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Abstract. Potential evapotranspiration (PET) represents the evaporative demand in the atmosphere for the removal of watel
from the land and ian essential variable for understanding and modellingdmdsphere interactiong/eather generators

are often used tgeneratestochastic rainfall time serieBowever, no such model exists for stochastically generating plausible
PET time seriesHere we develop a stochastic PET generator, stoPET, by leveraging a recently published global dataset of
hourly PET at 0.1° redution (hPET). stoPET is designed to simulate realistic time series of PET that capture the diurnal and
seasonal variability of hPET and to support the simulation of various scenarios of climate ¢hanggrsimonious model is

based on a sine functioittéd to the monthly average diurnal cycle of hPET, producing parameters that are then used to
generateany number obynthetic series afandomisechourly PETfor a specific climate scenarat any poinof the global

land surfacéetween 55N and 55°S. In addition to supporting stochastic analysis of historical BEERET also incorporates

three methods to account for potential future changes in atmospheric evaporative demand to rising global temperature. Thes
include 1) usedefined percentage incrsaof annual PET; 2) a step change in PET based on a unit increase in temperature,
and 3) extrapolation of the historical trend in hPET into the future. We evaluated stoPET at a regional scale and at twelve
locations spanning arid and humid climatic regiamound the globe. stoPET generates PET distributions that are statistically
similar to hPETand an independent PET dataset from C&Apturingheir diurnal/seasonal dynamics, indicating that stoPET
produces physically plausible diurnal and seasonal Rigi@ability. We provide examples of how stoPET can generate large
ensembles of PET for future climate scenario analysis in sectors like agriculture and water resources, with minimal

computational demand.

1 Introduction

Potential evapotranspiration (PEIE)the representation of thatmospheric demand for evaporation from a weltered,
vegetated land surface (Allen et al., 1998). It is paramount in determining the water balance within hydrological models and
is routinelyusedin water management for agriculturmedetermine crop war demand and irrigation scheduling. PET is also

a crucial inpuin climate changémpactstudieswhich, for example aim toprovide actionable information on water scarcity
(Raziei and Pereira, 2013; Liu et al., 2019; Tasumi, 2Bh6u et al., 2020Quichimbo et al., 2021)However, heestimation

of PET is limited by the availability and quality of meteorological data at the spatial and temporal resolution appoopriate t
the purpose of a given studpd by uncertainty in future climateifferencesbetveenPET calculationmethods influence the
outputof hydrological models, so the abilitp simulatemultiple realisationsof PET under differentscenariosof climate
changevia a single estimatiomethod is vitalto quantify uncertaintieén the water balance due to chandge®vaporative

demand from thatmosphergValipour et al., 2017a; Dallaire et al., 2021n studieghatcompae different methods of PET
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estimation (Tukimat et al., 2012; Li et al., 2016; Valip et al., 2017b), the PenmMonteith (PM) equation is used as a
reference against which other methods are compared. Though the PM equation is the mostaraiamoeptethethod of
choicefor PET estimationit is highly datantensive requiing many nput variables (Allen et al., 1998; Grismer et al., 2002;
Mohawesh 2011; Ravazzaniv et al., 2012; Lee and Cho, 2012; Tukimat et al., 2012). This limits its utility and relevance,
particularly for the many datsparse regions across the globe (Yadeta,e2@20). The lack of adequate local meteorological

data necessitates reliance on empirical methods of PET estimation, which require intensive calibration (Kingston &t al., 2009

andcan in turn limit the accuracy of resulting PET product

While some global climate models do not include REplicitly (e.g., COSMGCLM (Will et al., 2017)) mostglobal climate
models(e.g., ERA5Land)do providesome of theoutputs of climatic variablegsed to estimateET. However they do not
directly output PETitself, which would support more detailed impdiised modelling of climate chand@imate models
focus on predicting the effects of greenhouse gas emissions on global water and energy transfer, and thus they output clima
variables (e.g., temperaturegdiation, surface pressure, wind speed, and rainfélijhout explicit data on PEThigh
computational resoursare requiredo estimate the PEfor large areafrom climate model output variableand the spatial

and temporal scales of these outputstgpically too coarse for detailed impact analy3émse scaling considerations may
make climate model output unsuitable for computing PHIis is especially truéor application to certain water balance
applications, where diurnal changes in PET angairtant for a specific locatioor where there are large spatial differences in
PET. Downscaling techniques are commonly used to generate the parameters needed to estifinate §BHal climate
modelsby the PM methodor other methodsat the appropriate resolution, but this increases the computational resource

requirement (Tukimat et al., 2012) and adds additional uncertaift T@alculations.

Another challenge for PET estimation is how to characterise evapadativend under climate change scenarios, which is an
important need for assessing possible future climate change impacts (Xu et al.T2f@fpBrature is one of the major climate
variables influencing PET (Allen et al., 1998). Thereforghvincreasingemperature under climate change for most of the
globe, there is a need to simulate historical and future PET in a consistent and spatially explicit way. Simulatingnchanges i
evaporative demand associated with changes in temperature would be particefatljonsassessing the potential impacts

of meeting/not meeting the 1.5° C target of the Paris Climate T¢i€ggler et al., 2018yr for addressing any future global
temperature target. Additionally, it would be powerful to be able to simulate stegpeshand trends in PET according to user

defined specificationgiving the user a flexible tool for generating a range of PET time series for various applications

Given the inherent uncertainty in climatic driversthe terrestrial water balanaed the need to incorporate current and future
PET trends in hydrologicand other climate change impacbdels stochastic PET simulationqgurides a flexible and useful

tool to fill this research gap/Nhile severastochastic weather generators exist andusesl to generate physically consistent
time series of rainfall (Fatichi et al., 2011; Peleg et al., 2017; Singer et al., 2018; De Luca et aln®@6i2@i)ar model exists

for generating stochastic PET time seriéihough PET calculations are sometirmencluded within hydrological models,

these require user specificationimput climate variablesised in the calculatiomnd a specification @he calculatiormethod

In these case®ET is internallycalculagdto close the water balandauytit is not typically provided as an output variable.
Ultimately, there is no existing method for obtaining internally consistent simulations of PET at high spatial and temporal
resolution for the entire global land surfad@éis paper addresses this gap and introduces a new stochastic PET generator,
stoPET for simulating hourly time series of PET at 0.1° spatial resolution for the global land surface. stoPETtkeaisies

to characteris¢he uncertainty in PET for histoatand future climate scenarios. It supptitesgeneration of unlimited unique
realisationof PET n acomputationally efficiehway. To support analyses of climate changfePET incorporates different
methods to account for potential changes in atmasplevaporative demand in response to rising global temperature,

supportingflexibility in simulating various climate scenarios. The importance of including options to simulate multiple future
2
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PET time series emanates from the unpredictability of futimeate and the need to assess the impacts of climatic changes

on the water balance.

Below we provide a comprehensive description of the stoPET model and its potential application for predicting the evolution
of water resources in drylands, estimatingifatcrop water demand, assessing flash flood potential, or providing actionable
information on expected climatic impacts on the water balance. Section 2 describes the concept and design of the model wit
a brief note about its implementati@@ection3 desribes the model verification at regional and point scale. Section 4 describes
the methods used to incorpor®&ET changes due temperature changes in the stoPET model. The paper concludes with a

discussion of the potential application of stoPET (S&ctA user manual for stoPET is included as a supplement, and all the

model scripts and input parameters are freely availabfigsinare(10.6084/m9.figshare.19665531

2 Model concept and design
2.1 Concept

The stoPET model generates hourly PET values based on sine function parameters estimated from hPET (Singer et al., 202:
anhourly PET datasehat wagecentlycreated fronERA5-Land climatic variable@Mufioz Sabater, 20)@ising the Penman

Monteith mettod (Allen et al., 1998). The resulting PET generated from stoPET retains the diurnal and seasonal variations in
PET contained withirthe hPET datasgbut notably, stoPETinjects randomness (stochasticity) in the simulated series via a
noise factorIn other words, stoPET does not recreate hPET, but rather uses hPET to generate new randomised sequences
PET based on the diurnal and seasonal variability in the hPET ddtiasdevelopment o$toPETbeginsby using the entire

hPET datasetas an input, fronwhich we create a generalised functional form for diurnal PET and create a noise factor to

inject stochasticity according to the following stepach of which is outlined in more detailed in subsequent sections below:

1) Estimate the average diurnal cycle of PET for each month aséimge function

2) Fit a skewed normal distribution to the difference between all hourly values for the diurnal curve and the average
diurnal curve, for of each month generate a randomized seiratio.

3) Generate stochastic PET timeseries for a particular

sequence of draws from the corresponding skewed normal distribution

2.2 Model implementation

The overall stochastic PEJeneration modebtoPET can beexpressed a®llows:
Stochastic PEE (Average diurnal cycle of PET using a sine functicmrandom Noise ratio) +
user defined annual PET variability

Each of the three componeigsiescriled in detail in the subsequent sections.

2.2.1 Sine function parameter estimation

The stoPET model is based on fitting a sine function to the average diurnal cycle calculated from hPET for each month anc
for each grid cell. The sine function, defined in Bq, provides the four parameters required to represent the characteristic of

hourly PET for each month at each grid cell:
®» 0i @zo 6 O Eqg. (1)

Whereo represents the diurnal amplitude (mm) 16 is the frequency (B), 6 is the phase shift), Ois the vertical shift (mm

h). ois time (h), andbis the new PET value (mm*hgenerated from the sine function.

3
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Themonthlysine fit is based on the average of valoeSPET for all diurnal curves for all days of that month dherperiod

of record (for this application, 1981020). The sine fit is only done based on values for daylight hours (sunrise to amset),
we assume nighttime PET values are zkroeality, PET is not always zero at night, but it typically ranges from small positive
to small negative values (representing condensation) within hPET. For exarghtépe PET isrelatively higherin arid
regions(median PET value is between 0.001 and 0.076mintomparedo humidregions(median PET value is between
0.014 and 0.002 mm¥ (Fig. S1 and Fig. 92 Nevertheless, thiempact of nighttime PET iore applications such asop

and hydrological modelling isxpected to beninimal, hence weset nightime PET values to zelia stoPET.

An example of the sine function representing hPET data for a single grid location (Wajir in-Kleri§aN, 40.09 E) for the
month ofJanuary is shown in Fid.. The grey shaded area represents the range of the R&Flpbtained from all days of
January within the 4@eassrecord of hPET data, while the black line shows the average of tiR&SEvalues.This average
diurnal cycle is used to fit the sine functifred line based or@in Eq. (1)) for eacimonth of the yearThe four parameters

from Eq.(1) are estimated at each 0.1° grid location for each month and then saved as input for simula#tig Sselences

of PET. Figure 2 shows, for illustration, the spatial variability of parameters across the globe for January. For each month of

the year all four parameters, plus the sunrise and sunset hours (which are required talmdmtiBandnightime periods)
for any pixel across the global land surface (Figure provided as an inpfile to be run withthe model script.
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Figure 1: An example of a sine function curve fitted over the average hourly PET values for Januaaf a locationin Wajir

(Kenya). The black line is the average from hPET, and the red line represents the fitted sine function. The grey shaded area is the
range across all January days irthe 40 years ofrecord for hPET. Average sunrise and sunset times are shown in greenrtreal
dashed lines.
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Figure 2: The sine function parameters estimated for January over the spatial domain of the stoPET model (global land surface
latitudes between 55N and 55°S). The parameters are described in Eq1) where (a) the amplitude (mm h%), (b) the frequency
(h™b), (c) the phase shift €) and (d) the vertical shift (mm h-%).
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2.2.2 Random noise estimation

PET shows variability within each month (Flg) , whi ch i s represented stochastica
parameterd) (Eq. (2)):
o oo —D Eq. (2)
Whered 'O "0 is the PET for every hour (h) and day (d) of each month (mpa@d ¥ s the average PET of
each hour over all days of the month. A skewed normal distribution is then fitted to noise ratios of each imdatacca
using Eq(2). The fitted skewed normal distribution parametskegwness, location, and scgldefined at each grid cell and
month, are used as input to stoPET to generate stochastic variability around the sine function by sampling fravedhis ske

distribution. Figure 3 shows the values of the three noise ratio parameters ceirdepatial domairof stoPET estimated

for the month oflanuary.

(a)

(=]
skewness

(b)

(=
o
location

0.0

0.0

Figure 3: The parameters representing the noise ratio (agkewness,lf) location, and (c) scaldor the month of January over the
spatial domain of the stoPET model.

By way of a worked example, Figa shows the monthly distribution of the noise ratio for a single location in Waijir (Kenya),
while Fig. 4b shows the randomly generated noise ratiydaralanuary and the parameters representing it. The steps followed
to create these noise ratio values were as follows:
1) Calculate the average hourly PET for each month from thgedB8 hPET data. This gives a characteristic diurnal
curve from which we can determine the average hourly PET value for each month (the black lin&)in Fig
2) Divide each hourly PET for every day in each month (e.g., Jan 1) by its average from step 1. Shiregioise
ratio array (Fig4a).
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3) Fit a skewed normal distribution to the noise ratio alraged on Eq(2) for each month and save the parameters

(a)

(Fig. 4b).
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Figure 4: (a) Noise ratio box plot for a single location ifWajir (Kenya) . The box plots indcate that the noise ratio is variable over
each month with the green triangle showing the mean and the red line in the box plot indicating the median (b) A higtam for

the January noise ratiois shown in blue, with the fittedskewed normal distribution shown in red. The corresponding distribution
parameters are indicated in the top left of the plot.

2.2.3

Generating stochastic hourly PET

StoPET generatesmulatedstochastic PET values for a particular month by multiplying the respective sine functioh)(Fig

by the noise ratio sampled from the corresponding skewed normal distributiomdifffig-or instance, for a particular

simulation of JanuarfPET, stoPET will generate 31 random noise ratios, producing 31 diurnal cycles of PET that amplify (or

dampen) thenean diurnal PET sine wave for the mor@finthetic PETor any climate scenarican then be generated the

entiremonthand for as many years g user chooses.

3 Model verification

3.1.1

Verification of stoPET against hPET dataset

Regionalrepresentation

StoPET is set up to generate synthetic plausible hourly PET time series within any defined spatial area belteeeh 55>

S.High latitude areas were not included because some months do not have a clear sunset and sunrise timmasmeutiimg su

creating potential errors in the sine function fittivge have evaluated the stoPET modghainst hPET (the only globally

avali

| abl e dat aset at

hourly

resolution)

daByiavergge PETalddat a |

generated by the PM methatimnonthly temporal resolutiofpresented as a daily average for the moowie) the period 901
2018 at 0.5° grid resolutiofCRU, (https://crudata.uea.ac.uk/cru/datajhr (Harris et al., 202Q) We carried out these

evaluationdor selected humid and arid regions sir continens (North America, South America, Europe, Africa, Asia, and

Australia[Australia sub-continentalso includes the Oceania regiprs an illustrationof the visual comparison to hPET

Figure 5 shows the average annual PET climatdlogifrica overfive yeas of simulated PET from stoPET (Fip) against

five randomly selected yearsofn thehPET datasetwhere we have also removed the nighttime PET values%B)gsince

StoPET considers the nighttime PET to be zero. Figure 6 shows a similar compariSorofae (stoPET, Figga and hPET,

Fig. 6b). Thesecomparisos indicate that stoPET estimatannualy averaged”ET valus from hPETwith only an average

7
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percentage difference oft5 % (see FigS3to Fig. S8in the supplementary documenthe results of this comparison, albeit
qualitative, suggest a strong similarity in globally distributed values between the simulated and historical data ilomost reg
of the world, which supports the use of stoPET for representing the annual PETrgeerelgions. The figures for the
remaining continents are provided in the supplementary documenSgk@mFig. S8), along with thecontrast between stoPET
annual PET and the hPET datasken thenighttime valuesre includedFig. S9 to Fig. S14).

Figure 5: Average annual PET for five randomly selected years (a) stoPET, (b) hPET with nighttime PET removéar Africa.

Figure 6: Average annual PET for five randomly selected years (a) stoPET, (b) hPET with nighttime PET removed for Europe

Single pont representation

To verify the performance of sStoPET more quantitatively, analysis was carried out on twelvag@aissst continenthosen

to be representative dbth humid and aridlimates across the global land surface (F)g Ten ensembles, each comprising

20 years of synthetic PET data, were generated using stoPET and compared against the hPET dataset over the period 20
2020, substituting the nighttimeero) PET values oBtoPET with nighttime values ohPET. Next, thehourly PET values

from stoPET and hPET were aggregated to daily average PET values for each month at the twelve locations forafvaluation
stoPET(again, includinghe nighttime valugs against the€RU PET dataset developed by the PM method (see above)



