
1

Supplement 1: Quick start for CryoGrid community model

Software requirements: CryoGrid is written in Matlab, version 2018 or higher is required. For parallel applications, the Matlab

parallel toolbox is required.

1.1 Download and set up file structure

a) select or create a folder for the model code and results, e.g. “CryoGrid_git” 5

-download zip-file with CryoGrid source code, CryoGridCommunity_source.zip, from

https://doi.org/10.5281/zenodo.6522424 and unpack in “CryoGrid_git”.

b) download the zip-file with run files to be modified by the user, “CryoGridCommunity_run.zip”, from

https://doi.org/10.5281/zenodo.6522424 and unpack unpack in “CryoGrid_git”.

c) “CryoGrid_git” should now contain the subfolders “CryoGrid_git/CryoGridCommunity_source” and “CryoGrid_git/ 10

CryoGridCommunity_run”, and “CryoGrid_git/CryoGridCommunity_source” the subfolders “source” and “UMLs”, while

“CryoGrid_git/CryoGridCommunity_run” should contain the file “run_CG.m” (in addition to other files and folders).

d) Create a folder for parameter files and simulation results. For the default setting, create a folder

“CryoGridCommunity_results” in “CryoGrid_git”, which should look like this:

 15

1.2 Set up parameter files

-using existing parameter files from Supplement 4 (recommended as first step)

download and unpack the file “CryoGridCommunity_parameter_files.zip” from https://doi.org/10.5281/zenodo.6522424.

Copy the herein contained folders (i.e. “forcing”, “glacier”, etc.) in the folder “CryoGrid_git/CryoGridCommunity_results”

(see Suppl. 1.1 above). Each of the folders represents a simulation from Sect. 3.2, with folders named according to the run 20

names (see Suppl. 4). The common model forcing is provided in the folder “forcing”.

-use automatic parameter file creator (recommended for advanced users)

a) edit and run the script “create_parameter_file_EXCEL.m” in “CryoGrid_git/ CryoGridCommunity_run”. A list of class

names, their index and class options (for some classes) must be provided in the header of the file, as well as the folder in which 25

he parameter files and results are stored (in this case “../CryoGridCommunity_results”). The script generates a parameter file

https://doi.org/10.5281/zenodo.6522424
https://doi.org/10.5281/zenodo.6522424
https://doi.org/10.5281/zenodo.6522424

2

with default parameter values for each class, which the user must further edit manually. In the resulting parameter file, each

parameter is associated with an explanatory comment, and it is possible to automatically enter a default value for many of the

parameters.

1.3 Run a CryoGrid simulation 30

a) edit the header of the script “run_CG.m” in “CryoGrid_git/CryoGridCommunity_run”. When using a spreadsheet as

parameter file (as for the parameter files provided in Suppl. 4), set “init_format = 'EXCEL' and constant_file =

'CONSTANTS_excel'. Set the variable “run_name” to the name of the parameter file/ the folder in which it is stored (e.g.

“reference_run” to simulate the reference run from Sect. 3.2) and the variable “result_path” to the folder in which the parameter

files and results are stored (in this case “../CryoGridCommunity_results”). 35

b) run the script “run_CG.m”. Depending on the selected OUT class, results files in .mat-format will be written, typically as

annual output files (as for the parameter files provided in Suppl. 4). Note that for the parameter files provided in Suppl. 4, no

output files are written at the beginning of the simulation, i.e. during the accelerated spin-up. It generally requires a few hours

of simulation time before the first output file is written.

1.4 Quick look at selected simulation output 40

The script “read_output_and_display.m” provided in “CryoGrid_git/CryoGridCommunity_run” provides a simple possibility

to display the depth- and time-resolved field of important model variables, such as temperature and volumetric contents of

water and ice. The script must be run in sections: after the first section is run to set the internal paths to the model source code,

the user must manually load the desired output mat-file (stored as annual time slices in the parameter files provided in Suppl.

4). Then the rest of the script can be run, which results in five plots: temperature “T”, volumetric water plus ice content 45

“waterIce”, volumetric water content “water” and volumetric ice content “ice”, as well as the running number of the

stratigraphy class used for a certain domain, with class 1 being the lowermost stratigraphy class. Users can adjust the displayed

domain, ranging from a user-defined height above the ground surface (in order to display the seasonal snow cover), to a user-

defined depth below the surface.

 50

3

Supplement 2: Description of CryoGrid classes

2.1 RUN_INFO

RUN_1D_ STANDARD: This is a “do-nothing” RUN_INFO class, which initializes and runs a single TILE class and has no

other functionality. It basically serves as a “wrapper” around the TILE class and should be used for initial testing of

applications, as well as for developing new stratigraphy classes. 55

RUN_1D_SPINUP: This class sequentially runs several TILE classes. It can be used for model spin-up, consecutively

initializing the following TILE class with information on the ground thermal state computed by the previous TILE class (see

below for options of TILE_BUILDER classes). RUN_1D_SPINUP can also be used to sequentially run several independent

TILE classes, e.g. each for different input data sets or model parameters.

RUN_3D_STANDARD: Initializes and runs multi-tile simulations in a parallel computing environment, which can be used to 60

run several independent TILE classes in parallel, e.g. each for different input data sets or model parameters.

2.2 TILE, TILE_BUILDER and INIT_STEADY_STATE

TILE_1D_standard: initalizes and runs a CryoGrid stratigraphy. For initialization, different TILE_BUILDER classes can be

used, which is a parameter in TILE_1D_standard and used to select the way the initial temperature profile is calculated. 65

Depending on the choice of the TILE_BUILDER class, different sets of parameters must be defined by the user. The

TILE_BUILDER new_init performs initialization using the information provided in the STRATIGRAPHY_STATVAR

classes from the parameter files; new_init_steady_state computes a steady-state temperature profile taking the thermal

conductivity of each grid cell, the lower boundary heat flux and a near-surface temperature at defined depth. These values can

be either provided by the user, calculated with an INIT_STEADY_STATE class. INIT_TTOP_from_forcing applies the TTOP 70

approach to the air temperatures provided by the model forcing, while INIT_TTOP_from_out uses the output of a previous

TILE class stored by the OUT class OUT_TDD_FDD. This TILE_BUILDER class is used for the accelerated model spin-up

procedure. The next TILE_BUILDER class, update_forcing_out, uses the last model state of the previous TILE (i.e. the

stratigraphy will have the same stratigraphy classes), but overwrite the FORCING and OUT classes. This TILE_BUILDER

class is used for the accelerated model spin-up procedure. restart_OUT_last_timestep reads a file written by the OUT class 75

OUT_last_timestep (which saves the full model state either at defined time intervals or the very end) and continues the run

from the point saved.

TILE_1D_standard2: same as TILE_1D_standard, but several OUT classes can be used instead of only a single OUT class,

as in TILE_1D_standard. This is useful if one wants to not only store model output for the simulation period itself, but also

the final state that can be used to restart a new TILE (with TILE_BUILDER restart_OUT_last_timestep, see above). 80

4

2.3 FORCING

FORCING_seb: simple model forcing for stratigraphy classes computing the surface energy balance (keyword “seb”). The

data must be stored in a Matlab “.mat” file with a struct FORCING with field “data”, which contains the time series of the

actual forcing data, e.g. FORCING.data.Tair contains the time series of air temperatures. Have a look at the existing forcing 85

files in the folder “forcing” and prepare new forcing files in the same way. The mandatory forcing variables are air temperature

(Tair, in °C), incoming long-wave radiation (Lin, in W/m2), incoming short-wave radiation (Sin, in W/m2), specific humidity

(q, in kg water vapor / kg moist air), wind speed (wind, in m/sec), rainfall (rainfall, in mm/day), snowfall (snowfall, in mm/day)

and timestamp (t_span, in Matlab time - increment 1 corresponds to one day). IMPORTANT POINT: the time series must be

equally spaced in time, and this must be really exact. When reading the timestamps from an existing data set (e.g. an Excel 90

file), rounding errors can result in small differences in the forcing timestep, often less than a second off. In this case, it is better

to manually compile a new, equally spaced timestep in Matlab.

FORCING_seb _slope: same as FORCING_seb, but adjusts incoming short- and long-wave radiation to different aspects and

slopes

 95

2.4 OUT

OUT_all: makes an identical copy of all stratigraphy classes at each output timestep, stored in a cell array in the variable

STRATIGRAPHY. As the raw model state including parameters and temporary variables is stored, processing is required in

order to analyze and display the output.

OUT_all _lateral: identical to OUT_all, but also stores the state variables of the lateral interaction classes (in the cell array 100

LATERAL). This can in particular be used to obtain runoff curves if a lateral interaction classes for the water balance are used.

OUT_TDD_FDD: accumulates and stores depth profiles of thawing and freezing degree days over the entire simulation period.

The resulting output file can e.g. be used by the INIT_STEADY_STATE class INIT_TTOP_from_out to initialize a steady-

state temperature profile for a subsequent TILE class; used in the accelerated spin-up procedure.

OUT_last _timestep: stores the CryoGrid stratigraphy after defined time intervals, or the final state after the simulation has 105

terminated. The output file is used to initialize a new TILE class with TILE_BUILDER restart_OUT_last_timestep, so that

the simulation continues from the stored state. This is not only useful for troubleshooting model code, but also to perform

ensemble simulations (e.g. for different future climate scenarios) starting from a common final state (e.g. from a historic

simulation).

OUT_do_nothing: stores no output, generally used during model spin-up. 110

5

2.5 GRID

GRID_user_defined: allows the user to define the model grid as layers with constant grid cell size, e.g. 0.05m in the uppermost

two meters, then 0.1m to 5m depth, etc.

 115

2.6 STRATIGRAPHY_CLASSES

Note: the class type STRATIGRAPHY_CLASSES is not to be confused with stratigraphy classes, i.e. the classes that make

up the CryoGrid stratigraphy (see below). Instead, it provides the information which stratigraphy classes are to be used for

which depth layers, i.e. the “stratigraphy of stratigraphy classes”.

STRAT_classes: provides information on the initial stratigraphy of stratigraphy classes, as well as other stratigraphy classes 120

that are (potentially) needed during the run. The initial stratigraphy of stratigraphy classes is provided as a matrix with depth

(i.e. the upper depth below the subsurface for each class - the last class extends to the bottom of the model domain) in the first

column, the class name in the second and the class index in the third column. Sleeping classes are stratigraphy classes that are

not part of the initial stratigraphy, but become added by a trigger of another stratigraphy class during the run. An example is a

LAKE class that gets added above a GROUND class when enough surface water has accumulated. The SNOW class to be 125

used by the run is selected in the fields snow_classname and snow_class_index. If no SNOW class is used, these fields can be

left empty. NOTE: each stratigraphy class listed in STRAT_classes must be initialized separately in the parameter file (see

stratigraphy classes).

2.7 STRATIGRAPHY_STATVAR 130

STRAT_layers: used to initialize the initial depth profile of model state variable as layers with constant values. In the matrix,

the variable names (that must match variable names in the stratigraphy classes) must be inserted in first line. The first row

provides the start depth of each layer, and the last layer extends to the bottom of the model domain. NOTE: the state variables

are in general provided in “human-readable” units. In the automatic initialization procedure, they are converted to the true unit

of the state variable used in the simulations. 135

STRAT_linear: same as STRAT_layers, but values of the state variable for certain depths are provided. Between these depths,

values are linearly interpolated.

6

2.8 Stratigraphy classes – GROUND

These classes describe ground material consisting of mineral, organic, water, ice and air fractions. To enable the dynamic 140

build-up of a seasonal snow cover by coupling to a SNOW class, each of the described classes has a twin called

“CLASSNAME_snow” (e.g. GROUND_freeW_seb_snow”) which must be used instead. During the snow-free period, their

behavior is identical to the class without the “…_snow” ending.

The compatibility of pairs of classes in the CryoGrid stratigraphy (ensured by interaction classes, Sect. 2.1.2) can be checked

with the function “get_IA_class (above_class, below_class)” located in the folder (assuming he folder structure suggested in 145

Suppl. 1) CryoGrid_git/CryoGrid /source/TIER_2_full_classes/INTERACTION. Here, above_class is the name of the

stratigraphy class located on above below_class in the CryoGrid stratigraphy. If this returns an interaction class (and not zero),

the classes are compatible, e.g. get_IA_class('SNOW_simple_bucketW_seb', 'GROUND_freeW_seb_snow') returns the

interaction class IA_HEAT11_WATER10, while get_IA_class('SNOW_simple_bucketW_seb', 'GROUND_freeW_seb) returns

0. 150

GROUND_TTOP_simple2: equilibrium TTOP approach (Sect. 2.2.2). Not compatible with lateral interaction classes (Suppl.

2.12).

GROUND_freeW_ubtf: temperature boundary condition (Sect. 2.2.2), free water freezing characteristic (Sect. 2.2.3), no flow

water balance (Sect. 2.2.4). Not compatible with lateral interaction classes (Suppl. 2.12). 155

GROUND_freeW_seb: surface energy balance with scheme 2 for evapotranspiration (Sect. 2.2.2), free water freezing

characteristic (Sect. 2.2.3), no flow water balance (Sect. 2.2.4). Compatible with lateral interaction class LAT_HEAT (Suppl.

2.12).

GROUND_freeW_bucketW_seb: surface energy balance with scheme 3 for evapotranspiration (Sect. 2.2.2), free water freezing 160

characteristic (Sect. 2.2.3), bucket scheme water balance (Sect. 2.2.4). Compatible with lateral interaction classes LAT_HEAT,

LAT_REMOVE_SURFACE_WATER, LAT_SEEPAGE_FACE, LAT_WATER_RESERVOIR (Suppl. 2.12).

GROUND_freezeC_seb: surface energy balance with scheme 2 for evapotranspiration (Sect. 2.2.2), Painter and Karra (2014) 165

freezing characteristic (Sect. 2.2.3), no flow water balance (Sect. 2.2.4). Compatible with lateral interaction class LAT_HEAT

(Suppl. 2.12).

GROUND_freezeC_bucketW_seb: surface energy balance with scheme 3 for evapotranspiration (Sect. 2.2.2), Painter and

Karra (2014) freezing characteristic (Sect. 2.2.3), bucket scheme water balance (Sect. 2.2.4). Compatible with lateral

interaction classes LAT_HEAT, LAT_REMOVE_SURFACE_WATER, LAT_SEEPAGE_FACE, LAT_WATER_RESERVOIR 170

(Suppl. 2.12).

7

GROUND_freezeC_bucketW_seb_Xice: surface energy balance with scheme 3 for evapotranspiration (Sect. 2.2.2), Painter and

Karra (2014) freezing characteristic (Sect. 2.2.3), excess ice representation (Sect. 2.2.5), bucket scheme water balance with

representation of standing surface water (Sects. 2.2.4, 2.2.5). Compatible with lateral interaction classes LAT_HEAT, 175

LAT_REMOVE_SURFACE_WATER, LAT_OVERLAND_FLOW, LAT_SEEPAGE_FACE, LAT_WATER_RESERVOIR

(Suppl. 2.12).

GROUND_freezeC_RichardsEqW_seb: surface energy balance with scheme 4 for evapotranspiration (Sect. 2.2.2), Painter and

Karra (2014) freezing characteristic (Sect. 2.2.3), Richards equation water balance (Sect. 2.2.4). Compatible with lateral

interaction classes LAT_HEAT, LAT_REMOVE_SURFACE_WATER, LAT_SEEPAGE_FACE, LAT_WATER_RESERVOIR 180

(Suppl. 2.12).

2.9 Stratigraphy classes - LAKE and GLACIER

These classes describe subsurface domains consisting of water and/or ice. To enable the dynamic build-up of a seasonal snow

cover by coupling to a SNOW class, each of the described classes has a twin called “CLASSNAME_snow” (e.g. 185

GLACIER_freeW_seb_snow”) which must be used instead. See Suppl. 2.8 for compatibility of pairs of stratigraphy classes.

LAKE_simple_bucketW_seb: surface energy balance with scheme 1 for evapotranspiration (Sect. 2.2.2), free water freezing

characteristic (Sect. 2.2.3), simple water body scheme with dynamic changes of water table (Sect. 2.2.7). Compatible with

lateral interaction classes LAT_HEAT, LAT_SEEPAGE_FACE, LAT_WATER_RESERVOIR (Suppl. 2.12).

 190

GLACIER_freeW_seb: surface energy balance with scheme 1 for evapotranspiration (Sect. 2.2.2), free water freezing

characteristic (Sect. 2.2.3), glacier mass balance scheme with surface meltwater automatically removed (Sect. 2.2.8).

Compatible with lateral interaction class LAT_REMOVE_SURFACE_WATER (Suppl. 2.12).

2.10 Stratigraphy classes – SNOW 195

These stratigraphy classes are created by triggers in e.g. GROUND stratigraphy classes. For this to work, stratigraphy classes

ending with “…_snow” must be used, e.g. GROUND_freeW_seb_snow. See Suppl. 2.8 for compatibility of pairs of

stratigraphy classes.

SNOW_simple_ubtf_mf: Constant snow density, temperature boundary condition and degree-day based melt model (scheme

a, Sect. 2.2.6). Not compatible with lateral interaction classes (Suppl. 2.12). 200

SNOW_simple_bucketW_seb: Constant snow density, surface energy balance and bucket scheme snow hydrology (scheme b,

Sect. 2.2.6), meltwater automatically removed if it pools up above the snow surface. Compatible with lateral interaction classes

LAT_REMOVE_SURFACE_WATER, LAT_SEEPAGE_FACE, LAT_WATER_RESERVOIR (Suppl. 2.12).

8

SNOW_crocus_bucketW_seb: Snow microphysics, surface energy balance and bucket scheme snow hydrology (scheme c,

Sect. 2.2.6), meltwater automatically removed if it pools up above the snow surface. Compatible with lateral interaction classes 205

LAT_REMOVE_SURFACE_WATER, LAT_SEEPAGE_FACE, LAT_WATER_RESERVOIR (Suppl. 2.12).

SNOW_crocus2_bucketW_seb: Snow microphysics, surface energy balance and bucket scheme snow hydrology (scheme c,

Sect. 2.2.6), meltwater retained and allowed to pool up above the snow surface. This class is designed to be used with

GROUND_freezeC_bucketW_seb_Xice which snowmelt water pooling above the surface transferred to the surface water pool

after completion of snowmelt. Compatible with lateral interaction classes LAT_REMOVE_SURFACE_WATER, 210

LAT_OVERLAND_FLOW, LAT_SEEPAGE_FACE, LAT_WATER_RESERVOIR (Suppl. 2.12).

2.11 LATERAL

LATERAL_1D: This lateral class is used to simulate interactions of a one-dimensional model domain with external

environments/reservoirs (Sect. 2.3) in the TILE class “TILE_1D_standard”. It must be used together with any of the lateral 215

interaction classes described in Suppl. 2.12. Note that LATERAL_1D must be set in TILE_1D_standard, even if there is no

lateral interaction class selected.

2.12 LATERAL INTERACTION

LAT_HEAT: lateral coupling to heat reservoir (Sect. 2.3.1). 220

LAT_REMOVE_SURFACE_WATER: surface water removal (Sect. 2.3.2).

LAT_OVERLAND_FLOW: overland flow (Sect. 2.3.2).

LAT_SEEPAGE_FACE_WATER: seepage face (Sect. 2.3.2).

LAT_WATER_RESERVOIR: water reservoir (Sect. 2.3.2).

2.13 PROVIDER 225

The role of provider classes PROVIDER class is to organize the interactions between user input in e.g. parameter files and the

RUN_INFO class. PROVIDER classes contain instructions to read the classes and their associated parameters from the

parameter file and organize it in a standardized fashion, so that it becomes accessible for the RUN_INFO class. The

PROVIDER class is selected by the variable init_format in run_CG.m. Three main initialization methods exist 1. init_format

= ‘EXCEL’ and init_format = ‘EXCEL3D’ use spreadhseet-based parameter files, using the PROVIDER classes 230

PROVIDER_EXCEL and PROVIDER_EXCEL3D, respectively (3D is used to initialize multi-tile 3D simulations with e.g.

RUN_3D_STANDARD); 2. init_format = ‘YAML’ uses text files in yml-format as parameter files with the PROVIDER class

9

PROVIDER_YAML; init_format = ‘MAT’ reads an already existing (typically created earlier through either 1 or 2 and stored

in a file) PROVIDER classes from a mat-file with the class PROVIDER_MAT.

 235

10

Supplement 3: Ancillary simulations for water redistribution during freezing

Here, we provide two additional benchmark simulations for the Mizoguchi (1990) experiment, using Richards equation to

simulate the water balance. See Sect. 3.1.3. 240

Fig S1: Simulated sum of volumetric water and ice content (blue lines) vs. measurements (crosses, digitized from Hansson et

al., 2004) for the Mizoguchi (1990) experiment for experiment for 0, 12, 24 and 50 hours freezing time; linear heat transfer

scenario, ice impedance factor calculated with  = 5. 245

Fig S2: Simulated sum of volumetric water and ice content (blue lines) vs. measurements (crosses, digitized from Hansson et

al., 2004) for the Mizoguchi (1990) experiment for 0, 12, 24 and 50 hours freezing time; nonlinear heat transfer scenario, ice

impedance factor calculated with  = 7. 250

11

Supplement 4: Parameter files and model forcing

For all the simulations in Sect. 3.2, we provide parameter files in spreadsheet format (as well as the model forcing) in the file 255

“CryoGridCommunity_parameter_files.zip” on https://doi.org/10.5281/zenodo.6522424. The parameter files are organized in

the folder structure suggested in Suppl. 1, so that the simulations can be directly started when following the steps outlined in

Suppl. 1. After unpacking “CryoGridCommunity_parameter_files.zip”, all subfolders (i.e. “forcing”, “glacier”, etc.) must be

copied to the folder “CryoGridCommunity_results” (see Suppl. 1). To start a particular simulation, the variable “run_name”

must be set in “run_CG.m” located in the folder in “CryoGridCommunity_run”. In the following, the run names employed to 260

create the simulations evaluated for the figures in Sect. 3.2 are provided in italics:

Figure 9. Black line: reference_run_snowfall_100_percent; broken blue line: reference_run_snowfall_90_percent; solid blue

line: reference_run

Figures 10-12. reference_run

Figure 13. Blue: reference_run.xlsx; green: reference_run_sand; red: reference_run_free_water_freezing 265

Figure 14. Blue, solid line: reference_run; blue, dashed line: reference_run_overland_flow; green:

reference_run_no_drainage; red: reference_run_inflow_of_water

Figure 15. reference_run_overland_flow

Figure 16. Blue: reference_run; green: reference_run_water_balance_constant; red:

reference_run_water_balance_Richards_equation 270

Figure 17. Left: reference_run; middle: reference_run_water_balance_constant; right:

reference_run_water_balance_Richards_equation

Figure 18. reference_run_water_balance_Richards_equation

Figure 19. Blue: reference_run; green solid: reference_run_constant_density_snow_250_kgm-3; green dashed:

reference_run_constant_density_snow_275_kgm-3; red solid: reference_run_crocus_snow_normal; red dashed: 275

reference_run_crocus_snow_arctic

Figure 20. Blue: reference_run; red: reference_run_temperature_boundary_condition; green dashed: TTOP_entire_period;

green solid: TTOP_two_year_periods; green dotted: TTOP_as_upper_boundary

Figure 21. Blue: reference_run; red: water_body; green: glacier

Figure 22. water_body 280

Figure 23. glacier

https://doi.org/10.5281/zenodo.6522424

12

References

Hansson, K., Sımunek, J., Mizoguchi, M., Lundin, L.-C., and Van Genuchten, M. T.: Water flow and heat transport in frozen

soil: Numerical solution and freeze–thaw applications, Vadose Zone Journal, 3, 693–704, https://doi.org/10.2113/3.2.693, 285

2004.

Mizoguchi, M.: Water, heat and salt transport in freezing soil, Ph.D. thesis, University of Tokyo, 1990.

Painter, S. L. and Karra, S.: Constitutive model for unfrozen water content in subfreezing unsaturated soils, Vadose Zone

Journal, 13, https://doi.org/10.2136/vzj2013.04.0071, 2014.

 290

