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Abstract. Tropospheric ozone is a secondary air pollutant that is harmful to living beings and crops. Predicting ozone con-

centrations at specific locations is thus important to initiate protection measures, i.e. emission reductions or warnings to the

population. Ozone levels at specific locations result from emission and sink processes, mixing and chemical transformation

along an air parcel’s trajectory. Current ozone forecasting systems generally rely on computationally expensive chemistry

transport models (CTMs). However, recently several studies have demonstrated the potential of deep learning for this task.5

While a few of these studies were trained on gridded model data, most efforts focus on forecasting time series from individual

measurement locations. In this study, we present a hybrid approach which is based on time series forecasting (up to four days)

but uses spatially aggregated meteorological and chemical data from upstream wind sectors to represent some aspects of the

chemical history of air parcels arriving at the measurement location. To demonstrate the value of this additional information we

extracted pseudo observation data for Germany from a CTM to avoid extra complications with irregularly spaced and missing10

data. However, our method can be extended so that it can be applied to observational time series. Using one upstream sector

alone improves the forecasts by 10% during all four days while the use of three sectors improves the mean squared error

(MSE) skill score by 14% during the first two days of the prediction but depends on the upstream wind direction. Our method

shows its best performance in the northern half of Germany for the first two prediction days. Based on the data’s seasonality

and simulation period, we shed some light on our models’ open challenges with i) spatial structures in terms of decreasing15

skill scores from the northern German plain to the mountainous south and ii) concept drifts related to an unusually cold winter

season. Here we expect that the inclusion of explainable artificial intelligence methods could reveal additional insights in future

versions of our model.

1 Introduction

Near surface ozone (O3) is a secondary air pollutant which is harmful for living beings (WHO, 2013; Fleming et al., 2018) and20

crops (Avnery et al., 2011; Mills et al., 2018). The first Tropospheric Ozone Assessment Report (TOAR, https://igacproject.

org/activities/TOAR/TOAR-I (last access: 2022-02-22)) provided the first globally consistent analysis of the global distribution
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and trends of tropospheric ozone. Key aspects of the assessment were among others: changes in the tropospheric ozone burden

and its budget (Archibald et al., 2020), observed long-term trends and their uncertainties (Tarasick et al., 2019), present day

tropospheric ozone distribution and trends of metrics that are relevant to health (Fleming et al., 2018), vegetation (Mills et al.,25

2018) and climate (Gaudel et al., 2018). Furthermore, the capabilities of current atmospheric chemistry models were reviewed

(Young et al., 2018).

Field and time series forecasting are two examples, where earth system scientists start picking up deep learning (DL) models

to enhance the quality or performance of air pollution forecasts or explore novel analyses of air quality, weather and climate

data. The success of these DL models is largely due to two factors: (1) improved model architectures that can capture spa-30

tiotemporal relations in the data, and (2) the increasing amount of data that has become available in recent years. While new

DL methods in application areas like image or speech recognition or video frame prediction are typically developed with the

help of specific benchmark datasets, thus greatly accelerating the adoption of new concepts, such benchmark datasets are only

now beginning to be developed for atmospheric applications. For example, Rasp et al. (2020) developed the first meteoro-

logical benchmark data set called WeatherBench for medium-range weather forecasting based on ERA5 data. In terms of air35

quality Betancourt et al. (2021) developed a benchmark data set called AQ-Bench focusing on long-term ozone metrics from

time-independent local features of ozone measurement sites by using the TOAR database (Schultz et al., 2017).

Concerning the problem of air quality and specifically ozone forecasts, researchers have tried out different DL models for a

range of lead times in hourly (for example Eslami et al., 2019; Sayeed et al., 2020) or daily (Kleinert et al., 2021) resolution.

Hybrid forecasting models combining chemical transport models with DL (Sayeed et al., 2021) and data-driven Bayesian neural40

network ensemble method for (numerical) geophysical models (Sengupta et al., 2020) were developed. He et al. (2022) used a

deep neural network to evaluate NOx emissions by forecasting ozone concentrations over several years and showed that their

model reproduced ozone concentrations in low emission regions best when using satellite-derived NOx trends. Sayeed et al.

(2022) recently developed a DL model for postprocessing by mapping ozone precursors and meteorological information from

models to observed ozone concentrations at monitoring stations. The available ozone forecasting studies employed different45

selections of input variables and different methods to preprocess the input data in order to help the DL methods extract the

most relevant information. Often, environmental scientists use their knowledge of atmospheric processes to select variables or

design the preprocessing strategies. As one example out of many a decomposition of input time-series can help neural networks

to learn features like seasonality much easier - especially when the amount of training data is limited (Leufen et al., 2021b, in

review).50

The present study focuses on the extraction of spatiotemporal features in the context of time-series predictions. We re-use the

DL set-up of Kleinert et al. (2021) who developed a time-series prediction model based on an inception architecture (Szegedy

et al., 2015; Ismail Fawaz et al., 2020). That model was trained on daily aggregated ozone data from more than 300 German

air quality measurement stations for a lead time of up to four days. In contrast to this earlier study the present work uses a

U-shaped architecture and is based on simulation output from the chemical transport model (CTM) WRF-Chem (Grell et al.,55

2005) instead of the TOAR observations to demonstrate the added value of upstream wind sector information without having
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to cope with irregularly spaced and sometimes missing observations. Using WRF-Chem data also as target data y avoids

representation problems when comparing gridded model data and point measurements.

Through the adoption of an aggregated upstream wind sector approach following Yi et al. (2018) we are aiming to capture

the chemical history of air masses, i.e. the fact that air pollutant concentrations at a given observation site are a result of60

emission and sink processes, mixing and chemical transformations along the transport pathways of air. Yi et al. (2018) defined

multiple wind sectors around a measurement station and used the spatially aggregated information as additional input for their

time-series model. In our study we condense this method by using one or three upstream sectors and we identify the influence

of those sectors on the air quality forecast accuracy.

In reality, the chemical history of air parcels must be expressed as a multi-dimensional integral over a wide spectrum of65

chemical ages (i.e. the product of loss rates and time) and including different mixing rates. Lagrangian particle models such

as FLEXPART (Pisso et al., 2019) have been used to disentangle these processes and allow for attribution of air pollutant

concentrations to specific source regions (cf. Stohl et al., 1998, 2013; Wenig et al., 2003; Yu et al., 2020; Aliaga et al., 2021).

However, such simulations are not straightforward to run and would have added a lot of complexity to this study. The much

simpler aggregation of input variables in one or three upstream wind sectors should at least capture the first-order effects of the70

air parcel history and thus add valuable information to the input data for our DL network.

This article is structured as follows: In Sect. 2 we briefly introduce the WRF-Chem model data. In Sect. 3 we introduce our

preprocessing methods (Sect. 3.1) and the MLAir framework (Sect. 3.2) which we use for our study. In Sect.3.3 we present

the DL model architecture and training procedure, followed by a description of our reference models (Sect. 3.4). We present

the our results in Sect. 4 and discuss them in Sect. 5 with a special focus on the DL method’s loss (Sect. 5.1), the benefits of75

using additional upstream information (Sect. 5.2), the sensitivity of our DL model with respect to input variables (Sect. 5.3)

and the implications of an unusually cold winter season for the evaluation of our DL model (Sect. 5.4). Finally, Sect. 6 provides

conclusions.

2 Data: WRF-Chem

We use numerical model data from WRF-Chem (Grell et al., 2005), version 3.9, as the foundation of our study. We carried80

out a simulation for 2009 and spring 2010 over Europe because a model set-up existed for this period (Galmarini et al.,

2021). The simulation domain covers 400 grid points in west-east direction, 360 grid points in south-north direction across

35 vertical levels from the surface to 50hPa. This corresponds to a horizontal grid spacing of ∼ 12km. Initial and boundary

conditions for the meteorological fields are taken from the ERA-Interim reanalyses (Dee et al., 2011), and the chemical initial

and boundary conditions were derived from the CAMS reanalysis (Inness et al., 2019). To force the model toward the spatial85

and temporal analyses, the model was run with grid-nudging. Single simulations were performed for 3.5 months periods,

leaving out the first 15 days. Thus we ensure that the model does not deviate from the observed synoptic events and the impact

of meteorological errors on atmospheric chemistry simulations is reduced. The anthropogenic emissions data are taken from

the TNO-MACC III emission inventory (Kuenen et al., 2014), and the MEGAN model (Guenther et al., 2006) was employed to
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Figure 1. Temperature anomaly in the winter 2009/10 with respect to the multi year average from 1961 to 1990. Figure created by Deutscher

Wetterdienst (German weather service, DWD) and downloaded from https://www.dwd.de/EN/ourservices/klimakartendeutschland/

klimakartendeutschland.html?nn=495490 (last access: 2022-04-01).

estimate biogenic species emissions. As in Kuik et al. (2016), land cover classes have been updated with the CORINE dataset90

(CLC, 2012, Copernicus Land Monitoring Service). The emissions from open burning are based on the Fire INventory from

NCAR (FINNv1.5) (Wiedinmyer et al., 2011). The main physics options are described in Lupaşcu and Butler (2019). The gas-

phase mechanism is MOZART (Emmons et al., 2010; Knote et al., 2014) coupled with the MOSAIC aerosol module (Zaveri

et al., 2008).

To train and evaluate the deep learning model, we extracted WRF-Chem data at the locations of the air quality measurement95

stations of the German Umweltbundesamt as in Kleinert et al. (2021) (see also Sect. 3.1).

The winter 2009/10 in Europe was special in the sense that it was an unusually cold winter. The average winter temperature

in Germany was −1.3◦C which is 1.5◦C below the average winter temperatures from 1961 to 1990 (DWD, 2022). Figure 1

shows that the anomalies in Northern Germany were stronger than those in Southern Germany. We will discuss the implications

of this anomaly for the evaluation of our DL model in Sect. 5.4.100
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3 Method

Data driven machine learning applications, require substantial effort to select and preprocess the data to be used. In the case of

environmental data researchers have to find a compromise between available data and the independence of data used for train-

ing, validation and testing mostly due to limitations in data availability (Schultz et al., 2021). To incorporate the information

from one or three upstream wind sectors, the preprocessing of data had to be expanded compared to Kleinert et al. (2021) and105

is presented in Sect. 3.1. Moreover, we briefly introduce the Machine Learning on Air data framework (Leufen et al., 2021a,

MLAir) which we have used to carry out the experiments (Sect. 3.2), and the model architecture and training procedure (Sect.

3.3).

3.1 Data Preprocessing

The main focus of this study is to assess the added value of incorporating upstream information in the sense of a chemical110

air parcel history on the characteristics of air quality, i.e. ozone, forecasts with a deep neural network. For this, we define

three sets of experiments; firstly, a baseline (NNb) experiment with no upstream information, secondly, a single sector (NN1s),

and thirdly a multi-sector (NN3s) approach. These sets of experiments necessitate different preprocessing steps, which we

introduce in the following (see also Table 3 for a summary of acronyms). As the ultimate goal of our experiments and methods

is to apply them to air quality observations, we selected the locations of German air quality stations as our input and target115

data and applied nearest-neighbour sampling to extract the specific WRF-chem model grid box ’representing’ the location of

a given measurement site. From here on, we will refer to those grid boxes as pseudo-observations and pseudo-measurement

stations.

All in all, we use data from 332 pseudo-measurement stations for training, validating and testing of the neural network by

following Kleinert et al. (2021). Thereby, 247 grid boxes contain exactly one, 35 grid boxes contain two, and five grid boxes120

contain three pseudo-station, respectively. As Schultz et al. (2021) and Kleinert et al. (2021) propose, we use a consecutive

data split. We train the model with data ranging from January 1st 2009 to October 15th 2009 and use a short validation period

ranging from October 16th 2009 to December 14th 2009. The final test period, which we used for all results presented below,

covers December 16th 2009 to March 31st 2010. This split is motivated by the fact that ozone concentrations during winter are

primarily determined by transport processes as opposed to summertime, when photochemistry plays a more active role. Hence,125

the effects of incorporating upstream information should become more apparent if we evaluate (i.e. ’test’) our model for winter

months (DJF(M)). However, the model is trained with data from all seasons and thus needs to generalise sufficiently well to

capture the strong seasonal cycle of ozone concentrations. An overview of our data split is shown in Fig. 2 and Tab. 1.

We use the following meteorological variables as model input (X): 2m-temperature (T2), 2m-water vapour mixing ratio

(Q2), surface pressure (PSFC), planetary boundary layer height (PBLH), 10m-horizontal wind speed (wspd10ll) and direction130

(wdir10ll). We convert the horizontal wind components from the Lambert conformal conic projection of WRF-Chem to the

geographic coordinate system. We further convert the winds u- and v-component to wind-speed and wind direction to determine

the upstream wind direction. Moreover, we use the following chemical variables from the lowest model level: ozone (O3),

5



Table 1. Number of pseudo-stations and number of samples for the training (train), validation (val) and testing (test) data sets.

no. ps.-stations × no. days = no. samples

train 332 278 92296

val 332 50 16600

test 332 97 32204

Table 2. Input and target variables with applied daily aggregation and scaling method

variable daily metric scaling method

NO dma8eu z-standardised

NO2 dma8eu z-standardised

O3 dma8eu z-standardised

input CO dma8eu z-standardised

2m temperature (T2) mean z-standardised

2m water vapour (Q2) mean z-standardised

10m wind direction (wdir10ll) mean min-max scaled

10m wind speed (wspd10ll) mean z-standardised

surface pressure (PSFC) mean z-standardised

planetary boundary layer height (PBLH) mean z-standardised

target O3 dma8eu z-standardised

nitrogen oxide (NO), nitrogen dioxide, (NO2) and carbon monoxide (CO). We aggregate the hourly model values to daily

means (meteorological variables) and maximum daily 8-hour means (dma8eu) (chemical variables1, see also Tab. 2) according135

to the EU definitions (European Parliament, 2008) by using the toar-stats python-package (Selke et al., 2021). Afterwards, we

z-standardise all data from the training set except the wind direction to mean zero with unit variance. The wind direction is

min-max scaled. Subsequently, we apply the scaling parameters obtained from the training set to the validation and testing

data sets. This approach allows for the most rigorous evaluation of the model’s generalisation capability, because no implicit

information of the validation and testing sets contaminates the training set. Table 2 summarises all variables, their aggregated140

statistics and the applied scaling method.

For the baseline experiment (NNb), we take the daily meteorological and chemical variables (see also Sect. 2) at a pseudo-

measurement station of the previous N = 6 time steps (t−6 to t0) to create the input tensor (X) for our neural network.

Accordingly, we use the next M = 4 timesteps (t1 to t4) at the same pseudo-measurement station to create the labels (y). We

repeat this procedure for all K = 332 pseudo-measurement stations.145

1We decided to use dma8eu for all chemical variables to sample all chemical quantities during the same time periods. dma8eu is calculated based on data

starting at 17:00 local time (LT) on the previous day, while the mean is calculated based on data starting at 00:00 LT at the current day.
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For NN1s and NN3s we use additional chemical and meteorological information of the surrounding area as inputs to the

neural network. We divide the wind directions into eight sectors corresponding to i) north, ii) north-east, iii) east, iv) south-

east, v) south, vi) south-west, vii) west, and viii) north-west. Consequently, each section covers 45◦. For each of our pseudo-

observations, we identify the upstream wind sector at time t0. We then select all WRF grid boxes (center points) which fall

into this sector and have a maximal distance of 200km to the central point of interest. Next, we compute the spatial mean for150

all chemical and meteorological variables in this set of grid boxes and use this aggregated information as additional input on

top of the local pseudo-observational input that is used in NNb. For NN3s experiments, the same processing is applied to data

in the sectors to the left and right of the upstream wind sector. Algorithm 1 depicts the preprocessing strategy.

Figure 3 shows the distribution of upstream sectors, i.e. number of samples, within the test set. The south-western sector

dominates (∼ 8200 samples) followed by the western sector (∼ 4800 samples). The northern and north-western sectors contain155

less that 2000 samples each.

Algorithm 1 Data preprocessing: NNb, NN1s, NN3s

1: Apply toar_stats to all variables

2: Convert horizontal wind components from Lambert conformal to geographic coordinate system

3: Rescale time series with parameters from training set

4: for all Pseudo-stations: Create samples do

5: Identify grid box representing pseudo station

6: if NN1s or NN3s then

7: detect upstream wind sector at t0

8: average across all grid boxes within the sector

9: if NN3s then

10: detect ’left’ and ’right’ upstream wind sector at t0

11: average across all grid boxes within each sector

12: end if

13: end if

14: Create inputs X with variables of seven days (−6d) to (0d)).

# Shape of X: 7× 1× (10+10s): number of days, 1, number of pseudo-measurement variables + aggregated sector variables

#s(NNb) = 0, s(NN1s) = 1, s(NN3s) = 3

15: Create labels y with ozone (dma8eu) concentrations for the next four days (1d to 4d).

# Shape of y: 1× 4 (1, lead time)

16: end for

17: Permute samples in the training set

18: Create batches of size 256
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Figure 2. Data availability and split into training (orange), validation (green) and testing (blue) data set. Each day contains data from all 332

pseudo-stations.
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Figure 3. Number of samples per (main)-upstream wind sector at time step t0 within the testing set.

3.2 MLAir Framework

We use the Machine Learning on Air data (MLAir, version 1.5) framework (Leufen et al., 2021a) as the backbone for our

experiments. MLAir provides a workflow framework for machine learning based atmospheric forecasts with easily extensible

modules for data preprocessing, training, hyperparameter optimisation and evaluation. MLAir uses the TensorFlow (Abadi160

et al., 2015), dask (Rocklin, 2015) and xarray (Hoyer and Hamman, 2017) libraries. For each of the mentioned preprocessing

methods (see Sect. 3.1), we implemented individual DataHandlers (see Leufen et al. (2021a, Sect. 2.5)) that allow us to modify

the data preprocessing steps while maintaining the same training and evaluation procedures for all experiments in spite of the

different data structures.

3.3 Model architecture and training procedure165

In contrast to our previous study (Kleinert et al., 2021) we use a U-shaped convolutional neural network (CNN) with two paral-

lel long short term memory (LSTM) cells in the lowest level. Ronneberger et al. (2015) first introduced the U-Net architecture

for biomedical image segmentation, but many other disciplines picked up this architecture. U-shaped or U-Net architectures

have already been used to successfully tackle spatio-temporal problems (He et al., 2022). As outlined in Sect 3.1, we train

three different models according to the three preprocessing variants, i) baseline (NNb), ii) one upstream sector (NN1s), iii)170

three upstream sectors (NN3s). The model architecture for the NN3s model is shown in Fig. 4. The first layer is the input layer.
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During training the individual samples in X, representing short seven-day time series (t−6 to t0) for each variable, are passed

to the network. We use the variables as channel dimension. We use 2D convolutional layers with a degenerated width dimen-

sion. Thus, the overall dimension of our training set is #samples×prev. N days×1×#(sector) variables. We use a kernel size

of 3× 1 for convolutions and a pooling kernel size of 2× 1. We apply exponential linear units (Clevert et al., 2016, ELU) as175

activation function for inner layers and a linear activation function for the output layer. Due to the different input data structures

between the three experiment sets, the model architectures differ from each other in terms of the number of channels. Other

design parameters - like the number of layers and kernel sizes - are identical across all runs. As the time series are relatively

short, we use symmetric padding to ensure that the temporal dimension does not shrink. In the U-structure’s lowest level, we

use two LSTM branches after the third convolution block. While we used a max-pooling layer before the first LSTM branch180

to capture highly dominant features, the second LSTM branch uses the whole temporal dimension of size seven. We use an

upsampling layer to expand the temporal dimension of the first LSTM branch and concatenate the resulting tensor with the

symmetric padded skip connection of the third convolution block. We apply an additional convolutional layer for information

compression before we append (concatenate) the second LSTM branch. Afterwards, we use altering concatenation and convo-

lution layers to reconstruct the U’s right slope. Finally, we use a simple dense layer with four nodes as the output layer. Here185

each node corresponds to the prediction for time step t1 to t4.

The original U-net proposed by Ronneberger et al. (2015) does not include padding as their input images are large enough

for multiple convolutions. For each convolutional operation with a kernel size of k, the processed input data’s shape shrinks by

k− 1 (assuming no padding and strides s= 1). To prevent the inputs from becoming too small, we implement the mentioned

paddings and use the standard UpConv-layer after the unpadded LSTM branch only. We train all models for 300 epochs using190

Adam (Kingma and Ba, 2014) as optimiser and the mean squared error as loss function. Detailed information on the choice of

hyperparameters can be found in Tab. A1.

3.4 Reference Models

As in Kleinert et al. (2021), we use persistence and an ordinary least squares (OLS) model as references to provide a meaningful

baseline evaluation of our machine learning models. The persistance forecast is built simply by using the latest observation at195

t0 as forecast for all lead times t1 to t4. The persistence model serves as a relatively strong competitor on short lead times,

and should be outperformed by all other models which add any value to the forecasting solution. To train the OLS model, we

use the same data set as for the NN3s network. The OLS model serves as a linear competitor and therefore as an indicator

on how well the neural networks differ from a ’simple’ linear forecast. A detailed description of these two reference forecasts

is provided in Leufen et al. (2021a, MLAir) and Kleinert et al. (2021, IntelliO3-ts). We also reran the experiments from this200

study with the IntelliO3-ts (Kleinert et al., 2021) model architecture which is based on inception layers (Szegedy et al., 2015)

for comparison. As described in section 3.1 three different variants of the IntelliO3 architecture had to be built because of the

different input data dimensions. All models were trained from scratch using the same data as in our main experiments.

Tab. 3 summarises the experiments described in this paper and introduces the labels that are used to denote these experiments

in the results section.205
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Figure 4. Summary of NN3s model architecture with input (black, bottom), hidden, and output (blue, top) layer. Several layers are grouped

for better visualizations. Colour-coding of individual layers and groups is shown on the right. This figure is created with Net2Vis (Bauerle

et al., 2021).
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Table 3. Naming of deep learning experiments and reference models described in this paper

label description

NNb neural network baseline experiment; U-Net architecture, no upstream information

NN1s as NNb, but with aggregated information from one upstream wind sector

NN3s as NN1b, but with aggregated information from three upstream wind sectors (Fig. 4)

persi persistence as reference model

ols ordinary least square regression model as reference

IntelliO3-b as NNb, but with IntelliO3 network architecture

IntelliO3-1s as NN1s, but with IntelliO3 network architecture

IntelliO3-3s as NN3s, but with IntelliO3 network architecture

4 Results

We first present the results of the two sectorial approaches (NN1s, NN3s) in comparison to the baseline method (NNb), which

is not using any upstream information. These three models are compared to OLS, persistence and the IntelliO3_[b, 1s, 3s]

variants. Secondly, we compare the individual losses of NN3s based on the training, validation and testing loss. Afterwards,

we present more detailed results for the multi-sector approach (NN3s) including an exemplary sensitivity analysis for input210

variables.

Figure 5 shows the overall mean squared error (MSE) for all models and reference models across all lead times. We can

clearly distinguish between different experiments (p < .001, see below). The U-Net architecture networks (NN3s, NN1s, NNb)

show the lowest RMSE. Contrary, the multi-sector, baseline IntelliO3 and persistence experiments (IntelliO3_3s, IntelliO3_b,

persi) show the largest RMSE. We estimate the uncertainty by performing a block-wise bootstrapping with a block length of215

seven days, and 1000 draws with replacement. Additionally, we perform a non-parametric two-sided Mann-Whitney u-test (5%

significance level) for NN3s and all competitors. The NN3s approach shows the lowest RMSE and the null hypothesis of the

performed u-test can be rejected (p < .001) for all competitors (detailed test statistics and corresponding p-values are shown

in Appendix Table B1). NN3s performs better than the baseline (NNb) and the single sector (NN1s) approach, which in turn

exhibits a lower RMSE compared to OLS, the InitelliO3 variants and persistence.220

Figure 6 shows a monthly comparison of the forecasts distributions per lead times for the pseudo-observation. The results

are shown for the test data set period ranging from Dec 2009 to Mar 2010 (see also Sect. 3.1). The forecasts show a narrower

distribution when compared to the pseudo- observation’s distribution. While we can observe that the NN3s model captures

the changing monthly structure in terms of varying mean and median concentrations, the network is not able to adequately

reproduce the variability and forecasts converge towards the monthly means. Such a behaviour was already found in Kleinert225

et al. (2021).
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12



0.4 0.2 0.0 0.2 0.4 0.6 0.8
skill score

NN3s - persi

NN3s - ols

NN3s - IntelliO3_1s

NN3s - IntelliO3_3s

NN3s - IntelliO3_b

NN3s - NN1s

NN3s - NNb
co

m
pe

tin
g 

m
od

el
s

summary of all stations

1d
2d
3d
4d

Figure 7. Skill scores of the NN3s model versus the reference models persistence (persi), ordinary least square (ols), single upstream sector

model (NN1s) and pseudo-station model (NNb) based on the mean squared error; separated for all lead times (1d (dark blue) to 4d (light

blue)). Positive values denote that NN3s performs better that the given references. Triangles display the arithmetic means.

More insights can be gained from evaluating the skill scores of the various experiments for the individual lead times (i.e. day

1 to day 4). As we base the comparison of our models on the mean squared error (MSE), the skill scores (S) take the form of

S (m,r,o) = 1− MSE (m,o)

MSE (r,o)
, (1)

where m is a vector containing the model’s forecast, o is a vector containing the corresponding observations and r is a vector230

containing the reference forecast (Murphy, 1988). Here a positive value of S > 0 corresponds to an improvement of the model

over the reference. Consequently, a negative value (S < 0) corresponds to a deterioration of skill with respect to the reference

forecast.

Figure 7 shows the skill scores separated for all lead times. Here the uncertainties (boxes and whiskers) are calculated based

on the individual pseudo-stations. As expected, the NN3s approach shows an increasing skill score with increasing lead time235

when the persistence forecast is used as reference (mean from ∼ .13 on 1d to ∼ .38 on 4d). When we compare NN3s with

respect to the OLS model, the mean skill score is positive throughout (overall mean ∼ .10) and has its maximum for a lead

time of 2d (mean ∼ .13), with the smallest interquartile range (IQR). For 3d and 4d lead times the skill score decreases. For the

comparison of NN3s with respect to the IntelliO3 variants (_b, _1s _3s) we can observe a general pattern with the highest skill

score on 1d which decreases with increasing lead time. The mean skill score of NN3s vs. IntelliO3_3s decreases from ∼ .34 to240

∼ .27, NN3s vs. IntelliO3_1s decreases from ∼ .24 to ∼ .12, and NN3s vs. IntelliO3_b from ∼ .35 to ∼ .26, respectively. The

additional two upstream sectors of IntelliO3_3s do not add any additional information compared to its single sector approach

(IntelliO3_1s).
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Figure 8. Skill score (NN3s vs. ols) per station for lead time 1d (a) to 4d (d). This figure is created with Cartopy (Met Office, 2010 - 2015).

Map data © OpenStreetMap contributors 2022. Distributed under the Open Data Commons Open Database License (ODbL) v1.0.

Even though NN3s provides a significant performance improvement over NN1s as shown in Figure 5 the skill score of the

NN3s vs. NN1s comparison is close to zero during all four forecast days (mean ∼ .03 on 1d, ∼ .02 on 2d, ∼ .01 on 3d and245

∼ .0 on 4d). The added value of neighbouring upstream sectors is apparently lost after 1d.

For the comparison of NN3s with respect to NNb we see the largest skill score for a lead time of 1d (mean ∼ .2) which

decreases up do 3d (∼ .09, ∼ .08) and slightly increases again on 4d (∼ .09).

As we originally expected a greater benefit of using upstream wind sector information for ozone forecasts, we have further

analysed these skill scores and looked at their spatial distribution. From Fig. 7 we can identify some pseudo-stations for which250

the ols model performs better then the NN3s model. To capture potential differences in spatial properties Fig. 8 shows the

skill NN3s vs. ols skill scores for each pseudo-station. The skill score (NN3s vs. ols) is mostly positive in the northern part of

Germany on 1d, and is negative mostly in mountainous regions in the south of Germany. With increasing lead time the skill

score becomes positive also in the mountainous regions but tend to turn negative in the north east.
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5 Discussion255

Based on the results presented in Sect. 4 we can observe that NN3s outperforms the (simplistic) persistence and OLS forecasts

as well as NNb, which only uses the pseudo observations of a specific grid box. The increase of the NN3s-persi skill score with

increasing lead time (Fig. 7) is in line with expected behaviour as the persistence forecast has its most valuable predictions on

short lead times. Consequently, the increased skill score for NN3s-persi is mostly caused by the worsening of the persistence

forecast with increasing lead time. However, the positive skill score on lead-time 1d shows that the NN3s model has a genuine260

added value over the persistence forecast on short lead times. When comparing NN3s and NN1s, we see that the skill score’s

lower bound of the IQR is close to zero for the first two days of prediction and that skill score’s mean and median converge

towards zero for the remaining lead times; meaning that NN3s behaves like NN1s for 3d and 4d. Consequently, NN3s can not

extract any additional helpful information from the input fields for 3d and 4d. Most likely this effect is caused by the definition

of neighbouring sectors as described in Sect. 3.1, where we use the upstream wind sector and the two adjacent sectors with a265

radius of 200km at time step t0 to calculate the spatial means for all input time steps t−6 to t0. Thus, depending on the average

wind speed, the static upstream wind sectors cannot provide all relevant information. Moreover, the sectorial approach is a

cruder approximation of a streamline than a backwards trajectory, and differences between both of them tend to increase with

increasing lead time. Based on the NN3s and NN1s sample uncertainty estimate in Fig. 5 and the competitive skill score per

lead time in Fig. 7 we can conclude, that the statistical significance of the u-test (Appendix Tab. B1) is related to the better270

performance on the first two lead times (1d and 2d).

In the following, we discuss differences in the training, validation and testing loss of NN3s, the influence of the upstream

wind direction and implications based on our data split in more detail.

5.1 Evaluation of training, validation and testing differences

We use different parts of a year to train, validate and test our models (see Sect. 3.1). Consequently, the network encounters275

different meteorological and chemical conditions. Therefore, we compare the differences in the MSE (which we used as the loss

function during training) for the training, validation and testing set for each station individually. Averaged over all stations, the

mean rescaled losses for NN3s are 64.08ppb2 (train, scaled: 1.04); 63.34ppb2 (val, scaled: 0.98) and 64.62ppb2 (test, scaled:

1.08). Figure 9 shows how the losses are distributed geographically. In general, we can identify two main patterns. Firstly,

the test set’s loss is mostly lower than the validation and train loss in Germany’s western and southwestern parts. In contrast,280

we can observe the opposite in Germany’s northern and northeastern regions. The highest MSE on all sets is located in the

mountainous south. Figure 9 shows how the losses are distributed geographically. At first glance, we can identify regions with

high MSE (> 120ppb2, yellowish colours) in the mountainous south and in the northern coastal area. The triangles denote

the losses of each station separated for the training (left part of the symbol), validation (right part of the symbol) and test

(lower part of the symbol) set. When focussing on the set’s loss differences at individual pseudo-stations, we can identify the285

following pattern: the test set’s loss is mostly lower than the validation and train loss in Germany’s western and southwestern

parts. The high individual validation loss in the northern part is directly related to the large temperature anomaly, as shown in
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Figure 9. MSE of the training (left triangle), validation (right triangle), and testing (bottom triangle) data set for each station. This figure is

created with Cartopy (Met Office, 2010 - 2015). Map data © OpenStreetMap contributors 2022. Distributed under the Open Data Commons

Open Database License (ODbL) v1.0.

Fig. 1. Thus, the feature combination is not explicitly present in the training set resulting in larger discrepancies in forecasts

and observations.

5.2 Sectorial results - NN3s290

In the following we further analyse the influence of the upstream wind direction on the skill score. As mentioned in Sect. 2,

the SW direction is the dominant upstream sector in the testing set, while the fewest cases are found in the NW sector.

Figure 10 shows the skill score separated for each wind sector (NN3s vs. NNb). We can observe that the skill score is mostly

negative for the northern sector (∼−.2), having a low number of samples (Fig. 3). On the contrary, the southwestern sector’s

skill score is -on average- positive, but close to zero, indicating that NNb performs equally well in the dominant upstream295

direction. On average the skill scores for E, SE, S and W are positive indicating that the NN3s model can extract some useful

information in contrast to using the pseudo-observation at the pseudo location only. However, it becomes also obvious, that

this is not the case for all stations (negative skill scores indicated by dots). It seems, that the additional information provided

by the upstream sectors might sometimes confuse the network and therefore does not have the desired effect at all instances.
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Figure 10. Skill scores (NN3s vs. NNb) based on the upstream wind direction at time step t0.

5.3 Non-linearities300

As we saw in Fig. 8, there are pseudo stations in Germany, where a simpler OLS model produces a better forecast than NN3s.

Naively, one might expect a neural network to generate better forecasts because of its ability to capture non-linear dependencies

between variables. To better understand these non-linearities, we iteratively modified modify the input variables of each sample

(in all sectors and the pseudo-observation). Afterwards, we feed the modified input samples into the trained NN3s model and

detect how the ozone forecasts for all lead times change. Figure 11 shows the sensitivity of ozone inputs for one example305

station. For the O3 sensitivity test, the resulting sample distribution is very narrow. We can identify threetwo regions where

the first one ranges from 0ppb to ∼ 50ppb ; the second from ∼ 50 ppb to ∼ 80ppb, and the third one from >80ppb to the

maximum value of 170ppb with a transition region in between. The shallower increase within the third second region aligns

with the findings from Fig. 6 where we see that NN3s cannot adequately reproduce high ozone levels. Figure 12 shows the

sensitivity towards 10m wind speed. The wind speed analysis results in a broader distribution with a flat shape from 0 to 10310

ms−1 and a linear increase for larger wind speeds.

An increase of NO levels leads to an increase of the resulting ozone level (Fig. 13). The increase is strongest for low NO

levels and flattens for larger NO levels. Contrary, an increase on NO2 leads to a decrease of the resulting ozone levels (Fig. 14)

forecasted by NN3s.
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Figure 11. Sensitivity of NN3s forecasts for an exemplary station located at 50.770382◦N and 9.459403◦E with respect to ozone. Light

grey lines correspond to individual test set’s samples. Solid black line represents the mean, while dashed lines represent +- one standard

deviation. Light grey dots (97) represent each sample’s daily aggregated WRF-Chem values at timestep t0. The solid black line represents

the mean sensitivity across all samples, and the dashed black lines represent ± one standard deviation, respectively. Sensitivities are shown

individually for all lead times (1d to 4d).

Disentangling the influences of NOx and VOC species on ozone concentrations is a complex endeavour. Investigations into315

these relations with CTMs show that the results depend on the details of the chemical mechanisms as well as other model

parameterisations (e.g. for deposition or biogenic VOC emissions). Fast et al. (2014) showed that the reduction of all anthro-

pogenic emissions by 50% has only a relatively minor effect on the O3 bias in California with differences of up to ∼ 5ppb at

four selected sites compared to a simulation with default emissions. Abdi-Oskouei et al. (2020) performed several sensitivity

studies to assess the impact of meteorological boundary conditions and the land surface model on modelled O3 concentrations,320

and they showed that these changes led to a minor sensitivity of average ozone concentration (< 2ppb). Georgiou et al. (2018)

analysed the impact of the different chemical schemes on predicted trace gases and aerosol concentrations and they found

that CBMZ-MOSAIC and MOZART-MOSAIC have similar O3 biases (10.9ppb and 11.6ppb), while the use of RADM2-

MADE/SORGAM mechanism led to a smaller bias of 4.25ppb. These differences were attributed to the difference in VOC

treatment. Gupta and Mohan (2015) have also analysed the sensitivity of ozone concentrations to the choice of the chemical325

mechanism and noted that the CBMZ performed better than the RACM mechanism due to the revised rates of inorganic reac-

tions in the CBMZ mechanism. Mar et al. (2016) found that the absolute concentration of ozone predicted by the MOZART-4

chemical mechanism is up to 20 µgm−3 greater than RADM2 in summer. This is explained by the different representations of

VOC chemistry and different inorganic rate coefficients. Liu et al. (2022) developed a deep learning model for correcting O3

biases in a global chemistry-climate model and demonstrated that temperature and geographic variables showed the strongest330

interaction with O3 biases in their model.
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Figure 12. Same as Fig. 11, but for 10m wind speed instead of ozone input
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Figure 13. Same as Fig. 11, but for NO instead of ozone input

5.4 Concept drift

We trained all our models and reference models with data ranging from January 1st 2009, to October 15th 2009. We selected

a short validation period from mid-autumn to early winter and finally based our analysis on data from the winter and early

spring seasons. Thus, as depicted in Fig. 1 the testing set contains data from an unusually cold winter which was not reflected335

adequately in the training set. Therefore, the network encounters some input patterns and combinations of features during

testing, which are not similar to any data used for training, and thus the DL network has to generate predictions outside of

its ’comfort zone’ (see, for example, Leonard et al. (1992) and Pastore and Carnini (2021) or Ziyin et al. (2020) for periodic

data). As presented in Sect. 2, the temperature anomaly during winter 2009/10 was largest in northern Germany and less, but

still negative, in the Southern parts of Germany. We can observe a similar north-south pattern for the skill scores (NN3s vs340
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Figure 14. Same as Fig. 11, but for NO2 instead of ozone input

ols) per station (Fig. 8) and a skill scores’ change of sign with increasing lead time. Nonetheless, our analysis cannot attribute

these phenomena and the geographic height to each other, and further analysis using explainable machine learning techniques

like for example in Stadtler et al. (2022) would be required. In order to reduce the concept drift’s effect, extending each data

set to multiple years would be beneficial in upcoming studies. This would allow the network to operate on more robust data

distributions and thus minimise the risk of out-of-sample predictions.345

5.5 Alternative Neural Network Approaches

This study indicates that the forecast quality of air pollutant concentrations can be increased by taking into account the spatial

patterns of the meteorological and chemical fields. While our work has focused on time series predictions to explore machine

learning methods that can be trained on observational data, there are other studies, which employ machine learning to forecast

spatiotemporal fields. For example, Steffenel et al. (2021) used the PredRNN++ (Wang et al., 2018) model to forecast the Total350

Column Ozone for the southern part of South America and parts of Antarctica. Gong et al. (2022) recently used convolutional

long short-term memory models (Shi et al., 2015, ConvLSTM) and a generative model Stochastic Adversarial Video Prediction

(Lee et al., 2018, SAVP) model to forecasts the 2-metre temperature for a lead time of up to 12 hours over Europe with some

success. As a general outcome of these studies it can be said that generative models are better suited to preserve the multi-scale

structures of atmospheric fields. While the development of such models for weather applications proceeds rapidly and adopts355

the latest deep learning methods (see for example Pathak et al. (2022)), the machine learning models for atmospheric chemistry

have so far been comparatively simpler.

One option to further enhance the approach presented in this study would be the use of Lagrangian particle modelling to

derive the area of influence and chemical history for observation sites (see e.g Yu et al., 2020). Furthermore, the application

of Bayesian network architectures can help to characterise data and model uncertainties in future studies (for gridded model360

examples, see, e.g. Sengupta et al., 2020; Sun et al., 2022; Ren et al., 2022)
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6 Conclusions

In this study, we explored the potential benefit of using spatially aggregated upstream information to improve point-wise pre-

dictions of near-surface ozone concentrations. Even though this analysis was based on pseudo observations sampled from

chemistry transport model the results should apply to real observation data as well if they are not confounded by the inhomo-365

geneous spatial distribution and missing data occurrences in observational data.

The first result from this study is that a U-net architecture with a combination of convolutional and LSTM cells is superior

to the inception block architecture presented in Kleinert et al. (2021) in this explicit forecasting setting. The second, and

main result is that the additional information provided by the central upstream wind sector (NN1s) improves the forecast for

all lead times (1d to 4d) with respect to the baseline model (NNb) by 10%, which has not seen any upstream information370

during training. Moreover, we show that further information provided by the left and right upstream sectors (NN3s) improve

the forecasts only at the first two days (∼ 14%) and that there is no further improvement at the remaining days (3d and 4d)

with respect to the central upstream model (NN1s). The non-linearity provided by the neural network is essential to extract

meaningful upstream information as NN3s outperforms the ols model which are both trained on exactly the same data.

NN3s outperforms the ols model at most of the pseudo-stations that we trained on exactly the same data. Thus, we can conclude375

that the non-linearity provided by the neural network is essential to extracting meaningful upstream information.

Nonetheless, we showed that the NN3s model does not outperform the ols model at all pseudo-stations and lead times. This

can in part be attributed to a sampling bias, because the winter in 2010 (test data) was much colder than the winter of 2009

(part of the training data). Besides these limitations, we conservatively evaluated the generalisation capability in the sense that

the testing set has the largest possible ’distance’ to the training data. The improvement in forecast quality arising from the380

upstream sector information can therefore be seen as a lower limit.

The previous study of Yi et al. (2018) showed that their deep neural network model (DeepAir) that makes use of spatially

aggregated information outperforms several other network architectures. In complement to their study, we investigated different

preprocessing variants. Our variants use various amounts of data to encapsulate the influence on the forecasting performance

of one U-shaped network type.385

Using Lagrangian particle modelling to derive the area of influence of a pseudo-observation (see e.g. Yu et al., 2020) and

sampling the history based on this area of influence instead of fixed wind sectors could be a promising direction for further

studies.

Code and data availability. The current version of MLAir and its additional features are available from the project website: https://gitlab.jsc.

fz-juelich.de/esde/machine-learning/mlair/-/tree/Kleinert_et_al_2022_Representing (last access: 28 February 2022) under the MIT licence390

(http://opensource.org/licenses/mit-license.php, last access: 28 February 2022). The exact versions of the model and data used to produce the

results in this paper are archived on b2share at https://doi.org/10.34730/19c94b0b77374395b11cb54991cc497d (Kleinert et al., 2022a) and

Kleinert et al. (2022b, c, d, e)
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Table A1. Hyper-parameters used for NN3s

parameter model setting

_input_shape (7, 1, 40)

_output_shape 4

activation elu

amsgrad False

beta_1 0.9

beta_2 0.999

bias_regularizer tf.python.keras.regularizers.L1L2

count params 885252

decay 0.0

epsilon 1e-07

first_filter_size 32

initial_lr 0.001

kernel_initializer he_normal

kernel_regularizer tf.python.keras.regularizers.L1L2

kernel_size (3, 1)

learning_rate 0.001

loss mean_squared_error

lstm_units 128

metrics mse, mae

model_name NN3s

name Adam

optimizer tf.python.keras.optimizer_v2.adam.Adam

pool_size (2, 1)

Appendix A: NN3s - Hyperparameters

Table A1 shows the hyper-parameters used to train the NN3s model. The table is automatically pooled and generated by MLAir.395

Appendix B: Additional statistics

Table B1 summarises the results of two-sided Mann-Whitney u-tests (5% significance level) for NN3s and all our competitive

models.
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Table B1. Results of two-sided Mann-Whitney u-test (5% significance level) of NN3s and listed competitor models

type statistics p-value

NN1s 550094.0 0.0001

NNb 7.965250e+05 ≪ .0001

ols 9.024260e+05 ≪ .0001

IntelliO3_1s 9.790170e+05 ≪ .0001

IntelliO3_3s 998110.0 ≪ .0001

IntelliO3_b 998892.0 ≪ .0001

persi 999849.0 ≪ .0001
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Kleinert, F., Leufen, L. H., Lupaşcu, A., Butler, T., and Schultz, M. G.: Representing chemical history in ozone time-

series predictions - a model experiment study building on the MLAir (v1.5) deep learning framework: Data 3/4,

https://doi.org/10.34730/a423ec9003194209989726a95a1a490c, 2022d.
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