 
iteration, the end of day values are stored as individual 
outputs. 
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3.3 Compute Environment 

The computational resources required for running the model in this work were provided by the Center for High Performance 

Computing at the University of Utah. All model components were installed from source, with the exception for Katana, where the 

containerized option was selected due to the complexity of dependent libraries. The installation was documented and published on 165 

GitHub (https://github.com/UofU-Cryosphere/isnoda) and extends the official documentation for each component with 

instructions for a shared compute environment and helper scripts for data download and model execution. 

3.4 Numerical Weather Prediction Inputs  

The meteorological inputs required to run the model were retrieved from the sixth-hour HRRR forecast product. HRRR is 

undergoing active development, and the water years simulated in this study used the product versions HRRRv2 (October 2017 to 170 

July 2018), HRRRv3 (July 2018 to November 2020), and HRRRv4 (December 2020 to August 2021). Using the sixth-hour HRRR 

forecast allows for better utilization of model physics along with the assimilated observations (Bytheway et al., 2017) and is a 

common practice for other NWP input products (Schirmer and Jamieson, 2015). Refinements to the HRRR data include upscaling 

the vertical and horizontal wind data to 200 m resolution by Katana using the model domain topographic data. Another input to 

note is incoming solar radiation. The current SMRF implementation only uses this HRRR variable to determine the cloud factor. 175 

The required incoming solar radiation input used in iSnobal is calculated by SMRF from the typographically adjusted incoming 

clear sky radiation of the model domain (Dozier 1990) and scaled by the cloud factor. 

3.5 East River Watershed Model Domain Setup and Execution 

The iSnobal model was prepared to run at a 50 m spatial resolution over the study area, resulting in 837 x 656 grid cells and an 

area of 1373 km². This spatial resolution followed the recommendations of Winstral et al. (2014), which found that for basin-scale 180 

modeling studies, a resolution between 25 m and 100 m resolves local processes in heterogeneous mountain environments without 

requiring the longer computation time of higher resolutions. The ERW basin setup used elevation data from the National Elevation 

Dataset by the USGS and vegetation data from the USGS through the LANDFIRE spatial products. Both data sources are publicly 

available and distributed through the USGS.  

Snowpack mass and energy fluxes were simulated with iSnobal from 2018 through 2021 in one-hour time steps, matching the 185 

HRRR temporal resolution. The model was configured to store the end-of-day values, matching the temporal resolution of the 

available in-situ comparison observations and the SNOW-17 inputs and outputs, which are further explained in the model 

comparison section. A single model year was initiated on the 1st of October and ended on the 30th of September. This date range 

is a ‘water year’ and a standard definition for hydrologic forecasting in the United States, defined by the USGS. 

4 Model Comparison 190 

Two types of measurements were used to compare selected iSnobal outputs with reference values: discrete in-situ time-series 

measurements and spatially distributed snapshots at a single point in time. The in-situ observations were the quality-controlled 

end-of-day values for snow depth measurements from the three SNOTEL stations. This assessment against the SNOTEL data used 

a spatial maximum and minimum of a 2x2 grid surrounding the point location of the sites (Figure 3). This approach was based on 

visual inspections of the locations. Each site showed an offset to the center of the model output cell, and a spatial grid was deemed 195 

more appropriate to account for the physiographic variability surrounding their location. For the years with available ASO spatial 

observations (2018 to 2020), simulated snow depths were compared to the ASO lidar snow depths. The range of snow depth values 
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on ASO flight days was also included in the time-series comparison and used 

the same 2x2 grid surrounding the SNOTEL sites (Figure 3). 

The spatial point in time comparison used lidar-based snow depth maps from 200 

the Airborne Snow Observatory (ASO, Painter, et al., 2016), which surveyed 

the area twice in 2018 and 2019 and once in 2020. In 2018 and 2019, the first 

survey happened during the snow accumulation season, and the second survey 

happened after peak SWE during snowmelt progression. In 2020, the area was 

surveyed before peak SWE. The spatial resolution of the ASO snow depth 205 

maps matched the iSnobal model resolution of 50 m, and the spatial extent 

overlapped with the ERW boundaries. Across the years, the ASO snow depth 

maps were used as the reference, and the model simulated snow depth was 

subtracted from the lidar snow depth on a pixel-by-pixel basis. The goal of this 

comparison was to check for any spatial biases in simulated snow depths across 210 

elevation bands or aspects and for different snow conditions (accumulating or melting) in years with two flights (2018 and 2019). 

To assess how well the iSnobal simulated melt aligned with the ERW snowmelt-dominated hydrograph, all SWI of the model grid 

cells in the watershed boundaries were summed up and compared against the stream gauge at the basin pour point. This comparison 

used a seven-day moving average window to reduce daily spikes in the time series. The focus of this evaluation was on timing and 

magnitude; in a basin like ERW, the simulated SWI should follow the temporal pattern measured at the stream gauge, which is 215 

influenced by the snowmelt runoff. Finally, to better understand how iSnobal-HRRR compares to SNOW-17 for operational 

forecasting, the precipitation inputs and SWE outputs from both models were compared. The gridded iSnobal data was summarized 

by HRU (Figure 1) and individually compared to the SNOW-17 input/output data provided by the CBRFC. Mean areal precipitation 

values by the CBRFC originate from precipitation measurement stations in and around ERW, are quality controlled, and combined 

using a weighting equation derived during calibration with the primary target being PRISM (Parameter elevation Regression on 220 

Independent Slopes Model) statistical mapping grids. Neither of these datasets are considered the true values; rather, this model 

inter-comparison was undertaken to understand how (and why) the models may differ. Additionally, iSnobal simulated snow depths 

were compared to ASO lidar snow depths in each HRU.  

5. Results 

5.1 Run time 225 

Running the model through an entire water year took around eighteen hours in total, with WindNinja taking one-third of the time, 

and AWSM accounting for the remaining 12 hours. The compute times are based on a machine with 24 processor cores, 24 GBs 

of RAM, and hyper-threading enabled, which increased the number of processing threads to 48. The storage requirement for the 

input data was 10 GBs, with the model output occupying another 100 GBs of space. Iterating from one day to the next took less 

than five minutes, including data download, pre-processing, and running the model. This reasonably fast execution and total storage 230 

requirement showed that the model could be implemented in day-to-day operations. 

5.2 SNOTEL comparison 

Across all simulated years, there was a good agreement during the accumulation period between simulated iSnobal and observed 

SNOTEL snow depths. For the two sites within the ERW watershed boundaries (Butte and Schofield Pass), the simulated depths 

Figure 3 – SNOTEL site location relative to 
configured model output resolution of 50 m (green 
dashed grid). No site was centered in one pixel and 
a spatial 2x2 grid surrounding the site was used 
for simulated iSnobal comparison values. 
Basemap: © ESRI 
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had a mean difference between +0.28 m and -0.20 m until peak SWE (Supplement Figure S2), while the Upper Taylor site had 235 

consistently higher than observed snow depth (Mean difference between -0.17 m and -0.53 m; Supplement Figure S2). This site-

specific observation was consistent across all comparison years and not affected by annual differences in the accumulation 

magnitudes. An example of an average snow depth year (2018) and an above-average year (2019) is shown in Figure 4. Additional 

figures for 2020 and 2021 can be found in the Supplement Figure S1 to this paper.  

For the early season ASO flights in 2018, iSnobal had higher snow depths around the Butte (Mean difference (MD) +0.35 m) and 240 

Schofield Pass (MD +0.20 m) SNOTEL sites compared to the ASO values. The SNOTEL measured differences on the flight days 

were close at the Butte (Difference +0.10 m to +0.13 m) and the Schofield Pass (+0.04 m to +0.08m) site. The late-season flight, 

where snow was still present at the Schofield Pass site, had the iSnobal snow depths closer in line with ASO (MD -0.07 m) and 

was above the SNOTEL (+0.20 m to +0.54 m). For 2019, the early season ASO-iSnobal snow depth differences across SNOTEL 

locations varied with higher iSnobal values at Butte (MD +0.25 m) and Upper Taylor (MD +0.39 m) and lower at Schofield Pass 245 

(MD -0.22 m). The flight day differences to measured SNOTEL values were almost identical at Butte (0.00 m to 0.04 m), negative 

at Schofield Pass (-0.32 m to -0.43 m), and positive Upper Taylor (+0.16 m to +0.61 m). The late-season snow depths in 2019 

overlapped at Butte between ASO-iSnobal (MD +0.19 m) with no snow measured by SNOTEL, while Schofield Pass had iSnobal 

lower than ASO (MD -0.31 m) and overlap with SNOTEL measured (+0.11 m to -0.66 m). The Upper Taylor site had iSnobal 

much higher than ASO (MD +1.25 m) and SNOTEL (+0.71 m to +1.55 m) snow depths. Overall, using ASO as an additional snow 250 

depth reference data set at discrete point locations in the model domain showed no consistent over or under-simulation for iSnobal. 

After the seasonal snow depth peak was reached, simulated snow depths around all three SNOTEL stations deviated from 

observations and the range of simulated values increased. Notably, the date for snow disappearance was consistently simulated 

later relative to observations across all years but varied in magnitude. For instance, the difference between iSnobal and all SNOTEL 

sites was between 11 to 59 days in 2018 and -8 to 59 days in 2019. An overview of the differences between observations and 255 

simulations is shown in Table 1. Disagreement in snowmelt rates and snow disappearance is attributed primarily to errors in net 

solar radiation, which is discussed further in Section 6.4. Overall, the snow depth comparison to observations over multiple years 

showed that the model can capture peak snow depth timing and magnitude.   

Figure 4 – Snow Depth comparison between iSnobal and SNOTEL sites for the years 2018 (left) and 2019 (right). The orange shaded areas 
represent the range of 2x2 grid cell values from iSnobal surrounding the site. The ranges of the grid cell values from ASO surveys are 
shown by the black bars. Note the difference y-scales between 2018 and 2019. 
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5.3 ASO comparison 

Integrated over the full basin, simulated snow depths agreed with ASO lidar snow depths, with a grid cell median difference of 260 

0.02 m (early survey) and 0.00 m (late survey) in 2018, 0.20 m and 0.00 m in 2019, and 0.14 m in 2020. Generally, between two 

flights in the same season, the agreement was best during late flights in the middle and lower HRU (Figure 5a and 5b). An aerial 

overview for all flights can be found in Supplement Figures S3, S4, and S5 to this paper showing the difference per 50 m grid cell. 

Within low, mid, and high elevations HRUs, the widest range in the ∆ snow depth distribution was consistently found at the higher 

elevations (Standard Deviation 0.5 m in 2018; 0.9 m to 1.0 m in 2019), while the narrowest range was found at the lower elevations 265 

HRU (Standard Deviation 0.0 m to 0.2 m in 2018; 0.1 m to 0.6 m in 2019). The middle elevations HRU was somewhere in between 

Table 1 – Overview of date differences for last day with snow present between iSnobal and SNOTEL sites.  

SNOTEL site Melt dates 2018 2019 2020 2021 

Butte 
SNOTEL 
iSnobal 

05/06 
05/24 to 05/25 

06/08 
06/24 to 06/26 

05/12 
05/26 to 05/28 

05/12 
05/31 to 06/02 

Difference 18 – 19 days 16 – 18 days 14 – 16 days 19 – 21 days 

Schofield 
Pass 

SNOTEL 
iSnobal 

05/29 
06/09 to 06/23 

07/03 
06/25 to 07/25 

06/03 
05/29 to 06/17 

06/02 
06/05 to 06/20 

Difference 11 – 25 days -8 – 22 days -5 – 14 days 3 – 18 days 

Upper Taylor 
SNOTEL 
iSnobal 

05/10 
06/10 to 07/08 

06/12 
07/03 to 08/10 

05/13 
05/31 to 07/05 

05/13 
06/06 to 07/05 

Difference 31 – 59 days 21 – 59 days 18 – 53 days 24 – 53 days 
 

Figure 5 – Snow Depth Differences for early and late surveys for the years 2018 and 2019 between ASO and iSnobal. Figure 
a) and b) categorize the differences by elevation HRU (low, middle, upper) with the ‘All’ showing the basin-wide difference. 
Figure c) and d) bin the difference by aspect. Note the different y-scales between top and bottom figures. 
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(Standard Deviation 0.2 to 0.3 m in 2018; 0.5 m in 2019). The distributions of ∆ snow depth for the late survey in each year showed 

positive biases, indicating a general overestimation of snow depths by iSnobal, consistent with the observed slower snow depth 

decrease during the snowmelt season at the SNOTEL sites (Figure 4).  

The snow depth differences binned by aspect for the entire watershed indicated a bias, with variation during flight dates and the 270 

two years (Figure 5c and 5d). In both early flights, higher snow depth was measured on eastern aspects relative to other aspects, 

and the widest ranges in snow depth differences were on northern aspects in both late flights. The closest agreement between 

modeled and ASO lidar snow depths was on south-facing slopes during late flights. 

5.4 Stream Gauge comparison 

The watershed 7-day moving average of simulated iSnobal SWI followed the hydrograph timing and magnitude pattern measured 275 

at the stream gauge (Figure 6). During the annual snow melt pulse, the iSnobal SWI stayed higher relative to the measured surface 

water at the gauge. The time-series magnitude difference between measured discharge and simulated SWI was highest in 2018, 

the lowest snow year, and closest in 2019, the highest snow year. Although similar in the last days with snow depth across the 

SNOTEL sites in 2020 and 2021 (Table 1), the simulated SWI was different between the two years and the hydrograph had a 

higher peak in 2020, with a lower in 2021, following the measured stream gauge values. The later than observed simulated iSnobal 280 

snow disappearance dates were also apparent in this comparison; a longer time lag would be expected during the receding limb of 

the hydrograph because the SWI is not instantaneously at the gauge. Still, the general patterns and magnitude are promising in that 

there is no under-forecasted SWI at any point in the melt season. 

5.5 SNOW-17 comparison 

Generally, precipitation used as an input to SNOW-17 was consistently higher than the HRRR precipitation input used for iSnobal 285 

across all years. The difference ranged from HRRR being 25% (2021) to 5% (2018) lower, integrated across all HRUs. A summary 

of the comparison, per HRU and for the full watershed, is in Table 2. Using SNOW-17 as the reference, the daily total amount 

difference was consistent across the HRUs and years with no high ratio differences (Supplement Figure S7). For total amounts per 

HRU, the poorest agreement was in the lower HRU in 2020, with HRRR 36% lower. The best agreement was found in the middle 

HRU in 2018, with a match of 99%. The differences per HRU were not correlated to whether it was a high or low snow year, with 290 

similar agreement in 2018 (lowest snow) and 2019 (highest snow). The poorest overall agreement (2020 and 2021) had higher 

precipitation amount for SNOW-17 (2020: 18%, 2021; 25%), which was not reflected in the SNOTEL site comparison. The snow 

depth across all sites 2020 had a mean difference between of -0.20 m and +0.23 m and 2021 a mean difference of +0.02 m and -

Figure 6 – Time series comparison of simulated iSnobal SWI against the measured USGS stream gauge discharge across 
the four water years. 
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0.17 m in the pre-melt season (Supplement Figure S2). Both of the years had similar HRRR total precipitation amounts compared 

to 2018 (Differences 2020: -64 mm, 2021: -66 mm), which is also supported by the similar depth at all SNOTEL sites as 2018 295 

(Supplemental Figure S1).  

Across the four years, all three HRUs showed similar temporal patterns for daily total SWE in the snowpack although iSnobal 

SWE was lower in magnitude (Figure 7) and expected following the precipitation comparison (Table 2). Consequently, he largest 

difference between the two models was in the upper HRU (iSnobal between 34% to 20% lower), with less difference in the middle 

(iSnobal between 20% higher and 15% lower) and lower (iSnobal between 25% higher and 23% lower) HRUs. As with the 300 

SNOTEL depth comparison, the basin SWE from iSnobal showed longer persistence of snow compared to SNOW-17. This lag is 

most apparent in the lower and middle HRU, with the upper HRU having similar snow depletion timing. 

Table 2 – Overview of precipitation inputs and SWE outputs for iSnobal and SNOW-17 classified by HRU. 

HRU  
 2018 2019 2020 2021 
 Precip. SWE Precip. SWE Precip. SWE Precip. SWE 

Lower  
iSnobal 300 7352 496 24976 265 12897 325 12183 
Snow-17 333 5888 566 26653 413 16816 418 13509 
Ratio 90% 125% 88% 94% 64% 77% 78% 90% 

Middle  
iSnobal 491 30567 796 66744 471 34448 468 31574 
Snow-17 495 25375 859 67347 573 39788 606 37270 
Ratio 99% 120% 93% 99% 82% 87% 77% 85% 

Upper  
iSnobal 667 45639 1076 107478 658 52176 599 49037 
Snow-17 707 59676 1196 135108 723 75563 832 74739 
Ratio 94% 76% 90% 80% 91% 69% 72% 66% 

All  
iSnobal 1458 83558 2368 199198 1394 99521 1392 92794 
Snow-17 1535 90939 2621 229108 1709 132167 1856 125518 
Total 95% 92% 90% 87% 82% 75% 75% 74% 

Note: Precipitation (Precip.) and SWE values are shown in mm. 

Figure 7 – Total SWE per HRU showed higher amounts in SNOW-17 than iSnobal. The lower HRU agreed best, while the 
upper had more peak SWE in SNOW-17. The temporal pattern for SWE agreed between the two models, having slightly 
longer presence of snow in iSnobal. 
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6. Discussion 

6.1 HRRR Precipitation 

The results for the snow depths comparison to SNOTEL and ASO indicated that the HRRR precipitation allowed iSnobal to 305 

simulate the snow mass balance well. This is promising because HRRR data are distributed at 3 km resolution and are much coarser 

than the 50 m model output resolution, which is needed to resolve the different physical processes influencing the snowpack 

evolution in this type of terrain (Winstral et al., 2014). The difference in resolutions makes it challenging to properly adjust for the 

topographic precipitation differences, especially with the model domain's high vertical relief (1420 m). Kilometer scale NWP 

model resolutions are known to underestimate snowfall at higher elevations, and complex terrain is particularly challenging to 310 

simulate snowpack evolution with inconsistent snowfall trends (Ikeda 2010). The current solutions to 'bias correct' and improve 

NWP precipitation based on topography are basin and application specific. For example, Bellaire et al. (2011, 2013) applied a 

constant correction factor and Griessinger et al. (2019) corrected and filtered with observations from a dense in-situ network. These 

approaches require in-situ observation and basin-specific knowledge that is not always available, reducing transferability to other 

regions. Ultimately, the fewer corrections needed to forcing inputs results in greater potential to scale and adapt model setups into 315 

forecast operations. The presented workflow here had no changes to the HRRR inputs and precipitation was used ‘as is’.  

Given the different methods to determine precipitation in HRRR and as inputs to SNOW-17, a match between the two was not 

expected. The calibration process for SNOW-17 precipitation inputs uses spatially sparse in-situ point measurements and empirical 

data from previous water years. As an atmospheric model, HRRR is a product of assimilated observation, physically based 

modeling, and a fundamentally different approach. Neither set of precipitation values were considered the truth, and accurately 320 

measuring precipitation is an unsolved challenge in mountain terrain. Additional work is needed to understand the variation in 

HRRR values relative to the calibrated precipitation used by the CBRFC across these water years (i.e poorer agreement in 2020 

and 2021). 

6.2 Comparison Data Sources 

The snow depth comparison of this work used in-situ point observations and aerial spatial measurements. Both sources had no 325 

consistent agreement, with the spatial measurements tending to be lower than the point data. This underestimation has been shown 

to exist when comparing point data to spatial averages of snow depth from lidar (Trujillo and Lehning, 2015). Similarly, in-situ 

snow depth estimates from point observation stations, such as SNOTEL, are known to only represent a small surrounding footprint 

because of the large heterogeneity of snow depth in alpine environments (Molotch and Bales, 2005). This limitation, in part, can 

explain the higher spread of the iSnobal snow depths to the SNOTEL stations, as the values represent a larger area around them 330 

(Figure 3). The strength of SNOTEL station data is as long-term historical records, from which index methods could be developed 

and help understand changes over long timeframes (Harpold et al., 2012; Musselman et al., 2021; Trujillo and Molotch, 2014). In 

the case of this work, it was the only source available to allow a model performance assessment over multiple years. The results 

from the SNOTEL comparison gave confidence that the HRRR forcing inputs provided a quality long-term input source, in terms 

of capturing peak snow depth, for a watershed with only sparse in-situ meteorological observations across different snow seasons. 335 

The addition of aerial observations, such as ASO, has improved the ability to retrieve snow depth over large areas and supplies 

valuable validation data used in many studies (Brandt et al., 2020; Hedrick et al., 2018; McGrath et al., 2019). In this work, the 

ASO maps enabled a spatial comparison that was impossible in the past. The comparison identified differences in snow depth at 

high elevations and across aspects that are not possible with SNOTEL stations, which are generally located in relatively flat middle 

and lower elevations (e.g., below 3261 m in ERW). Additionally, the snow depth disagreements between measured ASO and 340 
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SNOTEL highlighted that SNOTEL observations could not represent snow conditions at 50 m model output resolutions either, and 

caution is urged when using SNOTEL snow depth data as ‘truth’ for spatially distributed models. Likewise, the inconsistent 

comparison results to SNOTEL showed that coarser aerial product resolutions should also not be treated as truth, and snow depths 

can vary within short distances due to the high spatial variability of mountain terrain.  

6.3 Physically Based Models 345 

Existing studies using long-term records of SNOTEL measurements have identified a need for physically based modeling 

approaches (Harpold et al., 2012; Musselman et al., 2021; Trujillo and Molotch, 2014) as they better show the impact of the current 

and improve the projection of the future changes to the water supply. Physically based models are capable of accounting for 

scenarios such as shifting snowmelt rates (Musselman et al., 2017), changes to the length of snow accumulation and melt season 

(Trujillo and Molotch, 2014), and accelerated melt due to darker snow (Skiles et al., 2018), through the calculation of energy terms 350 

such as net solar radiation, a main driver of snowmelt (Marks and Dozier, 1992). Physically based models also do not have to rely 

on region-specific calibrated parameters or forecaster experience when adapting to conditions outside the long-term calibration 

data. This ability, in part, is due to including more meteorological observations, removing the dependence on historical calibration 

records.  

Gradually adding physically based models into operational environments, with architectures presented in this work, has value 355 

because they can provide information about the response of the snowpack to current environmental perturbations, which may 

improve the confidence of the water supply forecast. Current models, such as SNOW-17, are tested and proven in operations, and 

a drop-in replacement is impractical. However, physically based models have the technical capability and scalability to run in 

parallel and supplement the established methods. Their addition into operational environments will enhance the quality and expand 

the ability to adapt to current and future water supply forecast needs. 360 

6.4 Improvements to iSnobal 

The consistent longer presence of snow in iSnobal-HRRR relative to the observations across the simulated years highlighted an 

area for improvement. One cause for the delay is attributed to the too low amount of calculated solar radiation by SMRF, not 

providing enough energy to drive snowmelt in iSnobal. An obvious option that influences the calculation is the snow albedo time-

decay function, which has caused high uncertainty in many different model types and scales (Chen et al., 2014; Clark et al., 2015; 365 

Krinner et al., 2018; Qu and Hall, 2014; Ryken et al., 2020). The decay function determines the snow albedo based on the time of 

the last snowfall when the albedo gets reset, and the decay starts anew. A drawback of this approach is excluding other events that 

change the albedo, such as dust deposition. Solutions for the 1-d Snobal model improved the simulated snowmelt timing and forced 

the model with observed snow albedo (Miller et al., 2016; Skiles and Painter, 2019; Skiles et al., 2015, 2012). Scaling this solution 

and adapting it into spatially distributed models requires data sources with daily updated and spatially complete snow albedo, 370 

which are available today from remote sensing observations. For instance, the combined MODIS Snow Covered Area and Grain 

Size (MODSCAG) and Dust Radiative Forcing (MODDRFS) in Snow (Rittger et al., 2020) provides daily observation with 500 

m spatial resolution. This spatial and temporal resolution fulfills the requirements of a model data source. With the demonstrated 

need for improved snow disappearance dates of this work, improved results by using observations in other work, and the availability 

of remote sensing products, we suggest integrating remotely sensed snow albedo into iSnobal. 375 

Though relatively sparse in time, the spatial snow depth comparison results highlighted another area to target with iSnobal-HRRR. 

The snow depths differences by aspect (Figures 5c and 5d) indicated an iSnobal energy balance issue as there was no strong aspect 

bias coming from the HRRR precipitation data (Supplement Figure S6). The closer agreements on the south-facing aspect suggest 
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that improving the incoming solar radiation could help address this model bias. Solar radiation is currently a topographically 

adjusted calculation (Dozier 1990) by SMRF. One alternative to this approach is to use the supplied values by HRRR, reducing 380 

model complexity and computation times. The addition of remotely sensed albedo and alternative handling for incoming solar 

radiation will be the follow-up effort for iSnobal to this work. 

7 Conclusions 

This work presented and evaluated the spatially distributed iSnobal model forced with HRRR meteorological data to expand the 

model options and to support operational water forecasts for the CBRFC. The model was assessed over one representative 385 

headwater basin in the CRB with an area of 1373 km2 for four consecutive water years (2018 - 2021) at a 50 m spatial resolution 

and hourly time steps. There were several key outcomes from this effort: (1) Execution times from one to the next day and total 

storage requirements would allow operational forecasters to run iSnobal-HRRR alongside current production environments (2) 

HRRR provided meteorological input data that enabled iSnobal to simulate close to the observed snow depths up to peak 

accumulation (3) iSnobal radiation calculations need revisions to improve melt timing and to address geographic aspect bias (4) 390 

Simulated timing and magnitude of iSnobal SWI followed the observed hydrograph at the basin stream gauge. 

From the model comparison, the iSnobal SWE was lower than the SNOW-17 SWE and consistent with the lower precipitation 

inputs from HRRR than the SNOW-17 inputs. iSnobal had lower snow depths at higher elevations relative to aerial observations 

and was attributed to the coarser model output resolution of HRRR relative to the topography and the simulated spatial resolution. 

Model runs in additional basins are ongoing and will allow further evaluation if this is consistent. Despite these differences, iSnobal 395 

simulated snow depths close to measured values across the watershed up to the melt period. Once snowmelt set in, iSnobal snow 

depths showed greater disagreement than the observed in-situ measurement sites and simulated longer snow persistence. The 

discrepancy between observed and simulated snowmelt timing, and therefore magnitude, was consistent across the years, including 

above-average and below-average snow years. Accurately simulating snow depletion timing is important for operational adoption. 

Future work to address snowmelt timing aims to improve snow energy balance calculations, specifically by using remotely 400 

observed snow albedo data and updating the net solar radiation treatment in iSnobal. Nevertheless, as the world transitions into a 

future that is less similar to the past and statistical models become less reliable, this work showed that iSnobal-HRRR could be a 

valuable supplement to operational water supply forecasting methods in snow-dominated regions.   

Code availability 

The software components used to run the model and analyze the results are publicly available. iSnobal model components are 405 

available via the USDA ARS NWRC GitHub page: https://github.com/USDA-ARS-NWRC. For this study, GitHub forks for 

SMRF (https://doi.org/10.5281/zenodo.6543935), AWSM (https://doi.org/10.5281/zenodo.6543919), and weather forecast 

retrieval (https://doi.org/10.5281/zenodo.6543579) were created to capture the model code at the time of completing this study as 

no official version was released. The forks can be found under https://github.com/UofU-Cryosphere. Additions to model setup and 

result analysis code are stored on https://github.com/UofU-Cryosphere/isnoda (https://doi.org/10.5281/zenodo.6543995).  410 

Data availability 

The following datasets were used for the model runs and comparisons: 
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• LANDFIRE Program: Data Product Mosaic Downloads: https://landfire.gov/version_download.php, last access: 28 February 

2022. 

• NOAA The High-Resolution Rapid Refresh (HRRR): https://rapidrefresh.noaa.gov/hrrr/, last access: 28 February 2022. 415 

• NRCS National Water and Climate Center | SNOTEL | SWE Data: https://www.wcc.nrcs.usda.gov/snow/SNOTEL-

wedata.html, last access: 28 February 2022. 

• The National Map | U.S. Geological Survey: https://www.usgs.gov/programs/national-geospatial-program/national-map, last 

access: 28 February 2022. 

• USGS Surface Water data for USA: USGS Surface-Water Daily Statistics: 420 

https://waterdata.usgs.gov/nwis/dvstat/?site_no=09112500&referred_module=sw&format=sites_selection_links, last access: 

28 February 2022. 

• Painter, T. H.: ASO L4 Lidar Snow Depth 50m UTM Grid, Version 1. [USCOGE]. Boulder, Colorado USA. NASA National 

Snow and Ice Data Center Distributed Active Archive Center, NSIDC, https://doi.org/10.5067/STOT5I0U1WVI, 2018. 
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