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Abstract. The CryoGrid community model is a flexible toolbox for simulating the ground thermal regime and the ice/water

balance for permafrost and glaciers, extending a well-established suite of permafrost models (CryoGrid 1, 2 and 3). The

CryoGrid community model can accommodate a wide variety of application scenarios, which is achieved by fully modular

structures through object-oriented programming. Different model components, characterized by their process representations

and parametrizations, are realized as classes (i.e. objects) in CryoGrid. Standardized communication protocols between these5

classes ensure that they can be stacked vertically. For example, the CryoGrid community model features several classes with

different complexity for the seasonal snow cover which can be flexibly combined with a range of classes representing subsur-

face materials, each with their own set of process representations (e.g. soil with and without water balance, glacier ice).

We present the CryoGrid architecture as well as the model physics and defining equations for the different model classes,

focusing on one-dimensional model configurations which can also interact with external heat and water reservoirs. We illustrate10

the wide variety of simulation capabilities for a site on Svalbard, with point-scale permafrost simulations using e.g. different

soil freezing characteristics, drainage regimes and snow representations, as well as simulations for glacier mass balance and

a shallow water body. The CryoGrid community model is not intended as a static model framework, but aims to provide

developers with a flexible platform for efficient model development. In this study, we document both basic and advanced

model functionalities to provide a baseline for the future development of novel cryosphere models.15
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1 Introduction

The terrestrial cryosphere is currently undergoing unprecedented changes, including thawing of permafrost, melting of glaciers

and ice sheets, and changes in snow cover extent. In the last decade, permafrost temperatures have warmed almost everywhere

in the circum-Arctic (Biskaborn et al., 2019), and the melting of excess ground ice can accelerate thawing in a positive feedback

loop, leading to the fast transformation of permafrost landscapes through thermokarst (Farquharson et al., 2019; Nitzbon et al.,20

2020; Turetsky et al., 2019). Glaciers worldwide have been retreating at increasing rates (e.g. Hugonnet et al., 2021; Huss and

Hock, 2018), and are important contributors to global sea-level rise. On regional scales, glacier retreat can affect e.g. freshwater

availability, infrastructure and wildlife (e.g. Kaser et al., 2010).

Cryosphere land surface models are important tools to investigate the sensitivity of the terrestrial Cryosphere under complex

environmental and climatic conditions. In particular, the models allow us to project climate change impacts and thus answer25

urgent questions on the future of the cryosphere. As an example, glacier mass balance models are important tools for estimating

the response of ice masses to a changing climate. They aid the investigation of the current state of the cryosphere in areas where

in-situ observations are hard to obtain and can be used to estimate the past and future evolution of glaciers (e.g. Mankoff et al.,

2021; Schmidt et al., 2020; van Pelt et al., 2021). Similarly, numerical models are highly important to investigate the current

state of permafrost, in particular since permafrost is usually not visible at the Earth’s surface and only a limited number of30

measurement sites exist. Permafrost models provide insights into the evolution of Arctic landscapes and help us understand

how these fragile ecosystems respond to natural and human-caused disturbances.

The purpose of land surface models is to describe nature in an adequate way, which means that the models must reproduce

observations of the targeted physical parameters. This can be achieved by models of different complexity, from simple semi-

empirical models trained by observations to physically-based schemes which run independent of observations. Examples of35

semi-empirical models are degree day melt models for glacier mass balance (Gabbi et al., 2014; Reveillet et al., 2017), or the

TTOP equilibrium model to estimate permafrost temperatures (Smith and Riseborough, 1996), which both are designed for a

certain application. In contrast, physically-based land surface models can simulate both glacier mass balance and permafrost

thermal regime with the same model framework, relying on universal formulations, such as the surface energy balance and

Fourier’s Law of heat conduction. Over the past decades, land surface models have grown in complexity to incorporate a wide40

range of processes from various disciplines, such as biophysics, biogeochemistry, hydrology, or ecology (Fisher and Koven,

2020). In theory, continuous improvements over time could eventually lead to a unified “land surface model of everywhere,

everything and all times” (Blair et al., 2019), which can reproduce and explain observations of all land surface variables,

irrespective of their spatial and temporal scales. In reality, however, complex land surface models feature a large number

of model parameters whose variations in space and time are poorly constrained. This severely compromises their advantage45

over simpler model approaches in many use scenarios, in addition to strongly increased computation demands. Therefore,

simple, less process-rich models have significant advantages in many practical applications and are typically employed for

high-resolution (e.g. Obu et al., 2019), long time-scale and/or large ensemble simulations.
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The CryoGrid suite of permafrost models have provided three model categories of increasing level of complexity to conduct

a wide range of permafrost studies. CryoGrid 1 is an equilibrium model to compute mean annual ground temperatures at the50

top of the permafrost table (TTOP) as the only output (Gisnås et al., 2013), which in particular makes it possible to infer the

presence/absence of permafrost. It relies on surface or air temperatures as input, in addition to n-factors to parameterize the

effects of snow cover and active layer properties on the seasonal heat exchange. While CryoGrid 1 was used for fine-scale

process studies (Gisnås et al., 2014, 2016), its main use was for large-scale mapping of permafrost extent and temperatures,

e.g. the generation of a permafrost map for Scandinavia (Gisnås et al., 2017). By using globally available remote sensing and55

reanalysis data (MODIS land surface temperature, ERA reanalysis) to force CryoGrid 1, permafrost maps on continental scale

could be produced (Westermann et al., 2015). Later, this processing chain was extended to produce 1km-resolution permafrost

maps of the Northern hemisphere (Obu et al., 2019) and Antarctica (Obu et al., 2020). Due to a low number of parameters and

an efficient and simple implementation, CryoGrid 1 allowed for large-scale ensemble simulations at 1 km gridcell size, so that

the effect of small-scale spatial variability of snow depths and ground properties on the thermal regime could be represented60

statistically. Similar modeling approaches building on analytical formulations for ground temperature and active layer thickness

have also been applied at regional scales (e.g. GIPL1 in Alaska, Sazonova and Romanovsky, 2003).

Being an equilibrium model, CryoGrid 1 is generally not well suited for climate change simulations, missing transient

processes. For instance, changes of the model forcing impact ground temperatures without time delay in the equilibrium model,

when in reality subsurface processes like ground ice melt delay the response of ground temperature. Therefore, the transient65

model CryoGrid 2 is employed for mapping climate change impacts, using similar spatially distributed forcing data sets as

CryoGrid 1 (Czekirda et al., 2019; Westermann et al., 2013, 2017). Similar to the GIPL2 model (Jafarov et al., 2012), CryoGrid

2 computes ground temperatures from conductive heat transfer through the ground and the snowpack, validated in permafrost

regions of northern Siberia and Norway (Beermann et al., 2017; Langer et al., 2013; Westermann et al., 2011). Furthermore,

CryoGrid 2 can be used to compute ground temperatures in deeper layers from field measurements of near-surface ground70

temperatures (Peter et al., 2023). Due to its relative computational efficiency, CryoGrid 2 has also been adapted to simulate

multi-millennial paleo-permafrost evolution, for example during deglaciation on Iceland (Etzelmüller et al., 2020). CryoGrid

2 was also used to model the evolution of permafrost beneath the circum-Arctic continental shelves (Overduin et al., 2019)

with model forcing computed for the last 450 kyr from model reconstructions of glaciation, sea level and air temperature.

The implementation of coupled heat and salt diffusion equations in offshore sediments showed mitigation of seabed seasonal75

freezing and enhancement of subsea permafrost degradation rate because of the presence of salt (Angelopoulos et al., 2019).

Further applications of the model to thermokarst lagoon and coastal settings demonstrated how brine rejection lowers sediment

freezing temperature and slows the refreezing of thawed sediments (Angelopoulos et al., 2020, 2021).

CryoGrid3 is a land surface model that accounts for land atmosphere coupling by simulating the surface energy balance,

similar to the COUP (e.g. Marmy et al., 2013), GEOtop (Rigon et al., 2006; Endrizzi et al., 2014) and SURFEX (Barrere80

et al., 2017) models. CryoGrid 3 features a representation of excess ground ice, so that ground subsidence and thermokarst

pond formation upon thaw can be simulated (Westermann et al., 2016). Furthermore, it was used to simulate heat transport

in water bodies as well as their impact on the thermal regime and the thaw threshold of the permafrost below (Langer et al.,
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2016).The implementation of the state-of-the-art snow scheme Crocus (Vionnet et al., 2012) into CryoGrid 3 allowed for

transient representation of internal snow properties as well as wind redistribution of snow, which was key to realistically85

simulate local ground temperature dynamics in snow-rich regions (Zweigel et al., 2021). As about 55% of permafrost area is

covered by boreal forest, CryoGrid 3 was extended by a multilayer vegetation scheme (Bonan et al., 2018) for the modeling

of the thermal and hydrological permafrost conditions under boreal forest covers (Stuenzi et al., 2021b, a). CryoGrid 3 was

further extended by a bucket hydrology scheme for unfrozen conditions, as well as lateral transport of water, heat and snow;

this version has been evaluated and applied for different permafrost ecosystems (Martin et al., 2019; Nitzbon et al., 2019).90

Nitzbon et al. (2020), Nitzbon et al. (2021) and Martin et al. (2021) further demonstrated the applicability of CryoGrid 3 to

simulate complex permafrost landscape evolution over a range of spatial (plot-to-landscape) and temporal (years-to-centuries)

scales. Such spatially distributed realizations of CryoGrid 3 (denoted "laterally coupled tiles") aim for a three-dimensional

representation of permafrost hydrology, similar to cold-region hydrological models, such as WASIM (Debolskiy et al., 2021),

TopoFlow (Schramm et al., 2007), SUTRA-Ice (McKenzie et al., 2007), permaFoam (Orgogozo et al., 2023), PFLOTRAN-Ice95

(Karra et al., 2014) and Amanzi-ATS (Painter et al., 2016; Jan et al., 2018).

While CryoGrid 1, 2 and 3 are partly based on the same model formulations and process parametrizations, they are essentially

different models regarding numerics and code structure. Furthermore, they have been adapted for many different use cases

creating numerous derivatives of slightly different model versions that are not necessarily compatible.

In this study, we present the architecture of a new CryoGrid community model, which comprises most of the functionalities100

demonstrated in CryoGrid 1-3, while going beyond in many aspects. In particular, the CryoGrid community model is not a

single model, but a modular collection of models with different functionalities which can be combined with each other to fit the

requirements of a variety of applications. We describe key aspects of the model physics for one-dimensional simulations, espe-

cially when going beyond the capabilities of previously documented CryoGrid 1-3. An example is a new glacier mass balance

module which extends the capabilities of the CryoGrid community model beyond permafrost. We showcase the possibilities105

of this new simulation tool with point simulations for Svalbard, as well as benchmark simulations against analytical solutions

and reference experiments.

2 CryoGrid community model description

2.1 Architecture and setup

2.1.1 Model concept - modularity through object-oriented programming110

The CryoGrid community model is based on an object-oriented programming paradigm implemented in the programming

language Matlab in which “objects” are referred to as “classes”. A class is a defined structure, which consists of a class-

specific set of variables, as well as class-specific functions to modify these variables. A variable within a class can once

again be a class (more precisely a pointer to another class), typically of a different type, which makes it possible to create a

tree-like structure with different hierarchical levels (Fig. 1). Hereby, each class at a given hierarchy level contains pointers to115
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Figure 1. Hierarchy (left to right) of the different types of CryoGrid classes required for multi-physics simulations within the CryoGrid

community model, as described in this study. Arrows represent pointers to classes employed in the hierarchical level below. Other hierar-

chies, potentially comprising additional and different types of classes, are fully possible within the CryoGrid community model and can

be implemented in the future, e.g. a set of classes for spatially distributed applications with less customizable, but computationally more

efficient simulation tools (Sect. 4.7). See text. The CryoGrid stratigraphy is depicted in more detail in Fig. 2.

the lower level classes, with different levels representing different functionalities within the simulation system. In CryoGrid,

each functionality level is represented by specific class types for which typically several options (i.e. different classes) are

available, allowing to customize and adapt the model setup. Classes of a given type feature mandatory variables and functions

with standardized inputs and outputs, so that they become interchangeable building blocks of a modular simulation system

with intrinsic compatibility. For each class type, the best-fitting class for the particular use case must be selected by the user.120

Furthermore, each class has specific parameters which must be set by the user and further control the behavior of the model

system. A description of all available CryoGrid classes employed in this study is presented in Suppl. 2.

Fig. 1 depicts the class types and associated hierarchy that are employed to realize the multi-physics simulations described

in the remainder of this study. However, it is possible to implement other configurations (e.g. with different class types and

hierarchies) within the CryoGrid community model (see Sect. 4.7 for a discussion of such possibilities). The “RUN_INFO”125

class is the only mandatory class type, which represents the uppermost level of any class hierarchy. For the multi-physics

simulations described in this work, the second level in the class hierarchy uses the class type “TILE” (Fig. 1). The purpose of

a TILE class is to perform a classic one-dimensional model simulation over a predefined time period with a predefined forcing

dataset (as in e.g. CryoGrid 2 and 3). RUN_INFO classes, on the other hand, organize the model simulations. Depending on

which RUN_INFO class is selected, they can for example launch only a single TILE class, or several TILE classes (e.g. several130

independent simulations, representing grid cells, ensemble members, etc.) either sequentially or in parallel. Additionally, model

spin-up can be implemented by sequentially simulating a number of TILE classes. For example, one TILE classes can be used

for the spin-up phase and another for the target period of the simulations, which is initialized by the model state of the spin-
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up TILE class (see Sect. 3.1.4 for an accelerated spin-up procedure using a sequence of TILE classes). A description of all

RUN_INFO classes employed in this study is provided in Suppl. 2.135

The multi-physics simulations described in this work all employ the TILE class “TILE_1D_standard” (see Suppl. 2 for more

details) that performs a full model simulation, from model initialization to the generation of the model output. For this purpose,

a range of specialized class types are employed (hierarchy level 3 in Fig. 1), which control different aspects of the simulation,

such as the initialization of model state variables (“STRAT_STATVAR” classes), the model forcing (“FORCING” classes), and

the model output (“OUT” classes). We do not describe the entire functionality of these class types here (see Suppl. 2 for details),140

but only provide a few examples showcasing the modularity. FORCING classes, once again adhering to the strict protocol of

mandatory variables and internal functions, are designed to provide the required model forcing at a specific timestep. Different

FORCING classes are available, for example a class simply interpolating the raw model forcing, and a class reprojecting the

radiative components of the raw model forcing based on slope and aspect. The choice of the OUT class determines what kind

of and how model output is stored. For development and testing, a class storing the entire variable space can be used, while145

users may want to design a purpose-built OUT class which only stores their model variables of interest. There is also an OUT

class storing the full model state after the final simulation timestep, which can be used to start a new simulation based on that

state (i.e. initialize a new TILE class). STRAT_STATVAR classes (abbreviation for “stratigraphy of state variables”, not shown

in Fig. 1) are employed to calculate depth profiles of model variables to define the initial state on the model grid. Depending

on the class, these can be provided as layers with constant values, or by interpolation between values at defined depths.150

The backbone of the modularity within TILE_1D_standard is the possibility to define a vertical stack of classes, each em-

ploying different model physics and parameterizations within layers of the model domain (see Fig. 2, Sects. 2.1.2, 2.2). In the

following, we refer to this vertical stack of classes as “CryoGrid stratigraphy”, and the classes within this stack, which encode

the model physics, as “stratigraphy classes”. The vertical domain covered by each of the stratigraphy classes (i.e. the stratig-

raphy of these classes) is again assigned via a purpose-build class (“STRAT_CLASSES”, denoted “STRATIGRAPHY” in155

Fig. 1). Finally, TILE_1D_standard features a class type controlling lateral interactions with an external environment (denoted

“LATERAL” in Fig. 1). These LATERAL classes are described in Sect. 2.3.

2.1.2 Multi-physics representation with stratigraphy classes

A one-dimensional model simulation (in TILE_1D_standard, see above) is realized by vertically stacking different stratigraphy

classes (Fig. 2) which are each defined by their specific model physics and state variables. Examples of stratigraphy classes are160

ground columns with and without water balance, water bodies, glaciers and snow with different levels of process representation

(see Sect. 2.2 for details). Each class occupies a certain vertical domain, with the boundary conditions applied to the upper-

and lowermost class, respectively (Fig. 3).

Within each stratigraphy class, CryoGrid computes the time evolution for state variables, such as ground temperature and

water/ice contents. We distinguish between prognostic state variables for which a time derivative is calculated and which are165

then integrated in time to advance to the next timestep, and diagnostic state variables which are not time-integrated. For the

prognostic state variables, CryoGrid uses the simple time integration scheme “first-order forward Euler”, i.e. the new model
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Figure 2. Example of a CryoGrid stratigraphy in the tile class TILE_1D_standard, showing the different classes connected by pointers

(symbolized by arrows). The CryoGrid stratigraphy consists of stratigraphy classes 1 to 3 coupled by interaction (IA) classes that specify the

exchange of heat and mass between pairs of stratigraphy classes. The stratigraphy is realized as a linked list with pointers between classes

and interaction classes, and the top and bottom of the list are represented by a dedicated TOP and BOTTOM class (which have no other

functionality).

state is computed as the old model state plus time derivatives times the model timestep (see Sect. 2.2.9 for details). When

the new model state of the prognostic state variables is obtained, diagnostic state variables are calculated from the prognostic

variable by constitutional relationships. This calculation is instantaneous, i.e. does not depend on the employed timestep. It is170

possible that a physical property (e.g. temperature) is a prognostic variable in some stratigraphy classes and diagnostic in others.

Stability and accuracy of the time integration is ensured by automatically selecting an appropriate timestep. The calculation of

a suitable timestep is not accomplished by well-known stability criteria for the first-order forward Euler scheme, but explicitly

takes the physics represented by the individual stratigraphy classes into account to ensure both a stable and accurate simulation

(see Sect. 2.2.9).175

Interactions between stratigraphy classes are realized by interaction classes (Fig. 2) that compute fluxes across the boundaries

between pairs of stratigraphy classes (Fig. 3). Thus, compatibility of two stratigraphy classes (i.e. if they can border each other

in the CryoGrid stratigraphy) can be ensured by providing a dedicated interaction class. Note that the compatibility depends

on the order of the two classes in the stratigraphy. In particular, interaction classes compute fluxes across boundaries between

stratigraphy classes which are required for computing time derivatives of state variables in the prognostic step of the time180

integration. For example, if two stratigraphy classes have temperature as state variables and the two modules are connected
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Figure 3. Example of a CryoGrid stratigraphy in the tile class TILE_1D_standard with two stratigraphy classes. Each stratigraphy class has

its own state variables and model grid, and energy and water are exchanged between stratigraphy classes (as coded in the interaction class,

Fig. 2). At the upper boundary, energy and water is exchanged according to the model forcing in a class-specific way (see Sect. 2.2.2), while

a heat flux is typically applied at the lower boundary. Note that water fluxes only occur between stratigraphy classes which account for soil

hydrology, i.e. for the transient evolution of soil water contents (see Sect. 2.2.4).

through heat conduction, the interaction class computes the conductive heat flux between the adjacent grid cells of the classes.

If two stratigraphy classes feature different state variables, the interaction class must contain the necessary code to compute

the correct fluxes for both involved classes. For example, if only one of the classes is hydrologically active, while the sum of

water and ice contents are static for the other class (see Sect. 2.2), the interaction class must provide a zero water flux boundary185

condition for the hydrologically active class to reflect the fact that water flow through the boundary is not possible. During

initialization of the CryoGrid stratigraphy, the correct interaction class is automatically selected for each pair of stratigraphy

classes.

2.1.3 Dynamic behavior with stratigraphy class triggers

An important feature of stratigraphy classes is their ability to modify or rearrange the CryoGrid stratigraphy itself, if a certain190

condition (referred to as "trigger") is met. In particular, a class can remove itself from the CryoGrid stratigraphy, or insert

a new stratigraphy class above its own position. As an example, a dynamic representation of ponds (using water body and

excess ice classes, see Sect. 2.2) can be achieved by such triggers which modify the CryoGrid stratigraphy. When surface water
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pooling up over initially dry ground reaches a user-defined threshold, a water body class representing the physics of energy

transfer within a water body is created and inserted in the CryoGrid stratigraphy. Likewise, if the water depth of a water body195

drops below that threshold, the water body class is automatically removed. In this process, all state variables are automatically

adjusted to ensure mass and energy conservation.

A special situation is the representation of the seasonal snow cover which again is handled by stratigraphy class triggers

creating a snow class (Sect. 2.2.6) upon initial snowfall and removing it when all snow has melted. For the numerical scheme,

handling a very shallow initial snow cover poses significant problems, as this results in a small grid cell size and thus very200

small timesteps. Therefore, snow classes are attached and detached in two stages in the CryoGrid community model. After

the first snowfall, the snow class is added as a so-called "CHILD" to the uppermost stratigraphy class (Fig. 4 left), i.e. it is

not part of the CryoGrid stratigraphy, but evolves as part of the uppermost stratigraphy class. In this CHILD state, the snow

does not grow vertically, but is assigned a fixed water equivalent in the vertical direction, while at the same time covering

only a fraction of the uppermost stratigraphy class. This way, the snow volume is correct, but it is possible to assign the snow205

cover a sufficient thickness to prevent numerical problems. Algorithm 1 shows how the upper boundary condition applied to

both the uppermost stratigraphy class ("class1") and the class representing the snow cover ("snowclass"). Most importantly,

this procedure allows for a complete separation between these two classes: "class1" does not contain any information about

"snowclass" which applies its class-specific upper boundary condition, while "snowclass" does not contain any class-specific

knowledge on "class1" (which also applies its class-specific upper boundary condition). This scheme works for any compatible210

pair of "snowclass"/ "class1", so that for example the whole range of stratigraphy classes for ground material (Sects. 2.2.2-2.2.5)

can be combined with the different stratigraphy classes representing snow (see Sect. 2.2.6).

Algorithm 1 Pseudocode for applying the upper boundary condition to the stratigraphy class "class1" in Fig. 4, for the case

when then ground is entirely snow-free and for the case when the snow cover is in the CHILD phase (Fig. 4, left side). Stratig-

raphy class "class1" represents a snow-free ground column, while stratigraphy class "snowclass" represents a snow column.

"class1" has a variable CHILD, with class1.CHILD = snowclass (pointer to class "snowclass") if snow is in the CHILD phase,

and class1.CHILD = 0 if no snow is present. Both "class1" and "snowclass" have a function get_upper_boundary_condition()

which applies the class-specific upper boundary condition (e.g. using a different albedo for "snowclass" than for "class1"). The

total area of the model domain is A [m2].

if class1.CHILD = 0 then

-apply get_upper_boundary_condition() to "class1", using the full area A

else

-assign fractional area fsnow to "snowclass" stored in "ground.CHILD"

and fractional area fground to "class1", so that fsnow + fground = 1

-apply get_upper_boundary_condition() to "class1", using area fgroundA

-apply get_upper_boundary_condition() to "snowclass" stored in "class1.CHILD", using area fsnowA

end if
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Figure 4. Schematic representation of the CryoGrid stratigraphy when a snow cover is present (represented by dedicated snow classes,

Sect. 2.2.6). Left: snow is initially added as a so-called CHILD to the uppermost subsurface class (class 1), i.e. it is not part of the regular

stratigraphy, but is addressed by specific pointers. In the CHILD phase, the snow is assumed to only cover a part of the surface area, e.g. the

surface energy balance is calculated as a mix of snow-covered and snow-free ground (see Algorithm 1 for details). Right: when the snow

water equivalent exceeds a user-defined threshold, the stratigraphy is rearranged and the snow class becomes the uppermost class of the

regular stratigraphy. The process is reversed when the snow melts.

As more snow accumulates, the snow class simply expands its aerial coverage, until the amount of snow is sufficient to be

handled without numerical problems. Then, the snow class and the associated interaction class are rearranged, so that the snow

class becomes part of the normal CryoGrid stratigraphy (Fig. 4 right) and thus cover its full areas. The procedure is mirrored215

upon snowmelt, with the snow class first becoming a CHILD and finally being removed completely upon completion of melt.

The threshold in snow water equivalent at which the snow class becomes a normal part of the CryoGrid stratigraphy should

generally be chosen small enough that the CHILD-phase does not last longer than few days, thus only having negligible effect

on model results on timescales longer than a few weeks.

2.1.4 Model operation220

All CryoGrid simulations are controlled by a parameter file which defines all aspects of the run, such as the definition of the

CryoGrid stratigraphy and lateral interactions, the forcing data, the model grid and the model output format. At this point, the

parameter file can either be set up as a spreadsheet (MS Excel or compatible programs) or as a text file in YAML format.
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In the parameter files, all classes required for the simulation are defined, in no particular order. Each class is identified

by its name and a unique index which makes it possible to define the same class several times with different parameters.225

Furthermore, all mandatory parameters specific to each of the classes must be specified. In the hierarchy of the CryoGrid classes

(Fig. 1), the classes on the following level are defined as parameters in the classes of the previous level. Upon initialization,

the uppermost hierarchy level (defined as the RUN_INFO class with index 1) is read first, which provides the information for

reading the classes in the second level, and so on. In this process, the class connections by pointers are established. Note that

the standardized class structure with mandatory variables and functions facilitates a generalized initialization routine which230

does not make use of specific knowledge of the involved CryoGrid classes and their hierarchy.

2.2 Physics and defining equations of stratigraphy classes

At present, there are around ten stratigraphy classes, each with different defining equations and model physics which generally

contain additional parameters and options to customize its behavior. However, the classes share many common parts and

features. In the following, we describe the defining equations and parameterizations of the different model components and235

categories. A description of each stratigraphy class is provided in Supplement 2.

2.2.1 State variables and model grid

All stratigraphy classes (except the equilibrium TTOP model class, Sect. 2.2.2) feature variables for the subsurface properties

volumetric mineral content θm, volumetric organic content θo, volumetric water content θw and volumetric ice content θi.

A depth stratigraphy of mineral and organic contents is generally provided by the user which also defines the porosity as240

ϕ= 1− θm − θo. In some stratigraphy classes, the sum of water and ice contents θwi = θw + θi is constant and provided by

the user, while it evolves dynamically in others, driven by precipitation, evapotranspiration (Sect. 2.2.4) and potentially lateral

runoff (Sect. 2.3.2). Finally, there is an air phase θa defined by θa + θwi = ϕ. Each model grid cell has an enthalpy state, e

[Jm−3], which is composed of a sensible and a latent part:

e(T,θw) = cT −Lvol
sl (θwi − θw), (1)245

where c [JK−1m3] is the volumetric heat capacity, T [°C] the temperature, and Lvol
sl the volumetric latent heat of water

freezing [Jm−3]. The zero point of the enthalpy is thus defined as T = 0◦C and θi = 0, i.e. the grid cell is at 0 °C, but all water

is unfrozen. While Lvol
sl is a constant, c is computed from θm, θo and θwi and the specific volumetric heat capacities of the

mineral, organic, water and ice phases (cm, co, cw, ci) as:

c=

θmcm + θoco + θwici for T < 0°C

θmcm + θoco + θwicw for T ≥ 0°C
(2)250

Note that the heat capacity of a potential air phase is neglected. While these state variables are employed in the stratigraphy

classes described in this study, their use is not mandatory within the CryoGrid community model and fully valid stratigraphy

classes with different sets of state variables can be created. The compatibility with existing stratigraphy classes is ensured by
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appropriate interaction classes (Sect. 2.1.2) which compute fluxes between classes and, if necessary, convert between different

sets of state variables.255

The model grid is defined by the user, again using a dedicated “GRID” class. At present, only one grid class is implemented,

in which constant grid cell sizes are specified within a sequence of layers. Typically, the smallest grid cell size is defined for

the top layer and the largest for the bottom layer. Other grid classes, e.g. with grid cell sizes increasing logarithmically with

depth, could be implemented in a straight-forward way.

2.2.2 Coupling to model forcing and boundary conditions of model domain260

At the uppermost stratigraphy class of the CryoGrid stratigraphy (Fig. 2), the upper boundary condition is applied which

simulates the coupling to the model forcing. Three different schemes are implemented at this point, broadly providing the

functionality of the CryoGrid 1, 2 and 3 models.

Equilibrium TTOP approach: Used within CryoGrid 1, the TTOP approach offers an efficient way to estimate mean annual

ground temperature (MAGT ) directly from the model forcing. For this purpose, freezing and thawing degree days at the265

surface (FDDs and TDDs) are calculated from the temperature forcing (often using air temperature to approximate surface

temperature) and semi-empirical n-factors which phenomenologically simulate the asymmetry of heat transfer in the ground

between freezing and thawing periods:

MAGT =


1
τ (nfFDDs + rkntTDDs) for nfFDDs + rkntTDDs ≤ 0

1
τ (

1
rk
nfFDDs +ntTDDs) for nfFDDs + rkntTDDs > 0 ,

(3)

with τ the number of days in the period for which the TTOP model is applied. Setting nf and nt unlike unity causes a tempera-270

ture offset between the model forcing and the ground surface related to processes during the frozen season (in particular caused

by the insulating snow cover) and the thawed season (e.g. caused by incoming radiation modified by slope and aspect). In the

same fashion, rk causes a temperature offset between the ground surface and the top of the permafrost due to differences in

active layer thermal conductivities and thus heat transfer between summer and winter. Detailed derivations of the TTOP equa-

tion (Eq. 3) are presented in Romanovsky and Osterkamp (1995) and Westermann et al. (2015). The TTOP approach calculates275

the ground temperature in equilibrium with the applied model forcing, i.e. the ground temperature that would eventually be

reached if the model forcing was repeatedly applied for an infinite time period. The approach is not suited to capture ground

temperatures during periods of rapid change, especially when an insulating top layer and ground ice delays the penetration

of the surface temperature signal into the ground. For this reason, the TTOP approach should preferably be applied to longer

time periods, e.g. for one or several decades of model forcing. Moreover, only a single temperature value is delivered without280

specifying a depth, or even a depth profile of ground temperatures. However, the TTOP model class can be vertically coupled

to stratigraphy classes simulating heat conduction into the ground (Sect. 2.2.3), effectively providing a modified, temperature

boundary condition (see below) which accounts for temperature offsets caused by the snow cover, active layer dynamics or

exposition. Such model setups are particularly useful for simulating temperature dynamics in deeper layers for long timescales,

as they do not need to resolve the seasonal freeze-thaw cycle, making them very efficient computationally.285
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Temperature boundary condition: Transient simulations with heat conduction-based models (Sect. 2.2.3) require specifica-

tion of boundary conditions, which can be either time (t) series of temperature, Tub(t), or time series of the energy flux into

the first model grid cell, Fub(t) [Wm−2]. In the CryoGrid community model, it is possible to specify a temperature boundary

condition (as in the CryoGrid 2), which for each time t is translated to a heat flux into the first model grid cell as

Fub(t) =Kh,1(t)
Tub(t)−T1(t)

∆z1
(4)290

where Kh,1 [Wm−1K−1] denotes the thermal conductivity (Sect. 2.2.3), T1 the temperature and ∆z1 the thickness of the

uppermost model grid cell. Note that Eq. (4) assumes that Tub(t) is assigned to a virtual grid cell of thickness ∆z1 above the

uppermost grid cell. Air temperatures are most commonly used for Tub(t), but this can be adapted by selecting (and if necessary

modifying) an appropriate FORCING class (Sect. 2.1.1) for the simulations.

Surface energy balance: The energy flux into the first model grid cell, Fub(t), can also be calculated from the surface energy295

balance (SEB), largely similar to the implementation in CryoGrid 3. The required forcing data include incoming short- and

longwave radiation (Sin and Lin) [Wm−2], precipitation (Ps, solid and Pl, liquid) [mmd−1] and air pressure p [Pa], as well

as air temperature Tair, wind speed U [ms−1] and specific humidity qair [kg water vapor/kg air] at height above ground h [m]

(e.g. Westermann et al., 2016). Fub is then calculated from the surface energy balance equation.

Fub(t) = Sin(t)−Sout(t)+Lin(t)−Lout(t)−Qh(t)−Qe(t), (5)300

where Sout andLout denote outgoing short- and longwave radiation (both defined positive) andQh andQe the sensible and latent

heat flux (both defined positive when cooling the surface). Note that the ground heat flux Qg is not explicitly represented, but

becomes manifest in both an enthalpy change of the uppermost grid cell and a conductive heat flux between the two uppermost

grid cells. It can be calculated by the user asQg = Fub (assuming the same sign convention as for sensible and latent heat flux).

The outgoing shortwave radiation is computed with the surface albedo αs305

Sout = αsSin (6)

In most classes, a single broad-band (i.e. spectrally averaged) albedo is employed, but some classes resolve several spectral

bands for which the albedo can vary. Furthermore, a constant albedo is provided by the user in some classes, while the albedo

is parameterized as a function of model state variables in others. The outgoing longwave radiation is computed from Stefan-

Boltzmann and Kirchhoff’s Law as310

Lout = ϵσsb(T +Tmfw)
4 +(1− ϵ)Lin, (7)

with σsb the Stefan-Boltzmann constant [kgm−2K−4], Tmfw = 273.15K the freezing temperature of free water and ϵ [-] the

surface emissivity.

The sensible heat flux is computed from air temperature at defined height above ground h and the temperature of the first

grid cell as315

Qh =−ρaircp
ra

(Tair −T1), (8)
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with ρair air density [kgm−3] and cp the air heat capacity [Jkg−1K−1] at constant pressure. The aerodynamic resistance ra is

calculated from Monin-Obukhov similarity theory (Monin and Obukhov, 1954), as in CryoGrid 3, with

ra =
1

κ2U

(
ln
h

z0
−ψM(

h

L∗
,
z0
L∗

)

)(
ln
h

z0
−ψH,W(

h

L∗
,
z0
L∗

)

)
. (9)

Here, U is the wind speed at height h above ground, κ = 0.4 the von Kármán constant, z0 [m] the roughness length (assumed320

equal for heat, water and momentum) and ψM and ψH,W integrated atmospheric stability functions, equal to the ones used in

CryoGrid 3 (Westermann et al., 2016). The Obukhov length L∗ [m] is calculated from the sensible and latent heat flux values

in the same way as CryoGrid 3, using the flux values computed for the previous timestep (see Westermann et al., 2016).

The latent heat flux is calculated as

Qe =−ρairLlg,sg
f

re
(qair − q1), (10)325

where Llg,sg [Jkg−1] are the latent heat of evaporation (lg) and sublimation (sg), which are employed for T1 ≥ 0°C and T1 <

0°C, respectively. Depending on the subsurface class used, different formulation for the reduction factor f [-], the resistance

re [sm−2] and the specific humidity above the surface q1 are employed. Four schemes can broadly be distinguished:

1. For subsurface classes with unlimited surface water or ice supply (e.g. classes representing snow cover or a water body),

re = ra, f = 1 and q1 = qsat(T1), i.e. the specific humidity at saturation for the temperature of the uppermost grid cell,330

calculated with the Magnus equation. The evaporation thus corresponds to the potential evaporation.

2. For subsurface classes without water balance (i.e. water plus ice content constant in time), f = 1, q1 = qsat(T1) and

re = ra + rs, with rs [sm−1] a user-defined surface resistance to evaporation (see Westermann et al., 2016).

3. For subsurface classes with bucket water scheme (Sect. 2.2.4), the potential evapotranspiration (i.e. re = ra and q1 =

qsat(T1)) is multiplied by the reduction factor f taking soil water availability into account. For unfrozen ground, f is335

calculated from the water availability coefficients of soil grid cells i, αθ
i , as

f = ftr

∑
i

αθ
i∆zie

−di/dtr/
∑
i

∆zie
−di/dtr + fev

∑
i

αθ
i∆zie

−di/dev/
∑
i

∆zie
−di/dev , (11)

which allows the user to specify the partitioning in transpiration (fraction ftr) and evaporation (fraction fev = 1− ftr)

with different characteristic depth dtr and dev. Both evaporation and transpiration are assumed to decay exponentially

with depth di below the surface (taken positive). Furthermore, the weighting of each grid cell depends on the thickness340

of grid cell i, ∆zi, and the water availability coefficient calculated with the user-defined field capacity θfc,i [-] as αθ
i =

0.25(1− cos(πθw,i/θfc,i))
2 for θfc,i ≥ θw,i and αθ

i = 1 for θfc,i < θw,i. When the ground is frozen, sublimation is set

to zero (i.e. f = 0), which in most real-world cases is not a limitation, as a snow cover builds up for which sublimation

according to scheme 1 (see above) can occur.

4. In subsurface classes in which soil moisture is governed by Richards equation, water can flow upwards to compensate345

for evaporative losses and all evaporated water is hence drawn from the uppermost grid cell. Similar to scheme 3, f is
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set to f = 0.25(1− cos(πθw,1/θfc,1))
2, while re = ra is assumed and the specific humidity is set to

q1 = exp
(

ψ1g

Rwv(T1 +Tmfw)

)
qsat(T1) (12)

(Philip, 1957), where Rwv is the gas constant for water vapor [Jkg−1K−1], g is the gravitational acceleration [ms−2],

and ψ1 [m] the matric potential of the uppermost grid cell (Sect. 2.2.3). Note that this scheme can only represent350

evaporation, and should be combined with a dedicated vegetation module, such as the one demonstrated in Stuenzi

et al. (2021a), to also represent transpiration.

Lower boundary: The lower boundary condition is applied to the lowermost class in the stratigraphy. In all classes described

in this study, a user-defined constant heat flux Flb [Wm−2] is added to the lowermost grid cell which corresponds to the

geothermal heat flux, Qgeo [Wm−2], for sufficiently deep model domains. Although not yet implemented, it is possible to355

create classes with temperature boundary conditions similar to the upper boundary (see above).

2.2.3 Subsurface heat transfer and temperature calculation

Heat conduction: Depending on the selected stratigraphy class, CryoGrid considers heat conduction as well as heat advection

as the dominant modes of heat transport in the subsurface. Thus, the change of enthalpy e (see Sect. 2.2.1) is given by the

continuity equation360

∂e

∂t
=−∂jhc

∂z
− ∂jhw

∂z
, (13)

with z [m] the vertical coordinate, jhc the flux due to heat conduction and jhw the flux due to heat advected by water. Heat

conduction is calculated from Fourier’s law as

jhc =−Kh
∂T (e)

∂z
, (14)

with Kh [Wm−1K−1] the thermal conductivity and temperature T as a function of e (see “Soil freezing characteristics”365

below). The flux from heat advection with water flow is calculated as

jhw = cwT (e)jw, (15)

with cw [JK−1m−3] the volumetric heat capacity of liquid water and jw [ms−1] the water flux, which consists of a term for

vertical advection and a term for evapotranspiration (Sect. 2.2.4). For the thermal conductivity Kh, different parameterizations

in terms of the volumetric contents of water, ice, mineral, organics and air can be selected by the user. For soil material, the370

parameterization by Cosenza et al. (2003) implemented in CryoGrid 2 and 3 is available, as well as the parameterization used

in the Community Land Model (CLM) 4.5 (Oleson et al., 2013). While the former treats all soil constituents equal and thus

functions for single-phase materials, e.g. pure ice or rock, the latter is strictly focused on soils with reasonable porosity values.

It first computes thermal conductivities for dry and saturated soil which is then weighted with the Kersten number to yield the

final conductivity value (Johansen, 1973). For snow, the thermal conductivity is computed as a function of snow density, with375
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two parameterizations available, namely the exponential relationship described in Yen (1981) and the quadratic relationship

from Sturm et al. (1997).

Soil freezing characteristics: The soil freezing characteristics is a constitutive relationship between soil temperature and the

unfrozen water content. In the CryoGrid community model, we generalize this concept to derive soil temperature T and water

content θw from enthalpy e and water plus ice content θwi in the diagnostic step (Sect. 2.1.2). Depending on the subsurface380

class, either the “free water” freezing characteristic, or the soil freezing characteristic described in Painter and Karra (2014) is

implemented. In the free water case, all phase change of water occurs at 0 °C, i.e.

T =


e/c for e≥ 0

0 for −Lvol
sl θwi ≤ e < 0

(e+Lvol
sl θwi)/c for e <−Lvol

sl θwi

(16)

and

θw =


θwi for e≥ 0

θwi(1+ e/(Lvol
sl θwi)) for −Lvol

sl θwi ≤ e < 0

0 for e <−Lvol
sl θwi

(17)385

Here, Lvol
sl denotes the volumetric latent heat of freezing [Jm−3] and θwi the sum of the volumetric water and ice contents.

For the soil freezing characteristic by Painter and Karra (2014), the free water case functions are employed for e≥ 0. For

e < 0, unique function θw(T,θwi) relating liquid water content to T and θwi exist which we use to calculate e(T,θwi) according

to Eq. (1). For e(T,θwi), lookup tables are compiled which allow to efficiently evaluate the inverse function T (e,θwi) (and

θw(e,θwi), combining T (e,θwi) and θw(T,θwi)) in each time step, thus computing the diagnostic variables temperature and390

volumetric water content from the prognostic variable enthalpy. θw(T,θwi) is calculated using the matric potential ψ [m]

which also governs water flow in subsurface classes based on Richards equation (see Sect. 2.2.4). First, the matric potential in

unfrozen state, ψ0, is evaluated with the van Genuchten-Mualem model (Van Genuchten, 1980) as

ψ0 =−1/α
(
(θwi/ϕ)

−1/m − 1
)1/n

, (18)

with α [m−1] and n [-] soil type specific parameters, m= 1−1/n and assuming no residual water. While ψ = ψ0 for unfrozen395

soil (T ≥ 0°C), the matric potential for freezing soil (T < 0°C) is calculated as

ψ = ψ0 +β
Lvol

sl

gρw

T −Tmfw

Tmfw
. (19)

Here, T is in unit Kelvin, g [ms−2] is the gravitational acceleration, ρw water density [kgm−3], and β the ratio of ice-liquid

to liquid-air surface tensions for non-colloidal soil, set to 2.2 as suggested in Painter and Karra (2014). The water content is

finally calculated as:400

θw = ϕ(1+ (−αψ)n)−m. (20)
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The values of α and n are determined by the soil type, and users can define an unlimited number of layers with different soil

types (limited by the vertical resolution of the model grid). However, only a limited number of different soil types is possible

within a stratigraphy class due to the need for lookup tables which are specific for combinations of α and n. Currently, four

soil types (sand, silt, clay, peat) are implemented to provide users with a convenient interface, but it is possible to change the α405

and n values associated with each of them, so that also other soil types can be realized.

2.2.4 Water balance

In the CryoGrid community model, three schemes to compute the time dynamics of soil water contents are available, namely 1.

no flow (i.e. constant water plus ice contents), 2. a “bucket” scheme with only downward vertical water flow driven by gravity,

and 3. vertical water flow governed by Richards equation. For schemes 2 and 3, the hydrological boundary conditions at the410

top of the soil column, such as rainfall input Pl, snow melt and evapotranspiration (related to the latent heat fluxes, Sect. 2.2.2)

drive the time dynamics of the soil water content. Therefore, these only work in conjunction with the surface energy balance as

upper boundary condition (Sect. 2.2), while scheme 1 can be applied for both temperature and surface energy balance boundary

conditions, as in CryoGrid 2 (Westermann et al., 2013) and the initial version of CryoGrid 3 (as in Westermann et al., 2016).

Within the soil domain, the time dynamics of the sum of water and ice contents is governed by water fluxes jw according to415

the continuity equation

∂θwi

∂t
=−∂jw

∂z
. (21)

The three water balance schemes differ in their representation of jw, which generally consists of vertical water fluxes jvw and

fluxes due to evapotranspiration jET
w (or evaporation jE

w and transpiration jT
w).

1. For the no flow scheme, jw = 0, i.e. the sum of water and ice contents is fixed for each grid cell (and thus only determined420

by the initialization) and not affected by rainfall, snowmelt and evaporation. The no flow scheme therefore needs to be

combined with either the temperature boundary condition or the surface energy balance with scheme 2 for evaporation

(Sect. 2.2.2).

2. In the bucket scheme, the water in a grid cell is either immobile and bound to the soil matrix, or it flows downwards driven

by gravity. The threshold between the two regimes is the user-defined field capacity, θfc. In the unsaturated domain, the425

vertical water flux is hence given by

jvw =

−Kw for θw > θfc

0 for θw ≤ θfc

(22)

withKw the hydraulic conductivity [ms−1]. It is not the goal of the bucket scheme to reproduce the exact time dynamics

of infiltration event and the hydraulic conductivity is broadly set to Kw =Kw,satθw/ϕ, with Kw,sat [ms−1] the saturated

hydraulic conductivity specified by the user. This in particular prevents or slows infiltration in ice-saturated ground in430

spring, when the water content is low. No vertical water flux occurs in the saturated domain, unless water losses due to
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evapotranspiration must be compensated, i.e. jvw =max(−Kw, j
ET
w ). In subsurface classes representing soil, the bucket

scheme is combined with scheme 3 for evapotranspiration (Sect. 2.2.2). The water flux due to evapotranspiration from

grid cell i is calculated from the latent heat flux Qe, as

jET
w,i =− fi∑

i fi

Qe

Llgρw
, (23)435

with fi calculated from the water availability coefficients αθ
i (see scheme 3 in Sect. 2.2.2 for the other variables) as

fi = ftrα
θ
i∆zie

−di/dtr + fevα
θ
i∆zie

−di/dev . (24)

In essence, this ensures that a water flux corresponding to the weight of a grid cell in the calculation of the latent heat flux

is extracted, taking water availability and exponential damping with depth into account. Note that CryoGrid 3 features

a different bucket scheme, which does not treat soil water as a prognostic variable, but redistributes water in the bucket440

after each timestep (Nitzbon et al., 2019). As an example, a rain event leads to an instant increase of the water level in

CryoGrid 3, while an infiltration front penetrating downwards with time is simulated by the subsurface classes available

in the CryoGrid community model.

3. For water flow governed by Richards equation (Richards, 1931), movement of water in unsaturated soils through vertical

gradients of the matric and gravitational potentials is accounted for, in addition to gravity-driven flow in the saturated445

domain. In this water balance representation in the CryoGrid community model, evaporation is drawn from the uppermost

grid cell, i.e. jE
w,1 =Qe/(Llgρw). If transpiration is considered (e.g by the canopy scheme described in Stuenzi et al.,

2021a), a grid cell weighting similar to Eq. (23) is used to compute the transpiration flux from each cell. The vertical

water fluxes are calculated according to Richards equation

jvw =−Kw

(
∂ψ

∂z
+1

)
, (25)450

using the matric potential ψ which also accounts for soil freezing (see Sect. 2.2.3). For the hydraulic conductivity, we

use the classic formulation by Van Genuchten (1980),

Kw =Kw,sat Iice(θw/ϕ)
0.5

(
1−

(
1− (θw/ϕ)

n/(n+1)
)(n−1)/n

)2

, (26)

with an additional ice impedance factor Iice = 10−Ωθi/θwi (defined as in Hansson et al., 2004) to account for the blocking

of water-filled pores by ice (see Sect. 3.1.3). In some subsurface classes, the permeability of the subsurface material, kw455

[m2], needs to be specified instead of the saturated hydraulic conductivity, which is calculated according to Kw,sat =

kw/(ηwρwg). Here, ηw is the temperature-dependent dynamic viscosity of water derived as ηw =Aexp(B/T +CT +

DT 2), with T in unit Kelvin and coefficients A,B,C,D as defined in Reid et al. (1987).

2.2.5 Excess ground ice

The CryoGrid community model comprises a subsurface class to simulate melting of excess ground ice which results in the460

subsidence of the ground surface. It is based on the bucket water scheme with freezing characteristic and surface energy balance
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(Sects. 2.2.2 to 2.2.4) and in most aspects similar to the CryoGrid 3 excess scheme (Westermann et al., 2016) based on Lee

et al. (2014). However, freezing and melting of excess water/ice is treated differently than pore water/ice that is contained

in the sediment matrix. While the pore water/ice freezes and melts according to the soil freezing characteristic, the excess

water/ice portion is always treated as free water, i.e. it undergoes phase change at T = 0°C (see Sect. 2.2.3). Two additional465

state variables θχi and θχw denote the volumetric fractions of excess ice and water, so that θm+θo+θw+θi+θχi+θχw+θa = 1.

The initial excess ice content is specified by the user and the excess ice fraction in a grid cell is unchanged (i.e. neither increases

or decreases) as long as its temperature is below 0 °C.

Once excess ice melts, the excess water is mobilized and transported by the hydrology scheme, with an additional vertical

water flux term jvχw =Kw directed upwards. This excess water is first routed between the excess water variables of adjacent470

grid cells, with grid cell thickness changing accordingly (i.e. shrinking for net outflow, expanding for net inflow). If excess

water exists in an unsaturated grid cell (i.e. it contains a non-zero air content), water is moved from the excess water to the

water phase, reducing the air content and leading to the grid cell thickness to shrink. In the uppermost grid cell, the excess

water variable can be regarded as water pooling up above the surface, either due to melted excess ice routed upwards, or from

rainfall and melted snow. This excess water can either evaporate, be routed away laterally (Sect. 2.3), or evolve into a pond/lake475

represented by a water body class (see Sect. 2.2.7). The two latter depend on the user-defined model setup which specifies what

happens when the excess water in the first grid cell exceeds a threshold depth.

In the user interface, the amount of excess ice in a subsurface grid cell is specified as a fraction (χ) relative to the amount of

soil without excess ice, i.e. χ= 1 corresponds to a cell consisting of 50% soil and 50% excess ice.

2.2.6 Snow cover480

Three stratigraphy classes representing snow are currently available in the CryoGrid community model, which all employ heat

conduction and the free water freezing characteristic (Sec. 2.2.3) to calculate snow temperatures. New snow is added to the

first grid cell which is split into two cells when the “ice depth” (defined as θi∆z, equivalent to snow water equivalent for dry

snow) exceeds 1.5 times a user-defined target value (with the lower cell containing the target ice depth and the upper cell the

remaining part). When the ice depth in a grid cell decreases below half the target ice depth, it is merged with the grid cell below.485

Meltwater becomes mobile when the volumetric water content exceeds a user-defined field capacity (provided as fraction of the

porosity of the ice matrix, 1− θi) and can flow downwards, but also laterally if a corresponding lateral interaction class (Sect.

2.3) is selected. The dynamic interaction of snow classes with other stratigraphy classes, including their creation upon snowfall

and removal when all snow has melted, is described in Sect. 2.1.3. Of the three snow classes, class (a) can be combined with

subsurface classes with temperature boundary condition and classes (b) and (c) with subsurface classes with surface energy490

balance (Sect. 2.2.2).

a) Constant snow density, temperature boundary condition and degree-day based melt model: In this snow class, new snow

is added with a user-defined constant density, which could for example be derived from field observations. Temperature

calculations inside the snow pack rely on a temperature boundary condition, heat conduction and the free water freeze
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curve. For snow melt, a degree-day based melt model is employed, using a melt factor calculated from latitude and day495

of year (as in Obu et al., 2019). The product of day length and solar culmination angle (i.e. the highest sun angle above

the horizon at a given day of year) is used as a measure of snow melt activity, which scales the degree day melt factor

between confining values of 0.002m(°Cday)
−1 and 0.012m(°Cday)

−1 water equivalent. The snowmelt is assigned

to the uppermost grid cell from where meltwater is removed once it exceeds the pore space, without infltrating into the

snow pack.500

b) Constant snow density, surface energy balance and snow hydrology (bucket scheme): This snow class largely follows

the snow parameterization of the CryoGrid 3 model, as described in detail in Westermann et al. (2016). As for (a),

snowfall is added with prescribed density, but the surface energy balance is used as upper boundary condition with a

transient albedo that decreases from a maximum value for fresh snow to a minimum value for old snow, with decrease

rates depending on whether the snow is dry or wet (as inferred from the liquid water content of the first snow grid505

cell, see Sect. 2.2.3). Furthermore, shortwave radiation penetrates into the snowpack following de Beer’s law with a

defined extinction coefficient, and sublimation/resublimation derived from the latent heat flux is extracted/added to the

uppermost grid cell. The snow hydrology follows the bucket scheme (Sect. 2.2.4), with water from both rainfall and

snowmelt percolating downwards when the water content exceeds the field capacity. In the simple snow cover module,

refreezing of meltwater is the only process that can alter the density of a snow layer.510

c) Snow microphysics, surface energy balance and snow hydrology (bucket scheme): Introduced within CryoGrid 3 by

Zweigel et al. (2021), this snow class is based on the Crocus snow scheme (Vionnet et al., 2012), including transient

snow grain property and density evolution. The defining equations and parameterizations are largely identical to the ones

described in Vionnet et al. (2012), so we only provide a brief description, concentrating on aspects treated differently. As

for the previous class, the energy transfer at the upper boundary is prescribed according to the surface energy balance, but515

relies on spectrally resolved calculation of albedo and shortwave penetration and absorption in each grid cell. Snowfall

is added with properties (density, grain size, dendricity and sphericity) derived from air temperature and wind speed, and

the snow within each grid cell evolves and metamorphoses based on internal temperature gradient, and water content.

In particular, snow compaction due to the weight of overlying snow pack is derived by computing the snow viscosity,

which is computed for each snow layer, parameterized as a function of snow density, temperature, liquid water content,520

and snow grain size. The class also accounts for the impact of wind drift on snow grain properties and density, which

in particular leads to compaction and density increase of the uppermost snow layers. If the uppermost snow grid cell

features liquid water, both evaporation and sublimation are calculated and their fractions linearly interpolated between

θw = 0 (all sublimation) and θw = θsnow
evap (all evaporation). The threshold θw = θsnow

evap is set to twice the field capacity,

but this should be revisited in future studies. For evaporation, the corresponding amount of water is extracted, while525

the same happens for the ice phase for sublimation. The original Crocus setup described in Vionnet et al. (2012) is

associated with a variety of model parameters, some of which Royer et al. (2021) suggested to revise to better reproduce

snowpack characteristics in the Arctic. These are in particular related to the wind speed dependence of the new snow
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density and the compaction dynamics due to wind drift, as well as parameterization of the snow thermal conductivity.

In the snow class, it is possible to choose between the parameter sets for the original (according to Vionnet et al., 2012)530

and the “Arctic Crocus" (according to Royer et al., 2021), or to independently adjust the parameters in question. With

this, the performance of either scheme within the CryoGrid community model can be evaluated against observations (see

Sect. 3.2).

While the most process-rich scheme c) is generally expected to deliver a superior performance, it is also more sensitive to

biases in the model forcing, especially the wind speed which strongly impacts snow density. In some cases, it is therefore be535

preferable to employ the simpler schemes a) or b), especially if field measurements constraining the snow density are available.

2.2.7 Water bodies

In water bodies, heat transfer from the surface is strongly different between the ice-free and ice-covered seasons. The key

characteristics of this seasonal asymmetry were conceptualized in CryoGrid 3 (see Westermann et al., 2016) for the highly

relevant case of shallow water bodies. During the ice-free-season, the water column is assumed to be fully mixed due to wind540

action, while a stable, temperature-driven stratification forms below an ice cover, with water at 0 °C at the ice interface less

dense than the warmer water at deeper layers. Within this water column, heat conduction is the main pathway of energy transfer

with the relatively small thermal conductivity of water (Kh,w = 0.57Wm−1K−1) severely restricting energy losses of the

ground below the water column. The CryoGrid community model provides a water body class based on the CryoGrid 3 model

physics. In fact, the two seasonal regimes are implemented as two separate stratigraphy classes, which mutually create and545

destroy each other upon defined conditions (see below). In the “ice-free class”, the entire water column is simply represented

by a single grid cell which assumes well-mixed conditions. The surface energy balance is applied at the upper boundary, and

short-wave radiation penetrates into the water column with a bulk (i.e. not spectrally resolved) absorption coefficient. Both rain

and snowfall are added to this grid cell with their respective enthalpy e, leading to both a change in temperature and in the

grid cell thickness (and thus the water level). When the enthalpy reaches e= 0 (which is ensured by the time-stepping scheme,550

Sect. 2.2.9), an ice cover forms and the ice-free class is exchanged by the ice-covered class. In this process, all state variables

are split to the pre-defined model grid, so that the surface energy balance is now applied to the uppermost grid cell which can

subsequently freeze according to the free water freezing characteristics. While energy transfer in the water and ice column is

by means of heat conduction, grid cells are reordered after each timestep, with fully frozen cells (i.e. the ice cover) always

on top and the unfrozen cells arranged by their temperature-dependent densities (according to Kell, 1975). When all ice has555

melted, i.e. e≥ 0 for all grid cells, the grid cells are merged into a single grid cell and the ice-free class resumes. Note that

the FLake water body scheme presented in CryoGrid 3 (Langer et al., 2016), is not yet available in the CryoGrid community

model, but will be implemented in the future as an additional stratigraphy class.
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2.2.8 Glaciers

The CryoGrid community model contains a glacier class, which consists of layers of pure ice (using the free water freezing560

characteristic) with a user-defined constant ice thickness. Energy transfer is governed by heat conduction, with the surface

energy balance as upper boundary condition. The scheme is usually coupled to snow schemes b) or c) (section 2.2.5), which

allows the buildup of a seasonal snow layer for simulations of the ablation area, or if run over longer periods the buildup of

a firn layer for simulations of the accumulation zone. The densification scheme in Crocus (Vionnet et al., 2012, Sect. 2.2.5)

been implemented into several models for simulations of snow and firn densification on glaciers (e.g. Cullather et al., 2016;565

Langen et al., 2017; Verjans et al., 2019), which have been successfully applied for e.g. the Greenland ice sheet, Antarctica, and

Icelandic glaciers (e.g. Agosta et al., 2019; Fettweis et al., 2017; Schmidt et al., 2017). Similar applications are conceivable in

the CryoGrid community model, with the glacier class representing ice and the Crocus-based snow class firn and the seasonal

snow cover.

Water cannot infiltrate into the ice, so any water which does not refreeze during the time step will run off instantaneously,570

if there is no snow on the glacier surface. Likewise, if snow is present, liquid water in the snow class will build up above the

glacier ice, where it can eventually refreeze or run off, depending on the selected lateral interaction class.

If additional ice is added to the surface grid cell, either from refreezing of rain water or deposition, mass is advected

downwards to ensure constant water equivalent water thickness. Similarly, if mass is removed from the module by runoff,

evaporation, or sublimation, mass is advected up, with the lowest model layer receiving additional mass from an infinite ice575

reservoir below the model domain. This reservoir is assumed to have the same temperature as the lowest model layer. The

movement of mass within the model column is accompanied by a vertical transfer of sensible heat. A similar approach has

previously been used in other glacier models which do not account for glacier flow (e.g. Langen et al., 2017), in order to

prevent glacier areas with highly negative mass balance from disappearing during spin-up. However, the glacier class can also

be employed without this option and coupled to a subsurface class representing subglacial sediments. In this case, the glacier580

can completely melt away, exposing the ground below, which for example offers the possibility to study glacier-permafrost

interactions (Sect. 4.6).

2.2.9 Numerical implementation

For prognostic variables like enthalpy and water content, we use the integral form of the respective continuity equations (Eqs.

13 for heat and 21 for water). For a scalar, volume-normalized quantity s (e.g. e for enthalpy and θw for water contents), the585

time change within a volume V is explained by fluxes
#»
js across surface ΩV of V , with normal vector #»n :∫

V

∂s

∂t
dV +

∮
ΩV

#»
js · #»ndΩV = 0. (27)

The numerical implementation is based on finite differences with grid cells (index i increasing downwards, vertical thickness

∆z [m] and area A [m2]) within which s is considered constant. Furthermore, for one-dimensional simulations, only vertical

fluxes through the upper and lower boundary of the grid cell have to be considered, so that the continuity equation for grid cell590
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i simplifies to

∂

∂t
Si :=

∂

∂t
(A∆zisi) =−ji−1↔i

s + ji↔i+1
s , (28)

i.e. the time derivative of the bulk quantity Si is simply obtained from the fluxes ji−1↔i
s (defined positive when directed up-

wards) across the interfaces between grid cells i−1/i and i/i+1. For the numerical implementation in the CryoGrid community

model, it is therefore of practical advantage to use the extensive bulk quantities as state variables and not the volume-normalized595

quantities (which are employed as direct model state variables in e.g. CryoGrid 2/3) for which the defining differential equa-

tions in the previous sections are provided. In the CryoGrid community model, each stratigraphy class covers an explicit area

A [m2], and the the model state variables for mineral, organic, water and ice contents become volumes: ϕm =A∆zθm [m3];

ϕo =A∆zθo [m3]; ϕw =A∆zθw [m3]; ϕi =A∆zθi [m3]. Likewise, the bulk value for the enthalpy for each grid cell is

used, E =A∆z e [J]. For time integration of Eq. (28), we use a simple first-order forward Euler scheme as in CryoGrid 3600

(Westermann et al., 2016), i.e.

Si(t+∆t) = Si(t)+∆t(−ji−1↔i
s + ji↔i+1

s ). (29)

Stability and accuracy are guaranteed by selecting small enough time steps with conditions specifically designed for each state

variable, the particular requirements of the model physics of each stratigraphy class, and the typical orders of magnitude (and

timescales of change) of model forcing and parameters. For enthalpy, for example, a maximum change of volume-normalized605

enthalpy e between grid cells is defined by the user, and time steps ∆t are adjusted to not exceed this value for any grid cell.

Therefore, small timesteps are generally required if large fluxes occur, slowing down computation. In a similar manner, changes

in soil water content between timesteps can be limited, while it is also possible to prevent “overfilling” of a grid cell (so that

the water content exceeds the pore space) by limiting the time step accordingly. Another example is the water body class (Sect.

2.2.7) for which the time step calculation guarantees, that the condition e= 0 (which triggers the switch between ice-free and610

ice-covered water body classes, Sect. 2.2.7) is exactly met. In addition, a maximum timestep can be defined to satisfy the CFL

(Courant–Friedrichs–Lewy) condition (Courant et al., 1928) for the parameters (e.g. thermal conductivities and heat capacities)

and grid cell sizes of the simulation setup. The fluxes of both heat and water have the general form

js =−κs(z)
∂σ(z)

∂z
. (30)

Conductivities κs are defined for individual grid cells, while js in the finite difference scheme is expressed in terms of fluxes615

between grid cells i− 1 and i, ji−1↔i
s . For his reason, the effective conductivities governing the flux between grid cells are

calculated as series of the resistances 1/κs,i−1 and 1/κs,i using half of the grid cell thicknesses ∆z:

ji−1↔i
s =

2κs,i−1κs,i
κs,i−1∆zi +κs,i∆zi−1

(σi −σi−1). (31)

In the upper- and lowermost grid cells of the CryoGrid stratigraphy (which are in different stratigraphy classes if the stratigraphy

consists of more than one class), the fluxes derived at the upper and lower boundaries (e.g. Fub and Flb for heat) are added. To620

connect adjacent stratigraphy classes, corresponding fluxes jNu↔1l
s are calculated by the interaction class (Sect. 2.1.2), with
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grid cell Nu being the lowermost grid cell of the upper stratigraphy class, while grid cell 1l is the uppermost grid cell of the

lower stratigraphy class. jNu↔1l
s depends on the state variables and model physics of both classes involved. It can be of the

same form as Eq. (31), but also jNu↔1l
s = 0, for example the water flux between a stratigraphy class with and one without

water balance.625

2.3 Lateral interactions with an external environment

With CryoGrid 3, several studies were presented that simulate lateral exchange of energy and matter (heat, water or snow), ei-

ther with external reservoirs for single-tile simulations (Martin et al., 2019; Langer et al., 2016), or between different CryoGrid

stratigraphies for three-dimensional multi-tile configurations (Martin et al., 2021; Nitzbon et al., 2019, 2020, 2021; Zweigel

et al., 2021). In the CryoGrid community model, we extend these possibilities by providing a standardized interface to im-630

plement a variety of lateral interactions, which are compatible with the CryoGrid stratigraphy consisting of a stack of classes

(Fig. 5). This functionality is accomplished by two further types of classes, “lateral classes” and “lateral interaction classes”,

both of which are selected in the TILE_1D_standard class. The choice of the lateral class determines whether the CryoGrid

stratigraphy interacts with external (and static) reservoirs (“LATERAL_1D”), or whether several CryoGrid stratigraphies inter-

act with each other (“LATERAL_3D”), which corresponds to the “laterally coupled tiling” demonstrated in CryoGrid 3. In this635

study, we focus on interactions with external reservoirs, while laterally coupled tiling with LATERAL_3D will be described

in a separate study in the future. Other than for the time integration in the vertical Cryogrid stratigraphy, lateral fluxes are

added/subtracted after a fixed, user-determined interaction timestep (which is a parameter in the lateral class), so they are not

part of the time integration scheme of the regular stratigraphy. This is largely due to the computation-related requirements of

laterally coupled tiling (which requires parallel computing, see Nitzbon et al., 2019), but constant timesteps ∆tlat are also640

employed for one-dimensional simulations with external reservoirs to ensure consistency. In general, lateral fluxes exchanged

with external reservoirs should be small compared to the corresponding vertical fluxes within the CryoGrid stratigraphies,

which means that interaction timesteps can be significantly longer than the typical timesteps required for the vertical integra-

tion. The lateral interaction timestep must be selected by the user, seeking for a balance between runtime and model accuracy

and stability. Typical lateral timesteps for the applications presented in Sect. 3.2 are between half an hour to six hours.645

The lateral class sets up the environment for the lateral interaction classes which represent the actual model physics of the

lateral interactions with external reservoirs. Lateral interaction classes can be combined with each other, with the lateral class

calling them one after the other in the order provided by the user (as a list in TILE_1D_standard).

2.3.1 Lateral coupling to heat reservoir

The CryoGrid stratigraphy can be laterally coupled to an external heat reservoir, which can be used to mimic the thermal impact650

of infrastructure, water bodies (similar to Langer et al., 2016) or more general adjacent areas with strongly different ground

thermal regime, e.g. at the edge of a permafrost-underlain peat plateau (Martin et al., 2021). The heat reservoir is characterized

by a user-defined, constant temperature T lat and lateral distance dlat [m] from the CryoGrid stratigraphy. Furthermore, a lower

and an upper elevation for the heat reservoir must be provided, which makes it possible to confine the effect of the heat reservoir
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Figure 5. Schematic representation of CryoGrid stratigraphy (for the example of a fully developed snow cover) interacting with a lateral

interaction (IA) class (see text). Note that it is specific to each stratigraphy class if and how it is modified by the lateral interaction class. In

this example, stratigraphy class 2 is unaffected, while the snow class and class 1 are modified by the lateral interaction class.

to a part of the stratigraphy. Furthermore, several heat reservoirs with different temperatures and upper/lower elevations can be655

combined, which achieves a similar effect as the coupling to a temperature stratigraphy (Langer et al., 2016). If a grid cell i is

located between the lower and upper bounds of the heat reservoir, the lateral heat flux is calculated as

jlat
hc,i =−Kh,i

Ti −T lat

dlat , (32)

with Kh,i the thermal conductivity of grid cell i and Ti its temperature. The change in bulk enthalpy in grid cell i over time step

∆tlat is given by660

∆Ei =∆tlat∆zil
lat
c j

lat
hc,i, (33)

with llatc [m] the lateral contact length and llat
c ∆zi [m2] the cross section through which the lateral heat flux occurs.

2.3.2 Lateral water transport

Surface water removal: When snow melts or rain falls on a saturated soil column, water will either pool up on the surface or is

lost as surface runoff. The exact way to treat this surface water depends on the particular stratigraphy class, with most classes665
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removing surface water (but storing it in a state variable), while for example the excess ice class (Sect. 2.2.5) can explicitly

represent a surface water pool. The CryoGrid community model provides a lateral interaction class that constantly removes

any surface water and stores the accumulated surface runoff, irrespective of the way surface water is treated in the uppermost

stratigraphy class. This in particular makes it possible to generate an unbroken time series of surface runoff which comprises

both snow classes (i.e. snowmelt runoff) and subsurface classes during the snow-free season.670

Overland flow: For the excess ice class (Sect. 2.2.5), standing surface water can be represented as excess water in the

uppermost grid cell, with water depth given as dw = θχw∆z [m]. Instead of removing surface water like with the previous

interaction class, surface water can also be removed by overland flow governed by the Gauckler-Manning equation (Gauckler,

1867; Manning et al., 1890) as

jlat
w,1 =−Gd2/3w (δlat)1/2, (34)675

with G [m1/3] the Gauckler-Manning coefficient, and δlat [-] the local gradient which drives the surface flow. The change in

bulk water content in grid cell 1 over time step ∆tlat is given by

∆Θw,1 =∆tlatdwl
lat
c jlat

w,1, (35)

with llatc dw [m2] the cross section through which the lateral water flux occurs (llat
c is the lateral contact length, see above).

Accordingly, the change in bulk enthalpy due to water advection is given by680

∆E1 =∆tlatdwl
lat
c jlat

w,1cwT1. (36)

Seepage face: For stratigraphy classes with water balance (Sect. 2.2.4, schemes 2 and 3), a seepage face lateral boundary

condition is implemented as a lateral interaction class, leading to drainage in the saturated domain of the soil column. The

lateral interaction class first determines the elevation of the water table, zwt, and then removes a lateral water flux

jlat
w,i =−Kw,i

zwt − zi
dlat (37)685

for grid cells iwith elevations zi < zwt. Here,Kw,i is the hydraulic conductivity and dlat the lateral distance to the seepage face

which determines the strength of the drainage. In unsaturated grid cells, no outflow occurs. Note that the water table elevation

is tracked across stratigraphy classes, e.g. when the water table is located in a water body class, it also governs the outflow from

the subsurface class below. The seepage face always leads to outflow and it is possible to define the upper and lower elevations

for the domain through which outflow occurs. The change in bulk water content in grid cell i over time step ∆tlat is given by690

∆Θw,i =∆tlat∆zil
lat
c j

lat
w,i (38)

with llat
c ∆zi [m2] the cross section through which the lateral water flux occurs. Accordingly, the change in bulk enthalpy due

to water advection is given by

∆Ei =∆tlat∆zil
lat
c j

lat
w,icwTi. (39)
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Water reservoir: Similar to seepage flow, hydrological coupling to an external water reservoir is possible, located at elevation695

zlat and lateral distance dlat. The lateral water flux is calculated as

jlat
w,i =−Kw,i

zi − zlat

dlat , (40)

with parameters as described above. As for seepage flow, water flow is restricted to the saturated zone, but inflow can occur if

zi < zlat. This lateral interaction class can therefore be used to keep the soil water table at a certain level, with in- and outflow

depending on rainfall and evapotranspiration. While outflowing water has the temperature of the respective grid cell, inflowing700

water can optionally be assigned a (constant) reservoir temperature T lat, which is taken into account in terms of heat advection

through water. In this case, the change in bulk enthalpy is given by

∆Ei =∆tlat∆zil
lat
c j

lat
w,icwT

lat, (41)

while the change in bulk water content Θw,i is the same as for the seepage face (see Eq. 38).

3 Results705

3.1 Benchmarking of selected model components

3.1.1 Step-change in upper boundary temperature

To document the basic numerical performance of the model framework, we model the temperature response of an infinite

half-space to a step change in temperature at the upper boundary. An analytical solution to this problem is available (Carslaw

and Jaeger, 1959) and is given by:710

T (x,t) = Tinit +(Tub −Tinit) erfc

√
cx2

4Kht

 , (42)

where T (x,t) [°C] is the temperature at time t [s] and depth x [m] below the surface, Tinit [°C] and Tub [°C] are the initial

domain temperature and temperature applied at the upper boundary, respectively. c and Kh are the heat capacity [Jm−3K−1]

and thermal conductivity [Wm−1K−1] of the medium, and erfc is the complementary error function. The formulation is valid

for a homogenous material with no variation in thermal properties in space and time, and without phase change.715

In CryoGrid we simulate the response using a stratigraphy class with zero heat flux at the lower boundary and temperature

boundary condition (Sect. 2.2.2) at the upper boundary. A 100m deep model domain is selected, discretized with a spacing of

0.1 m, and initialized with a constant temperature of Tinit = 1 °C. At t= 0, an upper boundary temperature of 10 °C is applied,

and the simulation is allowed to run for five years.

Fig. 6 shows the model and analytical responses for selected time steps. Using a maximum change in internal energy per time720

step of 50 kJm−3 (which is the default CryoGrid setting used in all following simulations), the maximum absolute difference

between the analytical and numerical simulations is less than 0.003 °C. The maximum error is reduced to less than 0.0003 °C

by decreasing the maximum energy step to 10 kJm−3.
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Figure 6. Comparison of analytical and numerical simulations of a step change in temperature at the upper boundary of a homogeneous

half-space. Results are shown for the initial condition (t = 0 s) and for 24 h, 100 days, and 1,2, and 5 years after the step change. Numerical

results are plotted for every 4th grid cell.

3.1.2 Stefan problem

In 1889, the Slovene physicist Josef Stefan published an analytical solution to the one-sided freezing problem and applied it725

to sea-ice formation in the Arctic Ocean (Stefan, 1891). The solution was reformulated and adapted for modeling the thawing

of frozen soils by Nixon and McRoberts (1973). To obtain an analytical solution, the following simplifying assumptions were

introduced: 1) the heat capacity of the medium is neglected, 2) the temperature in the medium below the freezing front does

not affect the rate of thaw, 3) the temperature distribution in the thawed medium is linear, and 4) a constant surface temperature

is applied. With these assumptions, the thaw depth as a function of time is given by (Nixon and McRoberts, 1973):730

dthaw =

√
2KhTub

Lvol
sl θwi

√
t, (43)

where dthaw [m] is the thaw depth at time t [s], Kh [Wm−1K−1] the thermal conductivity of the medium (considered constant

with temperature), Tub [°C] the upper boundary temperature, Lvol
sl [Jm−3] the volumetric latent heat of fusion and θwi [-] the

initial volumetric water (for freezing) or ice (for thawing) contents.

This analytical solution to the problem of top-down thawing of frozen soils, which is often referred to as the Stefan so-735

lution, has been used here to benchmark the CryoGrid model for a situation with phase change. We used a stratigraphy

class ("GROUND_freeW_ubT") with a free water soil freezing characteristic (Sect. 2.2.3), temperature boundary condition

(Sect. 2.2.2) and zero heat flux at the lower boundary. The domain was initialized with an initial temperature of −0.02 °C
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Figure 7. Comparison of analytical and numerical simulations of one-sided thawing of a frozen soil column. The soil temperature is initalized

at −0.02 °C and an upper boundary temperature of 1 °C is applied for a period of 5 years. The shown domain is discretized with a node

spacing of 0.01m.

which is a good approximation to satisfy assumption 2. The volumetric ice content was chosen to be 0.3, and the mineral

content 0.7. The upper boundary temperature was fixed at 1 °C, to minimize the effect of the heat capacity of the medium (to740

align with assumption 3). The domain was discretized with a grid spacing of 0.01m from the surface to 3m depth, and 0.1m

from 3m depth to the lower boundary at 100m depth. The model was run with a constant surface temperature for 5 years, and

the numerical and analytical results are compared in Fig. 7.

The numerical and analytical solutions are nearly identical, with the numerically derived thaw depths slightly shallower than

the ones derived from the analytical solution. The fact that the numerical formulation accounts for the heat capacity of the745

medium and thus storage of sensible heat, while the analytical solution does not, accounts for the very small offset observed

towards the end of the period.

3.1.3 Mizoguchi (1990) experiment on cryosuction

The Mizoguchi (1990) experiment is a classic model benchmark for cryosuction, i.e. the redistribution of soil water during

soil freezing. A number of unfrozen, 0.2m cm long soil columns with constant soil water content are exposed to one-sided750

freezing, while the other side is kept insulated. After 12, 24 and 50 hours, the combined content of water and ice is determined

gravimetrically for one of the columns, so that the water redistribution over time can be followed. The experimental conditions

including suggestions for model setup are presented in detail in Hansson et al. (2004). We modified the upper and lower
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boundary conditions of the subsurface class with water balance according to Richards equation (Sect. 2.2.4) accordingly,

setting the heat flux at the lower boundary (0.2m) to zero. The heat flux at the upper boundary is set proportional to the755

temperature difference between the first grid cell and the coolant (at −6 °C). As in Hansson et al. (2004), we tried two settings

for the proportionality coefficient (i.e. the convective heat transfer coefficient), one constant at 28 Wm−2K−1 (denoted ‘linear

heat transfer scenario’) and one decreasing nonlinearly from 40 (above 0 °C) to 10Wm−2K−1 (below −4 °C) as a function

of the first grid cell temperature squared (denoted ‘non-linear heat transfer scenario’). The soil porosity was set to 0.535 with

zero organic content and we use an initial water content of 0.345 to match the initial state (0 h, see Fig. 8) depicted in Hansson760

et al. (2004). Similar to Painter (2011), the soil permeability is set to 3.25× 10−13 m2, which corresponds to a saturated

hydrological conductivity of 3.2× 10−6 ms−1 (Hansson et al., 2004) for a water viscosity at room temperature. For the silty

soil employed in the experiment, we used the van Genuchten parameters α= 1.11m−1 and n= 1.48 (Hansson et al., 2004).

For the thermal conductivity, we use the parametrization of Cosenza et al. (2003), with a thermal conductivity of the mineral

fraction of 2Wm−1K. This roughly reproduces the measured frozen and thawed thermal conductivities for volumetric water765

contents of 0.4 and 0.3, while thermal conductivities for lower water/ ice contents are overestimated (note that such low water

contents are not reached in the simulation).

Fig. 8 shows the best fit to the measurements which is achieved with the nonlinear heat transfer scenario. Except from

small deviations near the freeze front for the 12 and 24 hour states, CryoGrid manages to reproduce the measurements very

well. Using the linear heat transfer scenario (Suppl. 3, Fig. S1) leads to only small changes in the results, with almost equally770

good fit. Likewise, changing the thermal conductivity parametrization to the one used in CLM4.5 modified the results only

marginally (not shown). Most importantly, the parametrization of the hydrological conductivity had a pronounced influence on

the results, especially the choice of the additional ice impedance factor Iice (Sect. 2.2.4, Eq. 26). The best fit (Fig. 8) is achieved

for Ω=5, i.e. the hydrological conductivity is decreased by factor of 10−5 when water contents approach zero. With the default

factor of Ω= 7 (Dall’Amico et al., 2011), water redistribution is considerably weaker, resulting in a notably worse fit to the775

measurements (Suppl. 3, Fig. S2). While this should be investigated in more detail, we have set Ω=5 in all simulations with

Richards equation in this study.

3.1.4 Accelerated spin-up to reach steady-state temperature profile

In most real-world examples of thermal simulations, the initial temperature profile is not known and must be estimated by a

model spin-up, i.e. by running the model for a certain time period (denoted the spin-up period) until the simulated temperature780

profile becomes independent of the initial profile (i.e. it is only determined by the model forcing applied at the upper and lower

boundaries). While this state is usually reached within a few years in the uppermost meters, it takes much longer for deeper

layers. For climate change simulations at centennial timescale with a typical model domain depth of 100m (e.g. Westermann

et al., 2016), a spin-up of several hundred years can be necessary, thus requiring significant additional computation time.

However, reliable spin-up model forcing this long back in time is often not available, so that it is approximated by repeatedly785

looping a shorter period, often the first part of the regular model forcing. For this practically relevant case, the CryoGrid

community model offers the possibility to considerably accelerate model spin-up by estimating the equilibrium temperature
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Figure 8. Simulated sum of volumetric water and ice content (blue lines) vs. measurements (crosses, digitized from Hansson et al., 2004) for

the Mizoguchi (1990) experiment for 0, 12, 24 and 50 hours freezing time; nonlinear heat transfer scenario, ice impedance factor calculated

with Ω= 5 (see Eq. 26).

profile for the spin-up period, broadly following the procedure outlined in Westermann et al. (2013, 2017) for the CryoGrid 2

model:

1. use the TTOP model (Sect. 2.2.2) to obtain a first estimate for the temperature at the top of the permafrost/bottom of the790

seasonally frozen layer, TTOP,1;

2. estimate a plausible seasonal thaw/freeze depth, apply TTOP,1 above and compute a steady-state temperature profile below

with the lower boundary heat flux and thermal conductivities computed for the respective temperatures;

3. run the model twice for the selected spin-up period and store freezing and thawing degree days (FDD and TDD) for each

model grid cell for the second iteration;795

4. determine the seasonal thaw/freeze depth and the temperature at the top of the permafrost/bottom of the seasonally frozen

layer, TTOP,2, from FDD and TDD;

5. repeat step 2 with TTOP,2 and the seasonal thaw/freeze depth calculated in the previous step;

6. run the model once for the selected spin-up period, prior to starting the regular simulations.

As only steps 3 and 6 require significant computation, the total runtime of the accelerated spin-up approximately corresponds to800

three times the normal model runtime for the spin-up period. Fig. 9 displays an example for the accelerated spin-up procedure,

using a period of ten years. For comparison, a classic spin-up is performed, starting with a constant initial temperature of −8 °C
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Figure 9. Comparison of accelerated and classic spin-up for a ten-year period 1980, July 31 to 1990, July 31; simulated temperature profile on

July 31 for accelerated spin-up (black, achieved with 30 simulation years) and classic spin-up (blue) after 0, 30, 100, 200 and 400 simulation

years. Setting: Svalbard forcing (see Sect. 3.2) and ground stratigraphy, Crocus-based snow class, 100m deep model domain with geothermal

heat flux of 50mWm−2 at the lower boundary.

throughout the entire profile (which is clearly too cold, considering the model forcing). While the classic spin-up takes 200 to

400 years (i.e. 20 to 40 iterations of the ten-year period) to reach a reasonable approximation of the targeted equilibrium state,

the accelerated spin-up requires only 30 model years (three iterations of spin-up period) to reach a similar performance. Fig. 9805

shows that the accelerated spin-up is not exact, with the temperature at 100 m depth about 0.1 °C warmer than the classic spin-

up after 400 years which is still cooling slightly at this point. The reason for this is that the thermal conductivity in the uppermost

permafrost layers still fluctuate annually with temperatures, giving rise to a small additional thermal offset (Romanovsky and

Osterkamp, 1995). However, this small deviation of the accelerated spin-up is not relevant for real-world applications, as the

true temperature profile does not correspond to the equilibrium state for the spin-up period anyway, but is determined by the810

real climate conditions in the past. Therefore, the accelerated spin-up procedure in the CryoGrid community model provides a

compromise between computation time and initialization accuracy that is fully sufficient for many applications.

3.2 Example simulations for Svalbard

To demonstrate different configurations of modular CryoGrid stratigraphies, we perform simulations for the well studied

Bayelva permafrost research site outside Ny-Ålesund, Svalbard (Boike et al., 2018). A soil and climate monitoring station815
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established in 1998 provides records of active layer temperatures, meteorological variables and snow depth. The Bayelva site

is situated on top of a hill, within a short distance (ca. 1 km) to the Brøggerbreen glacier. The unglaciated coastal areas are

underlain with continuous permafrost extending to depths of about 100m and with active layer depths of 1-2m. The landscape

is characterized by patterned permafrost ground and sparse vegetation coverage. The soils on the hill range from silty loam

to silty clay, while a coarser grained material (silty sands to gravel) in the surrounding area. The site includes a 9m deep820

borehole with hourly measurements of permafrost temperatures dating back to 2009, featuring a mean permafrost temperature

of −2.8 °C. In the active layer and in the top of permafrost the annual mean temperatures increased by 1.8 °C per decade for

the period 1998-2017 (Boike et al., 2018). The soil and air temperature trends show the largest temperature increase in winter

(Maturilli et al., 2015). At the Bayelva site, the snow cover build up starts in September/October and maximum snow depths

can reach up to 1.5m. The timing of spring snowmelt can by vary several weeks and typically starts between May to June.825

Data from the Bayelva site have been used for validation of various earth system modeling studies (Chadburn et al., 2017;

Ekici et al., 2014, 2015).

We prepare a common forcing time series for all simulations by downscaling surface fields from the ERA-5 reanalysis

(closest model grid cell), using the Bayelva measurements as reference. For each day of year, a linear regression is computed

between reanalysis data and available measurements within a window of 20 days before and after which is subsequently830

employed to correct the reanalysis data. This procedure is in particular able to account for a potential seasonality of the bias

of the reanalysis data, but relies on a sufficient correlation between the two time series (Westermann et al., 2015, 2016). The

downscaling is applied to air temperature and incoming long-wave radiation for which the reanalysis is strongly cold-biased

during the summer period. The specific humidity is corrected accordingly for the change in temperature. Incoming short-wave

radiation and wind speed are used without downscaling, as their average values generally agree well with measurements, while835

the correlation was lower due to their strong dependence on the timing of synoptic events which is poorly captured by the

reanalysis. Furthermore, precipitation is not corrected as there are no reliable measurements especially for snowfall. Instead,

we perform simulations for different multiplication factors for snowfall to evaluate the sensitivity to this important variable.

All simulations are performed for the period 1981 to 2018, using the accelerated spin-up procedure (Sect. 3.1.4) for the first

ten years to initialize the ground temperature profile.840

In the following, we first establish a model baseline configuration that can reproduce measurements reasonably well (Sect.

3.2.1) and then change one model component at a time, while the others are kept as in the reference (Sect. 3.2.2). We emphasize

that only the model parameters of the reference simulation are optimized to match the measurements, while better-fitting

configurations likely exist for the other simulations.

3.2.1 Reference simulations845

We use the model setup of Zweigel et al. (2021) for the wider area around the Bayelva station as a starting point to optimize

model settings specific for the location of the measurement station. A stratigraphy class with surface energy balance (Sect.

2.2.2), soil freezing characteristic (Sect. 2.2.3) and soil type silt, bucket water balance (Sect. 2.2.4) is used to represent sedi-

ments in the uppermost 5m. Bedrock is assumed below, represented by a less process-rich stratigraphy class with free water
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Figure 10. Simulated (lines) and measured (crosses) annual average temperatures at 1.3m depth for the reference simulation (see text). Years

with measurements available for less than 90% of the time are not shown. Black line: 100% snowfall; broken blue line: 90%snowfall; solid

blue line: 110% snowfall (used as comparison to other model configurations, Sect. 3.2.2).

freezing characteristic (Sect. 2.2.3) and constant soil water/ice (Sect. 2.2.4). As the Bayelva station is located on a small hill,850

lateral drainage with the lateral interaction class representing a seepage face (Sect. 2.3.2) is assumed. The seasonal snow is

represented by the Crocus-based snow class (described under c) in Sect. 2.2.6), with parameters for wind compaction, initial

snow density and short-wave albedo adapted to fit both measured ground surface temperatures, snow depths and pre-melt snow

densities of 300 to 350 kgm−3 which is a rough average for measurements conducted in 2011 to 2015. Fig. 10 shows simu-

lated annual average temperatures at 1.3m depth for snowfall multiplications factors of 0.9, 1.0 and 1.1. For the majority of the855

years, the measurements fall within this range which indicates that at least the general magnitude of snowfall is captured well

by the model forcing. Figs. 11 and 12 display the full time series of ground temperatures near the ground surface and at 1.3

m depth for the measurements and the simulations with snowfall multiplication factor of 1.1. The simulations can describe the

seasonality of measured temperatures well for most of the years, but winter temperatures are considerably too warm for some

years, e.g. 2000/2001, 2002/2003 and 2009/2010. In these years, however, the measured snow depths at the Bayelva station860

are lower than in the simulations for most of the snow season (Fig. 13) which is the likely reason for the overestimated ground

temperatures. In general, simulated snow depths increase smoothly throughout the winter season in the simulations, while the

measurements bear evidence of individual snowfall events which lead to strong increases in snow depth.

3.2.2 Simulations with different CryoGrid stratigraphies

We use the warmest reference simulation with 110% snowfall as baseline for which simulated ground temperatures are close865

to the thaw threshold in some years. In all model configurations displayed in this section, snowfall is hence increased to 110%

as well. We then exchange one model aspect at a time, leaving all others unchanged so that differences in simulation results
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Figure 11. Simulated (black) and measured (red) ground temperatures at 4 cm depth, Bayelva soil and climate station, Ny-Ålesund, Svalbard

(data from Boike et al., 2018). Reference simulations with 110% snowfall, see text. Surface energy balance as upper boundary, subsurface

module with soil freezing characteristic, and lateral drainage with seepage face, Crocus-based snow model with optimized parameters.

can be attributed to the model aspect in question. This is either accomplished by selecting a different stratigraphy class, or by

changing model parameters. It is important to note that a poor performance in reproducing measurements can not necessarily

be attributed to the investigated model aspect, as only the reference simulation is optimized for all model parts together. We870

also emphasize that the results of the model comparison are specific to the particular conditions for the Bayelva site and can not

necessarily be generalized. Therefore, the main purpose of this comparison is to showcase the effect of various setups within

the modular CryoGrid community model, and not to evaluate their performance at the Bayelva site in a strict sense.

Subsurface representation and water balance: Fig. 14 displays simulated ground temperatures for different soil freezing

characteristic, from silt for the reference simulation to sand and finally free water freezing for which all phase change of water875

occurs at 0 °C. The differences in simulated ground temperatures are relatively small which suggests that the choice of the soil

freezing characteristic is not critical. At least in some situations, it is therefore possible to speed up simulations by using free

water freezing instead of the computationally more demanding simulations with soil water freezing characteristic.

Secondly, we investigate the effect of different lateral drainage conditions when using the bucket water scheme, with the

reference simulation representing well-drained ground conditions due to the applied seepage face draining (Fig. 15), while880

excess water pooling up at the surface is removed instantly. The same configuration is also simulated with the excess water/ice

class (Sect. 2.2.5), which allows water to pool up at the surface (and potentially refreeze), being removed laterally by overland
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Figure 12. Simulated (black) vs. measured (red) ground temperatures at 133 cm depth, Bayelva soil and climate station, Ny-Ålesund,

Svalbard (data from Boike et al., 2018). Reference simulations with 110%snowfall, see text. Surface energy balance as upper boundary,

subsurface module with soil freezing characteristic and lateral drainage with seepage face, Crocus-based snow model with optimized param-

eters.

flow (Sect. 2.3.2). Note that no excess ground ice is added to the ground itself, so that model physics and parameters are

identical to the reference simulation, except for the representation of surface water. While the differences to the reference

simulation are generally small, the simulated ground temperatures are both warmer and colder in individual years. The main885

reason for the differences is the representations of surface ice layers which regularly occur in fall and early winter in W

Svalbard. If the ground is frozen, but snow-free during a rain event (and saturated with ice/water), the rain water is instantly

removed in the reference simulation, while it can freeze and form a surface ice layer in the excess ice class. This not only

changes the freeze/thaw dynamics of the uppermost ground layer, but also delays the onset of thawing in spring, as the melting

surface ice layer confines the temperature of the uppermost grid cell to 0 °C. The impact on the ground thermal regime of these890

two effects strongly depends on the conditions of the individual year, which explains the both negative and positive differences

in the simulated mean annual ground temperatures. The third model configuration is once again based on the exact setup of

the reference simulation, but without lateral in- or outflow of water, representing a classic, one-dimensional simulation without

interactions with external reservoirs. In the fourth configuration (denoted “wet”), inflow of water from a reservoir at the height

of the ground surface ensures permanently wet ground conditions, mimicking a wetland located in a depression. While there895

is little difference between the one-dimensional and the wet simulation case, they are both significantly warmer than the well-
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Figure 13. Simulated (black) and measured (red) snow depths at the Bayelva soil and climate station, Ny-Ålesund, Svalbard (data from

Boike et al., 2018). Reference simulations with 110% snowfall. See text.

Figure 14. Simulated annual average temperatures at 1.3 m depth. Blue, crosses: reference simulation; green (line only): as reference

simulation, but with soil freezing characteristic for sand instead of silt; red, triangles: soil water freezing as free water.

drained reference simulation (Fig. 15) and a partly unfrozen zone above the permafrost develops in some of the years after

2006, corresponding to permafrost degradation. This can be explained by the higher soil water and thus latent heat content of
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Figure 15. Simulated annual average temperatures at 1.3 m depth. Blue, solid line, crosses: reference simulation for drained soil conditions;

blue, dashed line (line only): as reference simulation, but representing surface water/ice (with excess ice module, Sect. 2.2.5) and lateral

overland flow (Sect. 2.3.2); green (line only): no drainage; red, triangles: wet soil with influx of water.

the soil, which prevents complete freeze-back before an insulating winter snow cover forms. The small differences between the

1D and the wet simulation case is explained by the generally high summer precipitation at the Bayelva site which often exceeds900

evapotranspiration, thus keeping the ground wet. Furthermore, in the bucket scheme employed for this comparison, water is

not accessible to evapotranspiration below a certain depth which is determined by the parameters evaporation and transpiration

depth in the model. While this generally does not occur for a shallow active layer, a permanently saturated layer forms for the

deep active layer in the Bayelva simulations, which requires a long time to freeze in fall and winter. When lateral drainage is

applied, as in the reference simulations, the soil water content is held at field capacity instead, so that the freeze-back occurs905

faster, thus leading to colder ground temperatures and stable permafrost also after 2006.

The simulations not only deliver ground temperatures, as e.g. the CryoGrid 2 and 3 models, but it is also possible to evaluate

the components of the water balance, consisting of precipitation P , evapotranspiration ET , runoff (both from surface and

subsurface) R and storage S in the form of snow and soil water/ice, i.e. P = ET +R+S. In particular CryoGrid stratigraphies

which allow for standing surface water and removal by overland flow are well suited for this task, as all lateral runoff is handled910

in a physically-based way (and not simply by removing excess water instantly). Fig. 16 displays the accumulated water balance

for three example years for this model configuration (dashed blue line in Fig. 15), showing the seasonality of the storage term

corresponding to the winter snow cover, which is largely converted to runoff during and after snowmelt. At the same time,

evapotransipration is largest in July, corresponding to snow-free surface conditions and large amounts of incoming radiation.

Smaller amounts of water equivalent are lost to sublimation during the snow-covered season which is well visible during the915

first winter 2009/2010. Note that there are also smaller changes in storage during the snow-free season which corresponds to

changes in soil water storage.

38



Figure 16. Simulations of accumulated water balance for simulations with surface water representation (i.e. excess ice class), lateral drainage

by a seepage face and overland flow, as well as 110% snowfall (dashed blue blue in Fig. 15) for three example years. P (thick black line):

precipitation (sum of rain- and snowfall); ET: evapotranspiration; R: runoff (sum of surface and subsurface runoff); S: storage (soil and

snow).

We further investigate the influence of the soil water balance on simulation results by considering different model repre-

sentations (Fig. 17). The reference simulation with bucket water scheme is first compared to a simulation with constant soil

water content set to the field capacity of the reference simulation, with evapotranspiration calculated independent of the soil920

water content by setting a constant model parameter for the “surface resistance against evapotranspiration” (as in the scheme

used for Westermann et al., 2016). The simulated soil temperatures are very similar to the reference simulation which reflects

the overall similar water contents within the active layer. In addition, the reference simulation is compared to the hydrological

scheme driven by Richards equation, including redistribution of soil water during the freezing process. While this results in

slightly higher ground temperatures, they are still reasonably similar to the reference simulation (Fig. 17). Fig. 18 displays the925

simulated volumetric water contents for the three different model representations of the soil water balance, showing significant

differences during the unfrozen season. While the soil water content does naturally not change in the "constant water content"

case (middle panel), approximately the upper half meter (controlled by the user-defined characteristic depths of evaporation

and transpiration, Sect. 2.2.4) dries out as result of evpotranspiration for the bucket water scheme (left panel), while strong

rainfall events periodically reset the water content to the field capacity. At the same time, water accumulates near the bottom930

of the active layer, which is removed laterally by the applied seepage face module. Finally, the entire active layer remains

unsaturated in the simulations with Richards equation, as water is redistributed upwards to compensate for evaporation (right

panel) during most of the summer season. For this reason, no lateral subsurface runoff occurs (see Sect. 2.3.2), although the soil

water content is overall higher than in the reference simulation, especially in fall. The simulated thaw depths are more or less
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Figure 17. Simulated annual average temperatures at 1.3 m depth. Blue, crosses: reference simulation (bucket scheme for water, including

lateral subsurface drainage); green (line only): constant soil water plus ice content; red, triangles: Richards equation (no lateral subsurface

drainage occurs).

Figure 18. Simulated profiles of volumetric water contents for two example years for the three water balance schemes used in Fig. 17.

Left: reference simulation (bucket scheme for water, including lateral drainage); middle: constant soil water plus ice content; right: Richards

equation (no lateral subsurface drainage occurs).

equal for the bucket water and the Richards equation schemes, while they are slightly deeper for the scheme with constant soil935

water contents. We point out that the simulations with Richards equation yield a different assessment of permafrost stability in

the wider Bayelva area, despite the relatively similar ground temperatures: while permafrost in the reference simulation is only

stable when lateral drainage occurs (Fig. 15), it is also stable for the one-dimensional case if the soil water balance is governed

by Richards equation.

40



Figure 19. Simulated sum of volumetric water and ice contents using Richards equation for a one-year period in 2000/2001 (red in Fig. 17);

white line: freeze front. Cryosuction upon soil freezing leads to ice accumulation above and below the freeze front, as marked by the two

orange arrows. In this example period, the effect of cryosuction is particularly pronounced, while it is of smaller magnitude in other periods.

An example for the effect of cryosuction in the Richards equation scheme is displayed in Fig. 19, which shows the sum of940

the volumetric water and ice contents, θwi, for one example year. The accumulation of ground ice below and above the freeze

front is well visible in this year, which in particular leads to an ice-rich layer at the bottom of the active layer, which can

modify thaw behaviour in the following years (Schuh et al., 2017). Furthermore, cryosuction can replenish ground ice that has

melted during summers with deep active layers and is lost to the surface due to evaporation (Fig. 18, right panel). The previous

maximum of the active layer thickness is clearly visible in Fig. 19, and ice accumulation over several years with shallower945

active layer could replenish the lost ground ice at least partly. In the Bayelva simulations, this does not really happen as the

active layer is overall deepening during the simulation period, so that ground ice formed at the bottom of the active layer due

to cryosuction eventually melts out.

Snow cover representation: Fig. 20 displays the simulation results for different snow cover classes, in particular the class

with snow microphysics representation (following the Crocus-based snow model) and the snow class with a constant snow950

density (as in the classic CryoGrid 2 and 3 models). Both snow classes feature a bucket scheme for water infiltration, in-

cluding refreezing of meltwater percolating through the snow pack. While the parameters in the Crocus-based snow class are

specifically adapted for the reference simulation, two of the parameter settings presented in literature produce too high ground

temperatures and permafrost is not thermally stable. These are the original Crocus parameter set (Vionnet et al., 2012), which

produces too low snow densities and thus too much insulation of the ground, and the “arctic” setting (Royer et al., 2021). This955

produces reasonable snow densities, but the employed parametrization for the snow thermal conductivity (after Sturm et al.,

1997) yields significantly lower values than in the original Crocus configuration (using the parametrization after Yen, 1981).

As a result, the simulated temperatures are relatively similar for the two settings, despite significant differences in the simulated

snow densities and thus snow depths. Note that the reference simulation uses the parameter set of the “arctic” configuration,

but the Yen-parametrization for the snow thermal conductivity. We point out that snow accumulation at the Bayelva site is960

subject to strong wind redistribution of snow which likely also changes over time, as the measurement site is located on a hill
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Figure 20. Simulated annual average temperatures at 1.3m depth. Blue, crosses: reference simulation (Crocus-based snow scheme with

adapted parameters); green solid (line only): constant density snow scheme with initial density of 250 kgm−3; green dashed (line only):

constant density snow scheme with initial density of 275 kgm−3; red solid, triangles: Crocus-based snow scheme with original parameters

from Vionnet et al. (2012); red dotted (line only): Crocus-based snow scheme with “arctic” configuration (Royer et al., 2021).

and thus exposed to snow ablation, but is also surrounded by a protective fence providing wind resistance and thus promoting

deposition. The results must therefore be regarded with caution and should not be generalized unless backed up by simulations

from other sites.

The simulations with constant snow densities are overall colder than in the reference, although overall low snow densities of965

250 and 275 kgm−3 were used (compared to end-of-season measurements of 300 - 350 kgm−3), which represent a seasonal

and depth-average for the entire snow pack. In fall and early winter this likely overestimates the snow density and thus thermal

conductivity of the fresh snow pack, so that the ground can refreeze faster. In the annual balance, this offsets the too strong

insulation in the later parts of the winter, when the true snow densities are higher in the majority of the snow pack.

Model type and upper boundary condition: In the reference simulation, energy exchange at the upper boundary is driven970

by the surface energy balance, similar to the original CryoGrid 3 model. While most stratigraphy classes in the CryoGrid

community model employ the surface energy balance, simpler approaches, such as a temperature boundary condition (as in

CryoGrid 2) and the semi-empirical TTOP model (as in CryoGrid 1), are also available. Fig. 21 shows a comparison of different

model types, with a CryoGrid 2 like model setup with air temperature as upper boundary condition for both the ground and the

snow surface, and snow ablation derived from a degree-day melt model (Sect. 2.2.6). While the model does not account for the975

water balance and is generally a much less process-rich approach compared to the reference simulation, it delivers a similar

representation of annual average temperatures for the Baylva site. Interestingly, even the simple TTOP approach can capture

some of the warming trend observed in the last two decades, although the n-factors are not adapted to represent interannual

differences of snow depths. However, as a stand-alone, this equilibrium approach should strictly speaking be only be applied to

longer time periods (dashed green line in Fig. 21), as it can not account for the time lag of ground temperature changes due heat980
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Figure 21. Simulated annual average temperatures at 1.3 m depth. Blue, crosses: reference simulation (upper boundary condition surface

energy balance); red, triangles: temperature boundary condition model (air temperature as upper boundary condition, degree-day based snow

melt model); green (lines only): TTOP model with time-constant n-factors nf = 0.5, nt = 1, rk = 0.8 (dashed: entire period; solid: 2-year

intervals; dotted: one-year interval as upper boundary condition for CryoGrid stratigraphy as in reference simulation).

conduction and possibly ice melt. This problem can be partly overcome by using the TTOP model as upper boundary condition

for a stratigraphy class simulating heat conduction (dotted green line in Fig. 21). In this example application, the TTOP model

computes mean annual ground temperatures for annual time slices, which is used as temperature boundary condition for the

heat conduction model (Sect. 2.2.2). While the active layer dynamics is not resolved, this hybrid approach can efficiently

simulate the temperature dynamics in deeper layers (similar to Myhra et al., 2017) which is in particular interesting to speed985

up centennial and millennial-scale simulations. Although the TTOP model is a simplistic approach associated with significant

uncertainty, it is straight-forward to train and validate with more process-rich model setups in the CryoGrid community model.

Glaciers and water bodies: The CryoGrid community model provides stratigraphy classes for land surface types other than

ground and snow, in particular glaciers and water bodies. Fig. 22 displays simulated ground temperatures for a glacier and a

shallow (0.8m deep) water body when driven with the same forcing data as the reference simulation. The water body simula-990

tions clearly show that average ground temperatures are positive throughout the entire time which is due to the asymmetry of

heat transfer between summer and winter (Westermann et al., 2016). This suggests that there is a permafrost-free zone below

water bodies of that depth around Ny-Ålesund, with the water body not freezing to the bottom in winter. Fig. 23 shows the

simulated lake ice dynamics for two example years, with significantly thicker ice cover during a year with low overall low snow

depths. However, even in this year, the water body does not freeze to the bottom, which explains the high ground temperatures995

and permafrost-free conditions. Conversely, annual average temperatures are significantly lower for the glacier than for the ref-

erence simulation, as the energy input during summer is consumed by ice melt, rather than warming of the subsurface material.

Furthermore, the summer meltwater fully drains so that freezing temperatures in fall and early winter instantly penetrate in the

subsurface, other than for soil freezing where the water in the active layer must first refreeze, before the ground below can cool
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Figure 22. Simulated annual average temperatures at 1.3m depth. Blue, crosses: reference simulation for soil material; red, trinagles: 0.8 m

deep water body overlaying soil material (as for the reference simulation); green (line only): glacier.

Figure 23. Simulated ice dynamics (volumetric ice content) for the water body simulation (red in Fig. 22) for a winter with low and high

snow depths. As snow melt water is assumed to pass through the water body ice in the model, the ice rises in elevation during the melt period

which is particularly evident in 2008/2009.

out further. For the employed stratigraphy class, the annual ice melt is automatically compensated by mass from an infinite ice1000

layer below the model domain. Fig. 24 shows the annual ice melt for a theoretical glacier located at the Bayelva site. The ice

melt follows the observed mass balance from nearby glaciers Austre Brøggerbreen and Midtre Lovènbreen well, which have

an increasingly negative mass balance trend since the 1980s with the highest mass loss year in 2016.

Fig. 25 displays a comparison of the runtimes of the model configurations presented in this section which are between 150

and 300 seconds per model year for most of the cases. The largest differences in runtime are caused by the boundary condition/1005
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Figure 24. Simulated annual net ice melt (in meters of water equivalent) with the glacier module for the Bayelva forcing data set.

model type, with simulations of the surface energy balance requiring a considerably longer runtime compared to simulations

in which a temperature boundary condition is applied. The shortest runtimes are achieved by the even simpler TTOP model

configurations which do not simulate heat conduction at all and only compute a single equilibrium temperature. Among the

model configurations using the surface energy balance as upper boundary condition, schemes with simpler model physics (e.g.

constant water plus ice contents, constant snow density) have shorter runtimes than the more process-rich model configurations,1010

but not by a large margin.

4 Discussion and Outlook

The modular concept of the CryoGrid community model was designed to unlock added value of model development conducted

in several research projects with strongly different research focus, such as Nunataryuk, PermaRisk and ESA Permafrost_CCI.

Instead of building specialized model tools for a narrow set of applications, the community model aims for a library of different1015

model parts that can be flexibly combined by users, while providing developers with an advanced starting point to design new

model functionalities. As such, the goal of the CryoGrid community model is to become a dynamic platform for continued

model development, not a static model applied by its user community to solve the same classes of problems.

4.1 Differences to CryoGrid 1-3 model implementations

CryoGrid 1: The same TTOP equilibrium model that forms the core of CryoGrid 1 is implemented by a dedicated stratigraphy1020

class in the CryoGrid community model. However, most CryoGrid 1 applications relied on additional parametrizations for the

model parameters. In particular the winter n-factor (Eq. 3) has been calculated from snow depth (e.g. Gisnås et al., 2013),

snowfall (Westermann et al., 2015), or snow depth and winter temperature (Obu et al., 2019). While it is straight-forward to

add these parameterizations to the CryoGrid community model, they have all been developed and adapted for specific input
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Figure 25. Comparison of runtimes for the different CryoGrid configurations presented in Sect. 3.2, all using a single core of an AMD EPYC

7742 64-Core Processor (2.25GHz base frequency). Bold font: setting for the reference run; the color coding and line properties as in the

individual figures. Note that the runtime includes the computational overhead for model initialization and preprocessing of model forcing

which in particular for "TTOP 2 years" and "TTOP full period" dominate the overall runtime.

data sets. We therefore leave it to concrete future applications to complement the “raw” TTOP model currently implemented1025

with additional parameterizations for its model parameters.

CryoGrid 2: The main features of CryoGrid 2 are a temperature boundary condition, a simple snow model with constant snow

density and a numerical scheme optimized for computational efficiency. The first two features are retained in the corresponding

stratigraphy classes of the community model, but the numerical scheme has been changed to the simple first-order forward

Euler scheme with adaptive timestep, which is not not as computationally efficient as previous CryoGrid 2 implementations.1030

In the future, computationally more efficient implementations of CryoGrid 2 could be added by means of further TILE classes

which support different numerical schemes (see also Sect. 4.7).

CryoGrid 3: While most stratigraphy classes in the community model follow the general design of CryoGrid 3, there are

some notable differences: in CryoGrid 3, the main prognostic variable integrated in time is the intensive variable temperature,

while extensive variables, such as enthalpy, are employed in the community model. This has several advantageous aspects,1035

in particular that extensive quantities are intrinsically conserved when integrated in time. For the same reason, it is straight-

forward to combine and split grid cells when extensive variables are used as state variables. Using enthalpy as state variable

is particularly convenient as both the apparent heat capacity and the thermal conductivity behave smoothly as functions of en-
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thalpy, while especially the apparent heat capacity has a significant discontinuity at the freezing point of water when expressed

as a function of temperature. For numerical integration, this is a challenging aspect, so that using enthalpy as state variable is1040

especially favorable for the simple time integration scheme employed in the community model. Another difference between

CryoGrid 3 and the stratigraphy classes of the community model is that soil water is treated as a prognostic variable (i.e. time

derivatives are calculated to advance the variable in time). In CryoGrid 3, an instantaneous bucket scheme is employed instead

which computes the steady-state soil water profile after each timestep, i.e. the water profile that would eventually be reached

for the particular amounts of water added/extracted during the timestep (which means that soil water is treated as a diagnostic1045

variable). The time dynamics of an infiltration event is therefore only captured in the community model. We emphasize that

this is not a principle feature of the community model, but only applies to the stratigraphy classes described in this study. A

final difference between the two models is the use of a different parametrization for the soil freezing characteristic in the com-

munity model (see Sect. 2.2.3). For most thermal simulations, we expect the impact of this change to be small (see Sect. 3.2.2

on the effect of different freezing characteristics), but the parameterization employed in the community model in particular1050

offers a better performance for combined thermal and hydrological simulations with Richards equation. The interested reader

is referred to the discussion in Painter and Karra (2014) on this topic.

4.2 CryoGrid 1-3 functionalities lacking in the community model

The CryoGrid community model provides the majority of the simulation capabilities that has been demonstrated within the

CryoGrid 1 to 3 models, while at the same time providing modularity and a joint operation framework that makes additional1055

functionality, such as the accelerated spin-up (Sect. 3.1.4), available to all model configurations. However, there are a few

simulation tools published within the CryoGrid 1-3 models that are at this point not available within the CryoGrid community

model. Firstly, this concerns the two-dimensional heat conduction model CryoGrid2D (Myhra et al., 2017) for which a tem-

perature boundary condition must be specified at a number of nodes at the edge of the model domain which is not possible

with the currently available FORCING classes. Moreover, it is not directly compatible with the inherently one-dimensional1060

stratigraphy classes described in this work. Nevertheless, the general framework of CryoGrid community model in its present

form contains structures by which CryoGrid2D could be incorporated. The most direct way is to implement dedicated TILE,

FORCING and OUT classes (see Fig. 1) that are geared to the requirements of two-dimensional simulations. While not directly

compatible with the simulation tools presented in this work, functionalities enabled at the RUN_INFO level (Fig. 1), e.g. the

accelerated spin-up procedure, could directly be employed.1065

A second functionality lacking in the community model is the FLake water body model (Mironov et al., 2005) which has

been demonstrated within CryoGrid 3 (Langer et al., 2016). Most notably, FLake computes a wind speed and temperature

dependent stratification of the unfrozen water column, while the currently implemented stratigraphy class assumes completely

mixed conditions (i.e. the entire water body has the same temperature) at all times, similar to the water body representation

in Westermann et al. (2016). It is clear that the simple representation is only adequate for shallow water bodies while FLake1070

must be implemented to simulate a realistic stratifications of the water column in deeper water bodies. While the simple water

body representation appears to be a sufficient approximation for many permafrost applications with shallow ponds and lakes
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(Westermann et al., 2016), it is exactly the purpose of the modular community model that such assumptions, though seemingly

logical, can be verified by comparing to simulations with a more process-rich scheme. Therefore, implementing a stratigraphy

class based on FLake in the community model should become a priority for future model development.1075

Finally, freezing of saline ground, including diffusion of salt driven by gradients in brine concentrations (Angelopoulos et al.,

2019), is a model functionality demonstrated within CryoGrid 2, but not yet included in the community model. Being a one-

dimensional setup, it can be implemented in the community model as a stratigraphy class in a straight-forward way. Coupling

to existing stratigraphy classes can be facilitated by dedicated interaction classes that compute the fluxes of energy, water and

salt between the class interfaces. We point out that freezing of saline ground in CryoGrid 2 so far has only been demonstrated1080

for saturated conditions and without salt advection due to water flow. Within the community model, these limitations can likely

be overcome, as a stratigraphy class for saline ground can be built on top of existing stratigraphy classes with water balance

representations. In a similar fashion, the existing water body class could be supplemented with a salinity representation, so that

freezing of saline water bodies can be simulated. Due to the possibility to vertically connect classes, simulations of subaquatic

permafrost below saline lagoons (e.g. Angelopoulos et al., 2020) and shallow near-shore zones could be accomplished within1085

a single model framework which simulates ice formation and brine exclusion in the water column in conjunction with salt

diffusion and ground freezing in the ground column below.

4.3 Lateral interactions

The CryoGrid community model offers a standardized way to implement lateral interactions of a one-dimensional model

column with its environment, which makes it possible to account for the influence of topography and terrain heterogeneity1090

at least in a phenomenological way. This is first and foremost useful to drive the water balance in point-scale simulations

to reality. Many wetlands, for example, are located in terrain depressions and receive inflow from surrounding areas which

is the very reason for their existence. Model schemes with one-dimensional water balance can not reproduce soil moisture

conditions in such ecosystems, which can be a significant problem for example in carbon cycle simulations. In the CryoGrid

community model, lateral inflow can be realized through a dedicated lateral interaction class which connects the model column1095

to a water reservoir at a defined elevation. Likewise, continuous drainage of locations on slopes and hills can be simulated

by using lateral interaction classes, which simulate drainage through either a seepage face or a lower-lying water reservoir.

The Bayelva simulations for different drainage regimes (Fig. 15) clearly demonstrate the large impact of the drainage regime

on ground temperatures, with permafrost thermally stable when water can drain, but degrading when the ground is held wet

through inflow of water. In addition to the water balance, lateral fluxes of heat may play a role in permafrost areas, for example1100

by thermally stabilizing permafrost below water bodies (Langer et al., 2016), or destabilizing permafrost in the vicinity of

infrastructure elements (Schneider von Deimling et al., 2021). To simulate such effects, a lateral interaction class can be applied

in the community model to connect the CryoGrid stratigraphy to an external heat reservoir, following the same standardized

way of operation as for lateral water fluxes.

A major asset of the CryoGrid 3 model is the possibility to simulate lateral interactions between different 1D model columns1105

(denoted "tiles", corresponding to a TILE class in the community model), which facilitated simulations of complicated land-
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scape evolution in ice-rich permafrost areas (Martin et al., 2021; Nitzbon et al., 2019, 2020, 2021). As of now, the CryoGrid

community model offers the same possibilities, which will be described in detail in a future study. In short, three-dimensional

lateral interaction classes are used, which rely on exactly the same structures as the one-dimensional interaction classes pre-

sented in this study. Users can therefore first conduct one-dimensional simulations coupled to a static environment, e.g. a water1110

reservoir, which can reveal many of the effects of lateral fluxes in a semi-quantitative way. Such simulations subsequently offer

an excellent starting point to set up more complicated, three-dimensional simulations with laterally coupled tiles, simply by

adding information on the type of interaction and the relative positions of the different tiles to the parameter files, while the

properties and model parameters related to the one-dimensional CryoGrid stratigraphies, such as ground properties and forcing

data, can remain unchanged.1115

4.4 Model structure and computational aspects

The CryoGrid community model generally follows the concept of "loose coupling", keeping the degree of knowledge that

each class has of the others at a minimum. Lateral interaction classes, for example, are not specifically assembled for a certain

stratigraphy class, but work for a number of different stratigraphy classes. Therefore, the lateral interaction classes do not con-

tain any code representing specific knowledge of the stratigraphy classes that they can be used with. Instead, each stratigraphy1120

class first processes its internal information to a defined common interface format that is then passed to and processed by the

lateral interaction class. This concept is applied throughout the entire model framework; while new code needs to comply with

the established interfaces, it can immediately exploit much of the existing functionality. Furthermore, code additions can be

made without modifying the source code of the existing classes, which is important to facilitate parallel model development

by several independent developers without interference. Thus, the CryoGrid community model provides an integrated platform1125

that is designed to accelerate and simplify the development of new simulation tools for the terrestrial cryosphere. As an exam-

ple, its modular setup provides a clear pathway for the development of new stratigraphy classes, with several defined steps that

can be implemented, verified and tested independently of one another:

1. Implement the stratigraphy class itself and test it with simulations of a CryoGrid stratigraphy consisting only of this one

class.1130

2. Implement interaction classes between the new stratigraphy class and existing stratigraphy classes that the new class shall

be compatible with; test with simulations of CryoGrid stratigraphies consisting of all supported class combinations.

3. Implement lateral interaction classes that the new stratigraphy class shall be compatible with; this can mean both the

implementation of an entirely new lateral interaction class, or implementing the functionality to make existing lateral

interaction classes compatible with the new stratigraphy class.1135

This procedure accelerates the development of complex model configurations, as developers in the first step can fully concen-

trate on the novel model physics, while the capacities of the new model functionality are amplified in the second and third steps

by interfacing to already existing stratigraphy and lateral interaction classes.
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In land surface modeling, such modular approaches are increasingly adopted to deal with the increasing process complexity

(Fisher and Koven, 2020). As an example, the version 5.0 of the Community Land Model (CLM) offers the possibility to1140

exchange several model components and parametrizations (Lawrence et al., 2019), in particular the soil hydrology scheme and

the snow model. As CLM is designed as land component of Earth System Models, e.g. CESM2 (Danabasoglu et al., 2020)

and NorESM (Seland et al., 2020), all model setups feature full land-atmosphere coupling, while "simple" schemes without

surface energy balance are not provided. The CryoGrid community model, on the other hand, is more used as a stand-alone

tool with broader application focus and therefore includes such simple options, in particular the TTOP equilibrium model and1145

heat conduction models with temperature boundary condition, which are largely inherited from CryoGrid 1 and 2.

The time integration in the CryoGrid community model (see Sect. 2.2.9) does not rely on an established partial differential

equation solver (as CryoGrid 2, Westermann et al., 2013), but rather employs a simple forward Euler solver with explicit time

step control. A main reason for this is to keep the code more readable, with the goal to lower the barriers for further model

development, also by non-expert users. Moreover, many established solver packages require the model grids to be static, and1150

retaining full control over time integration makes it easier to include processes requiring constant changes to the model grid,

such as excess ice melt and compaction of the seasonal snow cover. An obvious disadvantage of the simple time integration

scheme is the relatively slow computation (see Fig. 25 for runtimes) which may be prohibitive for some applications. Another

limiting factor for runtime is the use of Matlab which is an interpreter language leading to slower runtimes. In the future, it may

be possible to use automatic code translators available within Matlab ("Matlab coder") or provided by independent developers1155

(e.g. Paulsen et al., 2016) to produce a faster C++ version of CryoGrid, in particular since C++ objects feature many similarities

with the Matlab classes employed in the community model.

4.5 Multi-model simulations

While evaluations of multi-model ensembles are increasingly common in cryospheric studies (e.g. van Pelt et al., 2021), most

applications assume a fixed model structure. In this typical case, the evaluation of the uncertainty of simulation results is1160

hampered by the fact that the structural uncertainty (i.e. due to imperfect model physics) tends to be lumped together with

the parameteric uncertainty (i.e. due to poorly constrained model parameters). As demonstrated in Sect. 3.2, a number of

different model schemes can be efficiently simulated in the CryoGrid community model, which allows for a more thorough

qualitative and quantitative assessment of model uncertainty. In this study, we have restricted ourselves to a comparison of

ground temperatures simulated with different model configurations, but not attempted to identify which model configurations1165

best explain the field measurements. In the following sections, we discuss techniques to evaluate both parameteric and structural

model uncertainty from observations which could be implemented in the CryoGrid community model in the future.

To quantify parameteric uncertainty in a model with fixed structure, one typically assumes that the impact of unknown

model parameters, including the uncertainties due to model forcing and initial conditions, can be represented by parametric

error models. This is commonly achieved probabilistically through the framework of Bayesian inference (Berliner, 2003). The1170

goal then becomes to estimate the "posterior" distribution of the parameters, which quantifies parametric uncertainty in the

model after accounting for the likelihood of the data under various plausible parameter settings (Wikle and Berliner, 2007).

50



Since analytical forms of the posterior are not usually available, it is typically calculated approximately using numerical sam-

pling methods (Berliner, 2003; Gelman et al., 1995). In the setting of geoscientific modeling, where each forward evaluation of

the model is often computationally demanding, approximate inference is commonly performed using data assimilation (DA)1175

methods that efficiently fuse uncertain information from physical models with observations (Carrassi et al., 2018). These meth-

ods allow physical models to be fitted to observations (corresponding to a model calibration), while evaluating the uncertainty

through a probabilistic inversion that corresponds to the first level of inference in the Bayesian hierarchy (MacKay, 2003). For

cryospheric applications, ensemble-based data assimilation schemes based on the the particle and ensemble Kalman filter (Car-

rassi et al., 2018) have been shown to be especially promising (e.g. Aalstad et al., 2018; Fiddes et al., 2019; Alonso-González1180

et al., 2021).

One potential issue with this kind of model fitting is that all uncertainty is attributed to the model parameters, while one

effectively assumes the model structure itself to be perfect. Since all models are "wrong" to some degree (Box, 1976), this

assumption is never completely justified, potentially resulting in biases in the fitted model parameters that compensate for the

imperfect model. An example for this dilemma is the Bayelva simulations for different water balance schemes and drainage1185

conditions (Figs. 15, 17): if only the bucket scheme with lateral drainage was available, one could for example adjust the

strength of the lateral drainage to fit the temperature observations at the Bayelva station and conclude that permafrost is

only thermally stable for well-drained conditions (Fig. 15). Likewise, one would infer from this model configuration that

permafrost may have already started to degrade in areas with poor drainage for which no observations are available (the

Bayelva station is located on a hill where good drainage can indeed be expected). However, the simulations with Richards1190

equation suggest that permafrost could also be stable if no lateral drainage occurs (Fig. 17) which provides a qualitatively

different assessment of permafrost stability in the wider area around the Bayelva station. In principle, these ambiguities can

be resolved by considering additional observations, for example soil water contents (Boike et al., 2018). In this study, we have

not explored and resolved this issue in further detail, but the example from the Bayelva area showcases a problem inherent in

many cryospheric simulations.1195

Running multiple models with different representations of physical processes alongside one another can help to identify

potential ambiguities arising from this structural uncertainty. With the CryoGrid community model, adopting such a multi-

physics ensemble of models becomes relatively straightforward in practice due to the common interface (e.g. for the model

forcing). Furthermore, differences in simulation results can be attributed to a specific stratigraphy class or model parametriza-

tion, as it is possible to exchange stratigraphy classes one by one and keep the rest of the stratigraphy unchanged (Sect. 3.2).1200

In the future, the CryoGrid community model could also be used to compare different models objectively and quantitatively,

which corresponds to the second level of inference in the Bayesian hierarchy (MacKay, 2003). Here, the key quantity is the

"model evidence" (also called marginal likelihood) which is the probability of the observations, given a particular model. The

model evidence serves as a normalizing constant when fitting a model at the first level of inference. At the second level of

inference, the model evidence is used as a likelihood in Bayes’ rule to update the prior probabilities of each model so as to1205

effectively constrain model structural uncertainty using the available data. As such, the model evidence framework can be

used for both Bayesian model selection and averaging. This framework is widely used in physics (Feroz et al., 2009), machine

51



learning (MacKay, 2003), and is slowly gaining traction in geoscience (Schöniger et al., 2014). Recent work has shown that

ensemble-based data assimilation schemes are also well suited for obtaining robust estimates of the model evidence (Carrassi

et al., 2017). As such, a promising future avenue in CryoGrid will be the implementation of ensemble-based data assimilation1210

both for cryospheric model fitting (e.g. Aalstad et al., 2018; Alonso-González et al., 2021; Fiddes et al., 2019) and model

comparison (Carrassi et al., 2017).

The modular structure of the CryoGrid community model offers the possibility to estimate effective parameters in simplified

model schemes by assimilating results from high fidelity models with richer process representations. This vision is in line

with the new Earth system modeling blueprint presented by Schneider et al. (2017) which proposes using ensemble-based1215

data assimilation to let coarse scale models learn from both observations and targeted high resolution models. For example,

transient heat conduction-based models could be used to compile climate-dependent parameterizations for n-factors in the

simple TTOP model which can then be used to map large areas at a lower computational cost. In such a scheme, the simple

model is essentially used to spatially extrapolate the output of the more sophisticated model in a quasi-physical fashion. Similar

schemes could be devised to achieve long-term (e.g. multi-millennial) simulations, e.g. by parameterizing the net effect of the1220

surface energy balance and the seasonal snow cover so as to force the heat conduction model by monthly or even annual

averages (as in Overduin et al., 2019; Etzelmüller et al., 2020, 2022). The application of machine-learning based emulators

also opens up the possibility for full-fledged Bayesian inference of the (emulated) posterior via traditional sampling methods

which could provide a more robust and scalable framework for inverse problems (Cleary et al., 2021), thereby unifying machine

learning and data assimilation under the Bayesian framework (Geer, 2021).1225

4.6 Possible applications of the CryoGrid community model

The CryoGrid community model is designed first and foremost for the same applications as the Cryogrid 1-3 models, which

were mainly focused on the permafrost thermal regime. In addition, the community model offers the possibility to control the

lateral drainage regime of the model domain (Sects. 2.3, 4.3), a capability essential for hydrological applications and rather

limited in conventional 1D models. In particular, this allows conducting simulations with a coupled energy and water balance1230

for situations in which a one-dimensional representation, especially of the water balance, is not appropriate. On the one hand,

this concerns permafrost in wetlands which receive net inflow of water from surrounding areas, which also impacts the ground

thermal regime (red line Fig. 15). Although one-dimensional model configurations can not fully capture the time dynamics

of the inflow, scenario runs with different strengths of the inflow (e.g. by modifying the distance to the water reservoir, Sect.

2.3.2) could be conducted to evaluate the resilience of wetland permafrost in a changing climate in a semi-quantitative way.1235

On the other hand, net outflow of water typically occurs for permafrost in sloping terrain or on top of hills, which influences

both the thermal regime (blue line Fig. 15) and the water balance (Fig. 16) of the ground. This provides new applications

especially in mountain environments where the complex topography with strong elevation gradients and high spatial variabil-

ity of the surface energy balance impacts the ground thermo-hydrological regime and thus permafrost distribution (Haeberli

et al., 2010; Haeberli, 2013). Mountain permafrost has gained increasing interest in recent years, with emphasis on permafrost1240

degradation and its impact on rockwall stability (e.g. Gruber and Haeberli, 2007), as well as hydrology (Gao et al., 2021; Yang
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et al., 2019). Previous studies have used CryoGrid 2 and 3 to simulate thermal processes in steep rock walls (Legay et al., 2021;

Magnin et al., 2017; Schmidt et al., 2021), and such applications are also possible with the CryoGrid community model. In

addition, thanks to its representations of the surface energy balance, snow cover dynamics, and lateral drainage, the CryoGrid

community model is an efficient tool to capture the effect of local topographic controls on the ground thermal regime, making1245

it applicable in most mountain permafrost settings.

These capacities can be combined with simulations of massive ice bodies, such as glaciers and ice patches, with a glacier class

(Sect. 2.2.8) implemented in the CryoGrid community model. In mountain environments, this offers the possibility to simulate

the complex climate-driven interactions between glaciers and permafrost, for example the development of permafrost upon

glacier retreat. While not explicitly simulating the transition, the thermal simulations for Ny-Ålesund (Sect. 3.2.2) showcase1250

the expected changes in the ground thermal regime. Despite the strong net ice melt (Fig. 24), the simulated mean annual

temperature of the glacier is much colder than for the permafrost ground (Fig. 22), suggesting that glacier tongues at this

location at least partly feature cold-based ice, so that the area would directly transition to a permafrost setting upon glacier

retreat. Combined with stratigraphy classes representing relevant ground materials (especially with excess ice, Sect. 2.2.7),

the climate-driven evolution of features associated with glacier-permafrost transitions, such as debris-covered glaciers, buried1255

glacial ice, ice-cored moraines, and ice-rich frozen debris bodies could be simulated. The rapidly changing elements of the

mountain cryosphere are in particular expected to have profound impacts on stream flow, water resources, and ecosystems,

which not only affect the glacial and periglacial realms, but also adjacent valley and lowlands areas. With the possibility

to jointly evaluate ground thermal regime and water balance, the CryoGrid community model can thus provide simulation

capacities for a variety of climate change impact studies in mountain environments.1260

4.7 Directions and priorities for future model development

In general, the future directions of development of the CryoGrid community model are decided by the users and developers in

a bottom-up approach. Here, we identify a few priorities and ideas that are motivated by the results of this work (Sect. 3) and

previous modeling efforts with CryoGrid 1-3. Firstly, the sensitivity experiments with different snow schemes (Sect. 3.2) show

that the snow representations within CryoGrid need to be improved, as this is one of the most important sources of uncertainty1265

in simulating the ground thermal regime (Fig. 20). With a starting point in the snow class based on the Crocus-based snow

model (Vionnet et al., 2012), both simpler and more process-rich representations are conceivable. In the currently implemented

Crocus-based snow class, the snow density, which is the critical control for heat flow through the snow pack, has a strong

dependence on wind speed, which can be heavily biased in model forcing data sets, especially in complex terrain (e.g. Delhasse

et al., 2020). Therefore, a snow stratigraphy class in which both initial snow density and the strength of wind compaction are1270

controlled by time-invariant empirical parameters (and not by wind speed) could be useful for many applications, as they may

provide an improved performance compared to snow schemes with constant snow density (Sect. 2.2.6, Fig. 20), if the quality of

the model forcing is poor. The Crocus snow model is undergoing continuous development (e.g. Royer et al., 2021), and many

improvements can be ported to CryoGrid. We see two areas in which the CryoGrid community model itself could be a useful

tool to catalyze snow model improvements. First, the impact of different near-surface temperature regimes on snow properties1275
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could be investigated with relative ease; the drainage regime, for example, changes the dynamics of ground freezing during

winter (Fig.15) which in turn modifies the thermal gradients and thus snow microphysics in the snow pack. Furthermore,

the snowpack on Arctic water bodies is remarkably different from surrounding land areas (e.g. Langer et al., 2016) which

again can be simulated with relative ease in CryoGrid by selecting a stratigraphy class for water bodies. A comparison with

observations of snowpack properties for areas with different subsurface properties can therefore reveal shortcomings of model1280

parametrizations and eventually contribute to improvements. Secondly, explicit redistribution of snow between CryoGrid tiles

due to wind drift has been demonstrated by Zweigel et al. (2021) which also has pronounced effects on the stratigraphy of

snowpack properties. While lateral interactions between tiles will be described in a later study, ablation of snow from exposed

locations due to wind drift could be implemented as a lateral interaction class (Sect. 4.3) through the scheme proposed by

Zweigel et al. (2021). Such simulations could again be compared to observations of snowpack properties and to the dynamics1285

of ablation events at wind-exposed locations, such as small hills and ridges, so that both model parameters and (if necessary)

the parameterizations for wind drift can be modified.

A second priority for model development is including representations for vegetated surfaces, which currently is a key short-

coming in the CryoGrid community model. A multi-layer canopy model presented in Stuenzi et al. (2021a, b) is already

available as a stratigraphy class, but this is designed to represent forests and not short vegetation, such as mosses, sedges and1290

shrubs. An intermediate-complexity representation of vegetation, e.g. following a big-leaf approach (e.g. Sellers et al., 1992),

has significant potential to improve the surface energy and water balance in simulations for vegetated tundra areas. Further

development could focus on the interplay between the snow cover and different vegetation types which has the potential to im-

prove simulations of the ground thermal regime in areas experiencing shrubification (e.g. Sturm et al., 2001). Another focus is

the implementation of carbon cycling schemes of different levels of complexity, from dedicated peatland models (e.g. Chaud-1295

hary et al., 2020; Frolking et al., 2010) to novel biogeochemistry schemes with explicit representations of microbial population

dynamics (e.g. Chadburn et al., 2020). Here, it is desirable to retain the modular concept of the CryoGrid community model,

so that it is possible to select and test different carbon cycle schemes that can be flexibly combined with stratigraphy classes.

To be able to simulate the buildup of organic soils, stratigraphy classes must be amended with an adaptive grid which would

also facilitate including sedimentation, erosion and possibly weathering in CryoGrid simulations.1300

At this point, most of the simulation tools in the CryoGrid community model are designed for process-scale simulations,

as their computational runtime can be substantial when simulating many grid cells. A conservative benchmark for simulation

runtimes (Fig. 25) is about 200 simulated years in 24 hours of computation (i.e. wall clock time), although this can vary to

some extent depending on the employed stratigraphy classes and model forcing. To conduct a 1900 to 2100 climate change

simulation for the entire permafrost region at 1 degree resolution would require about 50 000 to 100 000 CPU hours which is1305

perfectly feasible on modern high performance clusters, but requires significant organizational and possibly financial efforts.

It is therefore desirable to implement more efficient simulation tools, so that regional, continental and global-scale simulations

become more routine tasks.

Clustering techniques provide excellent possibilities to achieve such speed-ups by determining “typical representations”,

given the variability of model parameters. The simulations are then only performed for these typical representations and their1310
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output is assigned to all grid cells with similar model parameters, which is justified especially in the light of model uncertainty.

Using k-means clustering, Fiddes and Gruber (2012), Fiddes et al. (2019), and Fiddes et al. (2022) achieved a runtime speedup

of three to four orders of magnitude for simulations in complex topography by clustering for terrain parameters, such as slope,

aspect, and elevation. This concept could be extended to landcover maps which are one of the input layers to model-based

permafrost maps (e.g. Obu et al., 2019). Furthermore, clustering could be applied to the model forcing itself, so that grid cells1315

with similar forcing are simulated by a single representation. Such clustering would be fully compatible with the modular

structure of the CryoGrid stratigraphy and could be integrated on the RUN_INFO level. With a runtime speedup of factor 100,

for example, global climate change simulations at 1 degree resolution would only require 500 to 1000 CPU hours which would

make them much more accessible to many users compared to a simulation without clustering.

Secondly, the runtime of the simulation tools could be reduced to facilitate application to many grid cells and/or over long1320

timeframes. This can be achieved by simplifying the model physics, optimizing the model code and/or using more efficient

numerical integration schemes, e.g. Runge-Kutta schemes as employed in some of the CryoGrid 2 realizations (e.g. Etzelmüller

et al., 2020). The two latter conflict with the modular setup of the CryoGrid stratigraphy in the TILE_1D_standard class, which

is based on a common numerical integration scheme and standardized model structures to facilitate modularity. Therefore, we

suggest adding further TILE classes (Fig. 1) custom-made to accommodate one or several efficient model tools. While these1325

would not offer modularity and thus not be compatible with the stratigraphy classes presented in this study, there is ample

opportunity for interplay and thus added value. On the one hand, faster models can obviously use parametrizations and model

parts described in Sect. 2, even if they need to be optimized for speed. On the other hand, standardized frameworks could

be implemented that allow training fast models with semi-empirical elements or unresolved processes on the process-rich,

but slow models of the modular CryoGrid stratigraphy (see Sect. 4.5). This could be achieved through ensemble-based data1330

assimilation (Aalstad et al., 2018; Fiddes et al., 2019; Alonso-González et al., 2021), machine learning-based emulators (Fer

et al., 2018; Dagon et al., 2020), or perhaps most promisingly a combination thereof (Bocquet et al., 2020; Brajard et al., 2020).

Code availability. The current version of model is available at https://github.com/CryoGrid/CryoGridCommunity_run. The exact version

of the model used to produce the results in this paper, including input data and scripts to run the model, is archived on Zenodo (https:

//doi.org/10.5281/zenodo.6522424, Westermann, 2022). See Suppl. 1 for instructions for download and running the CryoGrid community1335

model.
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