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Abstract. Potential evapotranspiration (PET) represents the evaporative demand in the atmosphere for the removal of water 15 

from the land and is an essential variable for understanding and modelling land-atmosphere interactions. Weather generators 

are often used to generate stochastic rainfall time series; however, no such model exists for stochastically generating plausible 

PET time series. Here we develop a stochastic PET generator, stoPET, by leveraging a recently published global dataset of 

hourly PET at 0.1° resolution (hPET). stoPET is designed to simulate realistic time series of PET that capture the diurnal and 

seasonal variability of hPET and to support the simulation of various scenarios of climate change. The parsimonious model is 20 

based on a sine function fitted to the monthly average diurnal cycle of hPET, producing parameters that are then used to 

generate any number of synthetic series of randomised hourly PET for a specific climate scenario at any point of the global 

land surface between 55° N and 55° S. In addition to supporting stochastic analysis of historical PET, stoPET also incorporates 

three methods to account for potential future changes in atmospheric evaporative demand to rising global temperature. These 

include 1) user-defined percentage increase of annual PET; 2) a step change in PET based on a unit increase in temperature, 25 

and 3) extrapolation of the historical trend in hPET into the future. We evaluated stoPET at a regional scale and at twelve 

locations spanning arid and humid climatic regions around the globe. stoPET generates PET distributions that are statistically 

similar to hPET and an independent PET dataset from CRU, capturing their diurnal/seasonal dynamics, indicating that stoPET 

produces physically plausible diurnal and seasonal PET variability. We provide examples of how stoPET can generate large 

ensembles of PET for future climate scenario analysis in sectors like agriculture and water resources, with minimal 30 

computational demand.  

1 Introduction  

Potential evapotranspiration (PET) is the representation of the atmospheric demand for evaporation from a well-watered, 

vegetated land surface (Allen et al., 1998). It is paramount in determining the water balance within hydrological models and 

is routinely used in water management for agriculture to determine crop water demand and irrigation scheduling. PET is also 35 

a crucial input in climate change impact studies which, for example, aim to provide actionable information on water scarcity 

(Raziei and Pereira, 2013; Liu et al., 2019; Tasumi, 2019; Zhou et al., 2020; Quichimbo et al., 2021).  However, the estimation 

of PET is limited by the availability and quality of meteorological data at the spatial and temporal resolution appropriate to 

the purpose of a given study and by uncertainty in future climate. Differences between PET calculation methods influence the 

output of hydrological models, so the ability to simulate multiple realisations of PET under different scenarios of climate 40 

change via a single estimation method is vital to quantify uncertainties in the water balance due to changes in evaporative 

demand from the atmosphere (Valipour et al., 2017a; Dallaire et al., 2021).  In studies that compare different methods of PET 
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estimation (Tukimat et al., 2012; Li et al., 2016; Valipour et al., 2017b), the Penman-Monteith (PM) equation is used as a 

reference against which other methods are compared. Though the PM equation is the most common and accepted method of 

choice for PET estimation, it is highly data intensive, requiring many input variables (Allen et al., 1998; Grismer et al., 2002; 

Mohawesh 2011; Ravazzaniv et al., 2012; Lee and Cho, 2012; Tukimat et al., 2012). This limits its utility and relevance, 

particularly for the many data-sparse regions across the globe (Yadeta et al., 2020). The lack of adequate local meteorological 5 

data necessitates reliance on empirical methods of PET estimation, which require intensive calibration (Kingston et al., 2009), 

and can in turn limit the accuracy of resulting PET products.  

 

While some global climate models do not include PET explicitly (e.g., COSMO-CLM (Will et al., 2017)), most global climate 

models (e.g., ERA5-Land) do provide some of the outputs of climatic variables used to estimate PET. However, they do not 10 

directly output PET itself, which would support more detailed impact-based modelling of climate change. Climate models 

focus on predicting the effects of greenhouse gas emissions on global water and energy transfer, and thus they output climate 

variables (e.g., temperature, radiation, surface pressure, wind speed, and rainfall). Without explicit data on PET, high 

computational resources are required to estimate the PET for large areas from climate model output variables, and the spatial 

and temporal scales of these outputs are typically too coarse for detailed impact analyses. These scaling considerations may 15 

make climate model output unsuitable for computing PET. This is especially true for application to certain water balance 

applications, where diurnal changes in PET are important for a specific location or where there are large spatial differences in 

PET. Downscaling techniques are commonly used to generate the parameters needed to estimate PET from global climate 

models by the PM method (or other methods) at the appropriate resolution, but this increases the computational resource 

requirement (Tukimat et al., 2012) and adds additional uncertainty to PET calculations. 20 

 

Another challenge for PET estimation is how to characterise evaporative demand under climate change scenarios, which is an 

important need for assessing possible future climate change impacts (Xu et al., 2014). Temperature is one of the major climate 

variables influencing PET (Allen et al., 1998). Therefore, with increasing temperature under climate change for most of the 

globe, there is a need to simulate historical and future PET in a consistent and spatially explicit way. Simulating changes in 25 

evaporative demand associated with changes in temperature would be particularly useful for assessing the potential impacts 

of meeting/not meeting the 1.5° C target of the Paris Climate Treaty (Kriegler et al., 2018) or for addressing any future global 

temperature target. Additionally, it would be powerful to be able to simulate step changes and trends in PET according to user-

defined specifications, giving the user a flexible tool for generating a range of PET time series for various applications.   

 30 

Given the inherent uncertainty in climatic drivers on the terrestrial water balance and the need to incorporate current and future 

PET trends in hydrological and other climate change impact models, stochastic PET simulation provides a flexible and useful 

tool to fill this research gap. While several stochastic weather generators exist and are used to generate physically consistent 

time series of rainfall (Fatichi et al., 2011; Peleg et al., 2017; Singer et al., 2018; De Luca et al., 2020), no similar model exists 

for generating stochastic PET time series. Although PET calculations are sometimes included within hydrological models, 35 

these require user specification of input climate variables used in the calculation and a specification of the calculation method. 

In these cases, PET is internally calculated to close the water balance, but it is not typically provided as an output variable. 

Ultimately, there is no existing method for obtaining internally consistent simulations of PET at high spatial and temporal 

resolution for the entire global land surface. This paper addresses this gap and introduces a new stochastic PET generator, 

stoPET, for simulating hourly time series of PET at 0.1° spatial resolution for the global land surface. stoPET enables the user 40 

to characterise the uncertainty in PET for historical and future climate scenarios. It supports the generation of unlimited unique 

realisations of PET in a computationally efficient way. To support analyses of climate change, stoPET incorporates different 

methods to account for potential changes in atmospheric evaporative demand in response to rising global temperature, 

supporting flexibility in simulating various climate scenarios. The importance of including options to simulate multiple future 
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PET time series emanates from the unpredictability of future climate and the need to assess the impacts of climatic changes 

on the water balance.  

 

Below we provide a comprehensive description of the stoPET model and its potential application for predicting the evolution 

of water resources in drylands, estimating future crop water demand, assessing flash flood potential, or providing actionable 5 

information on expected climatic impacts on the water balance. Section 2 describes the concept and design of the model with 

a brief note about its implementation. Section 3 describes the model verification at regional and point scale. Section 4 describes 

the methods used to incorporate PET changes due to temperature changes in the stoPET model. The paper concludes with a 

discussion of the potential application of stoPET (Sect. 5). A user manual for stoPET is included as a supplement, and all the 

model scripts and input parameters are freely available on figshare (10.6084/m9.figshare.19665531). 10 

2 Model concept and design 

2.1 Concept 

The stoPET model generates hourly PET values based on sine function parameters estimated from hPET (Singer et al., 2021), 

an hourly PET dataset that was recently created from ERA5-Land climatic variables (Muñoz Sabater, 2019) using the Penman-

Monteith method (Allen et al., 1998). The resulting PET generated from stoPET retains the diurnal and seasonal variations in 15 

PET contained within the hPET dataset, but notably, stoPET injects randomness (stochasticity) in the simulated series via a 

noise factor. In other words, stoPET does not recreate hPET, but rather uses hPET to generate new randomised sequences of 

PET based on the diurnal and seasonal variability in the hPET dataset. The development of stoPET begins by using the entire 

hPET dataset as an input, from which we create a generalised functional form for diurnal PET and create a noise factor to 

inject stochasticity according to the following steps, each of which is outlined in more detailed in subsequent sections below:  20 

1) Estimate the average diurnal cycle of PET for each month using a sine function  

2) Fit a skewed normal distribution to the difference between all hourly values for the diurnal curve and the average 

diurnal curve, for of each month to generate a randomized noise ratio. 

3) Generate stochastic PET timeseries for a particular month by multiplying that monthôs average diurnal cycle with a 

sequence of draws from the corresponding skewed normal distribution 25 

2.2 Model implementation 

The overall stochastic PET generation model, stoPET, can be expressed as follows: 

Stochastic PET = (Average diurnal cycle of PET using a sine function *  a random Noise ratio) +  

                              user defined annual PET variability 

Each of the three components is described in detail in the subsequent sections. 30 

2.2.1 Sine function parameter estimation 

The stoPET model is based on fitting a sine function to the average diurnal cycle calculated from hPET for each month and 

for each grid cell. The sine function, defined in Eq. (1), provides the four parameters required to represent the characteristic of 

hourly PET for each month at each grid cell: 

ὣ ὃ ίὭὲ ὄ ὸz  ὅ Ὀ                                          Eq. (1) 35 

Where ὃ represents the diurnal amplitude (mm h-1), ὄ is the frequency (h-1), ὅ is the phase shift (-), Ὀ is the vertical shift (mm 

h-1). ὸ is time (h), and ὣ is the new PET value (mm h-1) generated from the sine function. 

https://doi.org/10.6084/m9.figshare.19665531
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The monthly sine fit is based on the average of values of hPET for all diurnal curves for all days of that month over the period 

of record (for this application, 1981-2020). The sine fit is only done based on values for daylight hours (sunrise to sunset), as 

we assume nighttime PET values are zero. In reality, PET is not always zero at night, but it typically ranges from small positive 

to small negative values (representing condensation) within hPET. For example, nighttime PET is relatively higher in arid 

regions (median PET value is between 0.001 and 0.076 mm h-1) compared to humid regions (median PET value is between -5 

0.014 and 0.002 mm h-1) (Fig. S1 and Fig. S2). Nevertheless, the impact of nighttime PET in core applications such as crop 

and hydrological modelling is expected to be minimal, hence we set nighttime PET values to zero in stoPET.  

An example of the sine function representing hPET data for a single grid location (Wajir in Kenya - 1.73° N, 40.09° E) for the 

month of January is shown in Fig. 1. The grey shaded area represents the range of the hourly PET obtained from all days of 

January within the 40 years record of hPET data, while the black line shows the average of those hPET values. This average 10 

diurnal cycle is used to fit the sine function (red line based on  ὣ in Eq. (1)) for each month of the year. The four parameters 

from Eq. (1) are estimated at each 0.1° grid location for each month and then saved as input for simulating synthetic sequences 

of PET. Figure 2 shows, for illustration, the spatial variability of parameters across the globe for January. For each month of 

the year all four parameters, plus the sunrise and sunset hours (which are required to identify daytime and nighttime periods) 

for any pixel across the global land surface (Figure 2), are provided as an input file to be run with the model script.  15 

 

Figure 1: An example of a sine function curve fitted over the average hourly PET values for January at a location in Wajir 

(Kenya). The black line is the average from hPET, and the red line represents the fitted sine function. The grey shaded area is the 

range across all January days in the 40 years of record for hPET. Average sunrise and sunset times are shown in green vertical 

dashed lines. 20 
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Figure 2: The sine function parameters estimated for January over the spatial domain of the stoPET model (global land surface 

latitudes between 55° N and 55° S). The parameters are described in Eq. (1) where (a) the amplitude (mm h-1), (b) the frequency  

(h-1), (c) the phase shift (-) and (d) the vertical shift (mm h-1). 
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2.2.2 Random noise estimation 

PET shows variability within each month (Fig. 1), which is represented stochastically in stoPET using a ñnoise ratioò 

parameter (ὔ) (Eq. (2)): 

                                                                           ὔὬȟὨȟά
ȟȟ

ȟ
                                                      Eq. (2) 

Where ὖὉὝ ὬȟὨȟά  is the PET for every hour (h) and day (d) of each month (m) and ὖὉὝ Ὤȟά  is the average PET of 5 

each hour over all days of the month. A skewed normal distribution is then fitted to noise ratios of each month calculated 

using Eq. (2). The fitted skewed normal distribution parameters (skewness, location, and scale), defined at each grid cell and 

month, are used as input to stoPET to generate stochastic variability around the sine function by sampling from this skewed 

distribution. Figure 3 shows the values of the three noise ratio parameters over the entire spatial domain of stoPET, estimated 

for the month of January.  10 

 

Figure 3: The parameters representing the noise ratio (a) skewness, (b) location, and (c) scale for the month of January over the 

spatial domain of the stoPET model. 

By way of a worked example, Fig. 4a shows the monthly distribution of the noise ratio for a single location in Wajir (Kenya), 

while Fig. 4b shows the randomly generated noise ratio array for January and the parameters representing it. The steps followed 15 

to create these noise ratio values were as follows: 

1) Calculate the average hourly PET for each month from the 40 years hPET data. This gives a characteristic diurnal 

curve from which we can determine the average hourly PET value for each month (the black line in Fig. 1). 

2) Divide each hourly PET for every day in each month (e.g., Jan 1) by its average from step 1. This gives the noise 

ratio array (Fig. 4a). 20 
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3) Fit a skewed normal distribution to the noise ratio array based on Eq. (2) for each month and save the parameters 

(Fig. 4b). 

 

 

 5 

Figure 4: (a) Noise ratio box plot for a single location in Wajir (Kenya) . The box plots indicate that the noise ratio is variable over 

each month with the green triangle showing the mean and the red line in the box plot indicating the median (b) A histogram for 

the January noise ratio is shown in blue, with the fitted skewed normal distribution shown in red. The corresponding distribution 

parameters are indicated in the top left of the plot. 

2.2.3 Generating stochastic hourly PET 10 

stoPET generates simulated stochastic PET values for a particular month by multiplying the respective sine function (Fig. 1) 

by the noise ratio sampled from the corresponding skewed normal distribution (Fig. 4b). For instance, for a particular 

simulation of January PET, stoPET will generate 31 random noise ratios, producing 31 diurnal cycles of PET that amplify (or 

dampen) the mean diurnal PET sine wave for the month. Synthetic PET for any climate scenario can then be generated for the 

entire month and for as many years as the user chooses.  15 

3 Model verification  

3.1.1 Verification of stoPET against hPET dataset 

Regional representation 

stoPET is set up to generate synthetic plausible hourly PET time series within any defined spatial area between 55° N and 55° 

S. High latitude areas were not included because some months do not have a clear sunset and sunrise times during summertime 20 

creating potential errors in the sine function fitting. We have evaluated the stoPET model against hPET (the only globally 

available dataset at hourly resolution) (Singer et al., 2021) and against the Climate Research Unitôs daily average PET dataset 

generated by the PM method at monthly temporal resolution (presented as a daily average for the month) over the period 1901-

2018 at 0.5° grid resolution (CRU,  (https://crudata.uea.ac.uk/cru/data/hrg/,  (Harris et al., 2020)). We carried out these 

evaluations for selected humid and arid regions on six continents (North America, South America, Europe, Africa, Asia, and 25 

Australia [Australia sub-continent also includes the Oceania region]). As an illustration of the visual comparison to hPET, 

Figure 5 shows the average annual PET climatology for Africa over five years of simulated PET from stoPET (Fig. 5a) against 

five randomly selected years from the hPET dataset, where we have also removed the nighttime PET values (Fig. 5b) since 

stoPET considers the nighttime PET to be zero. Figure 6 shows a similar comparison for Europe (stoPET, Fig. 6a and hPET, 

Fig. 6b). These comparisons indicate that stoPET estimates annually averaged PET values from hPET with only an average 30 

https://crudata.uea.ac.uk/cru/data/hrg/
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percentage difference of ~±5 % (see Fig. S3 to Fig. S8 in the supplementary document). The results of this comparison, albeit 

qualitative, suggest a strong similarity in globally distributed values between the simulated and historical data in most regions 

of the world, which supports the use of stoPET for representing the annual PET over large regions. The figures for the 

remaining continents are provided in the supplementary document (Fig. S3 to Fig. S8), along with the contrast between stoPET 

annual PET and the hPET dataset when the nighttime values are included (Fig. S9 to Fig. S14).  5 

 

Figure 5: Average annual PET for five randomly selected years (a) stoPET, (b) hPET with nighttime PET removed for Africa.  

 

Figure 6:  Average annual PET for five randomly selected years (a) stoPET, (b) hPET with nighttime PET removed for Europe. 

Single point representation 10 

To verify the performance of stoPET more quantitatively, analysis was carried out on twelve points across 6 continents chosen 

to be representative of both humid and arid climates across the global land surface (Fig. 7). Ten ensembles, each comprising 

20 years of synthetic PET data, were generated using stoPET and compared against the hPET dataset over the period 2001-

2020, substituting the nighttime (zero) PET values of stoPET with nighttime values of hPET. Next, the hourly PET values 

from stoPET and hPET were aggregated to daily average PET values for each month at the twelve locations for evaluation of 15 

stoPET (again, including the nighttime values), against the CRU PET dataset developed by the PM method (see above). 

 


