10

15

20

25

30

35

40

stoPET v1.0: A stochastic potential evapotranspiration generator for
simulation of climate change impacts

Dagmawi Teklu Asfaw?, Michael Bliss Singer>®*, Rafael Rosolem®®, David MacLeod?,
Mark Cuthbert?’, Edisson Quichimbo Miguitama?, Manuel F. Rios Gaona?, Katerina Michaelides!*®

1 School of Geographical Sciences, University of Bristol, Bristol, UK

2School of Earth and Environmental Sciences, Cardiff University, Cardiff, UK

3 Water Research Institute, Cardiff University, Cardiff, UK

4 Earth Research Institute, University of California Santa Barbara, Santa Barbara, USA

5> Department of Civil Engineering, University of Bristol, UK

6 Cabot Institute for the Environment, University of Bristol, Bristol, UK

" School of Civil and Environmental Engineering, The University of New South Wales (UNSW), Sydney, Australia

Correspondence to: Dagmawi Teklu Asfaw (d.t.asfaw@bristol.ac.uk)

Abstract. Potential evapotranspiration (PET) represents the evaporative demand in the atmosphere for the removal of water
from the land and is an essential variable for understanding and modelling land-atmosphere interactions. Weather generators
are often used to generate stochastic rainfall time series; however, no such model exists for stochastically generating plausible
PET time series. Here we develop a stochastic PET generator, stoPET, by leveraging a recently published global dataset of
hourly PET at 0.1° resolution (hPET). stoPET is designed to simulate realistic time series of PET that capture the diurnal and
seasonal variability of hPET and to support the simulation of various scenarios of climate change. The parsimonious model is
based on a sine function fitted to the monthly average diurnal cycle of hPET, producing parameters that are then used to
generate any number of synthetic series of randomised hourly PET for a specific climate scenario at any point of the global
land surface between 55° N and 55° S. In addition to supporting stochastic analysis of historical PET, stoPET also incorporates
three methods to account for potential future changes in atmospheric evaporative demand to rising global temperature. These
include 1) user-defined percentage increase of annual PET; 2) a step change in PET based on a unit increase in temperature,
and 3) extrapolation of the historical trend in hPET into the future. We evaluated stoPET at a regional scale and at twelve
locations spanning arid and humid climatic regions around the globe. stoPET generates PET distributions that are statistically
similar to hPET and an independent PET dataset from CRU, capturing their diurnal/seasonal dynamics, indicating that stoPET
produces physically plausible diurnal and seasonal PET variability. We provide examples of how stoPET can generate large
ensembles of PET for future climate scenario analysis in sectors like agriculture and water resources, with minimal

computational demand.

1 Introduction

Potential evapotranspiration (PET) is the representation of the atmospheric demand for evaporation from a well-watered,
vegetated land surface (Allen et al., 1998). It is paramount in determining the water balance within hydrological models and
is routinely used in water management for agriculture to determine crop water demand and irrigation scheduling. PET is also
a crucial input in climate change impact studies which, for example, aim to provide actionable information on water scarcity
(Raziei and Pereira, 2013; Liu et al., 2019; Tasumi, 2019; Zhou et al., 2020; Quichimbo et al., 2021). However, the estimation
of PET is limited by the availability and quality of meteorological data at the spatial and temporal resolution appropriate to
the purpose of a given study and by uncertainty in future climate. Differences between PET calculation methods influence the
output of hydrological models, so the ability to simulate multiple realisations of PET under different scenarios of climate
change via a single estimation method is vital to quantify uncertainties in the water balance due to changes in evaporative

demand from the atmosphere (Valipour et al., 2017a; Dallaire et al., 2021). In studies that compare different methods of PET
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estimation (Tukimat et al., 2012; Li et al., 2016; Valipour et al., 2017b), the Penman-Monteith (PM) equation is used as a
reference against which other methods are compared. Though the PM equation is the most common and accepted method of
choice for PET estimation, it is highly data intensive, requiring many input variables (Allen et al., 1998; Grismer et al., 2002;
Mohawesh 2011; Ravazzaniv et al., 2012; Lee and Cho, 2012; Tukimat et al., 2012). This limits its utility and relevance,
particularly for the many data-sparse regions across the globe (Yadeta et al., 2020). The lack of adequate local meteorological
data necessitates reliance on empirical methods of PET estimation, which require intensive calibration (Kingston et al., 2009),

and can in turn limit the accuracy of resulting PET products.

While some global climate models do not include PET explicitly (e.g., COSMO-CLM (Will et al., 2017)), most global climate
models (e.g., ERA5-Land) do provide some of the outputs of climatic variables used to estimate PET. However, they do not
directly output PET itself, which would support more detailed impact-based modelling of climate change. Climate models
focus on predicting the effects of greenhouse gas emissions on global water and energy transfer, and thus they output climate
variables (e.g., temperature, radiation, surface pressure, wind speed, and rainfall). Without explicit data on PET, high
computational resources are required to estimate the PET for large areas from climate model output variables, and the spatial
and temporal scales of these outputs are typically too coarse for detailed impact analyses. These scaling considerations may
make climate model output unsuitable for computing PET. This is especially true for application to certain water balance
applications, where diurnal changes in PET are important for a specific location or where there are large spatial differences in
PET. Downscaling techniques are commonly used to generate the parameters needed to estimate PET from global climate
models by the PM method (or other methods) at the appropriate resolution, but this increases the computational resource

requirement (Tukimat et al., 2012) and adds additional uncertainty to PET calculations.

Another challenge for PET estimation is how to characterise evaporative demand under climate change scenarios, which is an
important need for assessing possible future climate change impacts (Xu et al., 2014). Temperature is one of the major climate
variables influencing PET (Allen et al., 1998). Therefore, with increasing temperature under climate change for most of the
globe, there is a need to simulate historical and future PET in a consistent and spatially explicit way. Simulating changes in
evaporative demand associated with changes in temperature would be particularly useful for assessing the potential impacts
of meeting/not meeting the 1.5° C target of the Paris Climate Treaty (Kriegler et al., 2018) or for addressing any future global
temperature target. Additionally, it would be powerful to be able to simulate step changes and trends in PET according to user-

defined specifications, giving the user a flexible tool for generating a range of PET time series for various applications.

Given the inherent uncertainty in climatic drivers on the terrestrial water balance and the need to incorporate current and future
PET trends in hydrological and other climate change impact models, stochastic PET simulation provides a flexible and useful
tool to fill this research gap. While several stochastic weather generators exist and are used to generate physically consistent
time series of rainfall (Fatichi et al., 2011; Peleg et al., 2017; Singer et al., 2018; De Luca et al., 2020), no similar model exists
for generating stochastic PET time series. Although PET calculations are sometimes included within hydrological models,
these require user specification of input climate variables used in the calculation and a specification of the calculation method.
In these cases, PET is internally calculated to close the water balance, but it is not typically provided as an output variable.
Ultimately, there is no existing method for obtaining internally consistent simulations of PET at high spatial and temporal
resolution for the entire global land surface. This paper addresses this gap and introduces a new stochastic PET generator,
stoPET, for simulating hourly time series of PET at 0.1° spatial resolution for the global land surface. stoPET enables the user
to characterise the uncertainty in PET for historical and future climate scenarios. It supports the generation of unlimited unique
realisations of PET in a computationally efficient way. To support analyses of climate change, stoPET incorporates different
methods to account for potential changes in atmospheric evaporative demand in response to rising global temperature,

supporting flexibility in simulating various climate scenarios. The importance of including options to simulate multiple future
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PET time series emanates from the unpredictability of future climate and the need to assess the impacts of climatic changes

on the water balance.

Below we provide a comprehensive description of the stoPET model and its potential application for predicting the evolution
of water resources in drylands, estimating future crop water demand, assessing flash flood potential, or providing actionable
information on expected climatic impacts on the water balance. Section 2 describes the concept and design of the model with
a brief note about its implementation. Section 3 describes the model verification at regional and point scale. Section 4 describes
the methods used to incorporate PET changes due to temperature changes in the stoPET model. The paper concludes with a
discussion of the potential application of stoPET (Sect. 5). A user manual for stoPET is included as a supplement, and all the

model scripts and input parameters are freely available on figshare (10.6084/m9.figshare.19665531).

2 Model concept and design
2.1  Concept

The stoPET model generates hourly PET values based on sine function parameters estimated from hPET (Singer et al., 2021),
an hourly PET dataset that was recently created from ERA5-Land climatic variables (Mufioz Sabater, 2019) using the Penman-
Monteith method (Allen et al., 1998). The resulting PET generated from stoPET retains the diurnal and seasonal variations in
PET contained within the hPET dataset, but notably, stoPET injects randomness (stochasticity) in the simulated series via a
noise factor. In other words, stoPET does not recreate hPET, but rather uses hPET to generate new randomised sequences of
PET based on the diurnal and seasonal variability in the hPET dataset. The development of stoPET begins by using the entire
hPET dataset as an input, from which we create a generalised functional form for diurnal PET and create a noise factor to

inject stochasticity according to the following steps, each of which is outlined in more detailed in subsequent sections below:

1) Estimate the average diurnal cycle of PET for each month using a sine function

2) Fit a skewed normal distribution to the difference between all hourly values for the diurnal curve and the average
diurnal curve, for of each month to generate a randomized noise ratio.

3) Generate stochastic PET timeseries for a particular month by multiplying that month’s average diurnal cycle with a

sequence of draws from the corresponding skewed normal distribution

2.2 Model implementation

The overall stochastic PET generation model, stoPET, can be expressed as follows:
Stochastic PET = (Average diurnal cycle of PET using a sine function * a random Noise ratio) +
user defined annual PET variability

Each of the three components is described in detail in the subsequent sections.

2.2.1  Sine function parameter estimation

The stoPET model is based on fitting a sine function to the average diurnal cycle calculated from hPET for each month and
for each grid cell. The sine function, defined in Eq. (1), provides the four parameters required to represent the characteristic of

hourly PET for each month at each grid cell:
Y=Asin(B*t + C) +D Eq. (1)

Where A represents the diurnal amplitude (mm h), B is the frequency (h?), C is the phase shift (-), D is the vertical shift (mm

h™1). t is time (h), and Y is the new PET value (mm h1) generated from the sine function.
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The monthly sine fit is based on the average of values of hPET for all diurnal curves for all days of that month over the period
of record (for this application, 1981-2020). The sine fit is only done based on values for daylight hours (sunrise to sunset), as
we assume nighttime PET values are zero. In reality, PET is not always zero at night, but it typically ranges from small positive
to small negative values (representing condensation) within hPET. For example, nighttime PET is relatively higher in arid
regions (median PET value is between 0.001 and 0.076 mm h-1) compared to humid regions (median PET value is between -
0.014 and 0.002 mm h) (Fig. S1 and Fig. S2). Nevertheless, the impact of nighttime PET in core applications such as crop

and hydrological modelling is expected to be minimal, hence we set nighttime PET values to zero in stoPET.

An example of the sine function representing hPET data for a single grid location (Wajir in Kenya - 1.73° N, 40.09° E) for the
month of January is shown in Fig. 1. The grey shaded area represents the range of the hourly PET obtained from all days of
January within the 40 years record of hPET data, while the black dotted line shows the average of those hPET values. This
average diurnal cycle is used to fit the sine function (red solid line based on Y in Eq. (1)) for each month of the year. The four
parameters from Eq. (1) are estimated at each 0.1° grid location for each month and then saved as input for simulating synthetic
sequences of PET. Figure 2 shows, for illustration, the spatial variability of parameters across the globe for January. For each
month of the year all four parameters, plus the sunrise and sunset hours (which are required to identify daytime and nighttime
periods) for any pixel across the global land surface (Figure 2), are provided as an input file to be run with the model script.

January
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Figure 1: An example of a sine function curve fitted over the average hourly PET values for January at a location in Wajir
(Kenya). The black dotted line is the average from hPET, and the red solid line represents the fitted sine function. The grey shaded
area is the range across all January days in the 40 years of record for hPET. Average sunrise and sunset times are shown in green
vertical dashed lines.
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Figure 2: The sine function parameters estimated for January over the spatial domain of the stoPET model (global land surface
latitudes between 55° N and 55° S). The parameters are described in Eq. (1) where (a) the amplitude (mm h-1), (b) the frequency

(h™Y), (c) the phase shift (-) and (d) the vertical shift (mm h1).
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2.2.2  Random noise estimation

PET shows variability within each month (Fig. 1), which is represented stochastically in stoPET using a “noise ratio”
parameter (N) (Eq. (2)):

__ PET(h,dm)
N(h,d,m) = 22 Eq. (2)

Where PET (h,d, m) is the PET for every hour (h) and day (d) of each month (m) and PET (h, m) is the average PET of
each hour over all days of the month. A skewed normal distribution is then fitted to noise ratios of each month calculated
using Eq. (2). The fitted skewed normal distribution parameters (skewness, location, and scale), defined at each grid cell and
month, are used as input to StoPET to generate stochastic variability around the sine function by sampling from this skewed

distribution. Figure 3 shows the values of the three noise ratio parameters over the entire spatial domain of stoPET, estimated

for the month of January.
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Figure 3: The parameters representing the noise ratio (a) skewness, (b) location, and (c) scale for the month of January over the
spatial domain of the stoPET model.

By way of a worked example, Fig. 4a shows the monthly distribution of the noise ratio for a single location in Wajir (Kenya),
while Fig. 4b shows the randomly generated noise ratio array for January and the parameters representing it. The steps followed
to create these noise ratio values were as follows:
1) Calculate the average hourly PET for each month from the 40 years hPET data. This gives a characteristic diurnal
curve from which we can determine the average hourly PET value for each month (the black line in Fig. 1).
2) Divide each hourly PET for every day in each month (e.g., Jan 1) by its average from step 1. This gives the noise
ratio array (Fig. 4a).
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3) Fit a skewed normal distribution to the noise ratio array based on Eq. (2) for each month and save the parameters

(Fig. 4b).
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Figure 4: (a) Noise ratio box plot for a single location in Wajir (Kenya). The box plots indicate that the noise ratio is variable over
each month with the green triangle showing the mean and the red line in the box plot indicating the median (b) A histogram for
the January noise ratio is shown in blue shaded bars, with the fitted skewed normal distribution shown in red solid line. The
corresponding distribution parameters are indicated in the top left of the plot.

2.2.3  Generating stochastic hourly PET

StoPET generates simulated stochastic PET values for a particular month by multiplying the respective sine function (Fig. 1)
by the noise ratio sampled from the corresponding skewed normal distribution (Fig. 4b). For instance, for a particular
simulation of January PET, stoPET will generate 31 random noise ratios, producing 31 diurnal cycles of PET that amplify (or
dampen) the mean diurnal PET sine wave for the month. Synthetic PET for any climate scenario can then be generated for the

entire month and for as many years as the user chooses.

3 Model verification
3.1.1  Verification of stoPET against hPET dataset

Regional representation

StoPET is set up to generate synthetic plausible hourly PET time series within any defined spatial area between 55° N and 55°
S. High latitude areas were not included because some months do not have a clear sunset and sunrise times during summertime
creating potential errors in the sine function fitting. We have evaluated the stoPET model against hPET (the only globally
available dataset at hourly resolution) (Singer et al., 2021) and against the Climate Research Unit’s daily average PET dataset
generated by the PM method at monthly temporal resolution (presented as a daily average for the month) over the period 1901-
2018 at 0.5° grid resolution (CRU, (https://crudata.uea.ac.uk/cru/data/hrg/, (Harris et al., 2020)). We carried out these

evaluations for selected humid and arid regions on six continents (North America, South America, Europe, Africa, Asia, and
Australia [Australia sub-continent also includes the Oceania region]). As an illustration of the visual comparison to hPET,
Figure 5 shows the average annual PET climatology for Africa over five years of simulated PET from stoPET (Fig. 5a) against
five randomly selected years from the hPET dataset, where we have also removed the nighttime PET values (Fig. 5b) since
StoPET considers the nighttime PET to be zero. Figure 6 shows a similar comparison for Europe (stoPET, Fig. 6a and hPET,

Fig. 6b). These comparisons indicate that sStoPET estimates annually averaged PET values from hPET with only an average
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percentage difference of ~+5 % (see Fig. S3 to Fig. S8 in the supplementary document). The results of this comparison, albeit
qualitative, suggest a strong similarity in globally distributed values between the simulated and historical data in most regions
of the world, which supports the use of stoPET for representing the annual PET over large regions. The figures for the
remaining continents are provided in the supplementary document (Fig. S3 to Fig. S8), along with the contrast between stoPET
annual PET and the hPET dataset when the nighttime values are included (Fig. S9 to Fig. S14).

(a) stoPET ) (b) hPET

) > e >

500 750 1000 1250 1500 1750 2000 2250 2500 500 750 1000 1250 1500 1750 2000 2250 2500
PET (mm) PET (mm)

Figure 5: Average annual PET for five randomly selected years (a) stoPET, (b) hPET with nighttime PET removed for Africa.

500 750 1000 1250 1500 1750 2000 2250 2500 500 750 1000 1250 1500 1750 2000 2250 2500
PET (mm) PET (mm)

Figure 6: Average annual PET for five randomly selected years (a) stoPET, (b) hPET with nighttime PET removed for Europe.

Single point representation

To verify the performance of stoPET more quantitatively, analysis was carried out on twelve points across 6 continents chosen
to be representative of both humid and arid climates across the global land surface (Fig. 7). Ten ensembles, each comprising
20 years of synthetic PET data, were generated using stoPET and compared against the hPET dataset over the period 2001-
2020, substituting the nighttime (zero) PET values of stoPET with nighttime values of hPET. Next, the hourly PET values
from stoPET and hPET were aggregated to daily average PET values for each month at the twelve locations for evaluation of
StoPET (again, including the nighttime values), against the CRU PET dataset developed by the PM method (see above).
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We carried out three statistical analyses on the monthly aggregated, daily averaged values of stoPET compared to hPET and
CRU: (a) pBias (Eg. (3)) indicates whether the stochastically generated values overestimate or underestimate the comparable
values of hPET and CRU (b) Normalized Root Mean Square Error (NRMSE) (Eq. (4)), a so-called ‘scatter index’, measures
the similarity of stoPET compared to hPET and CRU datasets. NRMSE is normalized by the mean of each dataset, and (c) a
two-sample Kolmogorov-Smirnov test compares the full distributions of two datasets of monthly average PET values against
each other (Helsel et al., 2020). The equations for pBias and NRMSE are:

pBias = Zm=iUm=Xm) . 1400, Eq. (3)

XM=T Xm
Tm=1(Ym=Xm)?
NRMSE = W Eq. (4)
Where X,,, represents the monthly average PET of hPET or CRU for each month, Y;, is the monthly average PET estimated

by stoPET and n is the number of months.

Based on these tests, first we find that PET estimated by stoPET is statistically comparable to hPET historical data (Fig. 8 and
Fig. 9). This result was encouraging, if not unexpected, since stoPET was designed to create plausible stochastic realistic
simulations of hourly PET using hPET as a template for diurnal and seasonal variations in PET. The pBias values between
StoPET and hPET range between 0.49 % to 9.68 %, indicating that stoPET is not systematically overestimating or
underestimating PET values relative to hPET (Table 1). The NRMSE values range from 0.02 to 0.1 for humid and 0.02 to 0.04
for arid sites, and NRMSE values are small (<0.1) for all locations, indicating low scatter between hPET and stoPET. The
Kolmogorov-Smirnov test also shows that stoPET and hPET have statistically similar distributions (p-values at all locations
are greater than the threshold 0.05, Table 1). Finally, stoPET produces PET values that are comparable to hPET in terms of
capturing the seasonal cycle and variability (Fig. 8 and Fig. 9).

Previously, CRU PET estimates were found to be comparable to hPET values (Singer et al., 2021). Here we directly compare
the stochastically generated PET values from stoPET against estimated independent PET values from CRU to evaluate whether
StoPET captures the seasonality and mean behaviour within CRU. The comparison between stoPET and CRU indicates that,
except in two humid locations (H2 and H6), stoPET values are statistically similar to the independent CRU PET values (Table
1). Even though the pBias and NRMSE values from comparisons between stoPET and CRU are higher than for the hPET
comparisons, the p-values of the Kolmogorov-Smirnov test show that stoPET has a similar statistical distribution as CRU for
most of the comparisons (except for two humid sites, H2 and H6, which had lower and higher CRU PET values, respectively,
within overall narrow distributions). Additionally, stoPET well captures the seasonality of the CRU PET (Fig. 8 and Fig. 9).
These evaluation steps give us confidence that stoPET is generating PET (on a monthly timescale) that is largely consistent

with existing data products and can therefore be considered as a useful simulator of PET at the global scale.
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Figure 7: Single point locations selected for global evaluation for humid and arid climate locations based on the Aridity index data
from Consultative Group on International Agricultural Research (CGIAR) (Trabucco and Zomer, 2018).
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Figure 8: The seasonal PET and box plots for three datasets over North America, South America, and Europe for the (a) humid and
(b) arid locations as located in Fig. 7. The box plots show the distribution of each dataset over the 20 years period. The box indicates
the IQR (25™-75™) while the upper whiskers are set to (75" + 1.5 * IQR) and the lower whiskers are set to (25" - 1.5 * IQR).
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Figure 9: The seasonal PET and box plots for three datasets over Africa, Asia, and Australia (including Oceania region) for (a)
humid and (b) arid locations as located in Fig. 7. The box plots show the distribution of each dataset over the 20 years period. The
box indicates the IQR (25"-75™) while the upper whiskers are set to (75" + 1.5 * IQR) and the lower whiskers are set to (25" - 1.5 *

IQR).
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Table 1: The pBias, NRMSE and Kolmogorov-Smirnov test values between stoPET and hPET as well as between stoPET and
CRU for the humid and arid locations on 6 continents as indicated in Fig. 7

pBias (%) NRMSE (-) KS-stat P-value
hPET | CRU hPET CRU hPET CRU hPET CRU
H1 3.44 -5.27 0.04 0.08 0.17 0.17 1.00 1.00
H2 4.31 31.64 0.05 0.32 0.50 0.92 0.10 0.00
H3 1.96 -5.37 0.03 0.10 0.08 0.17 1.00 1.00
H4 1.58 5.56 0.02 0.06 0.25 0.33 0.87 0.54
H5 2.48 -0.22 0.05 0.11 0.17 0.17 1.00 1.00
H6 9.68 -21.95 0.10 0.25 0.42 0.75 0.26 0.00
Al 0.87 -12.45 0.02 0.15 0.08 0.25 1.00 0.87
A2 1.86 -16.29 0.03 0.17 0.17 0.25 1.00 0.87
A3 0.77 -14.10 0.04 0.18 0.17 0.25 1.00 0.87
A4 0.49 -3.91 0.03 0.10 0.17 0.33 1.00 0.54
A5 1.89 -9.40 0.02 0.14 0.17 0.25 1.00 0.87
A6 0.84 -4.43 0.02 0.08 0.08 0.17 1.00 1.00

We carried out additional analyses to evaluate hourly stoPET values against to the native resolution of hPET. Here we only
show the results from a single location (point Al in Fig. 7) as an example; however, the results and plots of the other locations
are provided in the supplementary material (Fig. S15 to Fig. S25). The scatter plot (Fig. 10a) indicates that stoPET generates
hourly PET values that are comparable to hPET (R = 0.83). The box plots (Fig. 10b) show that stoPET also produces a
comparable mean (green triangle in Fig. 10b) and median (red line in Fig. 10b) to hPET and captures the overall variability in
the hPET distribution. Figure 11 shows the density plots of the hPET and stoPET data, which indicates that the randomly
generated stoPET values well represent the hPET data for the arid location in North America (and other locations, see
supplemental figures). Additionally, we investigated how well stoPET captures the diurnal cycle contained within hPET.
Figure 12 shows an hourly time series for 15 days of stoPET and hPET over several diurnal cycles, demonstrating good

consistency in the timing of peaks and troughs, but with clear evidence of the desired stochasticity in the simulated series.

(a) Al R=0.83 (b) Al
¢ L 8 N .
1.2 o so_'edy ¢ 1.0
=. ... L ) o o
1.0 . g'.o' 0.8
a L)
20.81 g % -
£ Y ( o = 0.6
E £
E 0-6' & E
[
2 L w ]
" 0.4- = 0.4 N .
0.2 0.2
0.0 % . ‘ | . | | 0.0. | L
0.0 0.2 04 06 0.8 1.0 1.2 ‘ :
hPET {(mmh-1) hPET stoPET

Figure 10: (a) Scatter plot between hPET and stoPET daytime values, (b) box plots for hPET and stoPET daytime data (green
triangle shows the mean and the red solid line indicates the median) over the period 2001-2020 (for Al in Fig. 7).

11



10

15

Density Plot for Al

= hPET

1.75 StoPET

1.50 \/\
1.25 N\

1.00

Density

0.75! |
0.501
0.251

0.00 ; ; - . ‘ :
0.00 0.25 0.50 0.75 1.00 1.25

PET (mmh™1)
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Figure 12: Time series of hPET and stoPET data for the last 15 days of 2020 (for Al in Fig. 7). The figure indicates that stoPET
capture the diurnal cycle of PET and the difference among each day is an expression of the stochasticity of the model.

4 Incorporating future climate change in stoPET

The future atmosphere is predicted to be warmer due to anthropogenic forcing (Hoegh-Guldberg et al., 2018, IPCC, 2021).
This increased atmospheric temperature should lead to higher evaporative demand, which can have substantial impacts on the
water balance. stoPET incorporates three methods to account for changes in atmospheric evaporative demand to climate
change, supporting flexibility in simulating various climate scenarios. The three methods described below with examples,

provide choices for users to explore what fits their study goals.

4.1  Method descriptions
4.1.1 Method 1: User-defined percentage step change of annual PET

For some applications, it may be useful to assess the impact of a percentage change in evaporative demand on the water
balance. Method 1 consists of the user providing a percentage, corresponding to the desired fractional change in annual PET
relative to the historical baseline series (user-defined percentage value - U). This then influences the generation of hourly PET

in stoPET as follows:
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1) Generate a stoPET series based on historical baseline climate and calculate the annual sum of the simulated series
(PETannuar)-

2) Estimate the annual PET change (APET ;,ua:) USing EQ. (5):

APETonnuar = PETannuar * U Eq. (5)

3) Divide APET,,,ua into monthly changes by multiplying with the average monthly percentage contribution to
PET ;. .nuai» Which are already generated within stoPET for historical climatology.

4) Divide the monthly change by the number of days in each month to obtain a daily adjustment of the stoPET series.

5) Divide the daily PET change using the percentage contribution of daytime hours, which are calculated within stoPET
for each month.

6) The adjusted hourly PET is then obtained based on the summation of the PET from step 1 and the hourly changes of
PET from step 5.

4.1.2 Method 2: Step change in PET based on a user-defined change in atmospheric temperature

Climate change is often characterised in terms of a specified rise in atmospheric air temperature (Randalls, 2010), which may
vary for different locations across the globe but is typically communicated as a global mean temperature change (e.g., 1.5
degrees of warming based on the Paris Climate Treaty) (Kriegler et al., 2018). We fully acknowledge that PET (especially
based on the PM method of calculation) is not only driven by temperature changes but by changes in solar radiation, wind
speed and humidity (Xu et al., 2014). Nevertheless, to isolate the influence of temperature alone, we created within stoPET a
method to calculate temperature-based changes in PET, with all other non-temperature related variables remaining unchanged.
This is simply implemented, transparent and aligns directly with global climate discussions and policies (IPCC, 2013; Blunden
and Arndt, 2020; NOAA, 2021). Method 2 accounts for a user-defined temperature change and its propagation into hourly
PET, which works as follows within stoPET:

1) We recalculated hPET globally with uniform homogenous air temperature increment of 0.5°C (e.g., 0.5°C, 1.0°C,
1.5°C, 2.0°C, 2.5°C) for every hour, with all other non-temperature related variables remaining unchanged.

2) hPET, which was calculated based on the current temperature with no adjustment, was subtracted from newly
calculated PET values containing the temperature adjustment. This step revealed that the rate of change of the PET
increase is uniform on average (Fig. 13); hence we can use the rate of change in PET and the user-defined temperature
change as a multiplicative factor to represent the change in annual PET.

Figure 13 shows an example of annual PET change computed for Wajir, Kenya, where the temperature is raised in increments
of 0.5°C from the current temperature. The figure shows a linear relationship between the annual change in PET and change
in temperature (R? = 0.998), as an example, every increase by 0.5°C yields ~55 mm of annual PET change for the specified
location. stoPET then provides the global annual PET change based on 1°C of warming derived from 20 years of climatology
(Fig. 14). These annual PET changes are used as an input and multiplied by the user-defined temperature factor to determine

the amount of annual PET change at each grid cell.

Method 2 adjusts simulated hourly PET generated by stoPET in similar ways to Method 1 (i.e., steps 3-6 are the same as
Method 1), but the first two steps are altered as follows.

1) Generate an hourly stoPET time series for one year and take the annual sum.

2) stoPET multiplies the annual change in PET associated with a 1°C temperature increase (Fig. 14) by a user-defined

temperature change (AT).
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Figure 13: Annual PET change when estimated by progressively increasing the atmospheric air temperature. The changes are
referenced to hPET, which is calculated using the historical temperature. This example is for a single location (Wajir-Kenya). The
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Figure 14: The global climatological step change in annual PET due to a unit temperature increase. The results were obtained by
taking the difference of the PET calculated with increased temperature and hPET which is calculated using the current temperature.

4.1.3  Method 3: Progressive change in PET based on the historical trend in hPET.

In some cases, it may be desirable to evaluate the potential impacts if currently observed trends in PET continue into the future.
To support this type of analysis, Method 3 computes the historical trends in hPET for each pixel of the globe and then applies
this trend within the stoPET series for every location, leading to progressive change in the simulated PET. stoPET simulates
PET via Method 3 as follows, sharing the same steps as Method 1 from step 3 onwards. The first two steps are as follows:
1) Generate stoPET for one year and take the annual sum.
2) Estimate the annual PET change using the slope of the linear trend to historical hPET (Eq. (6)). sStoPET computes this
trend and uses its slope (s) (Fig. S26) as an input parameter applied over the number of years of the simulation (x) to
adjust the simulated series from stoPET that would be generated based on a ‘no climate change’ scenario.

APET muar = SX Eqg. (6)

14



4.2  Examples of stoPET-generated PET under climate change by the three methods

As a demonstration of these methods, we simulated PET under climate changes for arid and humid locations used for model
evaluation (Fig. 7). Specifically, we present time series of annual PET for a 5 % user-defined percentage increase in PET
(Method 1), a user-defined 1.5°C increase in temperature (Method 2), and by impaosing the historical trend from hPET into
the future (Method 3) (Fig. 15; Fig. S27 to Fig. S31). These plots demonstrate the built-in flexibility in stoPET for
simulating changes to evaporative demand under climate change. For example, they illustrate that under Method 1, there is
simply an elevated simulated time series of PET, while the higher values for Method 2 result from propagating a temperature

increase through the calculation of PET, and Method 3 shows a clear trend that departs from the historical mean (Fig. 15).
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Figure 15: Annual PET estimated using stoPET with the three climate change methods for (a) a humid location (H1) and (b) an
arid location (Al) in North America (see Fig. 7).

5 Discussion

As the global community works to determine the potential impacts of climate change, it is critical to address how changes to
atmospheric evaporative demand will affect the water balance and associated water resource availability. Here, we have
presented a novel stochastic PET generator (stoPET), which fills a gap in current capabilities to simulate multiple realisations
of historical and future evaporative demand across the globe. stoPET is a parsimonious, flexible, and computationally efficient
way of generating plausible hourly PET timeseries anywhere on the Earth’s land surface for various climatic forcing scenarios.
StoPET has the potential for improving climate-related impact studies on the water balance for applications including, but not

limited to ecology, ecohydrology, agriculture, and water resources in a wide range of environments across the globe.

The water balance is very sensitive to atmospheric evaporative demand, so the characterization of diurnal and seasonal
variability in PET across the globe is a critical component for a wide range of climate impact studies. stoPET is particularly

relevant for the prediction of water resource availability, estimation of future crop water demand, assessment of flash flood
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risk, and provision of actionable information on expected climatic impacts on the water balance. Given inherent uncertainties
in climatic drivers of the water balance (rainfall and PET), simulated assessments of the water balance under potential future
climate change would be best framed in a probabilistic way. Stochastic weather generators may provide projections of rainfall
and temperature (Chen et al., 2012; King et al., 2015; Steinschneider et al., 2019), but there is currently no standardised
capability to simulate plausible time series of PET under a range of future scenarios. It is also not currently possible to
retrospectively assess the impact of climate forcing on the historical water balance based on PET. This information gap on
PET undermines efforts to drive hydrological, agricultural, and land surface models. We provide a few potential applications

of stoPET in this context below.

PET significantly influences the partitioning of the long-term water balance into different stores and fluxes that vary over time
and space (Bai et al., 2016; Quichimbo et al., 2021). Key water balance components, including groundwater storage,
evapotranspiration, runoff and streamflow are challenging to assess without accurately constraining evaporative demand
(Bowman et al., 2016; Condon et al., 2020). An obvious example is flood hazard, which is especially sensitive to antecedent
moisture conditions within a drainage basin based on the prevailing PET over the period between rainstorms, which affects
the subsequent partitioning of rainfall between infiltration and runoff, the downslope flow of both surface and subsurface
water, and correspondingly, the magnitude of flood waves in channels. These influences impact the strength of the watershed
response to rainfall events and corresponding flood hazard (Zoccatelli et al., 2019) in a range of environments. stoPET-derived
PET will thus support more realistic analyses of the water balance for the purposes of assessing flood hazard (and potential

mitigation measures).

Hydrological and land surface models require PET to close the water and energy balance and to resolve its key components
(e.g., parsimonious distributed hydrological model for DRY land Partitioning-DRYP, (Quichimbo et al., 2021); PARallel Flow-
ParFlow, (Maxwell and Miller, 2005)). Such models are often assessed in terms of the uncertainty in spatiotemporal rainfall
used to drive them, but there is additional uncertainty in PET that is typically unconstrained and especially for scenarios of
future climate change (Van Osnhabrugge et al., 2019). stoPET can generate multiple realisations of PET, supporting the
assessment of uncertainty in atmospheric demand and providing key information on PET to support forecasting and risk
assessment associated with water availability and agricultural water demand, especially for a wide range of meteorological
conditions (Dimitriadis et al., 2021). The stoPET model fills this gap by providing physically realistic PET time series that

vary in space and honour the inherent diurnal and seasonal variability.

Water availability to plants is one of the limiting constraints for crop production and food security (Funk et al., 2008; Funk
and Brown, 2009; Kang et al., 2009; Ayyad and Khalifa, 2021), but also for the health and functioning of the vegetative
ecosystem in natural settings (Mayes et al., 2020; Sabathier et al., 2021; Warter et al., 2021). Forecasts of crop water
requirement and irrigation demand for major crops like maize, barley, and wheat (Ewaid et al., 2019) are paramount for
preparing advisories related to the timing of planting, crop choice, and irrigation scheduling, especially in arid and semi-arid
regions, where high atmospheric evaporative demand and erratic rainfall make farming a risky economic activity (Nyakudya
and Stroosnijder, 2011). Crop models require estimates of PET to quantify how much water can be lost to the atmosphere over
the diurnal cycle and over the entire season of crop growth. In natural settings, PET is necessary to predict both water
availability to plants and the timing of plant phenology, including the timing of green-up and senescence cycles, which have
broader implications for ecosystem functioning in a range of environments. In this context, sStoPET can be used to simulate the
PET and thus assess the hourly availability of water in the soil and its variation over the growing season for a wide range of
plants. Our new model also supports analyses of future climatic changes and their impact on natural and agricultural plants, as

well as irrigation demand for major crops.
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Finally, stoPET can potentially be used in concert with rainstorm generators such as the STOchastic Rainstorm Model
(STORM) (Singer et al., 2018), wherein rainfall and interarrival times are simulated to obtain inputs to other models. Rainfall
and PET may be straightforwardly interlinked such that PET in stoPET is reduced (due to cloud cover and high humidity) on
any simulated rainy day in STORM, thus lowering evapotranspiration losses during rainy periods. In this way, STORM and
stoPET would provide consistent sequences of raw data required to close the water balance in terms of key climatically derived

variables.

In these and other applications, stoPET presents a new and useful tool to support decision making. For a range of practical
situations ranging from water resource planning to agriculture to disaster risk reduction it would be useful to explore the
plausible range of variability in PET and its impact on the water balance for any region. For example, the Horn of Africa
drylands region is currently experiencing its 5" consecutive season (October-November-December 2020; March-April-May
2021; October-November-December 2021; March-April-May 2021; and October-November-December 2022) of drought in
which atmospheric temperatures are elevated (FEWS NET, 2022a). A 6™ ‘failed rainy’ season is predicted for the upcoming
‘long rains’ season (March-April-May 2023) (FEWS NET, 2022b). Once a temperature forecast is issued for the region, this
information could be used to create multiple stochastic series of PET from stoPET, which could then be used with rainfall
forecasts to drive hydrological models. Thus, one could examine what impact these elevated temperatures, alongside forecasted
rainfall deficits, would have on water resources, crop yields, and available pasture lands for millions of rural people. The
output from such this modelling could then support forecast-based financing decisions, as well as to plan disaster response

across this vulnerable region.

Other future improvements of the model that we envisage may be to incorporate other variables apart from temperature change
that are likely to be non-stationary and affect PET, such as radiation and wind speed. Additionally, the noise factor sampling
used to perturb the stochastic PET is currently independent of adjacent grid points, so there is essentially no spatial
autocorrelation, which may be undesirable. The impact of this on the realism of the output is not known a priori. Therefore,
applying spatial smoothing to the stoPET output across a grid of simulated values might be a potential future improvement of

the model.

In summary, stoPET generates stochastic hourly PET across the globe at high spatial resolution and can estimate future PET
under a range of potential future climate changes. The model can be used to evaluate different land surface and water balance
models, which are used to predict water availability and other metrics related to the impacts of climate on sectors like

agriculture and water use.
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